Diff for /imach/src/imach.c between versions 1.125 and 1.144

version 1.125, 2006/04/04 15:20:31 version 1.144, 2014/02/10 22:17:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.144  2014/02/10 22:17:31  brouard
     *** empty log message ***
   
     Revision 1.143  2014/01/26 09:45:38  brouard
     Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
     Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
   
     Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
     Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
   
     Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
   
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   
     Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
   
     Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   
     Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   
     Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
     Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
     computation.
     In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month, quarter,    states. This elementary transition (by month, quarter,
   semester or year) is modelled as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the period (stable) prevalence.    of the life expectancies. It also computes the period (stable) prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   **********************************************************************/    **********************************************************************/
 /*  /*
   main    main
   read parameterfile    read parameterfile
   read datafile    read datafile
   concatwav    concatwav
   freqsummary    freqsummary
   if (mle >= 1)    if (mle >= 1)
     mlikeli      mlikeli
   print results files    print results files
   if mle==1    if mle==1 
      computes hessian       computes hessian
   read end of parameter file: agemin, agemax, bage, fage, estepm    read end of parameter file: agemin, agemax, bage, fage, estepm
       begin-prev-date,...        begin-prev-date,...
   open gnuplot file    open gnuplot file
   open html file    open html file
   period (stable) prevalence    period (stable) prevalence
    for age prevalim()     for age prevalim()
   h Pij x    h Pij x
   variance of p varprob    variance of p varprob
   forecasting if prevfcast==1 prevforecast call prevalence()    forecasting if prevfcast==1 prevforecast call prevalence()
   health expectancies    health expectancies
   Variance-covariance of DFLE    Variance-covariance of DFLE
   prevalence()    prevalence()
    movingaverage()     movingaverage()
   varevsij()    varevsij() 
   if popbased==1 varevsij(,popbased)    if popbased==1 varevsij(,popbased)
   total life expectancies    total life expectancies
   Variance of period (stable) prevalence    Variance of period (stable) prevalence
  end   end
 */  */
   
   
   
     
 #include <math.h>  #include <math.h>
 #include <stdio.h>  #include <stdio.h>
 #include <stdlib.h>  #include <stdlib.h>
 #include <string.h>  #include <string.h>
 #include <unistd.h>  #include <unistd.h>
   
 #include <limits.h>  #include <limits.h>
 #include <sys/types.h>  #include <sys/types.h>
 #include <sys/stat.h>  #include <sys/stat.h>
 #include <errno.h>  #include <errno.h>
 extern int errno;  extern int errno;
   
 /* #include <sys/time.h> */  #ifdef LINUX
 #include <time.h>  #include <time.h>
 #include "timeval.h"  #include "timeval.h"
   #else
 /* #include <libintl.h> */  #include <sys/time.h>
 /* #define _(String) gettext (String) */  #endif
   
 #define MAXLINE 256  #ifdef GSL
   #include <gsl/gsl_errno.h>
 #define GNUPLOTPROGRAM "gnuplot"  #include <gsl/gsl_multimin.h>
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  #endif
 #define FILENAMELENGTH 132  
   /* #include <libintl.h> */
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  /* #define _(String) gettext (String) */
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
   #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define NINTERVMAX 8  #define FILENAMELENGTH 132
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define NCOVMAX 8 /* Maximum number of covariates */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
 #define AGESUP 130  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define AGEBASE 40  
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  #define NINTERVMAX 8
 #ifdef UNIX  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 #define DIRSEPARATOR '/'  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 #define CHARSEPARATOR "/"  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 #define ODIRSEPARATOR '\\'  #define MAXN 20000
 #else  #define YEARM 12. /**< Number of months per year */
 #define DIRSEPARATOR '\\'  #define AGESUP 130
 #define CHARSEPARATOR "\\"  #define AGEBASE 40
 #define ODIRSEPARATOR '/'  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
 #endif  #ifdef UNIX
   #define DIRSEPARATOR '/'
 /* $Id$ */  #define CHARSEPARATOR "/"
 /* $State$ */  #define ODIRSEPARATOR '\\'
   #else
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";  #define DIRSEPARATOR '\\'
 char fullversion[]="$Revision$ $Date$";  #define CHARSEPARATOR "\\"
 char strstart[80];  #define ODIRSEPARATOR '/'
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  #endif
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  
 int nvar;  /* $Id$ */
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  /* $State$ */
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
 int ndeath=1; /* Number of dead states */  char fullversion[]="$Revision$ $Date$"; 
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  char strstart[80];
 int popbased=0;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 int *wav; /* Number of waves for this individuual 0 is possible */  int nvar=0, nforce=0; /* Number of variables, number of forces */
 int maxwav; /* Maxim number of waves */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
 int jmin, jmax; /* min, max spacing between 2 waves */  int npar=NPARMAX;
 int ijmin, ijmax; /* Individuals having jmin and jmax */  int nlstate=2; /* Number of live states */
 int gipmx, gsw; /* Global variables on the number of contributions  int ndeath=1; /* Number of dead states */
                    to the likelihood and the sum of weights (done by funcone)*/  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int mle, weightopt;  int popbased=0;
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  int *wav; /* Number of waves for this individuual 0 is possible */
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  int maxwav=0; /* Maxim number of waves */
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 double jmean; /* Mean space between 2 waves */  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 double **oldm, **newm, **savm; /* Working pointers to matrices */  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */                     to the likelihood and the sum of weights (done by funcone)*/
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  int mle=1, weightopt=0;
 FILE *ficlog, *ficrespow;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 int globpr; /* Global variable for printing or not */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 double fretone; /* Only one call to likelihood */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 long ipmx; /* Number of contributions */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double sw; /* Sum of weights */  double jmean=1; /* Mean space between 2 waves */
 char filerespow[FILENAMELENGTH];  double **oldm, **newm, **savm; /* Working pointers to matrices */
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 FILE *ficresilk;  /*FILE *fic ; */ /* Used in readdata only */
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 FILE *ficresprobmorprev;  FILE *ficlog, *ficrespow;
 FILE *fichtm, *fichtmcov; /* Html File */  int globpr=0; /* Global variable for printing or not */
 FILE *ficreseij;  double fretone; /* Only one call to likelihood */
 char filerese[FILENAMELENGTH];  long ipmx=0; /* Number of contributions */
 FILE *ficresstdeij;  double sw; /* Sum of weights */
 char fileresstde[FILENAMELENGTH];  char filerespow[FILENAMELENGTH];
 FILE *ficrescveij;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 char filerescve[FILENAMELENGTH];  FILE *ficresilk;
 FILE  *ficresvij;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 char fileresv[FILENAMELENGTH];  FILE *ficresprobmorprev;
 FILE  *ficresvpl;  FILE *fichtm, *fichtmcov; /* Html File */
 char fileresvpl[FILENAMELENGTH];  FILE *ficreseij;
 char title[MAXLINE];  char filerese[FILENAMELENGTH];
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  FILE *ficresstdeij;
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  char fileresstde[FILENAMELENGTH];
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  FILE *ficrescveij;
 char command[FILENAMELENGTH];  char filerescve[FILENAMELENGTH];
 int  outcmd=0;  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 char filelog[FILENAMELENGTH]; /* Log file */  char title[MAXLINE];
 char filerest[FILENAMELENGTH];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 char fileregp[FILENAMELENGTH];  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 char popfile[FILENAMELENGTH];  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  int  outcmd=0;
   
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 struct timezone tzp;  
 extern int gettimeofday();  char filelog[FILENAMELENGTH]; /* Log file */
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  char filerest[FILENAMELENGTH];
 long time_value;  char fileregp[FILENAMELENGTH];
 extern long time();  char popfile[FILENAMELENGTH];
 char strcurr[80], strfor[80];  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 char *endptr;  
 long lval;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 double dval;  struct timezone tzp;
   extern int gettimeofday();
 #define NR_END 1  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 #define FREE_ARG char*  long time_value;
 #define FTOL 1.0e-10  extern long time();
   char strcurr[80], strfor[80];
 #define NRANSI  
 #define ITMAX 200  char *endptr;
   long lval;
 #define TOL 2.0e-4  double dval;
   
 #define CGOLD 0.3819660  #define NR_END 1
 #define ZEPS 1.0e-10  #define FREE_ARG char*
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define FTOL 1.0e-10
   
 #define GOLD 1.618034  #define NRANSI 
 #define GLIMIT 100.0  #define ITMAX 200 
 #define TINY 1.0e-20  
   #define TOL 2.0e-4 
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define CGOLD 0.3819660 
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define ZEPS 1.0e-10 
    #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 static double sqrarg;  #define TINY 1.0e-20 
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  static double maxarg1,maxarg2;
 int agegomp= AGEGOMP;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 int imx;    
 int stepm=1;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 /* Stepm, step in month: minimum step interpolation*/  #define rint(a) floor(a+0.5)
   
 int estepm;  static double sqrarg;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 int m,nb;  int agegomp= AGEGOMP;
 long *num;  
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  int imx; 
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int stepm=1;
 double **pmmij, ***probs;  /* Stepm, step in month: minimum step interpolation*/
 double *ageexmed,*agecens;  
 double dateintmean=0;  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 double *weight;  
 int **s; /* Status */  int m,nb;
 double *agedc, **covar, idx;  long *num;
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 double *lsurv, *lpop, *tpop;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  double *ageexmed,*agecens;
 double ftolhess; /* Tolerance for computing hessian */  double dateintmean=0;
   
 /**************** split *************************/  double *weight;
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  int **s; /* Status */
 {  double *agedc;
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  double  **covar; /**< covar[i,j], value of jth covariate for individual i,
      the name of the file (name), its extension only (ext) and its first part of the name (finame)                    * covar=matrix(0,NCOVMAX,1,n); 
   */                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   char  *ss;                            /* pointer */  double  idx; 
   int   l1, l2;                         /* length counters */  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   int **codtab; /**< codtab=imatrix(1,100,1,10); */
   l1 = strlen(path );                   /* length of path */  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  double *lsurv, *lpop, *tpop;
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     strcpy( name, path );               /* we got the fullname name because no directory */  double ftolhess; /**< Tolerance for computing hessian */
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  /**************** split *************************/
     /* get current working directory */  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     /*    extern  char* getcwd ( char *buf , int len);*/  {
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       return( GLOCK_ERROR_GETCWD );       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     }    */ 
     /* got dirc from getcwd*/    char  *ss;                            /* pointer */
     printf(" DIRC = %s \n",dirc);    int   l1, l2;                         /* length counters */
   } else {                              /* strip direcotry from path */  
     ss++;                               /* after this, the filename */    l1 = strlen(path );                   /* length of path */
     l2 = strlen( ss );                  /* length of filename */    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     strcpy( name, ss );         /* save file name */    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     strncpy( dirc, path, l1 - l2 );     /* now the directory */      strcpy( name, path );               /* we got the fullname name because no directory */
     dirc[l1-l2] = 0;                    /* add zero */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     printf(" DIRC2 = %s \n",dirc);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   }      /* get current working directory */
   /* We add a separator at the end of dirc if not exists */      /*    extern  char* getcwd ( char *buf , int len);*/
   l1 = strlen( dirc );                  /* length of directory */      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   if( dirc[l1-1] != DIRSEPARATOR ){        return( GLOCK_ERROR_GETCWD );
     dirc[l1] =  DIRSEPARATOR;      }
     dirc[l1+1] = 0;      /* got dirc from getcwd*/
     printf(" DIRC3 = %s \n",dirc);      printf(" DIRC = %s \n",dirc);
   }    } else {                              /* strip direcotry from path */
   ss = strrchr( name, '.' );            /* find last / */      ss++;                               /* after this, the filename */
   if (ss >0){      l2 = strlen( ss );                  /* length of filename */
     ss++;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     strcpy(ext,ss);                     /* save extension */      strcpy( name, ss );         /* save file name */
     l1= strlen( name);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     l2= strlen(ss)+1;      dirc[l1-l2] = 0;                    /* add zero */
     strncpy( finame, name, l1-l2);      printf(" DIRC2 = %s \n",dirc);
     finame[l1-l2]= 0;    }
   }    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
   return( 0 );                          /* we're done */    if( dirc[l1-1] != DIRSEPARATOR ){
 }      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
       printf(" DIRC3 = %s \n",dirc);
 /******************************************/    }
     ss = strrchr( name, '.' );            /* find last / */
 void replace_back_to_slash(char *s, char*t)    if (ss >0){
 {      ss++;
   int i;      strcpy(ext,ss);                     /* save extension */
   int lg=0;      l1= strlen( name);
   i=0;      l2= strlen(ss)+1;
   lg=strlen(t);      strncpy( finame, name, l1-l2);
   for(i=0; i<= lg; i++) {      finame[l1-l2]= 0;
     (s[i] = t[i]);    }
     if (t[i]== '\\') s[i]='/';  
   }    return( 0 );                          /* we're done */
 }  }
   
 int nbocc(char *s, char occ)  
 {  /******************************************/
   int i,j=0;  
   int lg=20;  void replace_back_to_slash(char *s, char*t)
   i=0;  {
   lg=strlen(s);    int i;
   for(i=0; i<= lg; i++) {    int lg=0;
   if  (s[i] == occ ) j++;    i=0;
   }    lg=strlen(t);
   return j;    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 void cutv(char *u,char *v, char*t, char occ)    }
 {  }
   /* cuts string t into u and v where u ends before first occurence of char 'occ'  
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  char *trimbb(char *out, char *in)
      gives u="abcedf" and v="ghi2j" */  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   int i,lg,j,p=0;    char *s;
   i=0;    s=out;
   for(j=0; j<=strlen(t)-1; j++) {    while (*in != '\0'){
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   }        in++;
       }
   lg=strlen(t);      *out++ = *in++;
   for(j=0; j<p; j++) {    }
     (u[j] = t[j]);    *out='\0';
   }    return s;
      u[p]='\0';  }
   
    for(j=0; j<= lg; j++) {  char *cutv(char *blocc, char *alocc, char *in, char occ)
     if (j>=(p+1))(v[j-p-1] = t[j]);  {
   }    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
 }       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
 /********************** nrerror ********************/       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     */
 void nrerror(char error_text[])    char *s, *t;
 {    t=in;s=in;
   fprintf(stderr,"ERREUR ...\n");    while (*in != '\0'){
   fprintf(stderr,"%s\n",error_text);      while( *in == occ){
   exit(EXIT_FAILURE);        *blocc++ = *in++;
 }        s=in;
 /*********************** vector *******************/      }
 double *vector(int nl, int nh)      *blocc++ = *in++;
 {    }
   double *v;    if (s == t) /* occ not found */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      *(blocc-(in-s))='\0';
   if (!v) nrerror("allocation failure in vector");    else
   return v-nl+NR_END;      *(blocc-(in-s)-1)='\0';
 }    in=s;
     while ( *in != '\0'){
 /************************ free vector ******************/      *alocc++ = *in++;
 void free_vector(double*v, int nl, int nh)    }
 {  
   free((FREE_ARG)(v+nl-NR_END));    *alocc='\0';
 }    return s;
   }
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  int nbocc(char *s, char occ)
 {  {
   int *v;    int i,j=0;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    int lg=20;
   if (!v) nrerror("allocation failure in ivector");    i=0;
   return v-nl+NR_END;    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /******************free ivector **************************/    }
 void free_ivector(int *v, long nl, long nh)    return j;
 {  }
   free((FREE_ARG)(v+nl-NR_END));  
 }  /* void cutv(char *u,char *v, char*t, char occ) */
   /* { */
 /************************lvector *******************************/  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
 long *lvector(long nl,long nh)  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
 {  /*      gives u="abcdef2ghi" and v="j" *\/ */
   long *v;  /*   int i,lg,j,p=0; */
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  /*   i=0; */
   if (!v) nrerror("allocation failure in ivector");  /*   lg=strlen(t); */
   return v-nl+NR_END;  /*   for(j=0; j<=lg-1; j++) { */
 }  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
 /******************free lvector **************************/  
 void free_lvector(long *v, long nl, long nh)  /*   for(j=0; j<p; j++) { */
 {  /*     (u[j] = t[j]); */
   free((FREE_ARG)(v+nl-NR_END));  /*   } */
 }  /*      u[p]='\0'; */
   
 /******************* imatrix *******************************/  /*    for(j=0; j<= lg; j++) { */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /*   } */
 {  /* } */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  /********************** nrerror ********************/
    
   /* allocate pointers to rows */  void nrerror(char error_text[])
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    fprintf(stderr,"ERREUR ...\n");
   m += NR_END;    fprintf(stderr,"%s\n",error_text);
   m -= nrl;    exit(EXIT_FAILURE);
    }
    /*********************** vector *******************/
   /* allocate rows and set pointers to them */  double *vector(int nl, int nh)
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    double *v;
   m[nrl] += NR_END;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   m[nrl] -= ncl;    if (!v) nrerror("allocation failure in vector");
      return v-nl+NR_END;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  }
    
   /* return pointer to array of pointers to rows */  /************************ free vector ******************/
   return m;  void free_vector(double*v, int nl, int nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /****************** free_imatrix *************************/  }
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  /************************ivector *******************************/
       long nch,ncl,nrh,nrl;  int *ivector(long nl,long nh)
      /* free an int matrix allocated by imatrix() */  {
 {    int *v;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   free((FREE_ARG) (m+nrl-NR_END));    if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  /******************free ivector **************************/
 {  void free_ivector(int *v, long nl, long nh)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  {
   double **m;    free((FREE_ARG)(v+nl-NR_END));
   }
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /************************lvector *******************************/
   m += NR_END;  long *lvector(long nl,long nh)
   m -= nrl;  {
     long *v;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!v) nrerror("allocation failure in ivector");
   m[nrl] += NR_END;    return v-nl+NR_END;
   m[nrl] -= ncl;  }
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /******************free lvector **************************/
   return m;  void free_lvector(long *v, long nl, long nh)
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])  {
    */    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /*************************free matrix ************************/  /******************* imatrix *******************************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  { 
   free((FREE_ARG)(m+nrl-NR_END));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 }    int **m; 
     
 /******************* ma3x *******************************/    /* allocate pointers to rows */ 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 {    if (!m) nrerror("allocation failure 1 in matrix()"); 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    m += NR_END; 
   double ***m;    m -= nrl; 
     
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    
   if (!m) nrerror("allocation failure 1 in matrix()");    /* allocate rows and set pointers to them */ 
   m += NR_END;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   m -= nrl;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    m[nrl] -= ncl; 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    
   m[nrl] += NR_END;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   m[nrl] -= ncl;    
     /* return pointer to array of pointers to rows */ 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    return m; 
   } 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  /****************** free_imatrix *************************/
   m[nrl][ncl] += NR_END;  void free_imatrix(m,nrl,nrh,ncl,nch)
   m[nrl][ncl] -= nll;        int **m;
   for (j=ncl+1; j<=nch; j++)        long nch,ncl,nrh,nrl; 
     m[nrl][j]=m[nrl][j-1]+nlay;       /* free an int matrix allocated by imatrix() */ 
    { 
   for (i=nrl+1; i<=nrh; i++) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    free((FREE_ARG) (m+nrl-NR_END)); 
     for (j=ncl+1; j<=nch; j++)  } 
       m[i][j]=m[i][j-1]+nlay;  
   }  /******************* matrix *******************************/
   return m;  double **matrix(long nrl, long nrh, long ncl, long nch)
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  {
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   */    double **m;
 }  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 /*************************free ma3x ************************/    if (!m) nrerror("allocation failure 1 in matrix()");
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    m += NR_END;
 {    m -= nrl;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   free((FREE_ARG)(m+nrl-NR_END));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 }    m[nrl] += NR_END;
     m[nrl] -= ncl;
 /*************** function subdirf ***********/  
 char *subdirf(char fileres[])    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {    return m;
   /* Caution optionfilefiname is hidden */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   strcpy(tmpout,optionfilefiname);     */
   strcat(tmpout,"/"); /* Add to the right */  }
   strcat(tmpout,fileres);  
   return tmpout;  /*************************free matrix ************************/
 }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 /*************** function subdirf2 ***********/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 char *subdirf2(char fileres[], char *preop)    free((FREE_ARG)(m+nrl-NR_END));
 {  }
    
