Diff for /imach/src/imach.c between versions 1.125 and 1.240

version 1.125, 2006/04/04 15:20:31 version 1.240, 2016/08/29 07:53:18
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.240  2016/08/29 07:53:18  brouard
     Summary: Better
   
     Revision 1.239  2016/08/26 15:51:03  brouard
     Summary: Improvement in Powell output in order to copy and paste
   
     Author:
   
     Revision 1.238  2016/08/26 14:23:35  brouard
     Summary: Starting tests of 0.99
   
     Revision 1.237  2016/08/26 09:20:19  brouard
     Summary: to valgrind
   
     Revision 1.236  2016/08/25 10:50:18  brouard
     *** empty log message ***
   
     Revision 1.235  2016/08/25 06:59:23  brouard
     *** empty log message ***
   
     Revision 1.234  2016/08/23 16:51:20  brouard
     *** empty log message ***
   
     Revision 1.233  2016/08/23 07:40:50  brouard
     Summary: not working
   
     Revision 1.232  2016/08/22 14:20:21  brouard
     Summary: not working
   
     Revision 1.231  2016/08/22 07:17:15  brouard
     Summary: not working
   
     Revision 1.230  2016/08/22 06:55:53  brouard
     Summary: Not working
   
     Revision 1.229  2016/07/23 09:45:53  brouard
     Summary: Completing for func too
   
     Revision 1.228  2016/07/22 17:45:30  brouard
     Summary: Fixing some arrays, still debugging
   
     Revision 1.226  2016/07/12 18:42:34  brouard
     Summary: temp
   
     Revision 1.225  2016/07/12 08:40:03  brouard
     Summary: saving but not running
   
     Revision 1.224  2016/07/01 13:16:01  brouard
     Summary: Fixes
   
     Revision 1.223  2016/02/19 09:23:35  brouard
     Summary: temporary
   
     Revision 1.222  2016/02/17 08:14:50  brouard
     Summary: Probably last 0.98 stable version 0.98r6
   
     Revision 1.221  2016/02/15 23:35:36  brouard
     Summary: minor bug
   
     Revision 1.219  2016/02/15 00:48:12  brouard
     *** empty log message ***
   
     Revision 1.218  2016/02/12 11:29:23  brouard
     Summary: 0.99 Back projections
   
     Revision 1.217  2015/12/23 17:18:31  brouard
     Summary: Experimental backcast
   
     Revision 1.216  2015/12/18 17:32:11  brouard
     Summary: 0.98r4 Warning and status=-2
   
     Version 0.98r4 is now:
      - displaying an error when status is -1, date of interview unknown and date of death known;
      - permitting a status -2 when the vital status is unknown at a known date of right truncation.
     Older changes concerning s=-2, dating from 2005 have been supersed.
   
     Revision 1.215  2015/12/16 08:52:24  brouard
     Summary: 0.98r4 working
   
     Revision 1.214  2015/12/16 06:57:54  brouard
     Summary: temporary not working
   
     Revision 1.213  2015/12/11 18:22:17  brouard
     Summary: 0.98r4
   
     Revision 1.212  2015/11/21 12:47:24  brouard
     Summary: minor typo
   
     Revision 1.211  2015/11/21 12:41:11  brouard
     Summary: 0.98r3 with some graph of projected cross-sectional
   
     Author: Nicolas Brouard
   
     Revision 1.210  2015/11/18 17:41:20  brouard
     Summary: Start working on projected prevalences
   
     Revision 1.209  2015/11/17 22:12:03  brouard
     Summary: Adding ftolpl parameter
     Author: N Brouard
   
     We had difficulties to get smoothed confidence intervals. It was due
     to the period prevalence which wasn't computed accurately. The inner
     parameter ftolpl is now an outer parameter of the .imach parameter
     file after estepm. If ftolpl is small 1.e-4 and estepm too,
     computation are long.
   
     Revision 1.208  2015/11/17 14:31:57  brouard
     Summary: temporary
   
     Revision 1.207  2015/10/27 17:36:57  brouard
     *** empty log message ***
   
     Revision 1.206  2015/10/24 07:14:11  brouard
     *** empty log message ***
   
     Revision 1.205  2015/10/23 15:50:53  brouard
     Summary: 0.98r3 some clarification for graphs on likelihood contributions
   
     Revision 1.204  2015/10/01 16:20:26  brouard
     Summary: Some new graphs of contribution to likelihood
   
     Revision 1.203  2015/09/30 17:45:14  brouard
     Summary: looking at better estimation of the hessian
   
     Also a better criteria for convergence to the period prevalence And
     therefore adding the number of years needed to converge. (The
     prevalence in any alive state shold sum to one
   
     Revision 1.202  2015/09/22 19:45:16  brouard
     Summary: Adding some overall graph on contribution to likelihood. Might change
   
     Revision 1.201  2015/09/15 17:34:58  brouard
     Summary: 0.98r0
   
     - Some new graphs like suvival functions
     - Some bugs fixed like model=1+age+V2.
   