   /* Caution optionfilefiname is hidden */  /******************* ma3x *******************************/
   strcpy(tmpout,optionfilefiname);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   strcat(tmpout,"/");  {
   strcat(tmpout,preop);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   strcat(tmpout,fileres);    double ***m;
   return tmpout;  
 }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*************** function subdirf3 ***********/    m += NR_END;
 char *subdirf3(char fileres[], char *preop, char *preop2)    m -= nrl;
 {  
      m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   /* Caution optionfilefiname is hidden */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   strcpy(tmpout,optionfilefiname);    m[nrl] += NR_END;
   strcat(tmpout,"/");    m[nrl] -= ncl;
   strcat(tmpout,preop);  
   strcat(tmpout,preop2);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   strcat(tmpout,fileres);  
   return tmpout;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
 /***************** f1dim *************************/    m[nrl][ncl] -= nll;
 extern int ncom;    for (j=ncl+1; j<=nch; j++) 
 extern double *pcom,*xicom;      m[nrl][j]=m[nrl][j-1]+nlay;
 extern double (*nrfunc)(double []);    
      for (i=nrl+1; i<=nrh; i++) {
 double f1dim(double x)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 {      for (j=ncl+1; j<=nch; j++) 
   int j;        m[i][j]=m[i][j-1]+nlay;
   double f;    }
   double *xt;    return m; 
      /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   xt=vector(1,ncom);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    */
   f=(*nrfunc)(xt);  }
   free_vector(xt,1,ncom);  
   return f;  /*************************free ma3x ************************/
 }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
 /*****************brent *************************/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   int iter;  }
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /*************** function subdirf ***********/
   double ftemp;  char *subdirf(char fileres[])
   double p,q,r,tol1,tol2,u,v,w,x,xm;  {
   double e=0.0;    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
   a=(ax < cx ? ax : cx);    strcat(tmpout,"/"); /* Add to the right */
   b=(ax > cx ? ax : cx);    strcat(tmpout,fileres);
   x=w=v=bx;    return tmpout;
   fw=fv=fx=(*f)(x);  }
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  /*************** function subdirf2 ***********/
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  char *subdirf2(char fileres[], char *preop)
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  {
     printf(".");fflush(stdout);    
     fprintf(ficlog,".");fflush(ficlog);    /* Caution optionfilefiname is hidden */
 #ifdef DEBUG    strcpy(tmpout,optionfilefiname);
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    strcat(tmpout,"/");
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    strcat(tmpout,preop);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    strcat(tmpout,fileres);
 #endif    return tmpout;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  /*************** function subdirf3 ***********/
     }  char *subdirf3(char fileres[], char *preop, char *preop2)
     ftemp=fu;  {
     if (fabs(e) > tol1) {    
       r=(x-w)*(fx-fv);    /* Caution optionfilefiname is hidden */
       q=(x-v)*(fx-fw);    strcpy(tmpout,optionfilefiname);
       p=(x-v)*q-(x-w)*r;    strcat(tmpout,"/");
       q=2.0*(q-r);    strcat(tmpout,preop);
       if (q > 0.0) p = -p;    strcat(tmpout,preop2);
       q=fabs(q);    strcat(tmpout,fileres);
       etemp=e;    return tmpout;
       e=d;  }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /***************** f1dim *************************/
       else {  extern int ncom; 
         d=p/q;  extern double *pcom,*xicom;
         u=x+d;  extern double (*nrfunc)(double []); 
         if (u-a < tol2 || b-u < tol2)   
           d=SIGN(tol1,xm-x);  double f1dim(double x) 
       }  { 
     } else {    int j; 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    double f;
     }    double *xt; 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   
     fu=(*f)(u);    xt=vector(1,ncom); 
     if (fu <= fx) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       if (u >= x) a=x; else b=x;    f=(*nrfunc)(xt); 
       SHFT(v,w,x,u)    free_vector(xt,1,ncom); 
         SHFT(fv,fw,fx,fu)    return f; 
         } else {  } 
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  /*****************brent *************************/
             v=w;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
             w=u;  { 
             fv=fw;    int iter; 
             fw=fu;    double a,b,d,etemp;
           } else if (fu <= fv || v == x || v == w) {    double fu,fv,fw,fx;
             v=u;    double ftemp;
             fv=fu;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
           }    double e=0.0; 
         }   
   }    a=(ax < cx ? ax : cx); 
   nrerror("Too many iterations in brent");    b=(ax > cx ? ax : cx); 
   *xmin=x;    x=w=v=bx; 
   return fx;    fw=fv=fx=(*f)(x); 
 }    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
 /****************** mnbrak ***********************/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      printf(".");fflush(stdout);
             double (*func)(double))      fprintf(ficlog,".");fflush(ficlog);
 {  #ifdef DEBUG
   double ulim,u,r,q, dum;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double fu;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   *fa=(*func)(*ax);  #endif
   *fb=(*func)(*bx);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   if (*fb > *fa) {        *xmin=x; 
     SHFT(dum,*ax,*bx,dum)        return fx; 
       SHFT(dum,*fb,*fa,dum)      } 
       }      ftemp=fu;
   *cx=(*bx)+GOLD*(*bx-*ax);      if (fabs(e) > tol1) { 
   *fc=(*func)(*cx);        r=(x-w)*(fx-fv); 
   while (*fb > *fc) {        q=(x-v)*(fx-fw); 
     r=(*bx-*ax)*(*fb-*fc);        p=(x-v)*q-(x-w)*r; 
     q=(*bx-*cx)*(*fb-*fa);        q=2.0*(q-r); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/        if (q > 0.0) p = -p; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));        q=fabs(q); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);        etemp=e; 
     if ((*bx-u)*(u-*cx) > 0.0) {        e=d; 
       fu=(*func)(u);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     } else if ((*cx-u)*(u-ulim) > 0.0) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       fu=(*func)(u);        else { 
       if (fu < *fc) {          d=p/q; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))          u=x+d; 
           SHFT(*fb,*fc,fu,(*func)(u))          if (u-a < tol2 || b-u < tol2) 
           }            d=SIGN(tol1,xm-x); 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {        } 
       u=ulim;      } else { 
       fu=(*func)(u);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     } else {      } 
       u=(*cx)+GOLD*(*cx-*bx);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*func)(u);      fu=(*f)(u); 
     }      if (fu <= fx) { 
     SHFT(*ax,*bx,*cx,u)        if (u >= x) a=x; else b=x; 
       SHFT(*fa,*fb,*fc,fu)        SHFT(v,w,x,u) 
       }          SHFT(fv,fw,fx,fu) 
 }          } else { 
             if (u < x) a=u; else b=u; 
 /*************** linmin ************************/            if (fu <= fw || w == x) { 
               v=w; 
 int ncom;              w=u; 
 double *pcom,*xicom;              fv=fw; 
 double (*nrfunc)(double []);              fw=fu; 
              } else if (fu <= fv || v == x || v == w) { 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))              v=u; 
 {              fv=fu; 
   double brent(double ax, double bx, double cx,            } 
                double (*f)(double), double tol, double *xmin);          } 
   double f1dim(double x);    } 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    nrerror("Too many iterations in brent"); 
               double *fc, double (*func)(double));    *xmin=x; 
   int j;    return fx; 
   double xx,xmin,bx,ax;  } 
   double fx,fb,fa;  
    /****************** mnbrak ***********************/
   ncom=n;  
   pcom=vector(1,n);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   xicom=vector(1,n);              double (*func)(double)) 
   nrfunc=func;  { 
   for (j=1;j<=n;j++) {    double ulim,u,r,q, dum;
     pcom[j]=p[j];    double fu; 
     xicom[j]=xi[j];   
   }    *fa=(*func)(*ax); 
   ax=0.0;    *fb=(*func)(*bx); 
   xx=1.0;    if (*fb > *fa) { 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      SHFT(dum,*ax,*bx,dum) 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);        SHFT(dum,*fb,*fa,dum) 
 #ifdef DEBUG        } 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    *cx=(*bx)+GOLD*(*bx-*ax); 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    *fc=(*func)(*cx); 
 #endif    while (*fb > *fc) { 
   for (j=1;j<=n;j++) {      r=(*bx-*ax)*(*fb-*fc); 
     xi[j] *= xmin;      q=(*bx-*cx)*(*fb-*fa); 
     p[j] += xi[j];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   free_vector(xicom,1,n);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   free_vector(pcom,1,n);      if ((*bx-u)*(u-*cx) > 0.0) { 
 }        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
 char *asc_diff_time(long time_sec, char ascdiff[])        fu=(*func)(u); 
 {        if (fu < *fc) { 
   long sec_left, days, hours, minutes;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   days = (time_sec) / (60*60*24);            SHFT(*fb,*fc,fu,(*func)(u)) 
   sec_left = (time_sec) % (60*60*24);            } 
   hours = (sec_left) / (60*60) ;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   sec_left = (sec_left) %(60*60);        u=ulim; 
   minutes = (sec_left) /60;        fu=(*func)(u); 
   sec_left = (sec_left) % (60);      } else { 
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);          u=(*cx)+GOLD*(*cx-*bx); 
   return ascdiff;        fu=(*func)(u); 
 }      } 
       SHFT(*ax,*bx,*cx,u) 
 /*************** powell ************************/        SHFT(*fa,*fb,*fc,fu) 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        } 
             double (*func)(double []))  } 
 {  
   void linmin(double p[], double xi[], int n, double *fret,  /*************** linmin ************************/
               double (*func)(double []));  
   int i,ibig,j;  int ncom; 
   double del,t,*pt,*ptt,*xit;  double *pcom,*xicom;
   double fp,fptt;  double (*nrfunc)(double []); 
   double *xits;   
   int niterf, itmp;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   pt=vector(1,n);    double brent(double ax, double bx, double cx, 
   ptt=vector(1,n);                 double (*f)(double), double tol, double *xmin); 
   xit=vector(1,n);    double f1dim(double x); 
   xits=vector(1,n);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   *fret=(*func)(p);                double *fc, double (*func)(double)); 
   for (j=1;j<=n;j++) pt[j]=p[j];    int j; 
   for (*iter=1;;++(*iter)) {    double xx,xmin,bx,ax; 
     fp=(*fret);    double fx,fb,fa;
     ibig=0;   
     del=0.0;    ncom=n; 
     last_time=curr_time;    pcom=vector(1,n); 
     (void) gettimeofday(&curr_time,&tzp);    xicom=vector(1,n); 
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);    nrfunc=func; 
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);    for (j=1;j<=n;j++) { 
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */      pcom[j]=p[j]; 
    for (i=1;i<=n;i++) {      xicom[j]=xi[j]; 
       printf(" %d %.12f",i, p[i]);    } 
       fprintf(ficlog," %d %.12lf",i, p[i]);    ax=0.0; 
       fprintf(ficrespow," %.12lf", p[i]);    xx=1.0; 
     }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     printf("\n");    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     fprintf(ficlog,"\n");  #ifdef DEBUG
     fprintf(ficrespow,"\n");fflush(ficrespow);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     if(*iter <=3){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       tm = *localtime(&curr_time.tv_sec);  #endif
       strcpy(strcurr,asctime(&tm));    for (j=1;j<=n;j++) { 
 /*       asctime_r(&tm,strcurr); */      xi[j] *= xmin; 
       forecast_time=curr_time;      p[j] += xi[j]; 
       itmp = strlen(strcurr);    } 
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */    free_vector(xicom,1,n); 
         strcurr[itmp-1]='\0';    free_vector(pcom,1,n); 
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  } 
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  
       for(niterf=10;niterf<=30;niterf+=10){  char *asc_diff_time(long time_sec, char ascdiff[])
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);  {
         tmf = *localtime(&forecast_time.tv_sec);    long sec_left, days, hours, minutes;
 /*      asctime_r(&tmf,strfor); */    days = (time_sec) / (60*60*24);
         strcpy(strfor,asctime(&tmf));    sec_left = (time_sec) % (60*60*24);
         itmp = strlen(strfor);    hours = (sec_left) / (60*60) ;
         if(strfor[itmp-1]=='\n')    sec_left = (sec_left) %(60*60);
         strfor[itmp-1]='\0';    minutes = (sec_left) /60;
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    sec_left = (sec_left) % (60);
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       }    return ascdiff;
     }  }
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /*************** powell ************************/
       fptt=(*fret);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 #ifdef DEBUG              double (*func)(double [])) 
       printf("fret=%lf \n",*fret);  { 
       fprintf(ficlog,"fret=%lf \n",*fret);    void linmin(double p[], double xi[], int n, double *fret, 
 #endif                double (*func)(double [])); 
       printf("%d",i);fflush(stdout);    int i,ibig,j; 
       fprintf(ficlog,"%d",i);fflush(ficlog);    double del,t,*pt,*ptt,*xit;
       linmin(p,xit,n,fret,func);    double fp,fptt;
       if (fabs(fptt-(*fret)) > del) {    double *xits;
         del=fabs(fptt-(*fret));    int niterf, itmp;
         ibig=i;  
       }    pt=vector(1,n); 
 #ifdef DEBUG    ptt=vector(1,n); 
       printf("%d %.12e",i,(*fret));    xit=vector(1,n); 
       fprintf(ficlog,"%d %.12e",i,(*fret));    xits=vector(1,n); 
       for (j=1;j<=n;j++) {    *fret=(*func)(p); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    for (j=1;j<=n;j++) pt[j]=p[j]; 
         printf(" x(%d)=%.12e",j,xit[j]);    for (*iter=1;;++(*iter)) { 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);      fp=(*fret); 
       }      ibig=0; 
       for(j=1;j<=n;j++) {      del=0.0; 
         printf(" p=%.12e",p[j]);      last_time=curr_time;
         fprintf(ficlog," p=%.12e",p[j]);      (void) gettimeofday(&curr_time,&tzp);
       }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       printf("\n");      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       fprintf(ficlog,"\n");  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
 #endif     for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        fprintf(ficlog," %d %.12lf",i, p[i]);
 #ifdef DEBUG        fprintf(ficrespow," %.12lf", p[i]);
       int k[2],l;      }
       k[0]=1;      printf("\n");
       k[1]=-1;      fprintf(ficlog,"\n");
       printf("Max: %.12e",(*func)(p));      fprintf(ficrespow,"\n");fflush(ficrespow);
       fprintf(ficlog,"Max: %.12e",(*func)(p));      if(*iter <=3){
       for (j=1;j<=n;j++) {        tm = *localtime(&curr_time.tv_sec);
         printf(" %.12e",p[j]);        strcpy(strcurr,asctime(&tm));
         fprintf(ficlog," %.12e",p[j]);  /*       asctime_r(&tm,strcurr); */
       }        forecast_time=curr_time; 
       printf("\n");        itmp = strlen(strcurr);
       fprintf(ficlog,"\n");        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       for(l=0;l<=1;l++) {          strcurr[itmp-1]='\0';
         for (j=1;j<=n;j++) {        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        for(niterf=10;niterf<=30;niterf+=10){
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         }          tmf = *localtime(&forecast_time.tv_sec);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /*      asctime_r(&tmf,strfor); */
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          strcpy(strfor,asctime(&tmf));
       }          itmp = strlen(strfor);
 #endif          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       free_vector(xit,1,n);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       free_vector(xits,1,n);        }
       free_vector(ptt,1,n);      }
       free_vector(pt,1,n);      for (i=1;i<=n;i++) { 
       return;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }        fptt=(*fret); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #ifdef DEBUG
     for (j=1;j<=n;j++) {        printf("fret=%lf \n",*fret);
       ptt[j]=2.0*p[j]-pt[j];        fprintf(ficlog,"fret=%lf \n",*fret);
       xit[j]=p[j]-pt[j];  #endif
       pt[j]=p[j];        printf("%d",i);fflush(stdout);
     }        fprintf(ficlog,"%d",i);fflush(ficlog);
     fptt=(*func)(ptt);        linmin(p,xit,n,fret,func); 
     if (fptt < fp) {        if (fabs(fptt-(*fret)) > del) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);          del=fabs(fptt-(*fret)); 
       if (t < 0.0) {          ibig=i; 
         linmin(p,xit,n,fret,func);        } 
         for (j=1;j<=n;j++) {  #ifdef DEBUG
           xi[j][ibig]=xi[j][n];        printf("%d %.12e",i,(*fret));
           xi[j][n]=xit[j];        fprintf(ficlog,"%d %.12e",i,(*fret));
         }        for (j=1;j<=n;j++) {
 #ifdef DEBUG          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          printf(" x(%d)=%.12e",j,xit[j]);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         for(j=1;j<=n;j++){        }
           printf(" %.12e",xit[j]);        for(j=1;j<=n;j++) {
           fprintf(ficlog," %.12e",xit[j]);          printf(" p=%.12e",p[j]);
         }          fprintf(ficlog," p=%.12e",p[j]);
         printf("\n");        }
         fprintf(ficlog,"\n");        printf("\n");
 #endif        fprintf(ficlog,"\n");
       }  #endif
     }      } 
   }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 }  #ifdef DEBUG
         int k[2],l;
 /**** Prevalence limit (stable or period prevalence)  ****************/        k[0]=1;
         k[1]=-1;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        printf("Max: %.12e",(*func)(p));
 {        fprintf(ficlog,"Max: %.12e",(*func)(p));
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        for (j=1;j<=n;j++) {
      matrix by transitions matrix until convergence is reached */          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
   int i, ii,j,k;        }
   double min, max, maxmin, maxmax,sumnew=0.;        printf("\n");
   double **matprod2();        fprintf(ficlog,"\n");
   double **out, cov[NCOVMAX], **pmij();        for(l=0;l<=1;l++) {
   double **newm;          for (j=1;j<=n;j++) {
   double agefin, delaymax=50 ; /* Max number of years to converge */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (ii=1;ii<=nlstate+ndeath;ii++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (j=1;j<=nlstate+ndeath;j++){          }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
    cov[1]=1.;  #endif
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        free_vector(xit,1,n); 
     newm=savm;        free_vector(xits,1,n); 
     /* Covariates have to be included here again */        free_vector(ptt,1,n); 
      cov[2]=agefin;        free_vector(pt,1,n); 
          return; 
       for (k=1; k<=cptcovn;k++) {      } 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      for (j=1;j<=n;j++) { 
       }        ptt[j]=2.0*p[j]-pt[j]; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        xit[j]=p[j]-pt[j]; 
       for (k=1; k<=cptcovprod;k++)        pt[j]=p[j]; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } 
       fptt=(*func)(ptt); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      if (fptt < fp) { 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        if (t < 0.0) { 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
     savm=oldm;            xi[j][ibig]=xi[j][n]; 
     oldm=newm;            xi[j][n]=xit[j]; 
     maxmax=0.;          }
     for(j=1;j<=nlstate;j++){  #ifdef DEBUG
       min=1.;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       max=0.;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for(i=1; i<=nlstate; i++) {          for(j=1;j<=n;j++){
         sumnew=0;            printf(" %.12e",xit[j]);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];            fprintf(ficlog," %.12e",xit[j]);
         prlim[i][j]= newm[i][j]/(1-sumnew);          }
         max=FMAX(max,prlim[i][j]);          printf("\n");
         min=FMIN(min,prlim[i][j]);          fprintf(ficlog,"\n");
       }  #endif
       maxmin=max-min;        }
       maxmax=FMAX(maxmax,maxmin);      } 
     }    } 
     if(maxmax < ftolpl){  } 
       return prlim;  
     }  /**** Prevalence limit (stable or period prevalence)  ****************/
   }  
 }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
 /*************** transition probabilities ***************/    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {    int i, ii,j,k;
   double s1, s2;    double min, max, maxmin, maxmax,sumnew=0.;
   /*double t34;*/    double **matprod2();
   int i,j,j1, nc, ii, jj;    double **out, cov[NCOVMAX+1], **pmij();
     double **newm;
     for(i=1; i<= nlstate; i++){    double agefin, delaymax=50 ; /* Max number of years to converge */
       for(j=1; j<i;j++){  
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){    for (ii=1;ii<=nlstate+ndeath;ii++)
           /*s2 += param[i][j][nc]*cov[nc];*/      for (j=1;j<=nlstate+ndeath;j++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */      }
         }  
         ps[i][j]=s2;     cov[1]=1.;
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */   
       }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for(j=i+1; j<=nlstate+ndeath;j++){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){      newm=savm;
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      /* Covariates have to be included here again */
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */      cov[2]=agefin;
         }      
         ps[i][j]=s2;      for (k=1; k<=cptcovn;k++) {
       }        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     /*ps[3][2]=1;*/      }
          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(i=1; i<= nlstate; i++){      for (k=1; k<=cptcovprod;k++)
       s1=0;        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for(j=1; j<i; j++)      
         s1+=exp(ps[i][j]);      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       for(j=i+1; j<=nlstate+ndeath; j++)      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         s1+=exp(ps[i][j]);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       ps[i][i]=1./(s1+1.);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       for(j=1; j<i; j++)      
         ps[i][j]= exp(ps[i][j])*ps[i][i];      savm=oldm;
       for(j=i+1; j<=nlstate+ndeath; j++)      oldm=newm;
         ps[i][j]= exp(ps[i][j])*ps[i][i];      maxmax=0.;
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      for(j=1;j<=nlstate;j++){
     } /* end i */        min=1.;
            max=0.;
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        for(i=1; i<=nlstate; i++) {
       for(jj=1; jj<= nlstate+ndeath; jj++){          sumnew=0;
         ps[ii][jj]=0;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         ps[ii][ii]=1;          prlim[i][j]= newm[i][j]/(1-sumnew);
       }          max=FMAX(max,prlim[i][j]);
     }          min=FMIN(min,prlim[i][j]);
            }
         maxmin=max-min;
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */        maxmax=FMAX(maxmax,maxmin);
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */      }
 /*         printf("ddd %lf ",ps[ii][jj]); */      if(maxmax < ftolpl){
 /*       } */        return prlim;
 /*       printf("\n "); */      }
 /*        } */    }
 /*        printf("\n ");printf("%lf ",cov[2]); */  }
        /*  
       for(i=1; i<= npar; i++) printf("%f ",x[i]);  /*************** transition probabilities ***************/ 
       goto end;*/  
     return ps;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 }  {
     /* According to parameters values stored in x and the covariate's values stored in cov,
 /**************** Product of 2 matrices ******************/       computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 {       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times       ncth covariate in the global vector x is given by the formula:
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   /* in, b, out are matrice of pointers which should have been initialized       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
      before: only the contents of out is modified. The function returns       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
      a pointer to pointers identical to out */       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   long i, j, k;       Outputs ps[i][j] the probability to be observed in j being in j according to
   for(i=nrl; i<= nrh; i++)       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     for(k=ncolol; k<=ncoloh; k++)    */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double s1, lnpijopii;
         out[i][k] +=in[i][j]*b[j][k];    /*double t34;*/
     int i,j,j1, nc, ii, jj;
   return out;  
 }      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
           for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 /************* Higher Matrix Product ***************/            /*lnpijopii += param[i][j][nc]*cov[nc];*/
             lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 {          }
   /* Computes the transition matrix starting at age 'age' over          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
      'nhstepm*hstepm*stepm' months (i.e. until  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying        }
      nhstepm*hstepm matrices.        for(j=i+1; j<=nlstate+ndeath;j++){
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
      (typically every 2 years instead of every month which is too big            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
      for the memory).            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
      Model is determined by parameters x and covariates have to be  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
      included manually here.          }
           ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
      */        }
       }
   int i, j, d, h, k;      
   double **out, cov[NCOVMAX];      for(i=1; i<= nlstate; i++){
   double **newm;        s1=0;
         for(j=1; j<i; j++){
   /* Hstepm could be zero and should return the unit matrix */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   for (i=1;i<=nlstate+ndeath;i++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     for (j=1;j<=nlstate+ndeath;j++){        }
       oldm[i][j]=(i==j ? 1.0 : 0.0);        for(j=i+1; j<=nlstate+ndeath; j++){
       po[i][j][0]=(i==j ? 1.0 : 0.0);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     }          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        }
   for(h=1; h <=nhstepm; h++){        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     for(d=1; d <=hstepm; d++){        ps[i][i]=1./(s1+1.);
       newm=savm;        /* Computing other pijs */
       /* Covariates have to be included here again */        for(j=1; j<i; j++)
       cov[1]=1.;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        for(j=i+1; j<=nlstate+ndeath; j++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1; k<=cptcovage;k++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } /* end i */
       for (k=1; k<=cptcovprod;k++)      
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          ps[ii][ii]=1;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      
       savm=oldm;  
       oldm=newm;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     for(i=1; i<=nlstate+ndeath; i++)  /*         printf("ddd %lf ",ps[ii][jj]); */
       for(j=1;j<=nlstate+ndeath;j++) {  /*       } */
         po[i][j][h]=newm[i][j];  /*       printf("\n "); */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /*        } */
          */  /*        printf("\n ");printf("%lf ",cov[2]); */
       }         /*
   } /* end h */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   return po;        goto end;*/
 }      return ps;
   }
   
 /*************** log-likelihood *************/  /**************** Product of 2 matrices ******************/
 double func( double *x)  
 {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   int i, ii, j, k, mi, d, kk;  {
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double **out;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   double sw; /* Sum of weights */    /* in, b, out are matrice of pointers which should have been initialized 
   double lli; /* Individual log likelihood */       before: only the contents of out is modified. The function returns
   int s1, s2;       a pointer to pointers identical to out */
   double bbh, survp;    long i, j, k;
   long ipmx;    for(i=nrl; i<= nrh; i++)
   /*extern weight */      for(k=ncolol; k<=ncoloh; k++)
   /* We are differentiating ll according to initial status */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          out[i][k] +=in[i][j]*b[j][k];
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);    return out;
   */  }
   cov[1]=1.;  
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /************* Higher Matrix Product ***************/
   
   if(mle==1){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  {
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    /* Computes the transition matrix starting at age 'age' over 
       for(mi=1; mi<= wav[i]-1; mi++){       'nhstepm*hstepm*stepm' months (i.e. until
         for (ii=1;ii<=nlstate+ndeath;ii++)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
           for (j=1;j<=nlstate+ndeath;j++){       nhstepm*hstepm matrices. 
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
             savm[ii][j]=(ii==j ? 1.0 : 0.0);       (typically every 2 years instead of every month which is too big 
           }       for the memory).
         for(d=0; d<dh[mi][i]; d++){       Model is determined by parameters x and covariates have to be 
           newm=savm;       included manually here. 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
           for (kk=1; kk<=cptcovage;kk++) {       */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
           }    int i, j, d, h, k;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double **out, cov[NCOVMAX+1];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double **newm;
           savm=oldm;  
           oldm=newm;    /* Hstepm could be zero and should return the unit matrix */
         } /* end mult */    for (i=1;i<=nlstate+ndeath;i++)
            for (j=1;j<=nlstate+ndeath;j++){
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        oldm[i][j]=(i==j ? 1.0 : 0.0);
         /* But now since version 0.9 we anticipate for bias at large stepm.        po[i][j][0]=(i==j ? 1.0 : 0.0);
          * If stepm is larger than one month (smallest stepm) and if the exact delay      }
          * (in months) between two waves is not a multiple of stepm, we rounded to    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
          * the nearest (and in case of equal distance, to the lowest) interval but now    for(h=1; h <=nhstepm; h++){
          * we keep into memory the bias bh[mi][i] and also the previous matrix product      for(d=1; d <=hstepm; d++){
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the        newm=savm;
          * probability in order to take into account the bias as a fraction of the way        /* Covariates have to be included here again */
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies        cov[1]=1.;
          * -stepm/2 to stepm/2 .        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          * For stepm=1 the results are the same as for previous versions of Imach.        for (k=1; k<=cptcovn;k++) 
          * For stepm > 1 the results are less biased than in previous versions.          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          */        for (k=1; k<=cptcovage;k++)
         s1=s[mw[mi][i]][i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         s2=s[mw[mi+1][i]][i];        for (k=1; k<=cptcovprod;k++)
         bbh=(double)bh[mi][i]/(double)stepm;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         /* bias bh is positive if real duration  
          * is higher than the multiple of stepm and negative otherwise.  
          */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         if( s2 > nlstate){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           /* i.e. if s2 is a death state and if the date of death is known                     pmij(pmmij,cov,ncovmodel,x,nlstate));
              then the contribution to the likelihood is the probability to        savm=oldm;
              die between last step unit time and current  step unit time,        oldm=newm;
              which is also equal to probability to die before dh      }
              minus probability to die before dh-stepm .      for(i=1; i<=nlstate+ndeath; i++)
              In version up to 0.92 likelihood was computed        for(j=1;j<=nlstate+ndeath;j++) {
         as if date of death was unknown. Death was treated as any other          po[i][j][h]=newm[i][j];
         health state: the date of the interview describes the actual state          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         and not the date of a change in health state. The former idea was        }
         to consider that at each interview the state was recorded      /*printf("h=%d ",h);*/
         (healthy, disable or death) and IMaCh was corrected; but when we    } /* end h */
         introduced the exact date of death then we should have modified  /*     printf("\n H=%d \n",h); */
         the contribution of an exact death to the likelihood. This new    return po;
         contribution is smaller and very dependent of the step unit  }
         stepm. It is no more the probability to die between last interview  
         and month of death but the probability to survive from last  
         interview up to one month before death multiplied by the  /*************** log-likelihood *************/
         probability to die within a month. Thanks to Chris  double func( double *x)
         Jackson for correcting this bug.  Former versions increased  {
         mortality artificially. The bad side is that we add another loop    int i, ii, j, k, mi, d, kk;
         which slows down the processing. The difference can be up to 10%    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         lower mortality.    double **out;
           */    double sw; /* Sum of weights */
           lli=log(out[s1][s2] - savm[s1][s2]);    double lli; /* Individual log likelihood */
     int s1, s2;
     double bbh, survp;
         } else if  (s2==-2) {    long ipmx;
           for (j=1,survp=0. ; j<=nlstate; j++)    /*extern weight */
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];    /* We are differentiating ll according to initial status */
           /*survp += out[s1][j]; */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           lli= log(survp);    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
            */
         else if  (s2==-4) {    cov[1]=1.;
           for (j=3,survp=0. ; j<=nlstate; j++)    
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];    for(k=1; k<=nlstate; k++) ll[k]=0.;
           lli= log(survp);  
         }    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         else if  (s2==-5) {        /* Computes the values of the ncovmodel covariates of the model
           for (j=1,survp=0. ; j<=2; j++)             depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
           lli= log(survp);           to be observed in j being in i according to the model.
         }         */
                for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else{        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */           has been calculated etc */
         }        for(mi=1; mi<= wav[i]-1; mi++){
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          for (ii=1;ii<=nlstate+ndeath;ii++)
         /*if(lli ==000.0)*/            for (j=1;j<=nlstate+ndeath;j++){
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         ipmx +=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         sw += weight[i];            }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          for(d=0; d<dh[mi][i]; d++){
       } /* end of wave */            newm=savm;
     } /* end of individual */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }  else if(mle==2){            for (kk=1; kk<=cptcovage;kk++) {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            }
       for(mi=1; mi<= wav[i]-1; mi++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for (ii=1;ii<=nlstate+ndeath;ii++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for (j=1;j<=nlstate+ndeath;j++){            savm=oldm;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            oldm=newm;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          } /* end mult */
           }        
         for(d=0; d<=dh[mi][i]; d++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           newm=savm;          /* But now since version 0.9 we anticipate for bias at large stepm.
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           for (kk=1; kk<=cptcovage;kk++) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];           * the nearest (and in case of equal distance, to the lowest) interval but now
           }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));           * probability in order to take into account the bias as a fraction of the way
           savm=oldm;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           oldm=newm;           * -stepm/2 to stepm/2 .
         } /* end mult */           * For stepm=1 the results are the same as for previous versions of Imach.
                 * For stepm > 1 the results are less biased than in previous versions. 
         s1=s[mw[mi][i]][i];           */
         s2=s[mw[mi+1][i]][i];          s1=s[mw[mi][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;          s2=s[mw[mi+1][i]][i];
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          bbh=(double)bh[mi][i]/(double)stepm; 
         ipmx +=1;          /* bias bh is positive if real duration
         sw += weight[i];           * is higher than the multiple of stepm and negative otherwise.
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;           */
       } /* end of wave */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     } /* end of individual */          if( s2 > nlstate){ 
   }  else if(mle==3){  /* exponential inter-extrapolation */            /* i.e. if s2 is a death state and if the date of death is known 
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){               then the contribution to the likelihood is the probability to 
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];               die between last step unit time and current  step unit time, 
       for(mi=1; mi<= wav[i]-1; mi++){               which is also equal to probability to die before dh 
         for (ii=1;ii<=nlstate+ndeath;ii++)               minus probability to die before dh-stepm . 
           for (j=1;j<=nlstate+ndeath;j++){               In version up to 0.92 likelihood was computed
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          as if date of death was unknown. Death was treated as any other
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          health state: the date of the interview describes the actual state
           }          and not the date of a change in health state. The former idea was
         for(d=0; d<dh[mi][i]; d++){          to consider that at each interview the state was recorded
           newm=savm;          (healthy, disable or death) and IMaCh was corrected; but when we
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          introduced the exact date of death then we should have modified
           for (kk=1; kk<=cptcovage;kk++) {          the contribution of an exact death to the likelihood. This new
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          contribution is smaller and very dependent of the step unit
           }          stepm. It is no more the probability to die between last interview
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          and month of death but the probability to survive from last
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          interview up to one month before death multiplied by the
           savm=oldm;          probability to die within a month. Thanks to Chris
           oldm=newm;          Jackson for correcting this bug.  Former versions increased
         } /* end mult */          mortality artificially. The bad side is that we add another loop
                which slows down the processing. The difference can be up to 10%
         s1=s[mw[mi][i]][i];          lower mortality.
         s2=s[mw[mi+1][i]][i];            */
         bbh=(double)bh[mi][i]/(double)stepm;            lli=log(out[s1][s2] - savm[s1][s2]);
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */  
         ipmx +=1;  
         sw += weight[i];          } else if  (s2==-2) {
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            for (j=1,survp=0. ; j<=nlstate; j++) 
       } /* end of wave */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     } /* end of individual */            /*survp += out[s1][j]; */
   }else if (mle==4){  /* ml=4 no inter-extrapolation */            lli= log(survp);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          }
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          
       for(mi=1; mi<= wav[i]-1; mi++){          else if  (s2==-4) { 
         for (ii=1;ii<=nlstate+ndeath;ii++)            for (j=3,survp=0. ; j<=nlstate; j++)  
           for (j=1;j<=nlstate+ndeath;j++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            lli= log(survp); 
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          } 
           }  
         for(d=0; d<dh[mi][i]; d++){          else if  (s2==-5) { 
           newm=savm;            for (j=1,survp=0. ; j<=2; j++)  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for (kk=1; kk<=cptcovage;kk++) {            lli= log(survp); 
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          } 
           }          
                  else{
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           savm=oldm;          } 
           oldm=newm;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         } /* end mult */          /*if(lli ==000.0)*/
                /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         s1=s[mw[mi][i]][i];          ipmx +=1;
         s2=s[mw[mi+1][i]][i];          sw += weight[i];
         if( s2 > nlstate){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           lli=log(out[s1][s2] - savm[s1][s2]);        } /* end of wave */
         }else{      } /* end of individual */
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */    }  else if(mle==2){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         ipmx +=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         sw += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          for (ii=1;ii<=nlstate+ndeath;ii++)
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            for (j=1;j<=nlstate+ndeath;j++){
       } /* end of wave */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     } /* end of individual */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */            }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          for(d=0; d<=dh[mi][i]; d++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            newm=savm;
       for(mi=1; mi<= wav[i]-1; mi++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (ii=1;ii<=nlstate+ndeath;ii++)            for (kk=1; kk<=cptcovage;kk++) {
           for (j=1;j<=nlstate+ndeath;j++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(d=0; d<dh[mi][i]; d++){            savm=oldm;
           newm=savm;            oldm=newm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          } /* end mult */
           for (kk=1; kk<=cptcovage;kk++) {        
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
                  bbh=(double)bh[mi][i]/(double)stepm; 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          ipmx +=1;
           savm=oldm;          sw += weight[i];
           oldm=newm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end mult */        } /* end of wave */
            } /* end of individual */
         s1=s[mw[mi][i]][i];    }  else if(mle==3){  /* exponential inter-extrapolation */
         s2=s[mw[mi+1][i]][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         ipmx +=1;        for(mi=1; mi<= wav[i]-1; mi++){
         sw += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            for (j=1;j<=nlstate+ndeath;j++){
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       } /* end of wave */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     } /* end of individual */            }
   } /* End of if */          for(d=0; d<dh[mi][i]; d++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            newm=savm;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            for (kk=1; kk<=cptcovage;kk++) {
   return -l;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /*************** log-likelihood *************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 double funcone( double *x)            savm=oldm;
 {            oldm=newm;
   /* Same as likeli but slower because of a lot of printf and if */          } /* end mult */
   int i, ii, j, k, mi, d, kk;        
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          s1=s[mw[mi][i]][i];
   double **out;          s2=s[mw[mi+1][i]][i];
   double lli; /* Individual log likelihood */          bbh=(double)bh[mi][i]/(double)stepm; 
   double llt;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int s1, s2;          ipmx +=1;
   double bbh, survp;          sw += weight[i];
   /*extern weight */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* We are differentiating ll according to initial status */        } /* end of wave */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      } /* end of individual */
   /*for(i=1;i<imx;i++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     printf(" %d\n",s[4][i]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   cov[1]=1.;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   for(k=1; k<=nlstate; k++) ll[k]=0.;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            }
     for(mi=1; mi<= wav[i]-1; mi++){          for(d=0; d<dh[mi][i]; d++){
       for (ii=1;ii<=nlstate+ndeath;ii++)            newm=savm;
         for (j=1;j<=nlstate+ndeath;j++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);            for (kk=1; kk<=cptcovage;kk++) {
           savm[ii][j]=(ii==j ? 1.0 : 0.0);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
       for(d=0; d<dh[mi][i]; d++){          
         newm=savm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (kk=1; kk<=cptcovage;kk++) {            savm=oldm;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            oldm=newm;
         }          } /* end mult */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          s1=s[mw[mi][i]][i];
         savm=oldm;          s2=s[mw[mi+1][i]][i];
         oldm=newm;          if( s2 > nlstate){ 
       } /* end mult */            lli=log(out[s1][s2] - savm[s1][s2]);
                }else{
       s1=s[mw[mi][i]][i];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       s2=s[mw[mi+1][i]][i];          }
       bbh=(double)bh[mi][i]/(double)stepm;          ipmx +=1;
       /* bias is positive if real duration          sw += weight[i];
        * is higher than the multiple of stepm and negative otherwise.          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if( s2 > nlstate && (mle <5) ){  /* Jackson */        } /* end of wave */
         lli=log(out[s1][s2] - savm[s1][s2]);      } /* end of individual */
       } else if  (s2==-2) {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         for (j=1,survp=0. ; j<=nlstate; j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         lli= log(survp);        for(mi=1; mi<= wav[i]-1; mi++){
       }else if (mle==1){          for (ii=1;ii<=nlstate+ndeath;ii++)
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */            for (j=1;j<=nlstate+ndeath;j++){
       } else if(mle==2){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       } else if(mle==3){  /* exponential inter-extrapolation */            }
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          for(d=0; d<dh[mi][i]; d++){
       } else if (mle==4){  /* mle=4 no inter-extrapolation */            newm=savm;
         lli=log(out[s1][s2]); /* Original formula */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */            for (kk=1; kk<=cptcovage;kk++) {
         lli=log(out[s1][s2]); /* Original formula */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       } /* End of if */            }
       ipmx +=1;          
       sw += weight[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            savm=oldm;
       if(globpr){            oldm=newm;
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\          } /* end mult */
  %11.6f %11.6f %11.6f ", \        
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],          s1=s[mw[mi][i]][i];
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);          s2=s[mw[mi+1][i]][i];
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           llt +=ll[k]*gipmx/gsw;          ipmx +=1;
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         fprintf(ficresilk," %10.6f\n", -llt);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       }        } /* end of wave */
     } /* end of wave */      } /* end of individual */
   } /* end of individual */    } /* End of if */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   if(globpr==0){ /* First time we count the contributions and weights */    return -l;
     gipmx=ipmx;  }
     gsw=sw;  
   }  /*************** log-likelihood *************/
   return -l;  double funcone( double *x)
 }  {
     /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
 /*************** function likelione ***********/    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))    double **out;
 {    double lli; /* Individual log likelihood */
   /* This routine should help understanding what is done with    double llt;
      the selection of individuals/waves and    int s1, s2;
      to check the exact contribution to the likelihood.    double bbh, survp;
      Plotting could be done.    /*extern weight */
    */    /* We are differentiating ll according to initial status */
   int k;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   if(*globpri !=0){ /* Just counts and sums, no printings */      printf(" %d\n",s[4][i]);
     strcpy(fileresilk,"ilk");    */
     strcat(fileresilk,fileres);    cov[1]=1.;
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {  
       printf("Problem with resultfile: %s\n", fileresilk);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);  
     }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");      for(mi=1; mi<= wav[i]-1; mi++){
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */        for (ii=1;ii<=nlstate+ndeath;ii++)
     for(k=1; k<=nlstate; k++)          for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }          }
         for(d=0; d<dh[mi][i]; d++){
   *fretone=(*funcone)(p);          newm=savm;
   if(*globpri !=0){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fclose(ficresilk);          for (kk=1; kk<=cptcovage;kk++) {
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fflush(fichtm);          }
   }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   return;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }          savm=oldm;
           oldm=newm;
         } /* end mult */
 /*********** Maximum Likelihood Estimation ***************/        
         s1=s[mw[mi][i]][i];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        s2=s[mw[mi+1][i]][i];
 {        bbh=(double)bh[mi][i]/(double)stepm; 
   int i,j, iter;        /* bias is positive if real duration
   double **xi;         * is higher than the multiple of stepm and negative otherwise.
   double fret;         */
   double fretone; /* Only one call to likelihood */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   /*  char filerespow[FILENAMELENGTH];*/          lli=log(out[s1][s2] - savm[s1][s2]);
   xi=matrix(1,npar,1,npar);        } else if  (s2==-2) {
   for (i=1;i<=npar;i++)          for (j=1,survp=0. ; j<=nlstate; j++) 
     for (j=1;j<=npar;j++)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       xi[i][j]=(i==j ? 1.0 : 0.0);          lli= log(survp);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        }else if (mle==1){
   strcpy(filerespow,"pow");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   strcat(filerespow,fileres);        } else if(mle==2){
   if((ficrespow=fopen(filerespow,"w"))==NULL) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     printf("Problem with resultfile: %s\n", filerespow);        } else if(mle==3){  /* exponential inter-extrapolation */
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          lli=log(out[s1][s2]); /* Original formula */
   for (i=1;i<=nlstate;i++)        } else{  /* mle=0 back to 1 */
     for(j=1;j<=nlstate+ndeath;j++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          /*lli=log(out[s1][s2]); */ /* Original formula */
   fprintf(ficrespow,"\n");        } /* End of if */
         ipmx +=1;
   powell(p,xi,npar,ftol,&iter,&fret,func);        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_matrix(xi,1,npar,1,npar);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   fclose(ficrespow);        if(globpr){
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));   %11.6f %11.6f %11.6f ", \
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
 /**** Computes Hessian and covariance matrix ***/            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          }
 {          fprintf(ficresilk," %10.6f\n", -llt);
   double  **a,**y,*x,pd;        }
   double **hess;      } /* end of wave */
   int i, j,jk;    } /* end of individual */
   int *indx;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    if(globpr==0){ /* First time we count the contributions and weights */
   void lubksb(double **a, int npar, int *indx, double b[]) ;      gipmx=ipmx;
   void ludcmp(double **a, int npar, int *indx, double *d) ;      gsw=sw;
   double gompertz(double p[]);    }
   hess=matrix(1,npar,1,npar);    return -l;
   }
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  /*************** function likelione ***********/
     printf("%d",i);fflush(stdout);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     fprintf(ficlog,"%d",i);fflush(ficlog);  {
        /* This routine should help understanding what is done with 
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);       the selection of individuals/waves and
           to check the exact contribution to the likelihood.
     /*  printf(" %f ",p[i]);       Plotting could be done.
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/     */
   }    int k;
    
   for (i=1;i<=npar;i++) {    if(*globpri !=0){ /* Just counts and sums, no printings */
     for (j=1;j<=npar;j++)  {      strcpy(fileresilk,"ilk"); 
       if (j>i) {      strcat(fileresilk,fileres);
         printf(".%d%d",i,j);fflush(stdout);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        printf("Problem with resultfile: %s\n", fileresilk);
         hess[i][j]=hessij(p,delti,i,j,func,npar);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
              }
         hess[j][i]=hess[i][j];          fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         /*printf(" %lf ",hess[i][j]);*/      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     }      for(k=1; k<=nlstate; k++) 
   }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   printf("\n");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   fprintf(ficlog,"\n");    }
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    *fretone=(*funcone)(p);
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    if(*globpri !=0){
        fclose(ficresilk);
   a=matrix(1,npar,1,npar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   y=matrix(1,npar,1,npar);      fflush(fichtm); 
   x=vector(1,npar);    } 
   indx=ivector(1,npar);    return;
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  
   /*********** Maximum Likelihood Estimation ***************/
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     x[j]=1;  {
     lubksb(a,npar,indx,x);    int i,j, iter;
     for (i=1;i<=npar;i++){    double **xi;
       matcov[i][j]=x[i];    double fret;
     }    double fretone; /* Only one call to likelihood */
   }    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
   printf("\n#Hessian matrix#\n");    for (i=1;i<=npar;i++)
   fprintf(ficlog,"\n#Hessian matrix#\n");      for (j=1;j<=npar;j++)
   for (i=1;i<=npar;i++) {        xi[i][j]=(i==j ? 1.0 : 0.0);
     for (j=1;j<=npar;j++) {    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       printf("%.3e ",hess[i][j]);    strcpy(filerespow,"pow"); 
       fprintf(ficlog,"%.3e ",hess[i][j]);    strcat(filerespow,fileres);
     }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     printf("\n");      printf("Problem with resultfile: %s\n", filerespow);
     fprintf(ficlog,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   }    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
   /* Recompute Inverse */    for (i=1;i<=nlstate;i++)
   for (i=1;i<=npar;i++)      for(j=1;j<=nlstate+ndeath;j++)
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   ludcmp(a,npar,indx,&pd);    fprintf(ficrespow,"\n");
   
   /*  printf("\n#Hessian matrix recomputed#\n");    powell(p,xi,npar,ftol,&iter,&fret,func);
   
   for (j=1;j<=npar;j++) {    free_matrix(xi,1,npar,1,npar);
     for (i=1;i<=npar;i++) x[i]=0;    fclose(ficrespow);
     x[j]=1;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     lubksb(a,npar,indx,x);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for (i=1;i<=npar;i++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  }
       fprintf(ficlog,"%.3e ",y[i][j]);  
     }  /**** Computes Hessian and covariance matrix ***/
     printf("\n");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     fprintf(ficlog,"\n");  {
   }    double  **a,**y,*x,pd;
   */    double **hess;
     int i, j,jk;
   free_matrix(a,1,npar,1,npar);    int *indx;
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   free_ivector(indx,1,npar);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   free_matrix(hess,1,npar,1,npar);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
 }    hess=matrix(1,npar,1,npar);
   
 /*************** hessian matrix ****************/    printf("\nCalculation of the hessian matrix. Wait...\n");
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 {    for (i=1;i<=npar;i++){
   int i;      printf("%d",i);fflush(stdout);
   int l=1, lmax=20;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double k1,k2;     
   double p2[NPARMAX+1];       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double res;      
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;      /*  printf(" %f ",p[i]);
   double fx;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   int k=0,kmax=10;    }
   double l1;    
     for (i=1;i<=npar;i++) {
   fx=func(x);      for (j=1;j<=npar;j++)  {
   for (i=1;i<=npar;i++) p2[i]=x[i];        if (j>i) { 
   for(l=0 ; l <=lmax; l++){          printf(".%d%d",i,j);fflush(stdout);
     l1=pow(10,l);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     delts=delt;          hess[i][j]=hessij(p,delti,i,j,func,npar);
     for(k=1 ; k <kmax; k=k+1){          
       delt = delta*(l1*k);          hess[j][i]=hess[i][j];    
       p2[theta]=x[theta] +delt;          /*printf(" %lf ",hess[i][j]);*/
       k1=func(p2)-fx;        }
       p2[theta]=x[theta]-delt;      }
       k2=func(p2)-fx;    }
       /*res= (k1-2.0*fx+k2)/delt/delt; */    printf("\n");
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    fprintf(ficlog,"\n");
        
 #ifdef DEBUG    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    
 #endif    a=matrix(1,npar,1,npar);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    y=matrix(1,npar,1,npar);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    x=vector(1,npar);
         k=kmax;    indx=ivector(1,npar);
       }    for (i=1;i<=npar;i++)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         k=kmax; l=lmax*10.;    ludcmp(a,npar,indx,&pd);
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    for (j=1;j<=npar;j++) {
         delts=delt;      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
     }      lubksb(a,npar,indx,x);
   }      for (i=1;i<=npar;i++){ 
   delti[theta]=delts;        matcov[i][j]=x[i];
   return res;      }
      }
 }  
     printf("\n#Hessian matrix#\n");
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)    fprintf(ficlog,"\n#Hessian matrix#\n");
 {    for (i=1;i<=npar;i++) { 
   int i;      for (j=1;j<=npar;j++) { 
   int l=1, l1, lmax=20;        printf("%.3e ",hess[i][j]);
   double k1,k2,k3,k4,res,fx;        fprintf(ficlog,"%.3e ",hess[i][j]);
   double p2[NPARMAX+1];      }
   int k;      printf("\n");
       fprintf(ficlog,"\n");
   fx=func(x);    }
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];    /* Recompute Inverse */
     p2[thetai]=x[thetai]+delti[thetai]/k;    for (i=1;i<=npar;i++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     k1=func(p2)-fx;    ludcmp(a,npar,indx,&pd);
    
     p2[thetai]=x[thetai]+delti[thetai]/k;    /*  printf("\n#Hessian matrix recomputed#\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;    for (j=1;j<=npar;j++) {
        for (i=1;i<=npar;i++) x[i]=0;
     p2[thetai]=x[thetai]-delti[thetai]/k;      x[j]=1;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      lubksb(a,npar,indx,x);
     k3=func(p2)-fx;      for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
     p2[thetai]=x[thetai]-delti[thetai]/k;        printf("%.3e ",y[i][j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        fprintf(ficlog,"%.3e ",y[i][j]);
     k4=func(p2)-fx;      }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      printf("\n");
 #ifdef DEBUG      fprintf(ficlog,"\n");
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    }
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    */
 #endif  
   }    free_matrix(a,1,npar,1,npar);
   return res;    free_matrix(y,1,npar,1,npar);
 }    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
 /************** Inverse of matrix **************/    free_matrix(hess,1,npar,1,npar);
 void ludcmp(double **a, int n, int *indx, double *d)  
 {  
   int i,imax,j,k;  }
   double big,dum,sum,temp;  
   double *vv;  /*************** hessian matrix ****************/
    double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   vv=vector(1,n);  {
   *d=1.0;    int i;
   for (i=1;i<=n;i++) {    int l=1, lmax=20;
     big=0.0;    double k1,k2;
     for (j=1;j<=n;j++)    double p2[MAXPARM+1]; /* identical to x */
       if ((temp=fabs(a[i][j])) > big) big=temp;    double res;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     vv[i]=1.0/big;    double fx;
   }    int k=0,kmax=10;
   for (j=1;j<=n;j++) {    double l1;
     for (i=1;i<j;i++) {  
       sum=a[i][j];    fx=func(x);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    for (i=1;i<=npar;i++) p2[i]=x[i];
       a[i][j]=sum;    for(l=0 ; l <=lmax; l++){
     }      l1=pow(10,l);
     big=0.0;      delts=delt;
     for (i=j;i<=n;i++) {      for(k=1 ; k <kmax; k=k+1){
       sum=a[i][j];        delt = delta*(l1*k);
       for (k=1;k<j;k++)        p2[theta]=x[theta] +delt;
         sum -= a[i][k]*a[k][j];        k1=func(p2)-fx;
       a[i][j]=sum;        p2[theta]=x[theta]-delt;
       if ( (dum=vv[i]*fabs(sum)) >= big) {        k2=func(p2)-fx;
         big=dum;        /*res= (k1-2.0*fx+k2)/delt/delt; */
         imax=i;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }        
     }  #ifdef DEBUGHESS
     if (j != imax) {        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for (k=1;k<=n;k++) {        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         dum=a[imax][k];  #endif
         a[imax][k]=a[j][k];        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         a[j][k]=dum;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       }          k=kmax;
       *d = -(*d);        }
       vv[imax]=vv[j];        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     }          k=kmax; l=lmax*10.;
     indx[j]=imax;        }
     if (a[j][j] == 0.0) a[j][j]=TINY;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     if (j != n) {          delts=delt;
       dum=1.0/(a[j][j]);        }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      }
     }    }
   }    delti[theta]=delts;
   free_vector(vv,1,n);  /* Doesn't work */    return res; 
 ;    
 }  }
   
 void lubksb(double **a, int n, int *indx, double b[])  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 {  {
   int i,ii=0,ip,j;    int i;
   double sum;    int l=1, l1, lmax=20;
      double k1,k2,k3,k4,res,fx;
   for (i=1;i<=n;i++) {    double p2[MAXPARM+1];
     ip=indx[i];    int k;
     sum=b[ip];  
     b[ip]=b[i];    fx=func(x);
     if (ii)    for (k=1; k<=2; k++) {
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      for (i=1;i<=npar;i++) p2[i]=x[i];
     else if (sum) ii=i;      p2[thetai]=x[thetai]+delti[thetai]/k;
     b[i]=sum;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   }      k1=func(p2)-fx;
   for (i=n;i>=1;i--) {    
     sum=b[i];      p2[thetai]=x[thetai]+delti[thetai]/k;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     b[i]=sum/a[i][i];      k2=func(p2)-fx;
   }    
 }      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 void pstamp(FILE *fichier)      k3=func(p2)-fx;
 {    
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);      p2[thetai]=x[thetai]-delti[thetai]/k;
 }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
 /************ Frequencies ********************/      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])  #ifdef DEBUG
 {  /* Some frequencies */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  #endif
   int first;    }
   double ***freq; /* Frequencies */    return res;
   double *pp, **prop;  }
   double pos,posprop, k2, dateintsum=0,k2cpt=0;  
   char fileresp[FILENAMELENGTH];  /************** Inverse of matrix **************/
    void ludcmp(double **a, int n, int *indx, double *d) 
   pp=vector(1,nlstate);  { 
   prop=matrix(1,nlstate,iagemin,iagemax+3);    int i,imax,j,k; 
   strcpy(fileresp,"p");    double big,dum,sum,temp; 
   strcat(fileresp,fileres);    double *vv; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {   
     printf("Problem with prevalence resultfile: %s\n", fileresp);    vv=vector(1,n); 
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    *d=1.0; 
     exit(0);    for (i=1;i<=n;i++) { 
   }      big=0.0; 
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);      for (j=1;j<=n;j++) 
   j1=0;        if ((temp=fabs(a[i][j])) > big) big=temp; 
        if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   j=cptcoveff;      vv[i]=1.0/big; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    } 
     for (j=1;j<=n;j++) { 
   first=1;      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
   for(k1=1; k1<=j;k1++){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     for(i1=1; i1<=ncodemax[k1];i1++){        a[i][j]=sum; 
       j1++;      } 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      big=0.0; 
         scanf("%d", i);*/      for (i=j;i<=n;i++) { 
       for (i=-5; i<=nlstate+ndeath; i++)          sum=a[i][j]; 
         for (jk=-5; jk<=nlstate+ndeath; jk++)          for (k=1;k<j;k++) 
           for(m=iagemin; m <= iagemax+3; m++)          sum -= a[i][k]*a[k][j]; 
             freq[i][jk][m]=0;        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
     for (i=1; i<=nlstate; i++)            big=dum; 
       for(m=iagemin; m <= iagemax+3; m++)          imax=i; 
         prop[i][m]=0;        } 
            } 
       dateintsum=0;      if (j != imax) { 
       k2cpt=0;        for (k=1;k<=n;k++) { 
       for (i=1; i<=imx; i++) {          dum=a[imax][k]; 
         bool=1;          a[imax][k]=a[j][k]; 
         if  (cptcovn>0) {          a[j][k]=dum; 
           for (z1=1; z1<=cptcoveff; z1++)        } 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        *d = -(*d); 
               bool=0;        vv[imax]=vv[j]; 
         }      } 
         if (bool==1){      indx[j]=imax; 
           for(m=firstpass; m<=lastpass; m++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
             k2=anint[m][i]+(mint[m][i]/12.);      if (j != n) { 
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/        dum=1.0/(a[j][j]); 
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      } 
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];    } 
               if (m<lastpass) {    free_vector(vv,1,n);  /* Doesn't work */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  ;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];  } 
               }  
                void lubksb(double **a, int n, int *indx, double b[]) 
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {  { 
                 dateintsum=dateintsum+k2;    int i,ii=0,ip,j; 
                 k2cpt++;    double sum; 
               }   
               /*}*/    for (i=1;i<=n;i++) { 
           }      ip=indx[i]; 
         }      sum=b[ip]; 
       }      b[ip]=b[i]; 
              if (ii) 
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       pstamp(ficresp);      else if (sum) ii=i; 
       if  (cptcovn>0) {      b[i]=sum; 
         fprintf(ficresp, "\n#********** Variable ");    } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (i=n;i>=1;i--) { 
         fprintf(ficresp, "**********\n#");      sum=b[i]; 
       }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(i=1; i<=nlstate;i++)      b[i]=sum/a[i][i]; 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    } 
       fprintf(ficresp, "\n");  } 
        
       for(i=iagemin; i <= iagemax+3; i++){  void pstamp(FILE *fichier)
         if(i==iagemax+3){  {
           fprintf(ficlog,"Total");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         }else{  }
           if(first==1){  
             first=0;  /************ Frequencies ********************/
             printf("See log file for details...\n");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           }  {  /* Some frequencies */
           fprintf(ficlog,"Age %d", i);    
         }    int i, m, jk, k1,i1, j1, bool, z1,j;
         for(jk=1; jk <=nlstate ; jk++){    int first;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double ***freq; /* Frequencies */
             pp[jk] += freq[jk][m][i];    double *pp, **prop;
         }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for(jk=1; jk <=nlstate ; jk++){    char fileresp[FILENAMELENGTH];
           for(m=-1, pos=0; m <=0 ; m++)    
             pos += freq[jk][m][i];    pp=vector(1,nlstate);
           if(pp[jk]>=1.e-10){    prop=matrix(1,nlstate,iagemin,iagemax+3);
             if(first==1){    strcpy(fileresp,"p");
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    strcat(fileresp,fileres);
             }    if((ficresp=fopen(fileresp,"w"))==NULL) {
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      printf("Problem with prevalence resultfile: %s\n", fileresp);
           }else{      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
             if(first==1)      exit(0);
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    }
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           }    j1=0;
         }    
     j=cptcoveff;
         for(jk=1; jk <=nlstate ; jk++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    first=1;
         }        
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){    for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
           pos += pp[jk];      for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
           posprop += prop[jk][i];        j1++;
         }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         for(jk=1; jk <=nlstate ; jk++){          scanf("%d", i);*/
           if(pos>=1.e-5){        for (i=-5; i<=nlstate+ndeath; i++)  
             if(first==1)          for (jk=-5; jk<=nlstate+ndeath; jk++)  
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            for(m=iagemin; m <= iagemax+3; m++)
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              freq[i][jk][m]=0;
           }else{        
             if(first==1)        for (i=1; i<=nlstate; i++)  
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          for(m=iagemin; m <= iagemax+3; m++)
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            prop[i][m]=0;
           }        
           if( i <= iagemax){        dateintsum=0;
             if(pos>=1.e-5){        k2cpt=0;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);        for (i=1; i<=imx; i++) {
               /*probs[i][jk][j1]= pp[jk]/pos;*/          bool=1;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             }            for (z1=1; z1<=cptcoveff; z1++)       
             else              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);                bool=0;
           }                printf("bool=%d i=%d, z1=%d, i1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
         }                  bool,i,z1, i1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                          j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);
         for(jk=-1; jk <=nlstate+ndeath; jk++)                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
           for(m=-1; m <=nlstate+ndeath; m++)              } 
             if(freq[jk][m][i] !=0 ) {          }
             if(first==1)   
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          if (bool==1){
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);            for(m=firstpass; m<=lastpass; m++){
             }              k2=anint[m][i]+(mint[m][i]/12.);
         if(i <= iagemax)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           fprintf(ficresp,"\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         if(first==1)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           printf("Others in log...\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         fprintf(ficlog,"\n");                if (m<lastpass) {
       }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   }                }
   dateintmean=dateintsum/k2cpt;                
                  if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   fclose(ficresp);                  dateintsum=dateintsum+k2;
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);                  k2cpt++;
   free_vector(pp,1,nlstate);                }
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);                /*}*/
   /* End of Freq */            }
 }          }
         }
 /************ Prevalence ********************/         
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 {          pstamp(ficresp);
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people        if  (cptcovn>0) {
      in each health status at the date of interview (if between dateprev1 and dateprev2).          fprintf(ficresp, "\n#********** Variable "); 
      We still use firstpass and lastpass as another selection.          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   */          fprintf(ficresp, "**********\n#");
            fprintf(ficlog, "\n#********** Variable "); 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double ***freq; /* Frequencies */          fprintf(ficlog, "**********\n#");
   double *pp, **prop;        }
   double pos,posprop;        for(i=1; i<=nlstate;i++) 
   double  y2; /* in fractional years */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   int iagemin, iagemax;        fprintf(ficresp, "\n");
         
   iagemin= (int) agemin;        for(i=iagemin; i <= iagemax+3; i++){
   iagemax= (int) agemax;          if(i==iagemax+3){
   /*pp=vector(1,nlstate);*/            fprintf(ficlog,"Total");
   prop=matrix(1,nlstate,iagemin,iagemax+3);          }else{
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/            if(first==1){
   j1=0;              first=0;
                printf("See log file for details...\n");
   j=cptcoveff;            }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            fprintf(ficlog,"Age %d", i);
            }
   for(k1=1; k1<=j;k1++){          for(jk=1; jk <=nlstate ; jk++){
     for(i1=1; i1<=ncodemax[k1];i1++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       j1++;              pp[jk] += freq[jk][m][i]; 
                }
       for (i=1; i<=nlstate; i++)            for(jk=1; jk <=nlstate ; jk++){
         for(m=iagemin; m <= iagemax+3; m++)            for(m=-1, pos=0; m <=0 ; m++)
           prop[i][m]=0.0;              pos += freq[jk][m][i];
                  if(pp[jk]>=1.e-10){
       for (i=1; i<=imx; i++) { /* Each individual */              if(first==1){
         bool=1;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         if  (cptcovn>0) {              }
           for (z1=1; z1<=cptcoveff; z1++)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            }else{
               bool=0;              if(first==1)
         }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         if (bool==1) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/            }
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */          }
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */  
               if(agev[m][i]==0) agev[m][i]=iagemax+1;          for(jk=1; jk <=nlstate ; jk++){
               if(agev[m][i]==1) agev[m][i]=iagemax+2;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);              pp[jk] += freq[jk][m][i];
               if (s[m][i]>0 && s[m][i]<=nlstate) {          }       
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];            pos += pp[jk];
                 prop[s[m][i]][iagemax+3] += weight[i];            posprop += prop[jk][i];
               }          }
             }          for(jk=1; jk <=nlstate ; jk++){
           } /* end selection of waves */            if(pos>=1.e-5){
         }              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(i=iagemin; i <= iagemax+3; i++){                fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                    }else{
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {              if(first==1)
           posprop += prop[jk][i];                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
         for(jk=1; jk <=nlstate ; jk++){                if( i <= iagemax){
           if( i <=  iagemax){              if(pos>=1.e-5){
             if(posprop>=1.e-5){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
               probs[i][jk][j1]= prop[jk][i]/posprop;                /*probs[i][jk][j1]= pp[jk]/pos;*/
             }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           }              }
         }/* end jk */              else
       }/* end i */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     } /* end i1 */            }
   } /* end k1 */          }
            
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/          for(jk=-1; jk <=nlstate+ndeath; jk++)
   /*free_vector(pp,1,nlstate);*/            for(m=-1; m <=nlstate+ndeath; m++)
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);              if(freq[jk][m][i] !=0 ) {
 }  /* End of prevalence */              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 /************* Waves Concatenation ***************/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          if(i <= iagemax)
 {            fprintf(ficresp,"\n");
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          if(first==1)
      Death is a valid wave (if date is known).            printf("Others in log...\n");
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          fprintf(ficlog,"\n");
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]        }
      and mw[mi+1][i]. dh depends on stepm.      }
      */    }
     dateintmean=dateintsum/k2cpt; 
   int i, mi, m;   
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    fclose(ficresp);
      double sum=0., jmean=0.;*/    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   int first;    free_vector(pp,1,nlstate);
   int j, k=0,jk, ju, jl;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   double sum=0.;    /* End of Freq */
   first=0;  }
   jmin=1e+5;  
   jmax=-1;  /************ Prevalence ********************/
   jmean=0.;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   for(i=1; i<=imx; i++){  {  
     mi=0;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     m=firstpass;       in each health status at the date of interview (if between dateprev1 and dateprev2).
     while(s[m][i] <= nlstate){       We still use firstpass and lastpass as another selection.
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)    */
         mw[++mi][i]=m;   
       if(m >=lastpass)    int i, m, jk, k1, i1, j1, bool, z1,j;
         break;    double ***freq; /* Frequencies */
       else    double *pp, **prop;
         m++;    double pos,posprop; 
     }/* end while */    double  y2; /* in fractional years */
     if (s[m][i] > nlstate){    int iagemin, iagemax;
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    iagemin= (int) agemin;
          /* Only death is a correct wave */    iagemax= (int) agemax;
       mw[mi][i]=m;    /*pp=vector(1,nlstate);*/
     }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     wav[i]=mi;    j1=0;
     if(mi==0){    
       nbwarn++;    j=cptcoveff;
       if(first==0){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);    
         first=1;    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
       if(first==1){        j1++;
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);        
       }        for (i=1; i<=nlstate; i++)  
     } /* end mi==0 */          for(m=iagemin; m <= iagemax+3; m++)
   } /* End individuals */            prop[i][m]=0.0;
        
   for(i=1; i<=imx; i++){        for (i=1; i<=imx; i++) { /* Each individual */
     for(mi=1; mi<wav[i];mi++){          bool=1;
       if (stepm <=0)          if  (cptcovn>0) {
         dh[mi][i]=1;            for (z1=1; z1<=cptcoveff; z1++) 
       else{              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */                bool=0;
           if (agedc[i] < 2*AGESUP) {          } 
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          if (bool==1) { 
             if(j==0) j=1;  /* Survives at least one month after exam */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             else if(j<0){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               nberr++;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               j=1; /* Temporary Dangerous patch */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
             k=k+1;                  prop[s[m][i]][iagemax+3] += weight[i]; 
             if (j >= jmax){                } 
               jmax=j;              }
               ijmax=i;            } /* end selection of waves */
             }          }
             if (j <= jmin){        }
               jmin=j;        for(i=iagemin; i <= iagemax+3; i++){  
               ijmin=i;          
             }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             sum=sum+j;            posprop += prop[jk][i]; 
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/          } 
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/  
           }          for(jk=1; jk <=nlstate ; jk++){     
         }            if( i <=  iagemax){ 
         else{              if(posprop>=1.e-5){ 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));                probs[i][jk][j1]= prop[jk][i]/posprop;
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */              } else
                 printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
           k=k+1;            } 
           if (j >= jmax) {          }/* end jk */ 
             jmax=j;        }/* end i */ 
             ijmax=i;      } /* end i1 */
           }    } /* end k1 */
           else if (j <= jmin){    
             jmin=j;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             ijmin=i;    /*free_vector(pp,1,nlstate);*/
           }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  }  /* End of prevalence */
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/  
           if(j<0){  /************* Waves Concatenation ***************/
             nberr++;  
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  {
           }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           sum=sum+j;       Death is a valid wave (if date is known).
         }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         jk= j/stepm;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         jl= j -jk*stepm;       and mw[mi+1][i]. dh depends on stepm.
         ju= j -(jk+1)*stepm;       */
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */  
           if(jl==0){    int i, mi, m;
             dh[mi][i]=jk;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             bh[mi][i]=0;       double sum=0., jmean=0.;*/
           }else{ /* We want a negative bias in order to only have interpolation ie    int first;
                   * at the price of an extra matrix product in likelihood */    int j, k=0,jk, ju, jl;
             dh[mi][i]=jk+1;    double sum=0.;
             bh[mi][i]=ju;    first=0;
           }    jmin=1e+5;
         }else{    jmax=-1;
           if(jl <= -ju){    jmean=0.;
             dh[mi][i]=jk;    for(i=1; i<=imx; i++){
             bh[mi][i]=jl;       /* bias is positive if real duration      mi=0;
                                  * is higher than the multiple of stepm and negative otherwise.      m=firstpass;
                                  */      while(s[m][i] <= nlstate){
           }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           else{          mw[++mi][i]=m;
             dh[mi][i]=jk+1;        if(m >=lastpass)
             bh[mi][i]=ju;          break;
           }        else
           if(dh[mi][i]==0){          m++;
             dh[mi][i]=1; /* At least one step */      }/* end while */
             bh[mi][i]=ju; /* At least one step */      if (s[m][i] > nlstate){
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/        mi++;     /* Death is another wave */
           }        /* if(mi==0)  never been interviewed correctly before death */
         } /* end if mle */           /* Only death is a correct wave */
       }        mw[mi][i]=m;
     } /* end wave */      }
   }  
   jmean=sum/k;      wav[i]=mi;
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);      if(mi==0){
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);        nbwarn++;
  }        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 /*********** Tricode ****************************/          first=1;
 void tricode(int *Tvar, int **nbcode, int imx)        }
 {        if(first==1){
            fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   int Ndum[20],ij=1, k, j, i, maxncov=19;        }
   int cptcode=0;      } /* end mi==0 */
   cptcoveff=0;    } /* End individuals */
    