     Revision 1.200  2015/09/09 16:53:55  brouard
     Summary: Big bug thanks to Flavia
   
     Even model=1+age+V2. did not work anymore
   
     Revision 1.199  2015/09/07 14:09:23  brouard
     Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   
     Revision 1.198  2015/09/03 07:14:39  brouard
     Summary: 0.98q5 Flavia
   
     Revision 1.197  2015/09/01 18:24:39  brouard
     *** empty log message ***
   
     Revision 1.196  2015/08/18 23:17:52  brouard
     Summary: 0.98q5
   
     Revision 1.195  2015/08/18 16:28:39  brouard
     Summary: Adding a hack for testing purpose
   
     After reading the title, ftol and model lines, if the comment line has
     a q, starting with #q, the answer at the end of the run is quit. It
     permits to run test files in batch with ctest. The former workaround was
     $ echo q | imach foo.imach
   
     Revision 1.194  2015/08/18 13:32:00  brouard
     Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   
     Revision 1.193  2015/08/04 07:17:42  brouard
     Summary: 0.98q4
   
     Revision 1.192  2015/07/16 16:49:02  brouard
     Summary: Fixing some outputs
   
     Revision 1.191  2015/07/14 10:00:33  brouard
     Summary: Some fixes
   
     Revision 1.190  2015/05/05 08:51:13  brouard
     Summary: Adding digits in output parameters (7 digits instead of 6)
   
     Fix 1+age+.
   
     Revision 1.189  2015/04/30 14:45:16  brouard
     Summary: 0.98q2
   
     Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
   
     Revision 1.187  2015/04/29 09:11:15  brouard
     *** empty log message ***
   
     Revision 1.186  2015/04/23 12:01:52  brouard
     Summary: V1*age is working now, version 0.98q1
   
     Some codes had been disabled in order to simplify and Vn*age was
     working in the optimization phase, ie, giving correct MLE parameters,
     but, as usual, outputs were not correct and program core dumped.
   
     Revision 1.185  2015/03/11 13:26:42  brouard
     Summary: Inclusion of compile and links command line for Intel Compiler
   
     Revision 1.184  2015/03/11 11:52:39  brouard
     Summary: Back from Windows 8. Intel Compiler
   
     Revision 1.183  2015/03/10 20:34:32  brouard
     Summary: 0.98q0, trying with directest, mnbrak fixed
   
     We use directest instead of original Powell test; probably no
     incidence on the results, but better justifications;
     We fixed Numerical Recipes mnbrak routine which was wrong and gave
     wrong results.
   
     Revision 1.182  2015/02/12 08:19:57  brouard
     Summary: Trying to keep directest which seems simpler and more general
     Author: Nicolas Brouard
   
     Revision 1.181  2015/02/11 23:22:24  brouard
     Summary: Comments on Powell added
   
     Author:
   
     Revision 1.180  2015/02/11 17:33:45  brouard
     Summary: Finishing move from main to function (hpijx and prevalence_limit)
   
     Revision 1.179  2015/01/04 09:57:06  brouard
     Summary: back to OS/X
   
     Revision 1.178  2015/01/04 09:35:48  brouard
     *** empty log message ***
   
     Revision 1.177  2015/01/03 18:40:56  brouard
     Summary: Still testing ilc32 on OSX
   
     Revision 1.176  2015/01/03 16:45:04  brouard
     *** empty log message ***
   
     Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
   
     Revision 1.174  2015/01/03 16:15:49  brouard
     Summary: Still in cross-compilation
   
     Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
   
     Revision 1.172  2014/12/27 12:07:47  brouard
     Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   
     Revision 1.171  2014/12/23 13:26:59  brouard
     Summary: Back from Visual C
   
     Still problem with utsname.h on Windows
   
     Revision 1.170  2014/12/23 11:17:12  brouard
     Summary: Cleaning some \%% back to %%
   
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
   
     Revision 1.169  2014/12/22 23:08:31  brouard
     Summary: 0.98p
   
     Outputs some informations on compiler used, OS etc. Testing on different platforms.
   
     Revision 1.168  2014/12/22 15:17:42  brouard
     Summary: update
   
     Revision 1.167  2014/12/22 13:50:56  brouard
     Summary: Testing uname and compiler version and if compiled 32 or 64
   
     Testing on Linux 64
   
     Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
   
     Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.164  2014/12/16 10:52:11  brouard
     Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
   
     Revision 1.1  2014/09/16 11:06:58  brouard
     Summary: With some code (wrong) for nlopt
   
     Author:
   
     Revision 1.161  2014/09/15 20:41:41  brouard
     Summary: Problem with macro SQR on Intel compiler
   
     Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
   
     Revision 1.159  2014/09/01 10:34:10  brouard
     Summary: WIN32
     Author: Brouard
   
     Revision 1.158  2014/08/27 17:11:51  brouard
     *** empty log message ***
   
     Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
     Author: Brouard
   
     In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
   
     Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
   
     Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
     Author: Brouard
   
     Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
   
     Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
   
     Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
   
     Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
   
     Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
   
     Revision 1.149  2014/06/18 15:51:14  brouard
     Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
   
     Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
     Author: Brouard
   
     Just a new packaging for OS/X version 0.98nS
   
     Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
   
     Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
     Author: Brouard
   
     Merge, before building revised version.
   
     Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
     Author: Nicolas Brouard
   
     Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
     No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
     the source code.
   
     Revision 1.143  2014/01/26 09:45:38  brouard
     Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
     Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
   
     Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
     Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
   
     Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
   
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   
     Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
   
     Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   
     Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   
     Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
     Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
     computation.
     In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies or State-specific
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (if states aren't health statuses) Expectancies from
   first survey ("cross") where individuals from different ages are    cross-longitudinal data. Cross-longitudinal data consist in: 
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    -1- a first survey ("cross") where individuals from different ages
   second wave of interviews ("longitudinal") which measure each change    are interviewed on their health status or degree of disability (in
   (if any) in individual health status.  Health expectancies are    the case of a health survey which is our main interest)
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    -2- at least a second wave of interviews ("longitudinal") which
   Maximum Likelihood of the parameters involved in the model.  The    measure each change (if any) in individual health status.  Health
   simplest model is the multinomial logistic model where pij is the    expectancies are computed from the time spent in each health state
   probability to be observed in state j at the second wave    according to a model. More health states you consider, more time is
   conditional to be observed in state i at the first wave. Therefore    necessary to reach the Maximum Likelihood of the parameters involved
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    in the model.  The simplest model is the multinomial logistic model
   'age' is age and 'sex' is a covariate. If you want to have a more    where pij is the probability to be observed in state j at the second
   complex model than "constant and age", you should modify the program    wave conditional to be observed in state i at the first
   where the markup *Covariates have to be included here again* invites    wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex +
   you to do it.  More covariates you add, slower the    etc , where 'age' is age and 'sex' is a covariate. If you want to
   convergence.    have a more complex model than "constant and age", you should modify
     the program where the markup *Covariates have to be included here
   The advantage of this computer programme, compared to a simple    again* invites you to do it.  More covariates you add, slower the
   multinomial logistic model, is clear when the delay between waves is not    convergence.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    The advantage of this computer programme, compared to a simple
   account using an interpolation or extrapolation.      multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
   hPijx is the probability to be observed in state i at age x+h    intermediate interview, the information is lost, but taken into
   conditional to the observed state i at age x. The delay 'h' can be    account using an interpolation or extrapolation.  
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    hPijx is the probability to be observed in state i at age x+h
   semester or year) is modelled as a multinomial logistic.  The hPx    conditional to the observed state i at age x. The delay 'h' can be
   matrix is simply the matrix product of nh*stepm elementary matrices    split into an exact number (nh*stepm) of unobserved intermediate
   and the contribution of each individual to the likelihood is simply    states. This elementary transition (by month, quarter,
   hPijx.    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
   Also this programme outputs the covariance matrix of the parameters but also    and the contribution of each individual to the likelihood is simply
   of the life expectancies. It also computes the period (stable) prevalence.    hPijx.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Also this programme outputs the covariance matrix of the parameters but also
            Institut national d'études démographiques, Paris.    of the life expectancies. It also computes the period (stable) prevalence.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.  Back prevalence and projections:
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version   - back_prevalence_limit(double *p, double **bprlim, double ageminpar,
   can be accessed at http://euroreves.ined.fr/imach .     double agemaxpar, double ftolpl, int *ncvyearp, double
      dateprev1,double dateprev2, int firstpass, int lastpass, int
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach     mobilavproj)
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so  
        Computes the back prevalence limit for any combination of
   **********************************************************************/      covariate values k at any age between ageminpar and agemaxpar and
 /*      returns it in **bprlim. In the loops,
   main  
   read parameterfile     - **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm,
   read datafile         **savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k);
   concatwav  
   freqsummary     - hBijx Back Probability to be in state i at age x-h being in j at x
   if (mle >= 1)     Computes for any combination of covariates k and any age between bage and fage 
     mlikeli     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   print results files                          oldm=oldms;savm=savms;
   if mle==1  
      computes hessian     - hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
   read end of parameter file: agemin, agemax, bage, fage, estepm       Computes the transition matrix starting at age 'age' over
       begin-prev-date,...       'nhstepm*hstepm*stepm' months (i.e. until
   open gnuplot file       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
   open html file       nhstepm*hstepm matrices. 
   period (stable) prevalence  
    for age prevalim()       Returns p3mat[i][j][h] after calling
   h Pij x       p3mat[i][j][h]=matprod2(newm,
   variance of p varprob       bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm,
   forecasting if prevfcast==1 prevforecast call prevalence()       dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
   health expectancies       oldm);
   Variance-covariance of DFLE  