   for (k=0; k<maxncov; k++) Ndum[k]=0;    for(i=1; i<=imx; i++){
   for (k=1; k<=7; k++) ncodemax[k]=0;      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          dh[mi][i]=1;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum        else{
                                modality*/          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/            if (agedc[i] < 2*AGESUP) {
       Ndum[ij]++; /*store the modality */              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              if(j==0) j=1;  /* Survives at least one month after exam */
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable              else if(j<0){
                                        Tvar[j]. If V=sex and male is 0 and                nberr++;
                                        female is 1, then  cptcode=1.*/                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     for (i=0; i<=cptcode; i++) {                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }              }
               k=k+1;
     ij=1;              if (j >= jmax){
     for (i=1; i<=ncodemax[j]; i++) {                jmax=j;
       for (k=0; k<= maxncov; k++) {                ijmax=i;
         if (Ndum[k] != 0) {              }
           nbcode[Tvar[j]][ij]=k;              if (j <= jmin){
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */                jmin=j;
                          ijmin=i;
           ij++;              }
         }              sum=sum+j;
         if (ij > ncodemax[j]) break;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       }                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     }            }
   }            }
           else{
  for (k=0; k< maxncov; k++) Ndum[k]=0;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
  for (i=1; i<=ncovmodel-2; i++) {  
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/            k=k+1;
    ij=Tvar[i];            if (j >= jmax) {
    Ndum[ij]++;              jmax=j;
  }              ijmax=i;
             }
  ij=1;            else if (j <= jmin){
  for (i=1; i<= maxncov; i++) {              jmin=j;
    if((Ndum[i]!=0) && (i<=ncovcol)){              ijmin=i;
      Tvaraff[ij]=i; /*For printing */            }
      ij++;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
    }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
  }            if(j<0){
                nberr++;
  cptcoveff=ij-1; /*Number of simple covariates*/              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
 /*********** Health Expectancies ****************/            sum=sum+j;
           }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )          jk= j/stepm;
           jl= j -jk*stepm;
 {          ju= j -(jk+1)*stepm;
   /* Health expectancies, no variances */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;            if(jl==0){
   double age, agelim, hf;              dh[mi][i]=jk;
   double ***p3mat;              bh[mi][i]=0;
   double eip;            }else{ /* We want a negative bias in order to only have interpolation ie
                     * to avoid the price of an extra matrix product in likelihood */
   pstamp(ficreseij);              dh[mi][i]=jk+1;
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");              bh[mi][i]=ju;
   fprintf(ficreseij,"# Age");            }
   for(i=1; i<=nlstate;i++){          }else{
     for(j=1; j<=nlstate;j++){            if(jl <= -ju){
       fprintf(ficreseij," e%1d%1d ",i,j);              dh[mi][i]=jk;
     }              bh[mi][i]=jl;       /* bias is positive if real duration
     fprintf(ficreseij," e%1d. ",i);                                   * is higher than the multiple of stepm and negative otherwise.
   }                                   */
   fprintf(ficreseij,"\n");            }
             else{
                dh[mi][i]=jk+1;
   if(estepm < stepm){              bh[mi][i]=ju;
     printf ("Problem %d lower than %d\n",estepm, stepm);            }
   }            if(dh[mi][i]==0){
   else  hstepm=estepm;                dh[mi][i]=1; /* At least one step */
   /* We compute the life expectancy from trapezoids spaced every estepm months              bh[mi][i]=ju; /* At least one step */
    * This is mainly to measure the difference between two models: for example              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
    * if stepm=24 months pijx are given only every 2 years and by summing them            }
    * we are calculating an estimate of the Life Expectancy assuming a linear          } /* end if mle */
    * progression in between and thus overestimating or underestimating according        }
    * to the curvature of the survival function. If, for the same date, we      } /* end wave */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    }
    * to compare the new estimate of Life expectancy with the same linear    jmean=sum/k;
    * hypothesis. A more precise result, taking into account a more precise    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
    * curvature will be obtained if estepm is as small as stepm. */    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  /*********** Tricode ****************************/
      nhstepm is the number of hstepm from age to agelim  void tricode(int *Tvar, int **nbcode, int imx)
      nstepm is the number of stepm from age to agelin.  {
      Look at hpijx to understand the reason of that which relies in memory size    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
      and note for a fixed period like estepm months */    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
      survival function given by stepm (the optimization length). Unfortunately it    /* nbcode[Tvar[j][1]= 
      means that if the survival funtion is printed only each two years of age and if    */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   */    int modmaxcovj=0; /* Modality max of covariates j */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    cptcoveff=0; 
    
   agelim=AGESUP;    for (k=0; k < maxncov; k++) Ndum[k]=0;
   /* If stepm=6 months */    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
          for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
 /* nhstepm age range expressed in number of stepm */                                 modality of this covariate Vj*/ 
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */                                        modality of the nth covariate of individual i. */
   /* if (stepm >= YEARM) hstepm=1;*/        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (ij > modmaxcovj) modmaxcovj=ij; 
         /* getting the maximum value of the modality of the covariate
   for (age=bage; age<=fage; age ++){           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
            female is 1, then modmaxcovj=1.*/
       }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);        /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
          for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        if( Ndum[i] != 0 )
              ncodemax[j]++; 
     printf("%d|",(int)age);fflush(stdout);        /* Number of modalities of the j th covariate. In fact
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);           ncodemax[j]=2 (dichotom. variables only) but it could be more for
               historical reasons */
       } /* Ndum[-1] number of undefined modalities */
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       for(j=1; j<=nlstate;j++)      ij=1; 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
                    if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
         }                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                ij++;
     fprintf(ficreseij,"%3.0f",age );          }
     for(i=1; i<=nlstate;i++){          if (ij > ncodemax[j]) break; 
       eip=0;        }  /* end of loop on */
       for(j=1; j<=nlstate;j++){      } /* end of loop on modality */ 
         eip +=eij[i][j][(int)age];    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );    
       }    for (k=0; k< maxncov; k++) Ndum[k]=0;
       fprintf(ficreseij,"%9.4f", eip );    
     }    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
     fprintf(ficreseij,"\n");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
   }     Ndum[ij]++;
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   }
   printf("\n");  
   fprintf(ficlog,"\n");   ij=1;
     for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 }     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )       ij++;
      }
 {   }
   /* Covariances of health expectancies eij and of total life expectancies according   ij--;
    to initial status i, ei. .   cptcoveff=ij; /*Number of total covariates*/
   */  }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;  
   double age, agelim, hf;  /*********** Health Expectancies ****************/
   double ***p3matp, ***p3matm, ***varhe;  
   double **dnewm,**doldm;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   double *xp, *xm;  
   double **gp, **gm;  {
   double ***gradg, ***trgradg;    /* Health expectancies, no variances */
   int theta;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     int nhstepma, nstepma; /* Decreasing with age */
   double eip, vip;    double age, agelim, hf;
     double ***p3mat;
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);    double eip;
   xp=vector(1,npar);  
   xm=vector(1,npar);    pstamp(ficreseij);
   dnewm=matrix(1,nlstate*nlstate,1,npar);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);    fprintf(ficreseij,"# Age");
      for(i=1; i<=nlstate;i++){
   pstamp(ficresstdeij);      for(j=1; j<=nlstate;j++){
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");        fprintf(ficreseij," e%1d%1d ",i,j);
   fprintf(ficresstdeij,"# Age");      }
   for(i=1; i<=nlstate;i++){      fprintf(ficreseij," e%1d. ",i);
     for(j=1; j<=nlstate;j++)    }
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);    fprintf(ficreseij,"\n");
     fprintf(ficresstdeij," e%1d. ",i);  
   }    
   fprintf(ficresstdeij,"\n");    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   pstamp(ficrescveij);    }
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");    else  hstepm=estepm;   
   fprintf(ficrescveij,"# Age");    /* We compute the life expectancy from trapezoids spaced every estepm months
   for(i=1; i<=nlstate;i++)     * This is mainly to measure the difference between two models: for example
     for(j=1; j<=nlstate;j++){     * if stepm=24 months pijx are given only every 2 years and by summing them
       cptj= (j-1)*nlstate+i;     * we are calculating an estimate of the Life Expectancy assuming a linear 
       for(i2=1; i2<=nlstate;i2++)     * progression in between and thus overestimating or underestimating according
         for(j2=1; j2<=nlstate;j2++){     * to the curvature of the survival function. If, for the same date, we 
           cptj2= (j2-1)*nlstate+i2;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           if(cptj2 <= cptj)     * to compare the new estimate of Life expectancy with the same linear 
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);     * hypothesis. A more precise result, taking into account a more precise
         }     * curvature will be obtained if estepm is as small as stepm. */
     }  
   fprintf(ficrescveij,"\n");    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if(estepm < stepm){       nhstepm is the number of hstepm from age to agelim 
     printf ("Problem %d lower than %d\n",estepm, stepm);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
   else  hstepm=estepm;         and note for a fixed period like estepm months */
   /* We compute the life expectancy from trapezoids spaced every estepm months    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
    * This is mainly to measure the difference between two models: for example       survival function given by stepm (the optimization length). Unfortunately it
    * if stepm=24 months pijx are given only every 2 years and by summing them       means that if the survival funtion is printed only each two years of age and if
    * we are calculating an estimate of the Life Expectancy assuming a linear       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    * progression in between and thus overestimating or underestimating according       results. So we changed our mind and took the option of the best precision.
    * to the curvature of the survival function. If, for the same date, we    */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise    agelim=AGESUP;
    * curvature will be obtained if estepm is as small as stepm. */    /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /* For example we decided to compute the life expectancy with the smallest unit */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      
      nhstepm is the number of hstepm from age to agelim  /* nhstepm age range expressed in number of stepm */
      nstepm is the number of stepm from age to agelin.    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
      Look at hpijx to understand the reason of that which relies in memory size    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      and note for a fixed period like estepm months */    /* if (stepm >= YEARM) hstepm=1;*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      survival function given by stepm (the optimization length). Unfortunately it    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (age=bage; age<=fage; age ++){ 
      results. So we changed our mind and took the option of the best precision.      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   /* If stepm=6 months */  
   /* nhstepm age range expressed in number of stepm */      /* If stepm=6 months */
   agelim=AGESUP;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */      
   /* if (stepm >= YEARM) hstepm=1;*/      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("%d|",(int)age);fflush(stdout);
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);      
   gp=matrix(0,nhstepm,1,nlstate*nlstate);      /* Computing expectancies */
   gm=matrix(0,nhstepm,1,nlstate*nlstate);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   for (age=bage; age<=fage; age ++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          }
   
     /* Computing  Variances of health expectancies */      fprintf(ficreseij,"%3.0f",age );
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to      for(i=1; i<=nlstate;i++){
        decrease memory allocation */        eip=0;
     for(theta=1; theta <=npar; theta++){        for(j=1; j<=nlstate;j++){
       for(i=1; i<=npar; i++){          eip +=eij[i][j][(int)age];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         xm[i] = x[i] - (i==theta ?delti[theta]:0);        }
       }        fprintf(ficreseij,"%9.4f", eip );
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);        }
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);        fprintf(ficreseij,"\n");
        
       for(j=1; j<= nlstate; j++){    }
         for(i=1; i<=nlstate; i++){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(h=0; h<=nhstepm-1; h++){    printf("\n");
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;    fprintf(ficlog,"\n");
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;    
           }  }
         }  
       }  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
        
       for(ij=1; ij<= nlstate*nlstate; ij++)  {
         for(h=0; h<=nhstepm-1; h++){    /* Covariances of health expectancies eij and of total life expectancies according
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];     to initial status i, ei. .
         }    */
     }/* End theta */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
        int nhstepma, nstepma; /* Decreasing with age */
        double age, agelim, hf;
     for(h=0; h<=nhstepm-1; h++)    double ***p3matp, ***p3matm, ***varhe;
       for(j=1; j<=nlstate*nlstate;j++)    double **dnewm,**doldm;
         for(theta=1; theta <=npar; theta++)    double *xp, *xm;
           trgradg[h][j][theta]=gradg[h][theta][j];    double **gp, **gm;
        double ***gradg, ***trgradg;
     int theta;
      for(ij=1;ij<=nlstate*nlstate;ij++)  
       for(ji=1;ji<=nlstate*nlstate;ji++)    double eip, vip;
         varhe[ij][ji][(int)age] =0.;  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      printf("%d|",(int)age);fflush(stdout);    xp=vector(1,npar);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    xm=vector(1,npar);
      for(h=0;h<=nhstepm-1;h++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
       for(k=0;k<=nhstepm-1;k++){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);    
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);    pstamp(ficresstdeij);
         for(ij=1;ij<=nlstate*nlstate;ij++)    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
           for(ji=1;ji<=nlstate*nlstate;ji++)    fprintf(ficresstdeij,"# Age");
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;    for(i=1; i<=nlstate;i++){
       }      for(j=1; j<=nlstate;j++)
     }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     /* Computing expectancies */    }
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);      fprintf(ficresstdeij,"\n");
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)    pstamp(ficrescveij);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;    fprintf(ficrescveij,"# Age");
              for(i=1; i<=nlstate;i++)
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         }        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
     fprintf(ficresstdeij,"%3.0f",age );            cptj2= (j2-1)*nlstate+i2;
     for(i=1; i<=nlstate;i++){            if(cptj2 <= cptj)
       eip=0.;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       vip=0.;          }
       for(j=1; j<=nlstate;j++){      }
         eip += eij[i][j][(int)age];    fprintf(ficrescveij,"\n");
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */    
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];    if(estepm < stepm){
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );      printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));    else  hstepm=estepm;   
     }    /* We compute the life expectancy from trapezoids spaced every estepm months
     fprintf(ficresstdeij,"\n");     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
     fprintf(ficrescveij,"%3.0f",age );     * we are calculating an estimate of the Life Expectancy assuming a linear 
     for(i=1; i<=nlstate;i++)     * progression in between and thus overestimating or underestimating according
       for(j=1; j<=nlstate;j++){     * to the curvature of the survival function. If, for the same date, we 
         cptj= (j-1)*nlstate+i;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         for(i2=1; i2<=nlstate;i2++)     * to compare the new estimate of Life expectancy with the same linear 
           for(j2=1; j2<=nlstate;j2++){     * hypothesis. A more precise result, taking into account a more precise
             cptj2= (j2-1)*nlstate+i2;     * curvature will be obtained if estepm is as small as stepm. */
             if(cptj2 <= cptj)  
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);    /* For example we decided to compute the life expectancy with the smallest unit */
           }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
     fprintf(ficrescveij,"\n");       nstepm is the number of stepm from age to agelin. 
           Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like estepm months */
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);       survival function given by stepm (the optimization length). Unfortunately it
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);       means that if the survival funtion is printed only each two years of age and if
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       results. So we changed our mind and took the option of the best precision.
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
   printf("\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fprintf(ficlog,"\n");  
     /* If stepm=6 months */
   free_vector(xm,1,npar);    /* nhstepm age range expressed in number of stepm */
   free_vector(xp,1,npar);    agelim=AGESUP;
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);    /* if (stepm >= YEARM) hstepm=1;*/
 }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
 /************ Variance ******************/    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 {    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   /* Variance of health expectancies */    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   /* double **newm;*/    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   double **dnewm,**doldm;  
   double **dnewmp,**doldmp;    for (age=bage; age<=fage; age ++){ 
   int i, j, nhstepm, hstepm, h, nstepm ;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   int k, cptcode;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   double *xp;      /* if (stepm >= YEARM) hstepm=1;*/
   double **gp, **gm;  /* for var eij */      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   double ***gradg, ***trgradg; /*for var eij */  
   double **gradgp, **trgradgp; /* for var p point j */      /* If stepm=6 months */
   double *gpp, *gmp; /* for var p point j */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   double ***p3mat;      
   double age,agelim, hf;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double ***mobaverage;  
   int theta;      /* Computing  Variances of health expectancies */
   char digit[4];      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   char digitp[25];         decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
   char fileresprobmorprev[FILENAMELENGTH];        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if(popbased==1){          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     if(mobilav!=0)        }
       strcpy(digitp,"-populbased-mobilav-");        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     else strcpy(digitp,"-populbased-nomobil-");        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   }    
   else        for(j=1; j<= nlstate; j++){
     strcpy(digitp,"-stablbased-");          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
   if (mobilav!=0) {              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){            }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        }
     }       
   }        for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
   strcpy(fileresprobmorprev,"prmorprev");            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   sprintf(digit,"%-d",ij);          }
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      }/* End theta */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */      
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */      
   strcat(fileresprobmorprev,fileres);      for(h=0; h<=nhstepm-1; h++)
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        for(j=1; j<=nlstate*nlstate;j++)
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          for(theta=1; theta <=npar; theta++)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);            trgradg[h][j][theta]=gradg[h][theta][j];
   }      
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
         for(ij=1;ij<=nlstate*nlstate;ij++)
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        for(ji=1;ji<=nlstate*nlstate;ji++)
   pstamp(ficresprobmorprev);          varhe[ij][ji][(int)age] =0.;
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);  
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);       printf("%d|",(int)age);fflush(stdout);
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fprintf(ficresprobmorprev," p.%-d SE",j);       for(h=0;h<=nhstepm-1;h++){
     for(i=1; i<=nlstate;i++)        for(k=0;k<=nhstepm-1;k++){
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   }            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   fprintf(ficresprobmorprev,"\n");          for(ij=1;ij<=nlstate*nlstate;ij++)
   fprintf(ficgp,"\n# Routine varevsij");            for(ji=1;ji<=nlstate*nlstate;ji++)
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");        }
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);      }
 /*   } */  
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      /* Computing expectancies */
   pstamp(ficresvij);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");      for(i=1; i<=nlstate;i++)
   if(popbased==1)        for(j=1; j<=nlstate;j++)
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   else            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");            
   fprintf(ficresvij,"# Age");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)          }
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);  
   fprintf(ficresvij,"\n");      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   xp=vector(1,npar);        eip=0.;
   dnewm=matrix(1,nlstate,1,npar);        vip=0.;
   doldm=matrix(1,nlstate,1,nlstate);        for(j=1; j<=nlstate;j++){
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          eip += eij[i][j][(int)age];
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   gpp=vector(nlstate+1,nlstate+ndeath);        }
   gmp=vector(nlstate+1,nlstate+ndeath);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      }
        fprintf(ficresstdeij,"\n");
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);      fprintf(ficrescveij,"%3.0f",age );
   }      for(i=1; i<=nlstate;i++)
   else  hstepm=estepm;          for(j=1; j<=nlstate;j++){
   /* For example we decided to compute the life expectancy with the smallest unit */          cptj= (j-1)*nlstate+i;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          for(i2=1; i2<=nlstate;i2++)
      nhstepm is the number of hstepm from age to agelim            for(j2=1; j2<=nlstate;j2++){
      nstepm is the number of stepm from age to agelin.              cptj2= (j2-1)*nlstate+i2;
      Look at hpijx to understand the reason of that which relies in memory size              if(cptj2 <= cptj)
      and note for a fixed period like k years */                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            }
      survival function given by stepm (the optimization length). Unfortunately it        }
      means that if the survival funtion is printed every two years of age and if      fprintf(ficrescveij,"\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     
      results. So we changed our mind and took the option of the best precision.    }
   */    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   agelim = AGESUP;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    fprintf(ficlog,"\n");
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);    free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     for(theta=1; theta <=npar; theta++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  }
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /************ Variance ******************/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
       if (popbased==1) {    /* Variance of health expectancies */
         if(mobilav ==0){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           for(i=1; i<=nlstate;i++)    /* double **newm;*/
             prlim[i][i]=probs[(int)age][i][ij];    double **dnewm,**doldm;
         }else{ /* mobilav */    double **dnewmp,**doldmp;
           for(i=1; i<=nlstate;i++)    int i, j, nhstepm, hstepm, h, nstepm ;
             prlim[i][i]=mobaverage[(int)age][i][ij];    int k, cptcode;
         }    double *xp;
       }    double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
       for(j=1; j<= nlstate; j++){    double **gradgp, **trgradgp; /* for var p point j */
         for(h=0; h<=nhstepm; h++){    double *gpp, *gmp; /* for var p point j */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double ***p3mat;
         }    double age,agelim, hf;
       }    double ***mobaverage;
       /* This for computing probability of death (h=1 means    int theta;
          computed over hstepm matrices product = hstepm*stepm months)    char digit[4];
          as a weighted average of prlim.    char digitp[25];
       */  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    char fileresprobmorprev[FILENAMELENGTH];
         for(i=1,gpp[j]=0.; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    if(popbased==1){
       }          if(mobilav!=0)
       /* end probability of death */        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */    }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    else 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        strcpy(digitp,"-stablbased-");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
      if (mobilav!=0) {
       if (popbased==1) {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if(mobilav ==0){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           for(i=1; i<=nlstate;i++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             prlim[i][i]=probs[(int)age][i][ij];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }else{ /* mobilav */      }
           for(i=1; i<=nlstate;i++)    }
             prlim[i][i]=mobaverage[(int)age][i][ij];  
         }    strcpy(fileresprobmorprev,"prmorprev"); 
       }    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       for(j=1; j<= nlstate; j++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
         for(h=0; h<=nhstepm; h++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    strcat(fileresprobmorprev,fileres);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       /* This for computing probability of death (h=1 means    }
          computed over hstepm matrices product = hstepm*stepm months)    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
          as a weighted average of prlim.   
       */    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    pstamp(ficresprobmorprev);
         for(i=1,gmp[j]=0.; i<= nlstate; i++)    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
          gmp[j] += prlim[i][i]*p3mat[i][j][1];    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       }        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       /* end probability of death */      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
       for(j=1; j<= nlstate; j++) /* vareij */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         for(h=0; h<=nhstepm; h++){    }  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    fprintf(ficresprobmorprev,"\n");
         }    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       }  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     } /* End theta */    pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     for(h=0; h<=nhstepm; h++) /* veij */    else
       for(j=1; j<=nlstate;j++)      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
         for(theta=1; theta <=npar; theta++)    fprintf(ficresvij,"# Age");
           trgradg[h][j][theta]=gradg[h][theta][j];    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       for(theta=1; theta <=npar; theta++)    fprintf(ficresvij,"\n");
         trgradgp[j][theta]=gradgp[theta][j];  
      xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    doldm=matrix(1,nlstate,1,nlstate);
     for(i=1;i<=nlstate;i++)    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       for(j=1;j<=nlstate;j++)    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         vareij[i][j][(int)age] =0.;  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     for(h=0;h<=nhstepm;h++){    gpp=vector(nlstate+1,nlstate+ndeath);
       for(k=0;k<=nhstepm;k++){    gmp=vector(nlstate+1,nlstate+ndeath);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    
         for(i=1;i<=nlstate;i++)    if(estepm < stepm){
           for(j=1;j<=nlstate;j++)      printf ("Problem %d lower than %d\n",estepm, stepm);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    }
       }    else  hstepm=estepm;   
     }    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     /* pptj */       nhstepm is the number of hstepm from age to agelim 
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);       nstepm is the number of stepm from age to agelin. 
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);       Look at function hpijx to understand why (it is linked to memory size questions) */
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(i=nlstate+1;i<=nlstate+ndeath;i++)       survival function given by stepm (the optimization length). Unfortunately it
         varppt[j][i]=doldmp[j][i];       means that if the survival funtion is printed every two years of age and if
     /* end ppptj */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     /*  x centered again */       results. So we changed our mind and took the option of the best precision.
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
     if (popbased==1) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       if(mobilav ==0){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         for(i=1; i<=nlstate;i++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           prlim[i][i]=probs[(int)age][i][ij];      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }else{ /* mobilav */      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         for(i=1; i<=nlstate;i++)      gp=matrix(0,nhstepm,1,nlstate);
           prlim[i][i]=mobaverage[(int)age][i][ij];      gm=matrix(0,nhstepm,1,nlstate);
       }  
     }  
                    for(theta=1; theta <=npar; theta++){
     /* This for computing probability of death (h=1 means        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
        computed over hstepm (estepm) matrices product = hstepm*stepm months)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        as a weighted average of prlim.        }
     */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     for(j=nlstate+1;j<=nlstate+ndeath;j++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(i=1,gmp[j]=0.;i<= nlstate; i++)  
         gmp[j] += prlim[i][i]*p3mat[i][j][1];        if (popbased==1) {
     }              if(mobilav ==0){
     /* end probability of death */            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);          }else{ /* mobilav */ 
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){            for(i=1; i<=nlstate;i++)
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));              prlim[i][i]=mobaverage[(int)age][i][ij];
       for(i=1; i<=nlstate;i++){          }
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        }
       }    
     }        for(j=1; j<= nlstate; j++){
     fprintf(ficresprobmorprev,"\n");          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     fprintf(ficresvij,"%.0f ",age );              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     for(i=1; i<=nlstate;i++)          }
       for(j=1; j<=nlstate;j++){        }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        /* This for computing probability of death (h=1 means
       }           computed over hstepm matrices product = hstepm*stepm months) 
     fprintf(ficresvij,"\n");           as a weighted average of prlim.
     free_matrix(gp,0,nhstepm,1,nlstate);        */
     free_matrix(gm,0,nhstepm,1,nlstate);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }    
   } /* End age */        /* end probability of death */
   free_vector(gpp,nlstate+1,nlstate+ndeath);  
   free_vector(gmp,nlstate+1,nlstate+ndeath);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */   
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");        if (popbased==1) {
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */          if(mobilav ==0){
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */            for(i=1; i<=nlstate;i++)
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */              prlim[i][i]=probs[(int)age][i][ij];
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));          }else{ /* mobilav */ 
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));            for(i=1; i<=nlstate;i++)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));              prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));          }
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);        }
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  
 */        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */          for(h=0; h<=nhstepm; h++){
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   free_vector(xp,1,npar);          }
   free_matrix(doldm,1,nlstate,1,nlstate);        }
   free_matrix(dnewm,1,nlstate,1,npar);        /* This for computing probability of death (h=1 means
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);           computed over hstepm matrices product = hstepm*stepm months) 
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);           as a weighted average of prlim.
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fclose(ficresprobmorprev);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   fflush(ficgp);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   fflush(fichtm);        }    
 }  /* end varevsij */        /* end probability of death */
   
 /************ Variance of prevlim ******************/        for(j=1; j<= nlstate; j++) /* vareij */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])          for(h=0; h<=nhstepm; h++){
 {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   /* Variance of prevalence limit */          }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/  
   double **newm;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   double **dnewm,**doldm;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   int i, j, nhstepm, hstepm;        }
   int k, cptcode;  
   double *xp;      } /* End theta */
   double *gp, *gm;  
   double **gradg, **trgradg;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   double age,agelim;  
   int theta;      for(h=0; h<=nhstepm; h++) /* veij */
          for(j=1; j<=nlstate;j++)
   pstamp(ficresvpl);          for(theta=1; theta <=npar; theta++)
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");            trgradg[h][j][theta]=gradg[h][theta][j];
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       fprintf(ficresvpl," %1d-%1d",i,i);        for(theta=1; theta <=npar; theta++)
   fprintf(ficresvpl,"\n");          trgradgp[j][theta]=gradgp[theta][j];
     
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   doldm=matrix(1,nlstate,1,nlstate);      for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
   hstepm=1*YEARM; /* Every year of age */          vareij[i][j][(int)age] =0.;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;      for(h=0;h<=nhstepm;h++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(k=0;k<=nhstepm;k++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     if (stepm >= YEARM) hstepm=1;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for(i=1;i<=nlstate;i++)
     gradg=matrix(1,npar,1,nlstate);            for(j=1;j<=nlstate;j++)
     gp=vector(1,nlstate);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     gm=vector(1,nlstate);        }
       }
     for(theta=1; theta <=npar; theta++){    
       for(i=1; i<=npar; i++){ /* Computes gradient */      /* pptj */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       for(i=1;i<=nlstate;i++)        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         gp[i] = prlim[i][i];          varppt[j][i]=doldmp[j][i];
          /* end ppptj */
       for(i=1; i<=npar; i++) /* Computes gradient */      /*  x centered again */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       for(i=1;i<=nlstate;i++)   
         gm[i] = prlim[i][i];      if (popbased==1) {
         if(mobilav ==0){
       for(i=1;i<=nlstate;i++)          for(i=1; i<=nlstate;i++)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            prlim[i][i]=probs[(int)age][i][ij];
     } /* End theta */        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
     trgradg =matrix(1,nlstate,1,npar);            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
     for(j=1; j<=nlstate;j++)      }
       for(theta=1; theta <=npar; theta++)               
         trgradg[j][theta]=gradg[theta][j];      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     for(i=1;i<=nlstate;i++)         as a weighted average of prlim.
       varpl[i][(int)age] =0.;      */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     for(i=1;i<=nlstate;i++)          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      }    
       /* end probability of death */
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fprintf(ficresvpl,"\n");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     free_vector(gp,1,nlstate);        for(i=1; i<=nlstate;i++){
     free_vector(gm,1,nlstate);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     free_matrix(gradg,1,npar,1,nlstate);        }
     free_matrix(trgradg,1,nlstate,1,npar);      } 
   } /* End age */      fprintf(ficresprobmorprev,"\n");
   
   free_vector(xp,1,npar);      fprintf(ficresvij,"%.0f ",age );
   free_matrix(doldm,1,nlstate,1,npar);      for(i=1; i<=nlstate;i++)
   free_matrix(dnewm,1,nlstate,1,nlstate);        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 }        }
       fprintf(ficresvij,"\n");
 /************ Variance of one-step probabilities  ******************/      free_matrix(gp,0,nhstepm,1,nlstate);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])      free_matrix(gm,0,nhstepm,1,nlstate);
 {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   int i, j=0,  i1, k1, l1, t, tj;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   int k2, l2, j1,  z1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int k=0,l, cptcode;    } /* End age */
   int first=1, first1;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   double **dnewm,**doldm;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   double *xp;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double *gp, *gm;    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
   double **gradg, **trgradg;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   double **mu;    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   double age,agelim, cov[NCOVMAX];  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   int theta;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   char fileresprob[FILENAMELENGTH];    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 2 ",subdirf(fileresprobmorprev));
   char fileresprobcov[FILENAMELENGTH];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 3 ",subdirf(fileresprobmorprev));
   char fileresprobcor[FILENAMELENGTH];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 3 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   double ***varpij;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   strcpy(fileresprob,"prob");  */
   strcat(fileresprob,fileres);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     printf("Problem with resultfile: %s\n", fileresprob);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,nlstate);
   strcpy(fileresprobcov,"probcov");    free_matrix(dnewm,1,nlstate,1,npar);
   strcat(fileresprobcov,fileres);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     printf("Problem with resultfile: %s\n", fileresprobcov);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    fclose(ficresprobmorprev);
   strcpy(fileresprobcor,"probcor");    fflush(ficgp);
   strcat(fileresprobcor,fileres);    fflush(fichtm); 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  }  /* end varevsij */
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);  /************ Variance of prevlim ******************/
   }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  {
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /* Variance of prevalence limit */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double **newm;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    double **dnewm,**doldm;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    int i, j, nhstepm, hstepm;
   pstamp(ficresprob);    int k, cptcode;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    double *xp;
   fprintf(ficresprob,"# Age");    double *gp, *gm;
   pstamp(ficresprobcov);    double **gradg, **trgradg;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    double age,agelim;
   fprintf(ficresprobcov,"# Age");    int theta;
   pstamp(ficresprobcor);    
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    pstamp(ficresvpl);
   fprintf(ficresprobcor,"# Age");    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
   for(i=1; i<=nlstate;i++)        fprintf(ficresvpl," %1d-%1d",i,i);
     for(j=1; j<=(nlstate+ndeath);j++){    fprintf(ficresvpl,"\n");
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    xp=vector(1,npar);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    dnewm=matrix(1,nlstate,1,npar);
     }      doldm=matrix(1,nlstate,1,nlstate);
  /* fprintf(ficresprob,"\n");    
   fprintf(ficresprobcov,"\n");    hstepm=1*YEARM; /* Every year of age */
   fprintf(ficresprobcor,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
  */    agelim = AGESUP;
  xp=vector(1,npar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      if (stepm >= YEARM) hstepm=1;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      gradg=matrix(1,npar,1,nlstate);
   first=1;      gp=vector(1,nlstate);
   fprintf(ficgp,"\n# Routine varprob");      gm=vector(1,nlstate);
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");  
   fprintf(fichtm,"\n");      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\        }
   file %s<br>\n",optionfilehtmcov);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\        for(i=1;i<=nlstate;i++)
 and drawn. It helps understanding how is the covariance between two incidences.\          gp[i] = prlim[i][i];
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \        for(i=1; i<=npar; i++) /* Computes gradient */
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 standard deviations wide on each axis. <br>\        for(i=1;i<=nlstate;i++)
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\          gm[i] = prlim[i][i];
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\  
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   cov[1]=1;      } /* End theta */
   tj=cptcoveff;  
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      trgradg =matrix(1,nlstate,1,npar);
   j1=0;  
   for(t=1; t<=tj;t++){      for(j=1; j<=nlstate;j++)
     for(i1=1; i1<=ncodemax[t];i1++){        for(theta=1; theta <=npar; theta++)
       j1++;          trgradg[j][theta]=gradg[theta][j];
       if  (cptcovn>0) {  
         fprintf(ficresprob, "\n#********** Variable ");      for(i=1;i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        varpl[i][(int)age] =0.;
         fprintf(ficresprob, "**********\n#\n");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficresprobcov, "\n#********** Variable ");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(i=1;i<=nlstate;i++)
         fprintf(ficresprobcov, "**********\n#\n");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
          
         fprintf(ficgp, "\n#********** Variable ");      fprintf(ficresvpl,"%.0f ",age );
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(i=1; i<=nlstate;i++)
         fprintf(ficgp, "**********\n#\n");        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
              fprintf(ficresvpl,"\n");
              free_vector(gp,1,nlstate);
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");      free_vector(gm,1,nlstate);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      free_matrix(gradg,1,npar,1,nlstate);
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      free_matrix(trgradg,1,nlstate,1,npar);
            } /* End age */
         fprintf(ficresprobcor, "\n#********** Variable ");      
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_vector(xp,1,npar);
         fprintf(ficresprobcor, "**********\n#");        free_matrix(doldm,1,nlstate,1,npar);
       }    free_matrix(dnewm,1,nlstate,1,nlstate);
        
       for (age=bage; age<=fage; age ++){  }
         cov[2]=age;  
         for (k=1; k<=cptcovn;k++) {  /************ Variance of one-step probabilities  ******************/
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
         }  {
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int i, j=0,  i1, k1, l1, t, tj;
         for (k=1; k<=cptcovprod;k++)    int k2, l2, j1,  z1;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int k=0,l, cptcode;
            int first=1, first1;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    double **dnewm,**doldm;
         gp=vector(1,(nlstate)*(nlstate+ndeath));    double *xp;
         gm=vector(1,(nlstate)*(nlstate+ndeath));    double *gp, *gm;
        double **gradg, **trgradg;
         for(theta=1; theta <=npar; theta++){    double **mu;
           for(i=1; i<=npar; i++)    double age,agelim, cov[NCOVMAX];
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
              int theta;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    char fileresprob[FILENAMELENGTH];
              char fileresprobcov[FILENAMELENGTH];
           k=0;    char fileresprobcor[FILENAMELENGTH];
           for(i=1; i<= (nlstate); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){    double ***varpij;
               k=k+1;  
               gp[k]=pmmij[i][j];    strcpy(fileresprob,"prob"); 
             }    strcat(fileresprob,fileres);
           }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                printf("Problem with resultfile: %s\n", fileresprob);
           for(i=1; i<=npar; i++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    }
        strcpy(fileresprobcov,"probcov"); 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    strcat(fileresprobcov,fileres);
           k=0;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           for(i=1; i<=(nlstate); i++){      printf("Problem with resultfile: %s\n", fileresprobcov);
             for(j=1; j<=(nlstate+ndeath);j++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
               k=k+1;    }
               gm[k]=pmmij[i][j];    strcpy(fileresprobcor,"probcor"); 
             }    strcat(fileresprobcor,fileres);
           }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
            printf("Problem with resultfile: %s\n", fileresprobcor);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      }
         }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           for(theta=1; theta <=npar; theta++)    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             trgradg[j][theta]=gradg[theta][j];    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
            fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    pstamp(ficresprob);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficresprob,"# Age");
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    pstamp(ficresprobcov);
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
         pmij(pmmij,cov,ncovmodel,x,nlstate);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
            fprintf(ficresprobcor,"# Age");
         k=0;  
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){    for(i=1; i<=nlstate;i++)
             k=k+1;      for(j=1; j<=(nlstate+ndeath);j++){
             mu[k][(int) age]=pmmij[i][j];        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      }  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)   /* fprintf(ficresprob,"\n");
             varpij[i][j][(int)age] = doldm[i][j];    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
         /*printf("\n%d ",(int)age);   */
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    xp=vector(1,npar);
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           }*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         fprintf(ficresprob,"\n%d ",(int)age);    first=1;
         fprintf(ficresprobcov,"\n%d ",(int)age);    fprintf(ficgp,"\n# Routine varprob");
         fprintf(ficresprobcor,"\n%d ",(int)age);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    file %s<br>\n",optionfilehtmcov);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         }  and drawn. It helps understanding how is the covariance between two incidences.\
         i=0;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         for (k=1; k<=(nlstate);k++){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           for (l=1; l<=(nlstate+ndeath);l++){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
             i=i++;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  standard deviations wide on each axis. <br>\
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
             for (j=1; j<=i;j++){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  
             }    cov[1]=1;
           }    tj=cptcoveff;
         }/* end of loop for state */    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       } /* end of loop for age */    j1=0;
     for(t=1; t<=tj;t++){
       /* Confidence intervalle of pij  */      for(i1=1; i1<=ncodemax[t];i1++){ 
       /*        j1++;
         fprintf(ficgp,"\nset noparametric;unset label");        if  (cptcovn>0) {
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          fprintf(ficresprob, "\n#********** Variable "); 
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          fprintf(ficresprob, "**********\n#\n");
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);          fprintf(ficresprobcov, "\n#********** Variable "); 
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          fprintf(ficresprobcov, "**********\n#\n");
       */          
           fprintf(ficgp, "\n#********** Variable "); 
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       first1=1;          fprintf(ficgp, "**********\n#\n");
       for (k2=1; k2<=(nlstate);k2++){          
         for (l2=1; l2<=(nlstate+ndeath);l2++){          
           if(l2==k2) continue;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           j=(k2-1)*(nlstate+ndeath)+l2;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for (k1=1; k1<=(nlstate);k1++){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
             for (l1=1; l1<=(nlstate+ndeath);l1++){          
               if(l1==k1) continue;          fprintf(ficresprobcor, "\n#********** Variable ");    
               i=(k1-1)*(nlstate+ndeath)+l1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               if(i<=j) continue;          fprintf(ficresprobcor, "**********\n#");    
               for (age=bage; age<=fage; age ++){        }
                 if ((int)age %5==0){        
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        for (age=bage; age<=fage; age ++){ 
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          cov[2]=age;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          for (k=1; k<=cptcovn;k++) {
                   mu1=mu[i][(int) age]/stepm*YEARM ;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
                   mu2=mu[j][(int) age]/stepm*YEARM;          }
                   c12=cv12/sqrt(v1*v2);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                   /* Computing eigen value of matrix of covariance */          for (k=1; k<=cptcovprod;k++)
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          
                   /* Eigen vectors */          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   /*v21=sqrt(1.-v11*v11); *//* error */          gp=vector(1,(nlstate)*(nlstate+ndeath));
                   v21=(lc1-v1)/cv12*v11;          gm=vector(1,(nlstate)*(nlstate+ndeath));
                   v12=-v21;      
                   v22=v11;          for(theta=1; theta <=npar; theta++){
                   tnalp=v21/v11;            for(i=1; i<=npar; i++)
                   if(first1==1){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                     first1=0;            
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   }            
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);            k=0;
                   /*printf(fignu*/            for(i=1; i<= (nlstate); i++){
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              for(j=1; j<=(nlstate+ndeath);j++){
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */                k=k+1;
                   if(first==1){                gp[k]=pmmij[i][j];
                     first=0;              }
                     fprintf(ficgp,"\nset parametric;unset label");            }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);            
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            for(i=1; i<=npar; i++)
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\      
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\            k=0;
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);            for(i=1; i<=(nlstate); i++){
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);              for(j=1; j<=(nlstate+ndeath);j++){
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);                k=k+1;
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                gm[k]=pmmij[i][j];
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);              }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);            }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\       
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                   }else{          }
                     first=0;  
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);            for(theta=1; theta <=npar; theta++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);              trgradg[j][theta]=gradg[theta][j];
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                   }/* if first */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                 } /* age mod 5 */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
               } /* end loop age */          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
               first=1;  
             } /*l12 */          pmij(pmmij,cov,ncovmodel,x,nlstate);
           } /* k12 */          
         } /*l1 */          k=0;
       }/* k1 */          for(i=1; i<=(nlstate); i++){
     } /* loop covariates */            for(j=1; j<=(nlstate+ndeath);j++){
   }              k=k+1;
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);              mu[k][(int) age]=pmmij[i][j];
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);            }
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          }
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   free_vector(xp,1,npar);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   fclose(ficresprob);              varpij[i][j][(int)age] = doldm[i][j];
   fclose(ficresprobcov);  
   fclose(ficresprobcor);          /*printf("\n%d ",(int)age);
   fflush(ficgp);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fflush(fichtmcov);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
 /******************* Printing html file ***********/          fprintf(ficresprob,"\n%d ",(int)age);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          fprintf(ficresprobcov,"\n%d ",(int)age);
                   int lastpass, int stepm, int weightopt, char model[],\          fprintf(ficresprobcor,"\n%d ",(int)age);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                   double jprev1, double mprev1,double anprev1, \            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                   double jprev2, double mprev2,double anprev2){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   int jj1, k1, i1, cpt;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \          }
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \          i=0;
 </ul>");          for (k=1; k<=(nlstate);k++){
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \            for (l=1; l<=(nlstate+ndeath);l++){ 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",              i=i++;
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
    fprintf(fichtm,"\              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",              for (j=1; j<=i;j++){
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
    fprintf(fichtm,"\                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",              }
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));            }
    fprintf(fichtm,"\          }/* end of loop for state */
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \        } /* end of loop for age */
    <a href=\"%s\">%s</a> <br>\n",  
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));        /* Confidence intervalle of pij  */
    fprintf(fichtm,"\        /*
  - Population projections by age and states: \          fprintf(ficgp,"\nunset parametric;unset label");
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
  m=cptcoveff;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
  jj1=0;  
  for(k1=1; k1<=m;k1++){        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
    for(i1=1; i1<=ncodemax[k1];i1++){        first1=1;
      jj1++;        for (k2=1; k2<=(nlstate);k2++){
      if (cptcovn > 0) {          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            if(l2==k2) continue;
        for (cpt=1; cpt<=cptcoveff;cpt++)            j=(k2-1)*(nlstate+ndeath)+l2;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            for (k1=1; k1<=(nlstate);k1++){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
      }                if(l1==k1) continue;
      /* Pij */                i=(k1-1)*(nlstate+ndeath)+l1;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \                if(i<=j) continue;
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);                    for (age=bage; age<=fage; age ++){ 
      /* Quasi-incidences */                  if ((int)age %5==0){
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
        /* Period (stable) prevalence in each health state */                    mu1=mu[i][(int) age]/stepm*YEARM ;
        for(cpt=1; cpt<nlstate;cpt++){                    mu2=mu[j][(int) age]/stepm*YEARM;
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \                    c12=cv12/sqrt(v1*v2);
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);                    /* Computing eigen value of matrix of covariance */
        }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      for(cpt=1; cpt<=nlstate;cpt++) {                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \                    if ((lc2 <0) || (lc1 <0) ){
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);                      printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
      }                      fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
    } /* end i1 */                      lc1=fabs(lc1);
  }/* End k1 */                      lc2=fabs(lc2);
  fprintf(fichtm,"</ul>");                    }
   
                     /* Eigen vectors */
  fprintf(fichtm,"\                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\                    /*v21=sqrt(1.-v11*v11); *//* error */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);                    v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",                    v22=v11;
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));                    tnalp=v21/v11;
  fprintf(fichtm,"\                    if(first1==1){
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",                      first1=0;
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
  fprintf(fichtm,"\                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",                    /*printf(fignu*/
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
  fprintf(fichtm,"\                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \                    if(first==1){
    <a href=\"%s\">%s</a> <br>\n</li>",                      first=0;
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));                      fprintf(ficgp,"\nset parametric;unset label");
  fprintf(fichtm,"\                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
    <a href=\"%s\">%s</a> <br>\n</li>",                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
  fprintf(fichtm,"\  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  fprintf(fichtm,"\                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  fprintf(fichtm,"\                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 /*  if(popforecast==1) fprintf(fichtm,"\n */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */                    }else{
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */                      first=0;
 /*      <br>",fileres,fileres,fileres,fileres); */                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 /*  else  */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
  fflush(fichtm);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
  m=cptcoveff;                    }/* if first */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                  } /* age mod 5 */
                 } /* end loop age */
  jj1=0;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  for(k1=1; k1<=m;k1++){                first=1;
    for(i1=1; i1<=ncodemax[k1];i1++){              } /*l12 */
      jj1++;            } /* k12 */
      if (cptcovn > 0) {          } /*l1 */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        }/* k1 */
        for (cpt=1; cpt<=cptcoveff;cpt++)      } /* loop covariates */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      for(cpt=1; cpt<=nlstate;cpt++) {    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\    free_vector(xp,1,npar);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);      fclose(ficresprob);
      }    fclose(ficresprobcov);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \    fclose(ficresprobcor);
 health expectancies in states (1) and (2): %s%d.png<br>\    fflush(ficgp);
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);    fflush(fichtmcov);
    } /* end i1 */  }
  }/* End k1 */  
  fprintf(fichtm,"</ul>");  
  fflush(fichtm);  /******************* Printing html file ***********/
 }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
 /******************* Gnuplot file **************/                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                    int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
   char dirfileres[132],optfileres[132];                    double jprev2, double mprev2,double anprev2){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    int jj1, k1, i1, cpt;
   int ng;  
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 /*     printf("Problem with file %s",optionfilegnuplot); */     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */  </ul>");
 /*   } */     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   /*#ifdef windows */             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   fprintf(ficgp,"cd \"%s\" \n",pathc);     fprintf(fichtm,"\
     /*#endif */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   m=pow(2,cptcoveff);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
   strcpy(dirfileres,optionfilefiname);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   strcpy(optfileres,"vpl");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
  /* 1eme*/     fprintf(fichtm,"\
   for (cpt=1; cpt<= nlstate ; cpt ++) {   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
    for (k1=1; k1<= m ; k1 ++) {     <a href=\"%s\">%s</a> <br>\n",
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);     fprintf(fichtm,"\
      fprintf(ficgp,"set xlabel \"Age\" \n\   - Population projections by age and states: \
 set ylabel \"Probability\" \n\     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
 set ter png small\n\  
 set size 0.65,0.65\n\  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);  
    m=cptcoveff;
      for (i=1; i<= nlstate ; i ++) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
        else fprintf(ficgp," \%%*lf (\%%*lf)");   jj1=0;
      }   for(k1=1; k1<=m;k1++){
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);     for(i1=1; i1<=ncodemax[k1];i1++){
      for (i=1; i<= nlstate ; i ++) {       jj1++;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       if (cptcovn > 0) {
        else fprintf(ficgp," \%%*lf (\%%*lf)");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
      }         for (cpt=1; cpt<=cptcoveff;cpt++) 
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
      for (i=1; i<= nlstate ; i ++) {         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       }
        else fprintf(ficgp," \%%*lf (\%%*lf)");       /* Pij */
      }         fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
    }       /* Quasi-incidences */
   }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   /*2 eme*/   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
    <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   for (k1=1; k1<= m ; k1 ++) {         /* Period (stable) prevalence in each health state */
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);         for(cpt=1; cpt<nlstate;cpt++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
      <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     for (i=1; i<= nlstate+1 ; i ++) {         }
       k=2*i;       for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
       for (j=1; j<= nlstate+1 ; j ++) {  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       }
         else fprintf(ficgp," \%%*lf (\%%*lf)");     } /* end i1 */
       }     }/* End k1 */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");   fprintf(fichtm,"</ul>");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {   fprintf(fichtm,"\
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
         else fprintf(ficgp," \%%*lf (\%%*lf)");   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       }    
       fprintf(ficgp,"\" t\"\" w l 0,");   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       for (j=1; j<= nlstate+1 ; j ++) {   fprintf(fichtm,"\
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         else fprintf(ficgp," \%%*lf (\%%*lf)");           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
       }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");   fprintf(fichtm,"\
       else fprintf(ficgp,"\" t\"\" w l 0,");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   }   fprintf(fichtm,"\
     - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   /*3eme*/     <a href=\"%s\">%s</a> <br>\n</li>",
               estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   for (k1=1; k1<= m ; k1 ++) {   fprintf(fichtm,"\
     for (cpt=1; cpt<= nlstate ; cpt ++) {   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
       /*       k=2+nlstate*(2*cpt-2); */     <a href=\"%s\">%s</a> <br>\n</li>",
       k=2+(nlstate+1)*(cpt-1);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);   fprintf(fichtm,"\
       fprintf(ficgp,"set ter png small\n\   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 set size 0.65,0.65\n\           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);   fprintf(fichtm,"\
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);   fprintf(fichtm,"\
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
          /*  if(popforecast==1) fprintf(fichtm,"\n */
       */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       for (i=1; i< nlstate ; i ++) {  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);  /*      <br>",fileres,fileres,fileres,fileres); */
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/  /*  else  */
          /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       }   fflush(fichtm);
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     }  
   }   m=cptcoveff;
     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   /* CV preval stable (period) */  
   for (k1=1; k1<= m ; k1 ++) {   jj1=0;
     for (cpt=1; cpt<=nlstate ; cpt ++) {   for(k1=1; k1<=m;k1++){
       k=3;     for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);       jj1++;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\       if (cptcovn > 0) {
 set ter png small\nset size 0.65,0.65\n\         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 unset log y\n\         for (cpt=1; cpt<=cptcoveff;cpt++) 
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
               fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       for (i=1; i< nlstate ; i ++)       }
         fprintf(ficgp,"+$%d",k+i+1);       for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
        prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       l=3+(nlstate+ndeath)*cpt;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);       }
       for (i=1; i< nlstate ; i ++) {       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
         l=3+(nlstate+ndeath)*cpt;  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
         fprintf(ficgp,"+$%d",l+i+1);  true period expectancies (those weighted with period prevalences are also\
       }   drawn in addition to the population based expectancies computed using\
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);     observed and cahotic prevalences: %s%d.png<br>\
     }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   }       } /* end i1 */
     }/* End k1 */
   /* proba elementaires */   fprintf(fichtm,"</ul>");
   for(i=1,jk=1; i <=nlstate; i++){   fflush(fichtm);
     for(k=1; k <=(nlstate+ndeath); k++){  }
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){  /******************* Gnuplot file **************/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
           jk++;  
           fprintf(ficgp,"\n");    char dirfileres[132],optfileres[132];
         }    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
       }    int ng=0;
     }  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
    }  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  /*   } */
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);    /*#ifdef windows */
        if (ng==2)    fprintf(ficgp,"cd \"%s\" \n",pathc);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      /*#endif */
        else    m=pow(2,cptcoveff);
          fprintf(ficgp,"\nset title \"Probability\"\n");  
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    strcpy(dirfileres,optionfilefiname);
        i=1;    strcpy(optfileres,"vpl");
        for(k2=1; k2<=nlstate; k2++) {   /* 1eme*/
          k3=i;    for (cpt=1; cpt<= nlstate ; cpt ++) {
          for(k=1; k<=(nlstate+ndeath); k++) {     for (k1=1; k1<= m ; k1 ++) {
            if (k != k2){       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
              if(ng==2)       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);       fprintf(ficgp,"set xlabel \"Age\" \n\
              else  set ylabel \"Probability\" \n\
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  set ter png small\n\
              ij=1;  set size 0.65,0.65\n\
              for(j=3; j <=ncovmodel; j++) {  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       for (i=1; i<= nlstate ; i ++) {
                  ij++;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                }         else        fprintf(ficgp," \%%*lf (\%%*lf)");
                else       }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 1,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
              }       for (i=1; i<= nlstate ; i ++) {
              fprintf(ficgp,")/(1");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                       else fprintf(ficgp," \%%*lf (\%%*lf)");
              for(k1=1; k1 <=nlstate; k1++){         } 
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       fprintf(ficgp,"\" t\"95\%% CI\" w l lt 2,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
                ij=1;       for (i=1; i<= nlstate ; i ++) {
                for(j=3; j <=ncovmodel; j++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       }  
                    ij++;       fprintf(ficgp,"\" t\"\" w l lt 2,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 3",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
                  }     }
                  else    }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /*2 eme*/
                }    
                fprintf(ficgp,")");    for (k1=1; k1<= m ; k1 ++) { 
              }      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      
              i=i+ncovmodel;      for (i=1; i<= nlstate+1 ; i ++) {
            }        k=2*i;
          } /* end k */        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
        } /* end k2 */        for (j=1; j<= nlstate+1 ; j ++) {
      } /* end jk */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
    } /* end ng */          else fprintf(ficgp," \%%*lf (\%%*lf)");
    fflush(ficgp);        }   
 }  /* end gnuplot */        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 /*************** Moving average **************/        for (j=1; j<= nlstate+1 ; j ++) {
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   int i, cpt, cptcod;        }   
   int modcovmax =1;        fprintf(ficgp,"\" t\"\" w l lt 1,");
   int mobilavrange, mob;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   double age;        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose          else fprintf(ficgp," \%%*lf (\%%*lf)");
                            a covariate has 2 modalities */        }   
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 1");
         else fprintf(ficgp,"\" t\"\" w l lt 1,");
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){      }
     if(mobilav==1) mobilavrange=5; /* default */    }
     else mobilavrange=mobilav;    
     for (age=bage; age<=fage; age++)    /*3eme*/
       for (i=1; i<=nlstate;i++)    
         for (cptcod=1;cptcod<=modcovmax;cptcod++)    for (k1=1; k1<= m ; k1 ++) { 
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];      for (cpt=1; cpt<= nlstate ; cpt ++) {
     /* We keep the original values on the extreme ages bage, fage and for        /*       k=2+nlstate*(2*cpt-2); */
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2        k=2+(nlstate+1)*(cpt-1);
        we use a 5 terms etc. until the borders are no more concerned.        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     */        fprintf(ficgp,"set ter png small\n\
     for (mob=3;mob <=mobilavrange;mob=mob+2){  set size 0.65,0.65\n\
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         for (i=1; i<=nlstate;i++){        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (cptcod=1;cptcod<=modcovmax;cptcod++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
               for (cpt=1;cpt<=(mob-1)/2;cpt++){          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
               }          
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;        */
           }        for (i=1; i< nlstate ; i ++) {
         }          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
       }/* end age */          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
     }/* end mob */          
   }else return -1;        } 
   return 0;        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 }/* End movingaverage */      }
     }
     
 /************** Forecasting ******************/    /* CV preval stable (period) */
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){    for (k1=1; k1<= m ; k1 ++) { 
   /* proj1, year, month, day of starting projection      for (cpt=1; cpt<=nlstate ; cpt ++) {
      agemin, agemax range of age        k=3;
      dateprev1 dateprev2 range of dates during which prevalence is computed        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
      anproj2 year of en of projection (same day and month as proj1).        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   */  set ter png small\nset size 0.65,0.65\n\
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;  unset log y\n\
   int *popage;  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   double agec; /* generic age */        
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        for (i=1; i< nlstate ; i ++)
   double *popeffectif,*popcount;          fprintf(ficgp,"+$%d",k+i+1);
   double ***p3mat;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   double ***mobaverage;        
   char fileresf[FILENAMELENGTH];        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   agelim=AGESUP;        for (i=1; i< nlstate ; i ++) {
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          l=3+(nlstate+ndeath)*cpt;
            fprintf(ficgp,"+$%d",l+i+1);
   strcpy(fileresf,"f");        }
   strcat(fileresf,fileres);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   if((ficresf=fopen(fileresf,"w"))==NULL) {      } 
     printf("Problem with forecast resultfile: %s\n", fileresf);    }  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    
   }    /* proba elementaires */
   printf("Computing forecasting: result on file '%s' \n", fileresf);    for(i=1,jk=1; i <=nlstate; i++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   if (mobilav!=0) {            jk++; 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficgp,"\n");
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){          }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      }
     }     }
   }  
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;       for(jk=1; jk <=m; jk++) {
   if (stepm<=12) stepsize=1;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   if(estepm < stepm){         if (ng==2)
     printf ("Problem %d lower than %d\n",estepm, stepm);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   }         else
   else  hstepm=estepm;             fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   hstepm=hstepm/stepm;         i=1;
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and         for(k2=1; k2<=nlstate; k2++) {
                                fractional in yp1 */           k3=i;
   anprojmean=yp;           for(k=1; k<=(nlstate+ndeath); k++) {
   yp2=modf((yp1*12),&yp);             if (k != k2){
   mprojmean=yp;               if(ng==2)
   yp1=modf((yp2*30.5),&yp);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   jprojmean=yp;               else
   if(jprojmean==0) jprojmean=1;                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   if(mprojmean==0) jprojmean=1;               ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
   i1=cptcoveff;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
   if (cptcovn < 1){i1=1;}                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                     ij++;
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);                 }
                   else
   fprintf(ficresf,"#****** Routine prevforecast **\n");                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
 /*            if (h==(int)(YEARM*yearp)){ */               fprintf(ficgp,")/(1");
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){               
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){               for(k1=1; k1 <=nlstate; k1++){   
       k=k+1;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       fprintf(ficresf,"\n#******");                 ij=1;
       for(j=1;j<=cptcoveff;j++) {                 for(j=3; j <=ncovmodel; j++){
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       fprintf(ficresf,"******\n");                     ij++;
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");                   }
       for(j=1; j<=nlstate+ndeath;j++){                   else
         for(i=1; i<=nlstate;i++)                                   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           fprintf(ficresf," p%d%d",i,j);                 }
         fprintf(ficresf," p.%d",j);                 fprintf(ficgp,")");
       }               }
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
         fprintf(ficresf,"\n");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);                 i=i+ncovmodel;
              }
         for (agec=fage; agec>=(ageminpar-1); agec--){           } /* end k */
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);         } /* end k2 */
           nhstepm = nhstepm/hstepm;       } /* end jk */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     } /* end ng */
           oldm=oldms;savm=savms;     fflush(ficgp); 
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);    }  /* end gnuplot */
          
           for (h=0; h<=nhstepm; h++){  
             if (h*hstepm/YEARM*stepm ==yearp) {  /*************** Moving average **************/
               fprintf(ficresf,"\n");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
               for(j=1;j<=cptcoveff;j++)  
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int i, cpt, cptcod;
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);    int modcovmax =1;
             }    int mobilavrange, mob;
             for(j=1; j<=nlstate+ndeath;j++) {    double age;
               ppij=0.;  
               for(i=1; i<=nlstate;i++) {    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                 if (mobilav==1)                             a covariate has 2 modalities */
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
                 else {  
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
                 }      if(mobilav==1) mobilavrange=5; /* default */
                 if (h*hstepm/YEARM*stepm== yearp) {      else mobilavrange=mobilav;
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);      for (age=bage; age<=fage; age++)
                 }        for (i=1; i<=nlstate;i++)
               } /* end i */          for (cptcod=1;cptcod<=modcovmax;cptcod++)
               if (h*hstepm/YEARM*stepm==yearp) {            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                 fprintf(ficresf," %.3f", ppij);      /* We keep the original values on the extreme ages bage, fage and for 
               }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
             }/* end j */         we use a 5 terms etc. until the borders are no more concerned. 
           } /* end h */      */ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (mob=3;mob <=mobilavrange;mob=mob+2){
         } /* end agec */        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       } /* end yearp */          for (i=1; i<=nlstate;i++){
     } /* end cptcod */            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   } /* end  cptcov */              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                        for (cpt=1;cpt<=(mob-1)/2;cpt++){
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   fclose(ficresf);                }
 }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
 /************** Forecasting *****not tested NB*************/          }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        }/* end age */
        }/* end mob */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    }else return -1;
   int *popage;    return 0;
   double calagedatem, agelim, kk1, kk2;  }/* End movingaverage */
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;  
   double ***mobaverage;  /************** Forecasting ******************/
   char filerespop[FILENAMELENGTH];  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       agemin, agemax range of age
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       dateprev1 dateprev2 range of dates during which prevalence is computed
   agelim=AGESUP;       anproj2 year of en of projection (same day and month as proj1).
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    */
      int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    int *popage;
      double agec; /* generic age */
      double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   strcpy(filerespop,"pop");    double *popeffectif,*popcount;
   strcat(filerespop,fileres);    double ***p3mat;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    double ***mobaverage;
     printf("Problem with forecast resultfile: %s\n", filerespop);    char fileresf[FILENAMELENGTH];
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  
   }    agelim=AGESUP;
   printf("Computing forecasting: result on file '%s' \n", filerespop);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);   
     strcpy(fileresf,"f"); 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
   if (mobilav!=0) {      printf("Problem with forecast resultfile: %s\n", fileresf);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    printf("Computing forecasting: result on file '%s' \n", fileresf);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     }  
   }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    if (mobilav!=0) {
   if (stepm<=12) stepsize=1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   agelim=AGESUP;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   hstepm=1;      }
   hstepm=hstepm/stepm;    }
    