   prevalence()  Important routines
    movingaverage()  
   varevsij()  - func (or funcone), computes logit (pij) distinguishing
   if popbased==1 varevsij(,popbased)    o fixed variables (single or product dummies or quantitative);
   total life expectancies    o varying variables by:
   Variance of period (stable) prevalence     (1) wave (single, product dummies, quantitative), 
  end     (2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be:
 */         % fixed dummy (treated) or quantitative (not done because time-consuming);
          % varying dummy (not done) or quantitative (not done);
   - Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities)
     and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually.
    - printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables
 #include <math.h>    o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if
 #include <stdio.h>      race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless.
 #include <stdlib.h>  
 #include <string.h>  
 #include <unistd.h>    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #include <limits.h>             Institut national d'études démographiques, Paris.
 #include <sys/types.h>    This software have been partly granted by Euro-REVES, a concerted action
 #include <sys/stat.h>    from the European Union.
 #include <errno.h>    It is copyrighted identically to a GNU software product, ie programme and
 extern int errno;    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 /* #include <sys/time.h> */  
 #include <time.h>    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #include "timeval.h"    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 /* #include <libintl.h> */    **********************************************************************/
 /* #define _(String) gettext (String) */  /*
     main
 #define MAXLINE 256    read parameterfile
     read datafile
 #define GNUPLOTPROGRAM "gnuplot"    concatwav
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    freqsummary
 #define FILENAMELENGTH 132    if (mle >= 1)
       mlikeli
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    print results files
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    if mle==1 
        computes hessian
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */        begin-prev-date,...
     open gnuplot file
 #define NINTERVMAX 8    open html file
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
 #define NCOVMAX 8 /* Maximum number of covariates */                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
 #define MAXN 20000      freexexit2 possible for memory heap.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    h Pij x                         | pij_nom  ficrestpij
 #define AGEBASE 40     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 #ifdef UNIX         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 #define DIRSEPARATOR '/'  
 #define CHARSEPARATOR "/"         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 #define ODIRSEPARATOR '\\'         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
 #else    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
 #define DIRSEPARATOR '\\'     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 #define CHARSEPARATOR "\\"     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
 #define ODIRSEPARATOR '/'  
 #endif    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /* $Id$ */    Variance-covariance of DFLE
 /* $State$ */    prevalence()
      movingaverage()
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";    varevsij() 
 char fullversion[]="$Revision$ $Date$";    if popbased==1 varevsij(,popbased)
 char strstart[80];    total life expectancies
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];    Variance of period (stable) prevalence
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */   end
 int nvar;  */
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;  /* #define DEBUG */
 int nlstate=2; /* Number of live states */  /* #define DEBUGBRENT */
 int ndeath=1; /* Number of dead states */  /* #define DEBUGLINMIN */
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  /* #define DEBUGHESS */
 int popbased=0;  #define DEBUGHESSIJ
   /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan) *\/ */
 int *wav; /* Number of waves for this individuual 0 is possible */  #define POWELL /* Instead of NLOPT */
 int maxwav; /* Maxim number of waves */  #define POWELLNOF3INFF1TEST /* Skip test */
 int jmin, jmax; /* min, max spacing between 2 waves */  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
 int ijmin, ijmax; /* Individuals having jmin and jmax */  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
 int gipmx, gsw; /* Global variables on the number of contributions  
                    to the likelihood and the sum of weights (done by funcone)*/  #include <math.h>
 int mle, weightopt;  #include <stdio.h>
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #include <stdlib.h>
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #include <string.h>
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  #include <ctype.h>
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  
 double jmean; /* Mean space between 2 waves */  #ifdef _WIN32
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #include <io.h>
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #include <windows.h>
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #include <tchar.h>
 FILE *ficlog, *ficrespow;  #else
 int globpr; /* Global variable for printing or not */  #include <unistd.h>
 double fretone; /* Only one call to likelihood */  #endif
 long ipmx; /* Number of contributions */  
 double sw; /* Sum of weights */  #include <limits.h>
 char filerespow[FILENAMELENGTH];  #include <sys/types.h>
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  
 FILE *ficresilk;  #if defined(__GNUC__)
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #include <sys/utsname.h> /* Doesn't work on Windows */
 FILE *ficresprobmorprev;  #endif
 FILE *fichtm, *fichtmcov; /* Html File */  
 FILE *ficreseij;  #include <sys/stat.h>
 char filerese[FILENAMELENGTH];  #include <errno.h>
 FILE *ficresstdeij;  /* extern int errno; */
 char fileresstde[FILENAMELENGTH];  
 FILE *ficrescveij;  /* #ifdef LINUX */
 char filerescve[FILENAMELENGTH];  /* #include <time.h> */
 FILE  *ficresvij;  /* #include "timeval.h" */
 char fileresv[FILENAMELENGTH];  /* #else */
 FILE  *ficresvpl;  /* #include <sys/time.h> */
 char fileresvpl[FILENAMELENGTH];  /* #endif */
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #include <time.h>
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  #ifdef GSL
 char command[FILENAMELENGTH];  #include <gsl/gsl_errno.h>
 int  outcmd=0;  #include <gsl/gsl_multimin.h>
   #endif
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
   
 char filelog[FILENAMELENGTH]; /* Log file */  #ifdef NLOPT
 char filerest[FILENAMELENGTH];  #include <nlopt.h>
 char fileregp[FILENAMELENGTH];  typedef struct {
 char popfile[FILENAMELENGTH];    double (* function)(double [] );
   } myfunc_data ;
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  #endif
   