   if (popforecast==1) {    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if((ficpop=fopen(popfile,"r"))==NULL) {    if (stepm<=12) stepsize=1;
       printf("Problem with population file : %s\n",popfile);exit(0);    if(estepm < stepm){
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }    }
     popage=ivector(0,AGESUP);    else  hstepm=estepm;   
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);    hstepm=hstepm/stepm; 
        yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     i=1;                                   fractional in yp1 */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    anprojmean=yp;
        yp2=modf((yp1*12),&yp);
     imx=i;    mprojmean=yp;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    yp1=modf((yp2*30.5),&yp);
   }    jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){    if(mprojmean==0) jprojmean=1;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    i1=cptcoveff;
       fprintf(ficrespop,"\n#******");    if (cptcovn < 1){i1=1;}
       for(j=1;j<=cptcoveff;j++) {    
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       }    
       fprintf(ficrespop,"******\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  /*            if (h==(int)(YEARM*yearp)){ */
       if (popforecast==1)  fprintf(ficrespop," [Population]");    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
            for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       for (cpt=0; cpt<=0;cpt++) {        k=k+1;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          fprintf(ficresf,"\n#******");
                for(j=1;j<=cptcoveff;j++) {
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        }
           nhstepm = nhstepm/hstepm;        fprintf(ficresf,"******\n");
                  fprintf(ficresf,"# Covariate valuofcovar yearproj age");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<=nlstate+ndeath;j++){ 
           oldm=oldms;savm=savms;          for(i=1; i<=nlstate;i++)              
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              fprintf(ficresf," p%d%d",i,j);
                  fprintf(ficresf," p.%d",j);
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedatem+YEARM*cpt)) {        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          fprintf(ficresf,"\n");
             }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;          for (agec=fage; agec>=(ageminpar-1); agec--){ 
               for(i=1; i<=nlstate;i++) {                          nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
                 if (mobilav==1)            nhstepm = nhstepm/hstepm; 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 else {            oldm=oldms;savm=savms;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
                 }          
               }            for (h=0; h<=nhstepm; h++){
               if (h==(int)(calagedatem+12*cpt)){              if (h*hstepm/YEARM*stepm ==yearp) {
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                fprintf(ficresf,"\n");
                   /*fprintf(ficrespop," %.3f", kk1);                for(j=1;j<=cptcoveff;j++) 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
               }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
             }              } 
             for(i=1; i<=nlstate;i++){              for(j=1; j<=nlstate+ndeath;j++) {
               kk1=0.;                ppij=0.;
                 for(j=1; j<=nlstate;j++){                for(i=1; i<=nlstate;i++) {
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                  if (mobilav==1) 
                 }                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];                  else {
             }                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)                  if (h*hstepm/YEARM*stepm== yearp) {
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
           }                  }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                } /* end i */
         }                if (h*hstepm/YEARM*stepm==yearp) {
       }                  fprintf(ficresf," %.3f", ppij);
                  }
   /******/              }/* end j */
             } /* end h */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            } /* end agec */
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){        } /* end yearp */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      } /* end cptcod */
           nhstepm = nhstepm/hstepm;    } /* end  cptcov */
                   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fclose(ficresf);
           for (h=0; h<=nhstepm; h++){  }
             if (h==(int) (calagedatem+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  /************** Forecasting *****not tested NB*************/
             }  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
             for(j=1; j<=nlstate+ndeath;j++) {    
               kk1=0.;kk2=0;    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
               for(i=1; i<=nlstate;i++) {                  int *popage;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        double calagedatem, agelim, kk1, kk2;
               }    double *popeffectif,*popcount;
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);            double ***p3mat,***tabpop,***tabpopprev;
             }    double ***mobaverage;
           }    char filerespop[FILENAMELENGTH];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    }    agelim=AGESUP;
   }    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
      
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
   if (popforecast==1) {    
     free_ivector(popage,0,AGESUP);    strcpy(filerespop,"pop"); 
     free_vector(popeffectif,0,AGESUP);    strcat(filerespop,fileres);
     free_vector(popcount,0,AGESUP);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   }      printf("Problem with forecast resultfile: %s\n", filerespop);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   fclose(ficrespop);    printf("Computing forecasting: result on file '%s' \n", filerespop);
 } /* End of popforecast */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
 int fileappend(FILE *fichier, char *optionfich)    if (cptcoveff==0) ncodemax[cptcoveff]=1;
 {  
   if((fichier=fopen(optionfich,"a"))==NULL) {    if (mobilav!=0) {
     printf("Problem with file: %s\n", optionfich);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fprintf(ficlog,"Problem with file: %s\n", optionfich);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     return (0);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fflush(fichier);      }
   return (1);    }
 }  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
 /**************** function prwizard **********************/    
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)    agelim=AGESUP;
 {    
     hstepm=1;
   /* Wizard to print covariance matrix template */    hstepm=hstepm/stepm; 
     
   char ca[32], cb[32], cc[32];    if (popforecast==1) {
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;      if((ficpop=fopen(popfile,"r"))==NULL) {
   int numlinepar;        printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      } 
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      popage=ivector(0,AGESUP);
   for(i=1; i <=nlstate; i++){      popeffectif=vector(0,AGESUP);
     jj=0;      popcount=vector(0,AGESUP);
     for(j=1; j <=nlstate+ndeath; j++){      
       if(j==i) continue;      i=1;   
       jj++;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       /*ca[0]= k+'a'-1;ca[1]='\0';*/     
       printf("%1d%1d",i,j);      imx=i;
       fprintf(ficparo,"%1d%1d",i,j);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
       for(k=1; k<=ncovmodel;k++){    }
         /*        printf(" %lf",param[i][j][k]); */  
         /*        fprintf(ficparo," %lf",param[i][j][k]); */    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
         printf(" 0.");     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         fprintf(ficparo," 0.");        k=k+1;
       }        fprintf(ficrespop,"\n#******");
       printf("\n");        for(j=1;j<=cptcoveff;j++) {
       fprintf(ficparo,"\n");          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     }        }
   }        fprintf(ficrespop,"******\n");
   printf("# Scales (for hessian or gradient estimation)\n");        fprintf(ficrespop,"# Age");
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/        if (popforecast==1)  fprintf(ficrespop," [Population]");
   for(i=1; i <=nlstate; i++){        
     jj=0;        for (cpt=0; cpt<=0;cpt++) { 
     for(j=1; j <=nlstate+ndeath; j++){          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
       if(j==i) continue;          
       jj++;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
       fprintf(ficparo,"%1d%1d",i,j);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
       printf("%1d%1d",i,j);            nhstepm = nhstepm/hstepm; 
       fflush(stdout);            
       for(k=1; k<=ncovmodel;k++){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         /*      printf(" %le",delti3[i][j][k]); */            oldm=oldms;savm=savms;
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         printf(" 0.");          
         fprintf(ficparo," 0.");            for (h=0; h<=nhstepm; h++){
       }              if (h==(int) (calagedatem+YEARM*cpt)) {
       numlinepar++;                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       printf("\n");              } 
       fprintf(ficparo,"\n");              for(j=1; j<=nlstate+ndeath;j++) {
     }                kk1=0.;kk2=0;
   }                for(i=1; i<=nlstate;i++) {              
   printf("# Covariance matrix\n");                  if (mobilav==1) 
 /* # 121 Var(a12)\n\ */                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 /* # 122 Cov(b12,a12) Var(b12)\n\ */                  else {
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */                  }
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */                }
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */                if (h==(int)(calagedatem+12*cpt)){
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */                    /*fprintf(ficrespop," %.3f", kk1);
   fflush(stdout);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   fprintf(ficparo,"# Covariance matrix\n");                }
   /* # 121 Var(a12)\n\ */              }
   /* # 122 Cov(b12,a12) Var(b12)\n\ */              for(i=1; i<=nlstate;i++){
   /* #   ...\n\ */                kk1=0.;
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */                  for(j=1; j<=nlstate;j++){
                      kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   for(itimes=1;itimes<=2;itimes++){                  }
     jj=0;                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     for(i=1; i <=nlstate; i++){              }
       for(j=1; j <=nlstate+ndeath; j++){  
         if(j==i) continue;              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
         for(k=1; k<=ncovmodel;k++){                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
           jj++;            }
           ca[0]= k+'a'-1;ca[1]='\0';            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           if(itimes==1){          }
             printf("#%1d%1d%d",i,j,k);        }
             fprintf(ficparo,"#%1d%1d%d",i,j,k);   
           }else{    /******/
             printf("%1d%1d%d",i,j,k);  
             fprintf(ficparo,"%1d%1d%d",i,j,k);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
             /*  printf(" %.5le",matcov[i][j]); */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           ll=0;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
           for(li=1;li <=nlstate; li++){            nhstepm = nhstepm/hstepm; 
             for(lj=1;lj <=nlstate+ndeath; lj++){            
               if(lj==li) continue;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               for(lk=1;lk<=ncovmodel;lk++){            oldm=oldms;savm=savms;
                 ll++;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                 if(ll<=jj){            for (h=0; h<=nhstepm; h++){
                   cb[0]= lk +'a'-1;cb[1]='\0';              if (h==(int) (calagedatem+YEARM*cpt)) {
                   if(ll<jj){                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                     if(itimes==1){              } 
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);              for(j=1; j<=nlstate+ndeath;j++) {
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                kk1=0.;kk2=0;
                     }else{                for(i=1; i<=nlstate;i++) {              
                       printf(" 0.");                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                       fprintf(ficparo," 0.");                }
                     }                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
                   }else{              }
                     if(itimes==1){            }
                       printf(" Var(%s%1d%1d)",ca,i,j);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);          }
                     }else{        }
                       printf(" 0.");     } 
                       fprintf(ficparo," 0.");    }
                     }   
                   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 }  
               } /* end lk */    if (popforecast==1) {
             } /* end lj */      free_ivector(popage,0,AGESUP);
           } /* end li */      free_vector(popeffectif,0,AGESUP);
           printf("\n");      free_vector(popcount,0,AGESUP);
           fprintf(ficparo,"\n");    }
           numlinepar++;    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         } /* end k*/    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       } /*end j */    fclose(ficrespop);
     } /* end i */  } /* End of popforecast */
   } /* end itimes */  
   int fileappend(FILE *fichier, char *optionfich)
 } /* end of prwizard */  {
 /******************* Gompertz Likelihood ******************************/    if((fichier=fopen(optionfich,"a"))==NULL) {
 double gompertz(double x[])      printf("Problem with file: %s\n", optionfich);
 {      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   double A,B,L=0.0,sump=0.,num=0.;      return (0);
   int i,n=0; /* n is the size of the sample */    }
     fflush(fichier);
   for (i=0;i<=imx-1 ; i++) {    return (1);
     sump=sump+weight[i];  }
     /*    sump=sump+1;*/  
     num=num+1;  
   }  /**************** function prwizard **********************/
    void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
    {
   /* for (i=0; i<=imx; i++)  
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/    /* Wizard to print covariance matrix template */
   
   for (i=1;i<=imx ; i++)    char ca[32], cb[32], cc[32];
     {    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
       if (cens[i] == 1 && wav[i]>1)    int numlinepar;
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));  
          printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       if (cens[i] == 0 && wav[i]>1)    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))    for(i=1; i <=nlstate; i++){
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);        jj=0;
            for(j=1; j <=nlstate+ndeath; j++){
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */        if(j==i) continue;
       if (wav[i] > 1 ) { /* ??? */        jj++;
         L=L+A*weight[i];        /*ca[0]= k+'a'-1;ca[1]='\0';*/
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/        printf("%1d%1d",i,j);
       }        fprintf(ficparo,"%1d%1d",i,j);
     }        for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/          /*        fprintf(ficparo," %lf",param[i][j][k]); */
            printf(" 0.");
   return -2*L*num/sump;          fprintf(ficparo," 0.");
 }        }
         printf("\n");
 /******************* Printing html file ***********/        fprintf(ficparo,"\n");
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \      }
                   int lastpass, int stepm, int weightopt, char model[],\    }
                   int imx,  double p[],double **matcov,double agemortsup){    printf("# Scales (for hessian or gradient estimation)\n");
   int i,k;    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");    for(i=1; i <=nlstate; i++){
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);      jj=0;
   for (i=1;i<=2;i++)      for(j=1; j <=nlstate+ndeath; j++){
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));        if(j==i) continue;
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");        jj++;
   fprintf(fichtm,"</ul>");        fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");        fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");          /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
  for (k=agegomp;k<(agemortsup-2);k++)          printf(" 0.");
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);          fprintf(ficparo," 0.");
         }
          numlinepar++;
   fflush(fichtm);        printf("\n");
 }        fprintf(ficparo,"\n");
       }
 /******************* Gnuplot file **************/    }
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   char dirfileres[132],optfileres[132];  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   int ng;  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /*#ifdef windows */  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   fprintf(ficgp,"cd \"%s\" \n",pathc);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     /*#endif */    fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
   strcpy(dirfileres,optionfilefiname);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   strcpy(optfileres,"vpl");    /* #   ...\n\ */
   fprintf(ficgp,"set out \"graphmort.png\"\n ");    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");    
   fprintf(ficgp, "set ter png small\n set log y\n");    for(itimes=1;itimes<=2;itimes++){
   fprintf(ficgp, "set size 0.65,0.65\n");      jj=0;
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);      for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
 }          if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
 /***********************************************/              fprintf(ficparo,"#%1d%1d%d",i,j,k);
 /**************** Main Program *****************/            }else{
 /***********************************************/              printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
 int main(int argc, char *argv[])              /*  printf(" %.5le",matcov[i][j]); */
 {            }
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);            ll=0;
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;            for(li=1;li <=nlstate; li++){
   int linei, month, year,iout;              for(lj=1;lj <=nlstate+ndeath; lj++){
   int jj, ll, li, lj, lk, imk;                if(lj==li) continue;
   int numlinepar=0; /* Current linenumber of parameter file */                for(lk=1;lk<=ncovmodel;lk++){
   int itimes;                  ll++;
   int NDIM=2;                  if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
   char ca[32], cb[32], cc[32];                    if(ll<jj){
   char dummy[]="                         ";                      if(itimes==1){
   /*  FILE *fichtm; *//* Html File */                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   /* FILE *ficgp;*/ /*Gnuplot File */                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   struct stat info;                      }else{
   double agedeb, agefin,hf;                        printf(" 0.");
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                        fprintf(ficparo," 0.");
                       }
   double fret;                    }else{
   double **xi,tmp,delta;                      if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
   double dum; /* Dummy variable */                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   double ***p3mat;                      }else{
   double ***mobaverage;                        printf(" 0.");
   int *indx;                        fprintf(ficparo," 0.");
   char line[MAXLINE], linepar[MAXLINE];                      }
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];                    }
   char pathr[MAXLINE], pathimach[MAXLINE];                  }
   char **bp, *tok, *val; /* pathtot */                } /* end lk */
   int firstobs=1, lastobs=10;              } /* end lj */
   int sdeb, sfin; /* Status at beginning and end */            } /* end li */
   int c,  h , cpt,l;            printf("\n");
   int ju,jl, mi;            fprintf(ficparo,"\n");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            numlinepar++;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;          } /* end k*/
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */        } /*end j */
   int mobilav=0,popforecast=0;      } /* end i */
   int hstepm, nhstepm;    } /* end itimes */
   int agemortsup;  
   float  sumlpop=0.;  } /* end of prwizard */
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;  /******************* Gompertz Likelihood ******************************/
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;  double gompertz(double x[])
   { 
   double bage, fage, age, agelim, agebase;    double A,B,L=0.0,sump=0.,num=0.;
   double ftolpl=FTOL;    int i,n=0; /* n is the size of the sample */
   double **prlim;  
   double *severity;    for (i=0;i<=imx-1 ; i++) {
   double ***param; /* Matrix of parameters */      sump=sump+weight[i];
   double  *p;      /*    sump=sump+1;*/
   double **matcov; /* Matrix of covariance */      num=num+1;
   double ***delti3; /* Scale */    }
   double *delti; /* Scale */   
   double ***eij, ***vareij;   
   double **varpl; /* Variances of prevalence limits by age */    /* for (i=0; i<=imx; i++) 
   double *epj, vepp;       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    for (i=1;i<=imx ; i++)
   double **ximort;      {
   char *alph[]={"a","a","b","c","d","e"}, str[4];        if (cens[i] == 1 && wav[i]>1)
   int *dcwave;          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
   char z[1]="c", occ;        if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   char  *strt, strtend[80];        
   char *stratrunc;        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   int lstra;        if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
   long total_usecs;          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
          }
 /*   setlocale (LC_ALL, ""); */      }
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */  
 /*   textdomain (PACKAGE); */   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 /*   setlocale (LC_CTYPE, ""); */   
 /*   setlocale (LC_MESSAGES, ""); */    return -2*L*num/sump;
   }
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   (void) gettimeofday(&start_time,&tzp);  #ifdef GSL
   curr_time=start_time;  /******************* Gompertz_f Likelihood ******************************/
   tm = *localtime(&start_time.tv_sec);  double gompertz_f(const gsl_vector *v, void *params)
   tmg = *gmtime(&start_time.tv_sec);  { 
   strcpy(strstart,asctime(&tm));    double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
 /*  printf("Localtime (at start)=%s",strstart); */    int i,n=0; /* n is the size of the sample */
 /*  tp.tv_sec = tp.tv_sec +86400; */  
 /*  tm = *localtime(&start_time.tv_sec); */    for (i=0;i<=imx-1 ; i++) {
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */      sump=sump+weight[i];
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */      /*    sump=sump+1;*/
 /*   tmg.tm_hour=tmg.tm_hour + 1; */      num=num+1;
 /*   tp.tv_sec = mktime(&tmg); */    }
 /*   strt=asctime(&tmg); */   
 /*   printf("Time(after) =%s",strstart);  */   
 /*  (void) time (&time_value);    /* for (i=0; i<=imx; i++) 
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 *  tm = *localtime(&time_value);    printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
 *  strstart=asctime(&tm);    for (i=1;i<=imx ; i++)
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);      {
 */        if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
   nberr=0; /* Number of errors and warnings */        
   nbwarn=0;        if (cens[i] == 0 && wav[i]>1)
   getcwd(pathcd, size);          A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
   printf("\n%s\n%s",version,fullversion);        
   if(argc <=1){        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
     printf("\nEnter the parameter file name: ");        if (wav[i] > 1 ) { /* ??? */
     fgets(pathr,FILENAMELENGTH,stdin);          LL=LL+A*weight[i];
     i=strlen(pathr);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
     if(pathr[i-1]=='\n')        }
       pathr[i-1]='\0';      }
    for (tok = pathr; tok != NULL; ){  
       printf("Pathr |%s|\n",pathr);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');    printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
       printf("val= |%s| pathr=%s\n",val,pathr);   
       strcpy (pathtot, val);    return -2*LL*num/sump;
       if(pathr[0] == '\0') break; /* Dirty */  }
     }  #endif
   }  
   else{  /******************* Printing html file ***********/
     strcpy(pathtot,argv[1]);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   }                    int lastpass, int stepm, int weightopt, char model[],\
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/                    int imx,  double p[],double **matcov,double agemortsup){
   /*cygwin_split_path(pathtot,path,optionfile);    int i,k;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   /* Split argv[0], imach program to get pathimach */    for (i=1;i<=2;i++) 
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    fprintf(fichtm,"</ul>");
  /*   strcpy(pathimach,argv[0]); */  
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   chdir(path); /* Can be a relative path */  
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */   for (k=agegomp;k<(agemortsup-2);k++) 
     printf("Current directory %s!\n",pathcd);     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   strcpy(command,"mkdir ");  
   strcat(command,optionfilefiname);   
   if((outcmd=system(command)) != 0){    fflush(fichtm);
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);  }
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */  
     /* fclose(ficlog); */  /******************* Gnuplot file **************/
 /*     exit(1); */  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   }  
 /*   if((imk=mkdir(optionfilefiname))<0){ */    char dirfileres[132],optfileres[132];
 /*     perror("mkdir"); */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 /*   } */    int ng;
   
   /*-------- arguments in the command line --------*/  
     /*#ifdef windows */
   /* Log file */    fprintf(ficgp,"cd \"%s\" \n",pathc);
   strcat(filelog, optionfilefiname);      /*#endif */
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {  
     printf("Problem with logfile %s\n",filelog);    strcpy(dirfileres,optionfilefiname);
     goto end;    strcpy(optfileres,"vpl");
   }    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
   fprintf(ficlog,"Log filename:%s\n",filelog);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
   fprintf(ficlog,"\n%s\n%s",version,fullversion);    fprintf(ficgp, "set ter png small\n set log y\n"); 
   fprintf(ficlog,"\nEnter the parameter file name: \n");    fprintf(ficgp, "set size 0.65,0.65\n");
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
  path=%s \n\  
  optionfile=%s\n\  } 
  optionfilext=%s\n\  
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);  int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   printf("Local time (at start):%s",strstart);  
   fprintf(ficlog,"Local time (at start): %s",strstart);    /*-------- data file ----------*/
   fflush(ficlog);    FILE *fic;
 /*   (void) gettimeofday(&curr_time,&tzp); */    char dummy[]="                         ";
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    int i, j, n;
     int linei, month, year,iout;
   /* */    char line[MAXLINE], linetmp[MAXLINE];
   strcpy(fileres,"r");    char stra[80], strb[80];
   strcat(fileres, optionfilefiname);    char *stratrunc;
   strcat(fileres,".txt");    /* Other files have txt extension */    int lstra;
   
   /*---------arguments file --------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      printf("Problem while opening datafile: %s\n", datafile);return 1;
     printf("Problem with optionfile %s\n",optionfile);      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    }
     fflush(ficlog);  
     goto end;    i=1;
   }    linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
   strcpy(filereso,"o");        if(line[j] == '\t')
   strcat(filereso,fileres);          line[j] = ' ';
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */      }
     printf("Problem with Output resultfile: %s\n", filereso);      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        ;
     fflush(ficlog);      };
     goto end;      line[j+1]=0;  /* Trims blanks at end of line */
   }      if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
   /* Reads comments: lines beginning with '#' */        printf("Comment line\n%s\n",line);
   numlinepar=0;        continue;
   while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);      trimbb(linetmp,line); /* Trims multiple blanks in line */
     fgets(line, MAXLINE, ficpar);      for (j=0; line[j]!='\0';j++){
     numlinepar++;        line[j]=linetmp[j];
     puts(line);      }
     fputs(line,ficparo);    
     fputs(line,ficlog);  
   }      for (j=maxwav;j>=1;j--){
   ungetc(c,ficpar);        cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          lval=-1;
   numlinepar++;        }else{
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          errno=0;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          lval=strtol(strb,&endptr,10); 
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
   fflush(ficlog);          if( strb[0]=='\0' || (*endptr != '\0')){
   while((c=getc(ficpar))=='#' && c!= EOF){            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
     ungetc(c,ficpar);            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
     fgets(line, MAXLINE, ficpar);            return 1;
     numlinepar++;          }
     puts(line);        }
     fputs(line,ficparo);        s[j][i]=lval;
     fputs(line,ficlog);        
   }        strcpy(line,stra);
   ungetc(c,ficpar);        cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
            }
   covar=matrix(0,NCOVMAX,1,n);        else  if(iout=sscanf(strb,"%s.") != 0){
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/          month=99;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          year=9999;
         }else{
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/          return 1;
         }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        anint[j][i]= (double) year; 
   delti=delti3[1][1];        mint[j][i]= (double)month; 
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/        strcpy(line,stra);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */      } /* ENd Waves */
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);      
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);      cutv(stra, strb,line,' '); 
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      }
     fclose (ficparo);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
     fclose (ficlog);        month=99;
     goto end;        year=9999;
     exit(0);      }else{
   }        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   else if(mle==-3) {          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);          return 1;
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);      }
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);      andc[i]=(double) year; 
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      moisdc[i]=(double) month; 
     matcov=matrix(1,npar,1,npar);      strcpy(line,stra);
   }      
   else{      cutv(stra, strb,line,' '); 
     /* Read guess parameters */      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     /* Reads comments: lines beginning with '#' */      }
     while((c=getc(ficpar))=='#' && c!= EOF){      else  if(iout=sscanf(strb,"%s.") != 0){
       ungetc(c,ficpar);        month=99;
       fgets(line, MAXLINE, ficpar);        year=9999;
       numlinepar++;      }else{
       puts(line);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       fputs(line,ficparo);        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
       fputs(line,ficlog);          return 1;
     }      }
     ungetc(c,ficpar);      if (year==9999) {
            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
     for(i=1; i <=nlstate; i++){          return 1;
       j=0;  
       for(jj=1; jj <=nlstate+ndeath; jj++){      }
         if(jj==i) continue;      annais[i]=(double)(year);
         j++;      moisnais[i]=(double)(month); 
         fscanf(ficpar,"%1d%1d",&i1,&j1);      strcpy(line,stra);
         if ((i1 != i) && (j1 != j)){      
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \      cutv(stra, strb,line,' '); 
 It might be a problem of design; if ncovcol and the model are correct\n \      errno=0;
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);      dval=strtod(strb,&endptr); 
           exit(1);      if( strb[0]=='\0' || (*endptr != '\0')){
         }        printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficparo,"%1d%1d",i1,j1);        fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         if(mle==1)        fflush(ficlog);
           printf("%1d%1d",i,j);        return 1;
         fprintf(ficlog,"%1d%1d",i,j);      }
         for(k=1; k<=ncovmodel;k++){      weight[i]=dval; 
           fscanf(ficpar," %lf",&param[i][j][k]);      strcpy(line,stra);
           if(mle==1){      
             printf(" %lf",param[i][j][k]);      for (j=ncovcol;j>=1;j--){
             fprintf(ficlog," %lf",param[i][j][k]);        cutv(stra, strb,line,' '); 
           }        if(strb[0]=='.') { /* Missing status */
           else          lval=-1;
             fprintf(ficlog," %lf",param[i][j][k]);        }else{
           fprintf(ficparo," %lf",param[i][j][k]);          errno=0;
         }          lval=strtol(strb,&endptr,10); 
         fscanf(ficpar,"\n");          if( strb[0]=='\0' || (*endptr != '\0')){
         numlinepar++;            printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
         if(mle==1)            fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
           printf("\n");            return 1;
         fprintf(ficlog,"\n");          }
         fprintf(ficparo,"\n");        }
       }        if(lval <-1 || lval >1){
     }            printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
     fflush(ficlog);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
     p=param[1][1];   For example, for multinomial values like 1, 2 and 3,\n \
       build V1=0 V2=0 for the reference value (1),\n \
     /* Reads comments: lines beginning with '#' */          V1=1 V2=0 for (2) \n \
     while((c=getc(ficpar))=='#' && c!= EOF){   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
       ungetc(c,ficpar);   output of IMaCh is often meaningless.\n \
       fgets(line, MAXLINE, ficpar);   Exiting.\n",lval,linei, i,line,j);
       numlinepar++;          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
       puts(line);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
       fputs(line,ficparo);   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
       fputs(line,ficlog);   For example, for multinomial values like 1, 2 and 3,\n \
     }   build V1=0 V2=0 for the reference value (1),\n \
     ungetc(c,ficpar);          V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     for(i=1; i <=nlstate; i++){   output of IMaCh is often meaningless.\n \
       for(j=1; j <=nlstate+ndeath-1; j++){   Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
         fscanf(ficpar,"%1d%1d",&i1,&j1);          return 1;
         if ((i1-i)*(j1-j)!=0){        }
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);        covar[j][i]=(double)(lval);
           exit(1);        strcpy(line,stra);
         }      }  
         printf("%1d%1d",i,j);      lstra=strlen(stra);
         fprintf(ficparo,"%1d%1d",i1,j1);       
         fprintf(ficlog,"%1d%1d",i1,j1);      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         for(k=1; k<=ncovmodel;k++){        stratrunc = &(stra[lstra-9]);
           fscanf(ficpar,"%le",&delti3[i][j][k]);        num[i]=atol(stratrunc);
           printf(" %le",delti3[i][j][k]);      }
           fprintf(ficparo," %le",delti3[i][j][k]);      else
           fprintf(ficlog," %le",delti3[i][j][k]);        num[i]=atol(stra);
         }      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         fscanf(ficpar,"\n");        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
         numlinepar++;      
         printf("\n");      i=i+1;
         fprintf(ficparo,"\n");    } /* End loop reading  data */
         fprintf(ficlog,"\n");  
       }    *imax=i-1; /* Number of individuals */
     }    fclose(fic);
     fflush(ficlog);   
     return (0);
     delti=delti3[1][1];    endread:
       printf("Exiting readdata: ");
       fclose(fic);
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */      return (1);
    
     /* Reads comments: lines beginning with '#' */  
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  }
       fgets(line, MAXLINE, ficpar);  
       numlinepar++;  int decodemodel ( char model[], int lastobs)
       puts(line);  {
       fputs(line,ficparo);    int i, j, k;
       fputs(line,ficlog);    int i1, j1, k1, k2;
     }    char modelsav[80];
     ungetc(c,ficpar);     char stra[80], strb[80], strc[80], strd[80],stre[80];
    
     matcov=matrix(1,npar,1,npar);    if (strlen(model) >1){ /* If there is at least 1 covariate */
     for(i=1; i <=npar; i++){      j=0, j1=0, k1=1, k2=1;
       fscanf(ficpar,"%s",&str);      j=nbocc(model,'+'); /* j=Number of '+' */
       if(mle==1)      j1=nbocc(model,'*'); /* j1=Number of '*' */
         printf("%s",str);      cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
       fprintf(ficlog,"%s",str);                    but the covariates which are product must be computed and stored. */
       fprintf(ficparo,"%s",str);      cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       for(j=1; j <=i; j++){      
         fscanf(ficpar," %le",&matcov[i][j]);      strcpy(modelsav,model); 
         if(mle==1){      if (strstr(model,"AGE") !=0){
           printf(" %.5le",matcov[i][j]);        printf("Error. AGE must be in lower case 'age' model=%s ",model);
         }        fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         fprintf(ficlog," %.5le",matcov[i][j]);        return 1;
         fprintf(ficparo," %.5le",matcov[i][j]);      }
       }      if (strstr(model,"v") !=0){
       fscanf(ficpar,"\n");        printf("Error. 'v' must be in upper case 'V' model=%s ",model);
       numlinepar++;        fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
       if(mle==1)        return 1;
         printf("\n");      }
       fprintf(ficlog,"\n");      
       fprintf(ficparo,"\n");      /* This loop fills the array Tvar from the string 'model'.*/
     }      /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
     for(i=1; i <=npar; i++)      /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       for(j=i+1;j<=npar;j++)      /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         matcov[i][j]=matcov[j][i];      /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
          /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
     if(mle==1)      /*  k=1 Tvar[1]=2 (from V2) */
       printf("\n");      /*  k=5 Tvar[5] */
     fprintf(ficlog,"\n");      /* for (k=1; k<=cptcovn;k++) { */
          /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
     fflush(ficlog);      /*  } */
          /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     /*-------- Rewriting parameter file ----------*/      for(k=cptcovn; k>=1;k--){
     strcpy(rfileres,"r");    /* "Rparameterfile */        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                                       modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
     strcat(rfileres,".");    /* */                                      */ 
     strcat(rfileres,optionfilext);    /* Other files have txt extension */        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
     if((ficres =fopen(rfileres,"w"))==NULL) {        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        /*scanf("%d",i);*/
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;        if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
     }          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
     fprintf(ficres,"#%s\n",version);          if (strcmp(strc,"age")==0) { /* Vn*age */
   }    /* End of mle != -3 */            cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
   /*-------- data file ----------*/            Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
   if((fic=fopen(datafile,"r"))==NULL)    {            cptcovage++; /* Sums the number of covariates which include age as a product */
     printf("Problem while opening datafile: %s\n", datafile);goto end;            Tage[cptcovage]=k;  /* Tage[1] = 4 */
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;            /*printf("stre=%s ", stre);*/
   }          } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
   n= lastobs;            cutv(strb,stre,strc,'V');
   severity = vector(1,maxwav);            Tvar[k]=atoi(stre);
   outcome=imatrix(1,maxwav+1,1,n);            cptcovage++;
   num=lvector(1,n);            Tage[cptcovage]=k;
   moisnais=vector(1,n);          } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
   annais=vector(1,n);            /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
   moisdc=vector(1,n);            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
   andc=vector(1,n);            Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
   agedc=vector(1,n);                                    because this model-covariate is a construction we invent a new column
   cod=ivector(1,n);                                    ncovcol + k1
   weight=vector(1,n);                                    If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                                    Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
   mint=matrix(1,maxwav,1,n);            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
   anint=matrix(1,maxwav,1,n);            Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
   s=imatrix(1,maxwav+1,1,n);            Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
   tab=ivector(1,NCOVMAX);            Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
   ncodemax=ivector(1,8);            Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
   i=1;            for (i=1; i<=lastobs;i++){
   linei=0;              /* Computes the new covariate which is a product of
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {                 covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
     linei=linei+1;              covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */            }
       if(line[j] == '\t')            k1++;
         line[j] = ' ';            k2=k2+2;
     }          } /* End age is not in the model */
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){        } /* End if model includes a product */
       ;        else { /* no more sum */
     };          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
     line[j+1]=0;  /* Trims blanks at end of line */         /*  scanf("%d",i);*/
     if(line[0]=='#'){          cutv(strd,strc,strb,'V');
       fprintf(ficlog,"Comment line\n%s\n",line);          Tvar[k]=atoi(strc);
       printf("Comment line\n%s\n",line);        }
       continue;        strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
     }        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
     for (j=maxwav;j>=1;j--){      } /* end of loop + */
       cutv(stra, strb,line,' ');    } /* end model */
       errno=0;    
       lval=strtol(strb,&endptr,10);    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
       if( strb[0]=='\0' || (*endptr != '\0')){  
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
         exit(1);    printf("cptcovprod=%d ", cptcovprod);
       }    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
       s[j][i]=lval;  
          scanf("%d ",i);*/
       strcpy(line,stra);  
       cutv(stra, strb,line,' ');  
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    return (0); /* with covar[new additional covariate if product] and Tage if age */ 
       }    endread:
       else  if(iout=sscanf(strb,"%s.") != 0){      printf("Exiting decodemodel: ");
         month=99;      return (1);
         year=9999;  }
       }else{  
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);  calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
         exit(1);  {
       }    int i, m;
       anint[j][i]= (double) year;  
       mint[j][i]= (double)month;    for (i=1; i<=imx; i++) {
       strcpy(line,stra);      for(m=2; (m<= maxwav); m++) {
     } /* ENd Waves */        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
              anint[m][i]=9999;
     cutv(stra, strb,line,' ');          s[m][i]=-1;
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){        }
     }        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){          *nberr++;
       month=99;          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
       year=9999;          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
     }else{          s[m][i]=-1;
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);        }
       exit(1);        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
     }          *nberr++;
     andc[i]=(double) year;          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
     moisdc[i]=(double) month;          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
     strcpy(line,stra);          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
            }
     cutv(stra, strb,line,' ');      }
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    }
     }  
     else  if(iout=sscanf(strb,"%s.") != 0){    for (i=1; i<=imx; i++)  {
       month=99;      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       year=9999;      for(m=firstpass; (m<= lastpass); m++){
     }else{        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);          if (s[m][i] >= nlstate+1) {
       exit(1);            if(agedc[i]>0)
     }              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
     annais[i]=(double)(year);                agev[m][i]=agedc[i];
     moisnais[i]=(double)(month);            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
     strcpy(line,stra);              else {
                    if ((int)andc[i]!=9999){
     cutv(stra, strb,line,' ');                  nbwarn++;
     errno=0;                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
     dval=strtod(strb,&endptr);                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
     if( strb[0]=='\0' || (*endptr != '\0')){                  agev[m][i]=-1;
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);                }
       exit(1);              }
     }          }
     weight[i]=dval;          else if(s[m][i] !=9){ /* Standard case, age in fractional
     strcpy(line,stra);                                   years but with the precision of a month */
                agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
     for (j=ncovcol;j>=1;j--){            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
       cutv(stra, strb,line,' ');              agev[m][i]=1;
       errno=0;            else if(agev[m][i] < *agemin){ 
       lval=strtol(strb,&endptr,10);              *agemin=agev[m][i];
       if( strb[0]=='\0' || (*endptr != '\0')){              printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);            }
         exit(1);            else if(agev[m][i] >*agemax){
       }              *agemax=agev[m][i];
       if(lval <-1 || lval >1){              printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \            }
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \            /*agev[m][i]=anint[m][i]-annais[i];*/
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \            /*     agev[m][i] = age[i]+2*m;*/
  For example, for multinomial values like 1, 2 and 3,\n \          }
  build V1=0 V2=0 for the reference value (1),\n \          else { /* =9 */
         V1=1 V2=0 for (2) \n \            agev[m][i]=1;
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \            s[m][i]=-1;
  output of IMaCh is often meaningless.\n \          }
  Exiting.\n",lval,linei, i,line,j);        }
         exit(1);        else /*= 0 Unknown */
       }          agev[m][i]=1;
       covar[j][i]=(double)(lval);      }
       strcpy(line,stra);      
     }    }
     lstra=strlen(stra);    for (i=1; i<=imx; i++)  {
          for(m=firstpass; (m<=lastpass); m++){
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */        if (s[m][i] > (nlstate+ndeath)) {
       stratrunc = &(stra[lstra-9]);          *nberr++;
       num[i]=atol(stratrunc);          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
     }          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
     else          return 1;
       num[i]=atol(stra);        }
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      }
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    }
      
     i=i+1;    /*for (i=1; i<=imx; i++){
   } /* End loop reading  data */    for (m=firstpass; (m<lastpass); m++){
   fclose(fic);       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   /* printf("ii=%d", ij);  }
      scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */  }*/
   
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/    return (0);
    /*  for (i=1; i<=imx; i++){    endread:
      if (s[4][i]==9)  s[4][i]=-1;      printf("Exiting calandcheckages: ");
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      return (1);
    }
   /* for (i=1; i<=imx; i++) */  
    
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;  /***********************************************/
      else weight[i]=1;*/  /**************** Main Program *****************/
   /***********************************************/
   /* Calculation of the number of parameters from char model */  
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */  int main(int argc, char *argv[])
   Tprod=ivector(1,15);  {
   Tvaraff=ivector(1,15);  #ifdef GSL
   Tvard=imatrix(1,15,1,2);    const gsl_multimin_fminimizer_type *T;
   Tage=ivector(1,15);          size_t iteri = 0, it;
        int rval = GSL_CONTINUE;
   if (strlen(model) >1){ /* If there is at least 1 covariate */    int status = GSL_SUCCESS;
     j=0, j1=0, k1=1, k2=1;    double ssval;
     j=nbocc(model,'+'); /* j=Number of '+' */  #endif
     j1=nbocc(model,'*'); /* j1=Number of '*' */    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     cptcovn=j+1;    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     cptcovprod=j1; /*Number of products */    int linei, month, year,iout;
        int jj, ll, li, lj, lk, imk;
     strcpy(modelsav,model);    int numlinepar=0; /* Current linenumber of parameter file */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    int itimes;
       printf("Error. Non available option model=%s ",model);    int NDIM=2;
       fprintf(ficlog,"Error. Non available option model=%s ",model);    int vpopbased=0;
       goto end;  
     }    char ca[32], cb[32], cc[32];
        /*  FILE *fichtm; *//* Html File */
     /* This loop fills the array Tvar from the string 'model'.*/    /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     for(i=(j+1); i>=1;i--){    double agedeb, agefin,hf;
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    double fret;
       /*scanf("%d",i);*/    double **xi,tmp,delta;
       if (strchr(strb,'*')) {  /* Model includes a product */  
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    double dum; /* Dummy variable */
         if (strcmp(strc,"age")==0) { /* Vn*age */    double ***p3mat;
           cptcovprod--;    double ***mobaverage;
           cutv(strb,stre,strd,'V');    int *indx;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    char line[MAXLINE], linepar[MAXLINE];
           cptcovage++;    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
             Tage[cptcovage]=i;    char pathr[MAXLINE], pathimach[MAXLINE]; 
             /*printf("stre=%s ", stre);*/    char **bp, *tok, *val; /* pathtot */
         }    int firstobs=1, lastobs=10;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    int sdeb, sfin; /* Status at beginning and end */
           cptcovprod--;    int c,  h , cpt,l;
           cutv(strb,stre,strc,'V');    int ju,jl, mi;
           Tvar[i]=atoi(stre);    int i1,j1, jk,aa,bb, stepsize, ij;
           cptcovage++;    int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
           Tage[cptcovage]=i;    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
         }    int mobilav=0,popforecast=0;
         else {  /* Age is not in the model */    int hstepm, nhstepm;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    int agemortsup;
           Tvar[i]=ncovcol+k1;    float  sumlpop=0.;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
           Tprod[k1]=i;    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
           Tvard[k1][1]=atoi(strc); /* m*/  
           Tvard[k1][2]=atoi(stre); /* n */    double bage, fage, age, agelim, agebase;
           Tvar[cptcovn+k2]=Tvard[k1][1];    double ftolpl=FTOL;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    double **prlim;
           for (k=1; k<=lastobs;k++)    double ***param; /* Matrix of parameters */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double  *p;
           k1++;    double **matcov; /* Matrix of covariance */
           k2=k2+2;    double ***delti3; /* Scale */
         }    double *delti; /* Scale */
       }    double ***eij, ***vareij;
       else { /* no more sum */    double **varpl; /* Variances of prevalence limits by age */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    double *epj, vepp;
        /*  scanf("%d",i);*/    double kk1, kk2;
       cutv(strd,strc,strb,'V');    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
       Tvar[i]=atoi(strc);    double **ximort;
       }    char *alph[]={"a","a","b","c","d","e"}, str[4];
       strcpy(modelsav,stra);      int *dcwave;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/    char z[1]="c", occ;
     } /* end of loop + */  
   } /* end model */    /*char  *strt;*/
      char strtend[80];
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.  
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/    long total_usecs;
    
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  /*   setlocale (LC_ALL, ""); */
   printf("cptcovprod=%d ", cptcovprod);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);  /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   scanf("%d ",i);*/  /*   setlocale (LC_MESSAGES, ""); */
   
     /*  if(mle==1){*/    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   if (weightopt != 1) { /* Maximisation without weights*/    (void) gettimeofday(&start_time,&tzp);
     for(i=1;i<=n;i++) weight[i]=1.0;    curr_time=start_time;
   }    tm = *localtime(&start_time.tv_sec);
     /*-calculation of age at interview from date of interview and age at death -*/    tmg = *gmtime(&start_time.tv_sec);
   agev=matrix(1,maxwav,1,imx);    strcpy(strstart,asctime(&tm));
   
   for (i=1; i<=imx; i++) {  /*  printf("Localtime (at start)=%s",strstart); */
     for(m=2; (m<= maxwav); m++) {  /*  tp.tv_sec = tp.tv_sec +86400; */
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){  /*  tm = *localtime(&start_time.tv_sec); */
         anint[m][i]=9999;  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
         s[m][i]=-1;  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
       }  /*   tmg.tm_hour=tmg.tm_hour + 1; */
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){  /*   tp.tv_sec = mktime(&tmg); */
         nberr++;  /*   strt=asctime(&tmg); */
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  /*   printf("Time(after) =%s",strstart);  */
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  /*  (void) time (&time_value);
         s[m][i]=-1;  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
       }  *  tm = *localtime(&time_value);
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){  *  strstart=asctime(&tm);
         nberr++;  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);  */
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);  
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */    nberr=0; /* Number of errors and warnings */
       }    nbwarn=0;
     }    getcwd(pathcd, size);
   }  
     printf("\n%s\n%s",version,fullversion);
   for (i=1; i<=imx; i++)  {    if(argc <=1){
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      printf("\nEnter the parameter file name: ");
     for(m=firstpass; (m<= lastpass); m++){      fgets(pathr,FILENAMELENGTH,stdin);
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){      i=strlen(pathr);
         if (s[m][i] >= nlstate+1) {      if(pathr[i-1]=='\n')
           if(agedc[i]>0)        pathr[i-1]='\0';
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)     for (tok = pathr; tok != NULL; ){
               agev[m][i]=agedc[i];        printf("Pathr |%s|\n",pathr);
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
             else {        printf("val= |%s| pathr=%s\n",val,pathr);
               if ((int)andc[i]!=9999){        strcpy (pathtot, val);
                 nbwarn++;        if(pathr[0] == '\0') break; /* Dirty */
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);      }
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);    }
                 agev[m][i]=-1;    else{
               }      strcpy(pathtot,argv[1]);
             }    }
         }    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
         else if(s[m][i] !=9){ /* Standard case, age in fractional    /*cygwin_split_path(pathtot,path,optionfile);
                                  years but with the precision of a month */      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    /* cutv(path,optionfile,pathtot,'\\');*/
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)  
             agev[m][i]=1;    /* Split argv[0], imach program to get pathimach */
           else if(agev[m][i] <agemin){    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
             agemin=agev[m][i];    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
           }   /*   strcpy(pathimach,argv[0]); */
           else if(agev[m][i] >agemax){    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
             agemax=agev[m][i];    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
           }    chdir(path); /* Can be a relative path */
           /*agev[m][i]=anint[m][i]-annais[i];*/    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
           /*     agev[m][i] = age[i]+2*m;*/      printf("Current directory %s!\n",pathcd);
         }    strcpy(command,"mkdir ");
         else { /* =9 */    strcat(command,optionfilefiname);
           agev[m][i]=1;    if((outcmd=system(command)) != 0){
           s[m][i]=-1;      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
         }      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       }      /* fclose(ficlog); */
       else /*= 0 Unknown */  /*     exit(1); */
         agev[m][i]=1;    }
     }  /*   if((imk=mkdir(optionfilefiname))<0){ */
      /*     perror("mkdir"); */
   }  /*   } */
   for (i=1; i<=imx; i++)  {  
     for(m=firstpass; (m<=lastpass); m++){    /*-------- arguments in the command line --------*/
       if (s[m][i] > (nlstate+ndeath)) {  
         nberr++;    /* Log file */
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        strcat(filelog, optionfilefiname);
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        strcat(filelog,".log");    /* */
         goto end;    if((ficlog=fopen(filelog,"w"))==NULL)    {
       }      printf("Problem with logfile %s\n",filelog);
     }      goto end;
   }    }
     fprintf(ficlog,"Log filename:%s\n",filelog);
   /*for (i=1; i<=imx; i++){    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   for (m=firstpass; (m<lastpass); m++){    fprintf(ficlog,"\nEnter the parameter file name: \n");
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 }   path=%s \n\
    optionfile=%s\n\
 }*/   optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    printf("Local time (at start):%s",strstart);
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   agegomp=(int)agemin;  /*   (void) gettimeofday(&curr_time,&tzp); */
   free_vector(severity,1,maxwav);  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   free_imatrix(outcome,1,maxwav+1,1,n);  
   free_vector(moisnais,1,n);    /* */
   free_vector(annais,1,n);    strcpy(fileres,"r");
   /* free_matrix(mint,1,maxwav,1,n);    strcat(fileres, optionfilefiname);
      free_matrix(anint,1,maxwav,1,n);*/    strcat(fileres,".txt");    /* Other files have txt extension */
   free_vector(moisdc,1,n);  
   free_vector(andc,1,n);    /*---------arguments file --------*/
   
        if((ficpar=fopen(optionfile,"r"))==NULL)    {
   wav=ivector(1,imx);      printf("Problem with optionfile %s\n",optionfile);
   dh=imatrix(1,lastpass-firstpass+1,1,imx);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   bh=imatrix(1,lastpass-firstpass+1,1,imx);      fflush(ficlog);
   mw=imatrix(1,lastpass-firstpass+1,1,imx);      goto end;
        }
   /* Concatenates waves */  
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
   
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */    strcpy(filereso,"o");
     strcat(filereso,fileres);
   Tcode=ivector(1,100);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      printf("Problem with Output resultfile: %s\n", filereso);
   ncodemax[1]=1;      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);      fflush(ficlog);
            goto end;
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of    }
                                  the estimations*/  
   h=0;    /* Reads comments: lines beginning with '#' */
   m=pow(2,cptcoveff);    numlinepar=0;
      while((c=getc(ficpar))=='#' && c!= EOF){
   for(k=1;k<=cptcoveff; k++){      ungetc(c,ficpar);
     for(i=1; i <=(m/pow(2,k));i++){      fgets(line, MAXLINE, ficpar);
       for(j=1; j <= ncodemax[k]; j++){      numlinepar++;
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      fputs(line,stdout);
           h++;      fputs(line,ficparo);
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      fputs(line,ficlog);
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    }
         }    ungetc(c,ficpar);
       }  
     }    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   }    numlinepar++;
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
      codtab[1][2]=1;codtab[2][2]=2; */    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   /* for(i=1; i <=m ;i++){    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
      for(k=1; k <=cptcovn; k++){    fflush(ficlog);
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    while((c=getc(ficpar))=='#' && c!= EOF){
      }      ungetc(c,ficpar);
      printf("\n");      fgets(line, MAXLINE, ficpar);
      }      numlinepar++;
      scanf("%d",i);*/      fputs(line, stdout);
          //puts(line);
   /*------------ gnuplot -------------*/      fputs(line,ficparo);
   strcpy(optionfilegnuplot,optionfilefiname);      fputs(line,ficlog);
   if(mle==-3)    }
     strcat(optionfilegnuplot,"-mort");    ungetc(c,ficpar);
   strcat(optionfilegnuplot,".gp");  
      
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    covar=matrix(0,NCOVMAX,1,n); 
     printf("Problem with file %s",optionfilegnuplot);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
   }    /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
   else{       v1+v2*age+v2*v3 makes cptcovn = 3
     fprintf(ficgp,"\n# %s\n", version);    */
     fprintf(ficgp,"# %s\n", optionfilegnuplot);    if (strlen(model)>1) 
     fprintf(ficgp,"set missing 'NaNq'\n");      cptcovn=nbocc(model,'+')+1;
   }    /* ncovprod */
   /*  fclose(ficgp);*/    ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
   /*--------- index.htm --------*/    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */    npar= nforce*ncovmodel; /* Number of parameters like aij*/
   if(mle==-3)    if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
     strcat(optionfilehtm,"-mort");      printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
   strcat(optionfilehtm,".htm");      fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      fflush(stdout);
     printf("Problem with %s \n",optionfilehtm), exit(0);      fclose (ficlog);
   }      goto end;
     }
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   strcat(optionfilehtmcov,"-cov.htm");    delti=delti3[1][1];
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     printf("Problem with %s \n",optionfilehtmcov), exit(0);    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
   }      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
   else{      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\      fclose (ficparo);
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);      fclose (ficlog);
   }      goto end;
       exit(0);
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    }
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    else if(mle==-3) {
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 \n\      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 <hr  size=\"2\" color=\"#EC5E5E\">\      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
  <ul><li><h4>Parameter files</h4>\n\      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\      matcov=matrix(1,npar,1,npar);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    }
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\    else{
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\      /* Read guess parameters */
  - Date and time at start: %s</ul>\n",\      /* Reads comments: lines beginning with '#' */
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\      while((c=getc(ficpar))=='#' && c!= EOF){
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\        ungetc(c,ficpar);
           fileres,fileres,\        fgets(line, MAXLINE, ficpar);
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);        numlinepar++;
   fflush(fichtm);        fputs(line,stdout);
         fputs(line,ficparo);
   strcpy(pathr,path);        fputs(line,ficlog);
   strcat(pathr,optionfilefiname);      }
   chdir(optionfilefiname); /* Move to directory named optionfile */      ungetc(c,ficpar);
        
   /* Calculates basic frequencies. Computes observed prevalence at single age      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
      and prints on file fileres'p'. */      for(i=1; i <=nlstate; i++){
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);        j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
   fprintf(fichtm,"\n");          if(jj==i) continue;
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\          j++;
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\          fscanf(ficpar,"%1d%1d",&i1,&j1);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\          if ((i1 != i) && (j1 != j)){
           imx,agemin,agemax,jmin,jmax,jmean);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  It might be a problem of design; if ncovcol and the model are correct\n \
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            exit(1);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficparo,"%1d%1d",i1,j1);
              if(mle==1)
                printf("%1d%1d",i,j);
   /* For Powell, parameters are in a vector p[] starting at p[1]          fprintf(ficlog,"%1d%1d",i,j);
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          for(k=1; k<=ncovmodel;k++){
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */            fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/              printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
   if (mle==-3){            }
     ximort=matrix(1,NDIM,1,NDIM);            else
     cens=ivector(1,n);              fprintf(ficlog," %lf",param[i][j][k]);
     ageexmed=vector(1,n);            fprintf(ficparo," %lf",param[i][j][k]);
     agecens=vector(1,n);          }
     dcwave=ivector(1,n);          fscanf(ficpar,"\n");
            numlinepar++;
     for (i=1; i<=imx; i++){          if(mle==1)
       dcwave[i]=-1;            printf("\n");
       for (m=firstpass; m<=lastpass; m++)          fprintf(ficlog,"\n");
         if (s[m][i]>nlstate) {          fprintf(ficparo,"\n");
           dcwave[i]=m;        }
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/      }  
           break;      fflush(ficlog);
         }  
     }      p=param[1][1];
       
     for (i=1; i<=imx; i++) {      /* Reads comments: lines beginning with '#' */
       if (wav[i]>0){      while((c=getc(ficpar))=='#' && c!= EOF){
         ageexmed[i]=agev[mw[1][i]][i];        ungetc(c,ficpar);
         j=wav[i];        fgets(line, MAXLINE, ficpar);
         agecens[i]=1.;        numlinepar++;
         fputs(line,stdout);
         if (ageexmed[i]> 1 && wav[i] > 0){        fputs(line,ficparo);
           agecens[i]=agev[mw[j][i]][i];        fputs(line,ficlog);
           cens[i]= 1;      }
         }else if (ageexmed[i]< 1)      ungetc(c,ficpar);
           cens[i]= -1;  
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)      for(i=1; i <=nlstate; i++){
           cens[i]=0 ;        for(j=1; j <=nlstate+ndeath-1; j++){
       }          fscanf(ficpar,"%1d%1d",&i1,&j1);
       else cens[i]=-1;          if ((i1-i)*(j1-j)!=0){
     }            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                exit(1);
     for (i=1;i<=NDIM;i++) {          }
       for (j=1;j<=NDIM;j++)          printf("%1d%1d",i,j);
         ximort[i][j]=(i == j ? 1.0 : 0.0);          fprintf(ficparo,"%1d%1d",i1,j1);
     }          fprintf(ficlog,"%1d%1d",i1,j1);
              for(k=1; k<=ncovmodel;k++){
     p[1]=0.0268; p[NDIM]=0.083;            fscanf(ficpar,"%le",&delti3[i][j][k]);
     /*printf("%lf %lf", p[1], p[2]);*/            printf(" %le",delti3[i][j][k]);
                fprintf(ficparo," %le",delti3[i][j][k]);
                fprintf(ficlog," %le",delti3[i][j][k]);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");          }
     strcpy(filerespow,"pow-mort");          fscanf(ficpar,"\n");
     strcat(filerespow,fileres);          numlinepar++;
     if((ficrespow=fopen(filerespow,"w"))==NULL) {          printf("\n");
       printf("Problem with resultfile: %s\n", filerespow);          fprintf(ficparo,"\n");
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          fprintf(ficlog,"\n");
     }        }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");      }
     /*  for (i=1;i<=nlstate;i++)      fflush(ficlog);
         for(j=1;j<=nlstate+ndeath;j++)  
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      delti=delti3[1][1];
     */  
     fprintf(ficrespow,"\n");  
          /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);    
     fclose(ficrespow);      /* Reads comments: lines beginning with '#' */
          while((c=getc(ficpar))=='#' && c!= EOF){
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
     for(i=1; i <=NDIM; i++)        numlinepar++;
       for(j=i+1;j<=NDIM;j++)        fputs(line,stdout);
         matcov[i][j]=matcov[j][i];        fputs(line,ficparo);
            fputs(line,ficlog);
     printf("\nCovariance matrix\n ");      }
     for(i=1; i <=NDIM; i++) {      ungetc(c,ficpar);
       for(j=1;j<=NDIM;j++){    
         printf("%f ",matcov[i][j]);      matcov=matrix(1,npar,1,npar);
       }      for(i=1; i <=npar; i++)
       printf("\n ");        for(j=1; j <=npar; j++) matcov[i][j]=0.;
     }        
          for(i=1; i <=npar; i++){
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);        fscanf(ficpar,"%s",&str);
     for (i=1;i<=NDIM;i++)        if(mle==1)
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));          printf("%s",str);
         fprintf(ficlog,"%s",str);
     lsurv=vector(1,AGESUP);        fprintf(ficparo,"%s",str);
     lpop=vector(1,AGESUP);        for(j=1; j <=i; j++){
     tpop=vector(1,AGESUP);          fscanf(ficpar," %le",&matcov[i][j]);
     lsurv[agegomp]=100000;          if(mle==1){
                printf(" %.5le",matcov[i][j]);
     for (k=agegomp;k<=AGESUP;k++) {          }
       agemortsup=k;          fprintf(ficlog," %.5le",matcov[i][j]);
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;          fprintf(ficparo," %.5le",matcov[i][j]);
     }        }
            fscanf(ficpar,"\n");
     for (k=agegomp;k<agemortsup;k++)        numlinepar++;
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));        if(mle==1)
              printf("\n");
     for (k=agegomp;k<agemortsup;k++){        fprintf(ficlog,"\n");
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;        fprintf(ficparo,"\n");
       sumlpop=sumlpop+lpop[k];      }
     }      for(i=1; i <=npar; i++)
            for(j=i+1;j<=npar;j++)
     tpop[agegomp]=sumlpop;          matcov[i][j]=matcov[j][i];
     for (k=agegomp;k<(agemortsup-3);k++){      
       /*  tpop[k+1]=2;*/      if(mle==1)
       tpop[k+1]=tpop[k]-lpop[k];        printf("\n");
     }      fprintf(ficlog,"\n");
          
          fflush(ficlog);
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");      
     for (k=agegomp;k<(agemortsup-2);k++)      /*-------- Rewriting parameter file ----------*/
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);      strcpy(rfileres,"r");    /* "Rparameterfile */
          strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
          strcat(rfileres,".");    /* */
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      strcat(rfileres,optionfilext);    /* Other files have txt extension */
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      if((ficres =fopen(rfileres,"w"))==NULL) {
            printf("Problem writing new parameter file: %s\n", fileres);goto end;
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
                      stepm, weightopt,\      }
                      model,imx,p,matcov,agemortsup);      fprintf(ficres,"#%s\n",version);
        }    /* End of mle != -3 */
     free_vector(lsurv,1,AGESUP);  
     free_vector(lpop,1,AGESUP);  
     free_vector(tpop,1,AGESUP);    n= lastobs;
   } /* Endof if mle==-3 */    num=lvector(1,n);
      moisnais=vector(1,n);
   else{ /* For mle >=1 */    annais=vector(1,n);
      moisdc=vector(1,n);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    andc=vector(1,n);
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    agedc=vector(1,n);
     for (k=1; k<=npar;k++)    cod=ivector(1,n);
       printf(" %d %8.5f",k,p[k]);    weight=vector(1,n);
     printf("\n");    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     globpr=1; /* to print the contributions */    mint=matrix(1,maxwav,1,n);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    anint=matrix(1,maxwav,1,n);
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     for (k=1; k<=npar;k++)    tab=ivector(1,NCOVMAX);
       printf(" %d %8.5f",k,p[k]);    ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     printf("\n");  
     if(mle>=1){ /* Could be 1 or 2 */    /* Reads data from file datafile */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    if (readdata(datafile, firstobs, lastobs, &imx)==1)
     }      goto end;
      