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  /* #include <libintl.h> */
 struct timezone tzp;  /* #define _(String) gettext (String) */
 extern int gettimeofday();  
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 long time_value;  
 extern long time();  #define GNUPLOTPROGRAM "gnuplot"
 char strcurr[80], strfor[80];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 char *endptr;  
 long lval;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double dval;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 #define NR_END 1  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
 #define FREE_ARG char*  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define FTOL 1.0e-10  
   #define NINTERVMAX 8
 #define NRANSI  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 #define ITMAX 200  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 #define TOL 2.0e-4  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
   /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
 #define CGOLD 0.3819660  #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
 #define ZEPS 1.0e-10  #define MAXN 20000
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define YEARM 12. /**< Number of months per year */
   /* #define AGESUP 130 */
 #define GOLD 1.618034  #define AGESUP 150
 #define GLIMIT 100.0  #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */
 #define TINY 1.0e-20  #define AGEBASE 40
   #define AGEOVERFLOW 1.e20
 static double maxarg1,maxarg2;  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #ifdef _WIN32
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define DIRSEPARATOR '\\'
    #define CHARSEPARATOR "\\"
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define ODIRSEPARATOR '/'
 #define rint(a) floor(a+0.5)  #else
   #define DIRSEPARATOR '/'
 static double sqrarg;  #define CHARSEPARATOR "/"
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define ODIRSEPARATOR '\\'
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #endif
 int agegomp= AGEGOMP;  
   /* $Id$ */
 int imx;  /* $State$ */
 int stepm=1;  #include "version.h"
 /* Stepm, step in month: minimum step interpolation*/  char version[]=__IMACH_VERSION__;
   char copyright[]="February 2016,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018";
 int estepm;  char fullversion[]="$Revision$ $Date$"; 
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 int m,nb;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 long *num;  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 double **pmmij, ***probs;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 double *ageexmed,*agecens;  int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */
 double dateintmean=0;  int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */
   int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 double *weight;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 int **s; /* Status */  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 double *agedc, **covar, idx;  int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */
 double *lsurv, *lpop, *tpop;  int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */
   int nsd=0; /**< Total number of single dummy variables (output) */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int nsq=0; /**< Total number of single quantitative variables (output) */
 double ftolhess; /* Tolerance for computing hessian */  int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */
   int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */
 /**************** split *************************/  int ntveff=0; /**< ntveff number of effective time varying variables */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */
 {  int cptcov=0; /* Working variable */
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  int npar=NPARMAX;
   */  int nlstate=2; /* Number of live states */
   char  *ss;                            /* pointer */  int ndeath=1; /* Number of dead states */
   int   l1, l2;                         /* length counters */  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int  nqv=0, ntv=0, nqtv=0;    /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ 
   l1 = strlen(path );                   /* length of path */  int popbased=0;
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  int *wav; /* Number of waves for this individuual 0 is possible */
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  int maxwav=0; /* Maxim number of waves */
     strcpy( name, path );               /* we got the fullname name because no directory */  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     /* get current working directory */                     to the likelihood and the sum of weights (done by funcone)*/
     /*    extern  char* getcwd ( char *buf , int len);*/  int mle=1, weightopt=0;
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       return( GLOCK_ERROR_GETCWD );  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     /* got dirc from getcwd*/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     printf(" DIRC = %s \n",dirc);  int countcallfunc=0;  /* Count the number of calls to func */
   } else {                              /* strip direcotry from path */  int selected(int kvar); /* Is covariate kvar selected for printing results */
     ss++;                               /* after this, the filename */  
     l2 = strlen( ss );                  /* length of filename */  double jmean=1; /* Mean space between 2 waves */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  double **matprod2(); /* test */
     strcpy( name, ss );         /* save file name */  double **oldm, **newm, **savm; /* Working pointers to matrices */
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     dirc[l1-l2] = 0;                    /* add zero */  double   **ddnewms, **ddoldms, **ddsavms; /* for freeing later */
     printf(" DIRC2 = %s \n",dirc);  
   }  /*FILE *fic ; */ /* Used in readdata only */
   /* We add a separator at the end of dirc if not exists */  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop;
   l1 = strlen( dirc );                  /* length of directory */  FILE *ficlog, *ficrespow;
   if( dirc[l1-1] != DIRSEPARATOR ){  int globpr=0; /* Global variable for printing or not */
     dirc[l1] =  DIRSEPARATOR;  double fretone; /* Only one call to likelihood */
     dirc[l1+1] = 0;  long ipmx=0; /* Number of contributions */
     printf(" DIRC3 = %s \n",dirc);  double sw; /* Sum of weights */
   }  char filerespow[FILENAMELENGTH];
   ss = strrchr( name, '.' );            /* find last / */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   if (ss >0){  FILE *ficresilk;
     ss++;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     strcpy(ext,ss);                     /* save extension */  FILE *ficresprobmorprev;
     l1= strlen( name);  FILE *fichtm, *fichtmcov; /* Html File */
     l2= strlen(ss)+1;  FILE *ficreseij;
     strncpy( finame, name, l1-l2);  char filerese[FILENAMELENGTH];
     finame[l1-l2]= 0;  FILE *ficresstdeij;
   }  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
   return( 0 );                          /* we're done */  char filerescve[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 /******************************************/  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 void replace_back_to_slash(char *s, char*t)  char model[MAXLINE]; /**< The model line */
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH],  fileresplb[FILENAMELENGTH];
   int i;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   int lg=0;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   i=0;  char command[FILENAMELENGTH];
   lg=strlen(t);  int  outcmd=0;
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     if (t[i]== '\\') s[i]='/';  char fileresu[FILENAMELENGTH]; /* fileres without r in front */
   }  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 int nbocc(char *s, char occ)  char popfile[FILENAMELENGTH];
 {  
   int i,j=0;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   int lg=20;  
   i=0;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   lg=strlen(s);  /* struct timezone tzp; */
   for(i=0; i<= lg; i++) {  /* extern int gettimeofday(); */
   if  (s[i] == occ ) j++;  struct tm tml, *gmtime(), *localtime();
   }  
   return j;  extern time_t time();
 }  
   struct tm start_time, end_time, curr_time, last_time, forecast_time;
 void cutv(char *u,char *v, char*t, char occ)  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
 {  struct tm tm;
   /* cuts string t into u and v where u ends before first occurence of char 'occ'  
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  char strcurr[80], strfor[80];
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;  char *endptr;
   i=0;  long lval;
   for(j=0; j<=strlen(t)-1; j++) {  double dval;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  #define NR_END 1
   #define FREE_ARG char*
   lg=strlen(t);  #define FTOL 1.0e-10
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  #define NRANSI 
   }  #define ITMAX 200
      u[p]='\0';  #define ITPOWMAX 20 /* This is now multiplied by the number of parameters */ 
   