     /*--------- results files --------------*/    /* Calculation of the number of parameters from char model */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
              k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
              k=3 V4 Tvar[k=3]= 4 (from V4)
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          k=2 V1 Tvar[k=2]= 1 (from V1)
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          k=1 Tvar[1]=2 (from V2)
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      */
     for(i=1,jk=1; i <=nlstate; i++){    Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
       for(k=1; k <=(nlstate+ndeath); k++){    /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         if (k != i) {        For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
           printf("%d%d ",i,k);        Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
           fprintf(ficlog,"%d%d ",i,k);    */
           fprintf(ficres,"%1d%1d ",i,k);    /* For model-covariate k tells which data-covariate to use but
           for(j=1; j <=ncovmodel; j++){      because this model-covariate is a construction we invent a new column
             printf("%lf ",p[jk]);      ncovcol + k1
             fprintf(ficlog,"%lf ",p[jk]);      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
             fprintf(ficres,"%lf ",p[jk]);      Tvar[3=V1*V4]=4+1 etc */
             jk++;    Tprod=ivector(1,15); /* Gives the position of a product */
           }    /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
           printf("\n");       if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
           fprintf(ficlog,"\n");    */
           fprintf(ficres,"\n");    Tvaraff=ivector(1,15); 
         }    Tvard=imatrix(1,15,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
       }                              * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
     }                              * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     if(mle!=0){    Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
       /* Computing hessian and covariance matrix */                           4 covariates (3 plus signs)
       ftolhess=ftol; /* Usually correct */                           Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
       hesscov(matcov, p, npar, delti, ftolhess, func);                        */  
     }  
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    if(decodemodel(model, lastobs) == 1)
     printf("# Scales (for hessian or gradient estimation)\n");      goto end;
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");  
     for(i=1,jk=1; i <=nlstate; i++){    if((double)(lastobs-imx)/(double)imx > 1.10){
       for(j=1; j <=nlstate+ndeath; j++){      nbwarn++;
         if (j!=i) {      printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
           fprintf(ficres,"%1d%1d",i,j);      fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
           printf("%1d%1d",i,j);    }
           fprintf(ficlog,"%1d%1d",i,j);      /*  if(mle==1){*/
           for(k=1; k<=ncovmodel;k++){    if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
             printf(" %.5e",delti[jk]);      for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
             fprintf(ficlog," %.5e",delti[jk]);    }
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;      /*-calculation of age at interview from date of interview and age at death -*/
           }    agev=matrix(1,maxwav,1,imx);
           printf("\n");  
           fprintf(ficlog,"\n");    if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
           fprintf(ficres,"\n");      goto end;
         }  
       }  
     }    agegomp=(int)agemin;
        free_vector(moisnais,1,n);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    free_vector(annais,1,n);
     if(mle>=1)    /* free_matrix(mint,1,maxwav,1,n);
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       free_matrix(anint,1,maxwav,1,n);*/
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    free_vector(moisdc,1,n);
     /* # 121 Var(a12)\n\ */    free_vector(andc,1,n);
     /* # 122 Cov(b12,a12) Var(b12)\n\ */  
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */     
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    wav=ivector(1,imx);
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    dh=imatrix(1,lastpass-firstpass+1,1,imx);
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */    bh=imatrix(1,lastpass-firstpass+1,1,imx);
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    mw=imatrix(1,lastpass-firstpass+1,1,imx);
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */     
        /* Concatenates waves */
        concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* Just to have a covariance matrix which will be more understandable  
        even is we still don't want to manage dictionary of variables    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
     */  
     for(itimes=1;itimes<=2;itimes++){    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
       jj=0;    ncodemax[1]=1;
       for(i=1; i <=nlstate; i++){    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         for(j=1; j <=nlstate+ndeath; j++){        
           if(j==i) continue;    codtab=imatrix(1,100,1,10); /**< codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) 
           for(k=1; k<=ncovmodel;k++){                                 */
             jj++;    h=0;
             ca[0]= k+'a'-1;ca[1]='\0';    m=pow(2,cptcoveff);
             if(itimes==1){   
               if(mle>=1)    for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
                 printf("#%1d%1d%d",i,j,k);      for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
               fprintf(ficlog,"#%1d%1d%d",i,j,k);        for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
               fprintf(ficres,"#%1d%1d%d",i,j,k);          for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             }else{            h++;
               if(mle>=1)            if (h>m) 
                 printf("%1d%1d%d",i,j,k);              h=1;
               fprintf(ficlog,"%1d%1d%d",i,j,k);            /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
               fprintf(ficres,"%1d%1d%d",i,j,k);             *     h     1     2     3     4
             }             *______________________________  
             ll=0;             *     1 i=1 1 i=1 1 i=1 1 i=1 1
             for(li=1;li <=nlstate; li++){             *     2     2     1     1     1
               for(lj=1;lj <=nlstate+ndeath; lj++){             *     3 i=2 1     2     1     1
                 if(lj==li) continue;             *     4     2     2     1     1
                 for(lk=1;lk<=ncovmodel;lk++){             *     5 i=3 1 i=2 1     2     1
                   ll++;             *     6     2     1     2     1
                   if(ll<=jj){             *     7 i=4 1     2     2     1
                     cb[0]= lk +'a'-1;cb[1]='\0';             *     8     2     2     2     1
                     if(ll<jj){             *     9 i=5 1 i=3 1 i=2 1     1
                       if(itimes==1){             *    10     2     1     1     1
                         if(mle>=1)             *    11 i=6 1     2     1     1
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);             *    12     2     2     1     1
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);             *    13 i=7 1 i=4 1     2     1    
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);             *    14     2     1     2     1
                       }else{             *    15 i=8 1     2     2     1
                         if(mle>=1)             *    16     2     2     2     1
                           printf(" %.5e",matcov[jj][ll]);             */
                         fprintf(ficlog," %.5e",matcov[jj][ll]);            codtab[h][k]=j;
                         fprintf(ficres," %.5e",matcov[jj][ll]);            codtab[h][Tvar[k]]=j;
                       }            printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
                     }else{          } 
                       if(itimes==1){        }
                         if(mle>=1)      }
                           printf(" Var(%s%1d%1d)",ca,i,j);    } 
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);       codtab[1][2]=1;codtab[2][2]=2; */
                       }else{    /* for(i=1; i <=m ;i++){ 
                         if(mle>=1)       for(k=1; k <=cptcovn; k++){
                           printf(" %.5e",matcov[jj][ll]);         printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
                         fprintf(ficlog," %.5e",matcov[jj][ll]);       }
                         fprintf(ficres," %.5e",matcov[jj][ll]);       printf("\n");
                       }       }
                     }       scanf("%d",i);*/
                   }      
                 } /* end lk */    /*------------ gnuplot -------------*/
               } /* end lj */    strcpy(optionfilegnuplot,optionfilefiname);
             } /* end li */    if(mle==-3)
             if(mle>=1)      strcat(optionfilegnuplot,"-mort");
               printf("\n");    strcat(optionfilegnuplot,".gp");
             fprintf(ficlog,"\n");  
             fprintf(ficres,"\n");    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
             numlinepar++;      printf("Problem with file %s",optionfilegnuplot);
           } /* end k*/    }
         } /*end j */    else{
       } /* end i */      fprintf(ficgp,"\n# %s\n", version); 
     } /* end itimes */      fprintf(ficgp,"# %s\n", optionfilegnuplot); 
          //fprintf(ficgp,"set missing 'NaNq'\n");
     fflush(ficlog);      fprintf(ficgp,"set datafile missing 'NaNq'\n");
     fflush(ficres);    }
        /*  fclose(ficgp);*/
     while((c=getc(ficpar))=='#' && c!= EOF){    /*--------- index.htm --------*/
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
       puts(line);    if(mle==-3)
       fputs(line,ficparo);      strcat(optionfilehtm,"-mort");
     }    strcat(optionfilehtm,".htm");
     ungetc(c,ficpar);    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
          printf("Problem with %s \n",optionfilehtm);
     estepm=0;      exit(0);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    }
     if (estepm==0 || estepm < stepm) estepm=stepm;  
     if (fage <= 2) {    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
       bage = ageminpar;    strcat(optionfilehtmcov,"-cov.htm");
       fage = agemaxpar;    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
     }      printf("Problem with %s \n",optionfilehtmcov), exit(0);
        }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    else{
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
      Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
     while((c=getc(ficpar))=='#' && c!= EOF){            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
       ungetc(c,ficpar);    }
       fgets(line, MAXLINE, ficpar);  
       puts(line);    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
       fputs(line,ficparo);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
     }  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
     ungetc(c,ficpar);  \n\
      <hr  size=\"2\" color=\"#EC5E5E\">\
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);   <ul><li><h4>Parameter files</h4>\n\
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
       - Date and time at start: %s</ul>\n",\
     while((c=getc(ficpar))=='#' && c!= EOF){            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
       ungetc(c,ficpar);            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
       fgets(line, MAXLINE, ficpar);            fileres,fileres,\
       puts(line);            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
       fputs(line,ficparo);    fflush(fichtm);
     }  
     ungetc(c,ficpar);    strcpy(pathr,path);
        strcat(pathr,optionfilefiname);
        chdir(optionfilefiname); /* Move to directory named optionfile */
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;    
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;    /* Calculates basic frequencies. Computes observed prevalence at single age
           and prints on file fileres'p'. */
     fscanf(ficpar,"pop_based=%d\n",&popbased);    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
     fprintf(ficparo,"pop_based=%d\n",popbased);    
     fprintf(ficres,"pop_based=%d\n",popbased);      fprintf(fichtm,"\n");
        fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
     while((c=getc(ficpar))=='#' && c!= EOF){  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
       ungetc(c,ficpar);  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
       fgets(line, MAXLINE, ficpar);            imx,agemin,agemax,jmin,jmax,jmean);
       puts(line);    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       fputs(line,ficparo);      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     }      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     ungetc(c,ficpar);      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
          oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    /* For Powell, parameters are in a vector p[] starting at p[1]
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
     /* day and month of proj2 are not used but only year anproj2.*/  
        globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
      
        if (mle==-3){
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/      ximort=matrix(1,NDIM,1,NDIM); 
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/  /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
          cens=ivector(1,n);
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      ageexmed=vector(1,n);
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      agecens=vector(1,n);
          dcwave=ivector(1,n);
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\   
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\      for (i=1; i<=imx; i++){
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        dcwave[i]=-1;
              for (m=firstpass; m<=lastpass; m++)
    /*------------ free_vector  -------------*/          if (s[m][i]>nlstate) {
    /*  chdir(path); */            dcwave[i]=m;
              /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
     free_ivector(wav,1,imx);            break;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          }
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      }
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
     free_lvector(num,1,n);      for (i=1; i<=imx; i++) {
     free_vector(agedc,1,n);        if (wav[i]>0){
     /*free_matrix(covar,0,NCOVMAX,1,n);*/          ageexmed[i]=agev[mw[1][i]][i];
     /*free_matrix(covar,1,NCOVMAX,1,n);*/          j=wav[i];
     fclose(ficparo);          agecens[i]=1.; 
     fclose(ficres);  
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/            cens[i]= 1;
            }else if (ageexmed[i]< 1) 
     strcpy(filerespl,"pl");            cens[i]= -1;
     strcat(filerespl,fileres);          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
     if((ficrespl=fopen(filerespl,"w"))==NULL) {            cens[i]=0 ;
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;        }
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;        else cens[i]=-1;
     }      }
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);      
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);      for (i=1;i<=NDIM;i++) {
     pstamp(ficrespl);        for (j=1;j<=NDIM;j++)
     fprintf(ficrespl,"# Period (stable) prevalence \n");          ximort[i][j]=(i == j ? 1.0 : 0.0);
     fprintf(ficrespl,"#Age ");      }
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      
     fprintf(ficrespl,"\n");      p[1]=0.0268; p[NDIM]=0.083;
        /*printf("%lf %lf", p[1], p[2]);*/
     prlim=matrix(1,nlstate,1,nlstate);      
       
     agebase=ageminpar;  #ifdef GSL
     agelim=agemaxpar;      printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
     ftolpl=1.e-10;  #elsedef
     i1=cptcoveff;      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     if (cptcovn < 1){i1=1;}  #endif
       strcpy(filerespow,"pow-mort"); 
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      strcat(filerespow,fileres);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      if((ficrespow=fopen(filerespow,"w"))==NULL) {
         k=k+1;        printf("Problem with resultfile: %s\n", filerespow);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         fprintf(ficrespl,"\n#******");      }
         printf("\n#******");  #ifdef GSL
         fprintf(ficlog,"\n#******");      fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
         for(j=1;j<=cptcoveff;j++) {  #elsedef
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  #endif
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*  for (i=1;i<=nlstate;i++)
         }          for(j=1;j<=nlstate+ndeath;j++)
         fprintf(ficrespl,"******\n");          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         printf("******\n");      */
         fprintf(ficlog,"******\n");      fprintf(ficrespow,"\n");
          #ifdef GSL
         for (age=agebase; age<=agelim; age++){      /* gsl starts here */ 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      T = gsl_multimin_fminimizer_nmsimplex;
           fprintf(ficrespl,"%.0f ",age );      gsl_multimin_fminimizer *sfm = NULL;
           for(j=1;j<=cptcoveff;j++)      gsl_vector *ss, *x;
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      gsl_multimin_function minex_func;
           for(i=1; i<=nlstate;i++)  
             fprintf(ficrespl," %.5f", prlim[i][i]);      /* Initial vertex size vector */
           fprintf(ficrespl,"\n");      ss = gsl_vector_alloc (NDIM);
         }      
       }      if (ss == NULL){
     }        GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
     fclose(ficrespl);      }
       /* Set all step sizes to 1 */
     /*------------- h Pij x at various ages ------------*/      gsl_vector_set_all (ss, 0.001);
    
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);      /* Starting point */
     if((ficrespij=fopen(filerespij,"w"))==NULL) {      
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      x = gsl_vector_alloc (NDIM);
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;      
     }      if (x == NULL){
     printf("Computing pij: result on file '%s' \n", filerespij);        gsl_vector_free(ss);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);        GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
        }
     stepsize=(int) (stepm+YEARM-1)/YEARM;    
     /*if (stepm<=24) stepsize=2;*/      /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
     agelim=AGESUP;  /*     gsl_vector_set(x, 0, 0.0268); */
     hstepm=stepsize*YEARM; /* Every year of age */  /*     gsl_vector_set(x, 1, 0.083); */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
     /* hstepm=1;   aff par mois*/  
     pstamp(ficrespij);      minex_func.f = &gompertz_f;
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      minex_func.n = NDIM;
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      minex_func.params = (void *)&p; /* ??? */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      
         k=k+1;      sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
         fprintf(ficrespij,"\n#****** ");      gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
         for(j=1;j<=cptcoveff;j++)      
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Iterations beginning .....\n\n");
         fprintf(ficrespij,"******\n");      printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      iteri=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      while (rval == GSL_CONTINUE){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/        
         if (status) printf("error: %s\n", gsl_strerror (status));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fflush(0);
           oldm=oldms;savm=savms;        
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          if (status) 
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");          break;
           for(i=1; i<=nlstate;i++)        
             for(j=1; j<=nlstate+ndeath;j++)        rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
               fprintf(ficrespij," %1d-%1d",i,j);        ssval = gsl_multimin_fminimizer_size (sfm);
           fprintf(ficrespij,"\n");        
           for (h=0; h<=nhstepm; h++){        if (rval == GSL_SUCCESS)
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          printf ("converged to a local maximum at\n");
             for(i=1; i<=nlstate;i++)        
               for(j=1; j<=nlstate+ndeath;j++)        printf("%5d ", iteri);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        for (it = 0; it < NDIM; it++){
             fprintf(ficrespij,"\n");          printf ("%10.5f ", gsl_vector_get (sfm->x, it));
           }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
           fprintf(ficrespij,"\n");      }
         }      
       }      printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
     }      
       gsl_vector_free(x); /* initial values */
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);      gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
     fclose(ficrespij);        p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
     for(i=1;i<=AGESUP;i++)      gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
       for(j=1;j<=NCOVMAX;j++)  #endif
         for(k=1;k<=NCOVMAX;k++)  #ifdef POWELL
           probs[i][j][k]=0.;       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
     /*---------- Forecasting ------------------*/      fclose(ficrespow);
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/      
     if(prevfcast==1){      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
       /*    if(stepm ==1){*/  
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);      for(i=1; i <=NDIM; i++)
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/        for(j=i+1;j<=NDIM;j++)
       /*      }  */          matcov[i][j]=matcov[j][i];
       /*      else{ */      
       /*        erreur=108; */      printf("\nCovariance matrix\n ");
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      for(i=1; i <=NDIM; i++) {
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */        for(j=1;j<=NDIM;j++){ 
       /*      } */          printf("%f ",matcov[i][j]);
     }        }
          printf("\n ");
       }
     /*---------- Health expectancies and variances ------------*/      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
     strcpy(filerest,"t");      for (i=1;i<=NDIM;i++) 
     strcat(filerest,fileres);        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     if((ficrest=fopen(filerest,"w"))==NULL) {  
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;      lsurv=vector(1,AGESUP);
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      lpop=vector(1,AGESUP);
     }      tpop=vector(1,AGESUP);
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);      lsurv[agegomp]=100000;
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
     strcpy(filerese,"e");        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
     strcat(filerese,fileres);      }
     if((ficreseij=fopen(filerese,"w"))==NULL) {      
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for (k=agegomp;k<agemortsup;k++)
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
     }      
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);      for (k=agegomp;k<agemortsup;k++){
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
     strcpy(fileresstde,"stde");      }
     strcat(fileresstde,fileres);      
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {      tpop[agegomp]=sumlpop;
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);      for (k=agegomp;k<(agemortsup-3);k++){
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);        /*  tpop[k+1]=2;*/
     }        tpop[k+1]=tpop[k]-lpop[k];
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);      }
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);      
       
     strcpy(filerescve,"cve");      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
     strcat(filerescve,fileres);      for (k=agegomp;k<(agemortsup-2);k++) 
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);      
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);      
     }      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
     strcpy(fileresv,"v");                       stepm, weightopt,\
     strcat(fileresv,fileres);                       model,imx,p,matcov,agemortsup);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {      
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      free_vector(lsurv,1,AGESUP);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      free_vector(lpop,1,AGESUP);
     }      free_vector(tpop,1,AGESUP);
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  #ifdef GSL
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      free_ivector(cens,1,n);
       free_vector(agecens,1,n);
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */      free_ivector(dcwave,1,n);
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      free_matrix(ximort,1,NDIM,1,NDIM);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\  #endif
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);    } /* Endof if mle==-3 */
     */    
     else{ /* For mle >=1 */
     if (mobilav!=0) {      globpr=0;/* debug */
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      for (k=1; k<=npar;k++)
         printf(" Error in movingaverage mobilav=%d\n",mobilav);        printf(" %d %8.5f",k,p[k]);
       }      printf("\n");
     }      globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for (k=1; k<=npar;k++)
         k=k+1;        printf(" %d %8.5f",k,p[k]);
         fprintf(ficrest,"\n#****** ");      printf("\n");
         for(j=1;j<=cptcoveff;j++)      if(mle>=1){ /* Could be 1 or 2 */
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
         fprintf(ficrest,"******\n");      }
       
         fprintf(ficreseij,"\n#****** ");      /*--------- results files --------------*/
         fprintf(ficresstdeij,"\n#****** ");      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
         fprintf(ficrescveij,"\n#****** ");      
         for(j=1;j<=cptcoveff;j++) {      
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         }      for(i=1,jk=1; i <=nlstate; i++){
         fprintf(ficreseij,"******\n");        for(k=1; k <=(nlstate+ndeath); k++){
         fprintf(ficresstdeij,"******\n");          if (k != i) {
         fprintf(ficrescveij,"******\n");            printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
         fprintf(ficresvij,"\n#****** ");            fprintf(ficres,"%1d%1d ",i,k);
         for(j=1;j<=cptcoveff;j++)            for(j=1; j <=ncovmodel; j++){
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              printf("%lf ",p[jk]);
         fprintf(ficresvij,"******\n");              fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              jk++; 
         oldm=oldms;savm=savms;            }
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);              printf("\n");
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);              fprintf(ficlog,"\n");
              fprintf(ficres,"\n");
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          }
         oldm=oldms;savm=savms;        }
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);      }
         if(popbased==1){      if(mle!=0){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);        /* Computing hessian and covariance matrix */
         }        ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
         pstamp(ficrest);      }
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      printf("# Scales (for hessian or gradient estimation)\n");
         fprintf(ficrest,"\n");      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         epj=vector(1,nlstate+1);        for(j=1; j <=nlstate+ndeath; j++){
         for(age=bage; age <=fage ;age++){          if (j!=i) {
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            fprintf(ficres,"%1d%1d",i,j);
           if (popbased==1) {            printf("%1d%1d",i,j);
             if(mobilav ==0){            fprintf(ficlog,"%1d%1d",i,j);
               for(i=1; i<=nlstate;i++)            for(k=1; k<=ncovmodel;k++){
                 prlim[i][i]=probs[(int)age][i][k];              printf(" %.5e",delti[jk]);
             }else{ /* mobilav */              fprintf(ficlog," %.5e",delti[jk]);
               for(i=1; i<=nlstate;i++)              fprintf(ficres," %.5e",delti[jk]);
                 prlim[i][i]=mobaverage[(int)age][i][k];              jk++;
             }            }
           }            printf("\n");
                    fprintf(ficlog,"\n");
           fprintf(ficrest," %4.0f",age);            fprintf(ficres,"\n");
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          }
             for(i=1, epj[j]=0.;i <=nlstate;i++) {        }
               epj[j] += prlim[i][i]*eij[i][j][(int)age];      }
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      
             }      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
             epj[nlstate+1] +=epj[j];      if(mle>=1)
           }        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
           for(i=1, vepp=0.;i <=nlstate;i++)      /* # 121 Var(a12)\n\ */
             for(j=1;j <=nlstate;j++)      /* # 122 Cov(b12,a12) Var(b12)\n\ */
               vepp += vareij[i][j][(int)age];      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
           for(j=1;j <=nlstate;j++){      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
           }      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
           fprintf(ficrest,"\n");      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
         }      
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      /* Just to have a covariance matrix which will be more understandable
         free_vector(epj,1,nlstate+1);         even is we still don't want to manage dictionary of variables
       }      */
     }      for(itimes=1;itimes<=2;itimes++){
     free_vector(weight,1,n);        jj=0;
     free_imatrix(Tvard,1,15,1,2);        for(i=1; i <=nlstate; i++){
     free_imatrix(s,1,maxwav+1,1,n);          for(j=1; j <=nlstate+ndeath; j++){
     free_matrix(anint,1,maxwav,1,n);            if(j==i) continue;
     free_matrix(mint,1,maxwav,1,n);            for(k=1; k<=ncovmodel;k++){
     free_ivector(cod,1,n);              jj++;
     free_ivector(tab,1,NCOVMAX);              ca[0]= k+'a'-1;ca[1]='\0';
     fclose(ficreseij);              if(itimes==1){
     fclose(ficresstdeij);                if(mle>=1)
     fclose(ficrescveij);                  printf("#%1d%1d%d",i,j,k);
     fclose(ficresvij);                fprintf(ficlog,"#%1d%1d%d",i,j,k);
     fclose(ficrest);                fprintf(ficres,"#%1d%1d%d",i,j,k);
     fclose(ficpar);              }else{
                  if(mle>=1)
     /*------- Variance of period (stable) prevalence------*/                    printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
     strcpy(fileresvpl,"vpl");                fprintf(ficres,"%1d%1d%d",i,j,k);
     strcat(fileresvpl,fileres);              }
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              ll=0;
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);              for(li=1;li <=nlstate; li++){
       exit(0);                for(lj=1;lj <=nlstate+ndeath; lj++){
     }                  if(lj==li) continue;
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);                  for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){                    if(ll<=jj){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      cb[0]= lk +'a'-1;cb[1]='\0';
         k=k+1;                      if(ll<jj){
         fprintf(ficresvpl,"\n#****** ");                        if(itimes==1){
         for(j=1;j<=cptcoveff;j++)                          if(mle>=1)
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
         fprintf(ficresvpl,"******\n");                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                                fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
         varpl=matrix(1,nlstate,(int) bage, (int) fage);                        }else{
         oldm=oldms;savm=savms;                          if(mle>=1)
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);                            printf(" %.5e",matcov[jj][ll]); 
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                          fprintf(ficlog," %.5e",matcov[jj][ll]); 
       }                          fprintf(ficres," %.5e",matcov[jj][ll]); 
     }                        }
                       }else{
     fclose(ficresvpl);                        if(itimes==1){
                           if(mle>=1)
     /*---------- End : free ----------------*/                            printf(" Var(%s%1d%1d)",ca,i,j);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
   }  /* mle==-3 arrives here for freeing */                          if(mle>=1)
   free_matrix(prlim,1,nlstate,1,nlstate);                            printf(" %.5e",matcov[jj][ll]); 
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                          fprintf(ficlog," %.5e",matcov[jj][ll]); 
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                          fprintf(ficres," %.5e",matcov[jj][ll]); 
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                        }
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                      }
     free_matrix(covar,0,NCOVMAX,1,n);                    }
     free_matrix(matcov,1,npar,1,npar);                  } /* end lk */
     /*free_vector(delti,1,npar);*/                } /* end lj */
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);              } /* end li */
     free_matrix(agev,1,maxwav,1,imx);              if(mle>=1)
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                printf("\n");
               fprintf(ficlog,"\n");
     free_ivector(ncodemax,1,8);              fprintf(ficres,"\n");
     free_ivector(Tvar,1,15);              numlinepar++;
     free_ivector(Tprod,1,15);            } /* end k*/
     free_ivector(Tvaraff,1,15);          } /*end j */
     free_ivector(Tage,1,15);        } /* end i */
     free_ivector(Tcode,1,100);      } /* end itimes */
       
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);      fflush(ficlog);
     free_imatrix(codtab,1,100,1,10);      fflush(ficres);
   fflush(fichtm);      
   fflush(ficgp);      while((c=getc(ficpar))=='#' && c!= EOF){
          ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
   if((nberr >0) || (nbwarn>0)){        fputs(line,stdout);
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);        fputs(line,ficparo);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);      }
   }else{      ungetc(c,ficpar);
     printf("End of Imach\n");      
     fprintf(ficlog,"End of Imach\n");      estepm=0;
   }      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
   printf("See log file on %s\n",filelog);      if (estepm==0 || estepm < stepm) estepm=stepm;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      if (fage <= 2) {
   (void) gettimeofday(&end_time,&tzp);        bage = ageminpar;
   tm = *localtime(&end_time.tv_sec);        fage = agemaxpar;
   tmg = *gmtime(&end_time.tv_sec);      }
   strcpy(strtend,asctime(&tm));      
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      while((c=getc(ficpar))=='#' && c!= EOF){
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));        ungetc(c,ficpar);
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);        fgets(line, MAXLINE, ficpar);
   /*  printf("Total time was %d uSec.\n", total_usecs);*/        fputs(line,stdout);
 /*   if(fileappend(fichtm,optionfilehtm)){ */        fputs(line,ficparo);
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);      }
   fclose(fichtm);      ungetc(c,ficpar);
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);      
   fclose(fichtmcov);      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
   fclose(ficgp);      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
   fclose(ficlog);      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
   /*------ End -----------*/      printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
    printf("Before Current directory %s!\n",pathcd);      while((c=getc(ficpar))=='#' && c!= EOF){
    if(chdir(pathcd) != 0)        ungetc(c,ficpar);
     printf("Can't move to directory %s!\n",path);        fgets(line, MAXLINE, ficpar);
   if(getcwd(pathcd,MAXLINE) > 0)        fputs(line,stdout);
     printf("Current directory %s!\n",pathcd);        fputs(line,ficparo);
   /*strcat(plotcmd,CHARSEPARATOR);*/      }
   sprintf(plotcmd,"gnuplot");      ungetc(c,ficpar);
 #ifndef UNIX      
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);      
 #endif      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
   if(!stat(plotcmd,&info)){      dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      
     if(!stat(getenv("GNUPLOTBIN"),&info)){      fscanf(ficpar,"pop_based=%d\n",&popbased);
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);      fprintf(ficparo,"pop_based=%d\n",popbased);   
     }else      fprintf(ficres,"pop_based=%d\n",popbased);   
       strcpy(pplotcmd,plotcmd);      
 #ifdef UNIX      while((c=getc(ficpar))=='#' && c!= EOF){
     strcpy(plotcmd,GNUPLOTPROGRAM);        ungetc(c,ficpar);
     if(!stat(plotcmd,&info)){        fgets(line, MAXLINE, ficpar);
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);        fputs(line,stdout);
     }else        fputs(line,ficparo);
       strcpy(pplotcmd,plotcmd);      }
 #endif      ungetc(c,ficpar);
   }else      
     strcpy(pplotcmd,plotcmd);      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
        fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
   if((outcmd=system(plotcmd)) != 0){      /* day and month of proj2 are not used but only year anproj2.*/
     printf("\n Problem with gnuplot\n");      
   }      
   printf(" Wait...");      
   while (z[0] != 'q') {      /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /* chdir(path); */      /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     printf("\nType e to edit output files, g to graph again and q for exiting: ");      
     scanf("%s",z);      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 /*     if (z[0] == 'c') system("./imach"); */      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     if (z[0] == 'e') {      
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);      printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
       system(optionfilehtm);                   model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
     }                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
     else if (z[0] == 'g') system(plotcmd);        
     else if (z[0] == 'q') exit(0);     /*------------ free_vector  -------------*/
   }     /*  chdir(path); */
   end:   
   while (z[0] != 'q') {      free_ivector(wav,1,imx);
     printf("\nType  q for exiting: ");      free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     scanf("%s",z);      free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
   }      free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 }      free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.125  
changed lines
  Added in v.1.144


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>