    for(j=0; j<= lg; j++) {  #define TOL 2.0e-4 
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  #define CGOLD 0.3819660 
 }  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /********************** nrerror ********************/  
   #define GOLD 1.618034 
 void nrerror(char error_text[])  #define GLIMIT 100.0 
 {  #define TINY 1.0e-20 
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  static double maxarg1,maxarg2;
   exit(EXIT_FAILURE);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /*********************** vector *******************/    
 double *vector(int nl, int nh)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   double *v;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define mytinydouble 1.0e-16
   if (!v) nrerror("allocation failure in vector");  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   return v-nl+NR_END;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
 }  /* static double dsqrarg; */
   /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
 /************************ free vector ******************/  static double sqrarg;
 void free_vector(double*v, int nl, int nh)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   free((FREE_ARG)(v+nl-NR_END));  int agegomp= AGEGOMP;
 }  
   int imx; 
 /************************ivector *******************************/  int stepm=1;
 int *ivector(long nl,long nh)  /* Stepm, step in month: minimum step interpolation*/
 {  
   int *v;  int estepm;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *cens;
 /******************free ivector **************************/  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
 void free_ivector(int *v, long nl, long nh)                     covariate for which somebody answered excluding 
 {                     undefined. Usually 2: 0 and 1. */
   free((FREE_ARG)(v+nl-NR_END));  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
 }                               covariate for which somebody answered including 
                                undefined. Usually 3: -1, 0 and 1. */
 /************************lvector *******************************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 long *lvector(long nl,long nh)  double **pmmij, ***probs; /* Global pointer */
 {  double ***mobaverage, ***mobaverages; /* New global variable */
   long *v;  double *ageexmed,*agecens;
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  double dateintmean=0;
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  double *weight;
 }  int **s; /* Status */
   double *agedc;
 /******************free lvector **************************/  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
 void free_lvector(long *v, long nl, long nh)                    * covar=matrix(0,NCOVMAX,1,n); 
 {                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   free((FREE_ARG)(v+nl-NR_END));  double **coqvar; /* Fixed quantitative covariate iqv */
 }  double ***cotvar; /* Time varying covariate itv */
   double ***cotqvar; /* Time varying quantitative covariate itqv */
 /******************* imatrix *******************************/  double  idx; 
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /*           V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
 {  /*k          1  2   3   4     5    6    7     8    9 */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  /*Tvar[k]=   5  4   3   6     5    2    7     1    1 */
   int **m;  /* Tndvar[k]    1   2   3               4          5 */
    /*TDvar         4   3   6               7          1 */ /* For outputs only; combination of dummies fixed or varying */
   /* allocate pointers to rows */  /* Tns[k]    1  2   2              4               5 */ /* Number of single cova */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  /* TvarsD[k]    1   2                              3 */ /* Number of single dummy cova */
   if (!m) nrerror("allocation failure 1 in matrix()");  /* TvarsDind    2   3                              9 */ /* position K of single dummy cova */
   m += NR_END;  /* TvarsQ[k] 1                     2                 */ /* Number of single quantitative cova */
   m -= nrl;  /* TvarsQind 1                     6                 */ /* position K of single quantitative cova */
    /* Tprod[i]=k           4               7            */
    /* Tage[i]=k                  5               8      */
   /* allocate rows and set pointers to them */  /* */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /* Type                    */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* V         1  2  3  4  5 */
   m[nrl] += NR_END;  /*           F  F  V  V  V */
   m[nrl] -= ncl;  /*           D  Q  D  D  Q */
    /*                         */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int *TvarsD;
    int *TvarsDind;
   /* return pointer to array of pointers to rows */  int *TvarsQ;
   return m;  int *TvarsQind;
 }  
   #define MAXRESULTLINES 10
 /****************** free_imatrix *************************/  int nresult=0;
 void free_imatrix(m,nrl,nrh,ncl,nch)  int TKresult[MAXRESULTLINES];
       int **m;  int Tresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */
       long nch,ncl,nrh,nrl;  int Tinvresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */
      /* free an int matrix allocated by imatrix() */  int Tvresult[MAXRESULTLINES][NCOVMAX]; /* For dummy variable , variable # (output) */
 {  double Tqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  double Tqinvresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */
   free((FREE_ARG) (m+nrl-NR_END));  int Tvqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , variable # (output) */
 }  
   /* int *TDvar; /\**< TDvar[1]=4,  TDvarF[2]=3, TDvar[3]=6  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
 /******************* matrix *******************************/  int *TvarF; /**< TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
 double **matrix(long nrl, long nrh, long ncl, long nch)  int *TvarFind; /**< TvarFind[1]=6,  TvarFind[2]=7, Tvarind[3]=9  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
 {  int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   double **m;  int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   if (!m) nrerror("allocation failure 1 in matrix()");  int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   m += NR_END;  int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   m -= nrl;  int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
   m[nrl] += NR_END;  int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
   m[nrl] -= ncl;  
   int *Tvarsel; /**< Selected covariates for output */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double *Tvalsel; /**< Selected modality value of covariate for output */
   return m;  int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])  int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ 
    */  int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
 }  int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */
   int *FixedV; /** FixedV[v] 0 fixed, 1 varying */
 /*************************free matrix ************************/  int *Tage;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ 
 {  int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ 
   free((FREE_ARG)(m+nrl-NR_END));  int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1  */
 }  int *Ndum; /** Freq of modality (tricode */
   /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
 /******************* ma3x *******************************/  int **Tvard;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int *Tprod;/**< Gives the k position of the k1 product */
 {  /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3  */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int *Tposprod; /**< Gives the k1 product from the k position */
   double ***m;     /* if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2) */
      /* Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5(V3*V2)]=2 (2nd product without age) */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int cptcovprod, *Tvaraff, *invalidvarcomb;
   if (!m) nrerror("allocation failure 1 in matrix()");  double *lsurv, *lpop, *tpop;
   m += NR_END;  
   m -= nrl;  #define FD 1; /* Fixed dummy covariate */
   #define FQ 2; /* Fixed quantitative covariate */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define FP 3; /* Fixed product covariate */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define FPDD 7; /* Fixed product dummy*dummy covariate */
   m[nrl] += NR_END;  #define FPDQ 8; /* Fixed product dummy*quantitative covariate */
   m[nrl] -= ncl;  #define FPQQ 9; /* Fixed product quantitative*quantitative covariate */
   #define VD 10; /* Varying dummy covariate */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define VQ 11; /* Varying quantitative covariate */
   #define VP 12; /* Varying product covariate */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define VPDD 13; /* Varying product dummy*dummy covariate */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define VPDQ 14; /* Varying product dummy*quantitative covariate */
   m[nrl][ncl] += NR_END;  #define VPQQ 15; /* Varying product quantitative*quantitative covariate */
   m[nrl][ncl] -= nll;  #define APFD 16; /* Age product * fixed dummy covariate */
   for (j=ncl+1; j<=nch; j++)  #define APFQ 17; /* Age product * fixed quantitative covariate */
     m[nrl][j]=m[nrl][j-1]+nlay;  #define APVD 18; /* Age product * varying dummy covariate */
    #define APVQ 19; /* Age product * varying quantitative covariate */
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define FTYPE 1; /* Fixed covariate */
     for (j=ncl+1; j<=nch; j++)  #define VTYPE 2; /* Varying covariate (loop in wave) */
       m[i][j]=m[i][j-1]+nlay;  #define ATYPE 2; /* Age product covariate (loop in dh within wave)*/
   }  
   return m;  struct kmodel{
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])          int maintype; /* main type */
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)          int subtype; /* subtype */
   */  };
 }  struct kmodel modell[NCOVMAX];
   
 /*************************free ma3x ************************/  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double ftolhess; /**< Tolerance for computing hessian */
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /**************** split *************************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
 /*************** function subdirf ***********/    */ 
 char *subdirf(char fileres[])    char  *ss;                            /* pointer */
 {    int   l1=0, l2=0;                             /* length counters */
   /* Caution optionfilefiname is hidden */  
   strcpy(tmpout,optionfilefiname);    l1 = strlen(path );                   /* length of path */
   strcat(tmpout,"/"); /* Add to the right */    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   strcat(tmpout,fileres);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   return tmpout;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 }      strcpy( name, path );               /* we got the fullname name because no directory */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 /*************** function subdirf2 ***********/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 char *subdirf2(char fileres[], char *preop)      /* get current working directory */
 {      /*    extern  char* getcwd ( char *buf , int len);*/
    #ifdef WIN32
   /* Caution optionfilefiname is hidden */      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
   strcpy(tmpout,optionfilefiname);  #else
   strcat(tmpout,"/");          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   strcat(tmpout,preop);  #endif
   strcat(tmpout,fileres);        return( GLOCK_ERROR_GETCWD );
   return tmpout;      }
 }      /* got dirc from getcwd*/
       printf(" DIRC = %s \n",dirc);
 /*************** function subdirf3 ***********/    } else {                              /* strip directory from path */
 char *subdirf3(char fileres[], char *preop, char *preop2)      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   /* Caution optionfilefiname is hidden */      strcpy( name, ss );         /* save file name */
   strcpy(tmpout,optionfilefiname);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   strcat(tmpout,"/");      dirc[l1-l2] = '\0';                 /* add zero */
   strcat(tmpout,preop);      printf(" DIRC2 = %s \n",dirc);
   strcat(tmpout,preop2);    }
   strcat(tmpout,fileres);    /* We add a separator at the end of dirc if not exists */
   return tmpout;    l1 = strlen( dirc );                  /* length of directory */
 }    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
 /***************** f1dim *************************/      dirc[l1+1] = 0; 
 extern int ncom;      printf(" DIRC3 = %s \n",dirc);
 extern double *pcom,*xicom;    }
 extern double (*nrfunc)(double []);    ss = strrchr( name, '.' );            /* find last / */
      if (ss >0){
 double f1dim(double x)      ss++;
 {      strcpy(ext,ss);                     /* save extension */
   int j;      l1= strlen( name);
   double f;      l2= strlen(ss)+1;
   double *xt;      strncpy( finame, name, l1-l2);
        finame[l1-l2]= 0;
   xt=vector(1,ncom);    }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    return( 0 );                          /* we're done */
   free_vector(xt,1,ncom);  }
   return f;  
 }  
   /******************************************/
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  void replace_back_to_slash(char *s, char*t)
 {  {
   int iter;    int i;
   double a,b,d,etemp;    int lg=0;
   double fu,fv,fw,fx;    i=0;
   double ftemp;    lg=strlen(t);
   double p,q,r,tol1,tol2,u,v,w,x,xm;    for(i=0; i<= lg; i++) {
   double e=0.0;      (s[i] = t[i]);
        if (t[i]== '\\') s[i]='/';
   a=(ax < cx ? ax : cx);    }
   b=(ax > cx ? ax : cx);  }
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  char *trimbb(char *out, char *in)
   for (iter=1;iter<=ITMAX;iter++) {  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     xm=0.5*(a+b);    char *s;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    s=out;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    while (*in != '\0'){
     printf(".");fflush(stdout);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     fprintf(ficlog,".");fflush(ficlog);        in++;
 #ifdef DEBUG      }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      *out++ = *in++;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    *out='\0';
 #endif    return s;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  /* char *substrchaine(char *out, char *in, char *chain) */
     }  /* { */
     ftemp=fu;  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
     if (fabs(e) > tol1) {  /*   char *s, *t; */
       r=(x-w)*(fx-fv);  /*   t=in;s=out; */
       q=(x-v)*(fx-fw);  /*   while ((*in != *chain) && (*in != '\0')){ */
       p=(x-v)*q-(x-w)*r;  /*     *out++ = *in++; */
       q=2.0*(q-r);  /*   } */
       if (q > 0.0) p = -p;  
       q=fabs(q);  /*   /\* *in matches *chain *\/ */
       etemp=e;  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
       e=d;  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /*   } */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /*   in--; chain--; */
       else {  /*   while ( (*in != '\0')){ */
         d=p/q;  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
         u=x+d;  /*     *out++ = *in++; */
         if (u-a < tol2 || b-u < tol2)  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
           d=SIGN(tol1,xm-x);  /*   } */
       }  /*   *out='\0'; */
     } else {  /*   out=s; */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /*   return out; */
     }  /* } */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char *substrchaine(char *out, char *in, char *chain)
     fu=(*f)(u);  {
     if (fu <= fx) {    /* Substract chain 'chain' from 'in', return and output 'out' */
       if (u >= x) a=x; else b=x;    /* in="V1+V1*age+age*age+V2", chain="age*age" */
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)    char *strloc;
         } else {  
           if (u < x) a=u; else b=u;    strcpy (out, in); 
           if (fu <= fw || w == x) {    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
             v=w;    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
             w=u;    if(strloc != NULL){ 
             fv=fw;      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
             fw=fu;      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
           } else if (fu <= fv || v == x || v == w) {      /* strcpy (strloc, strloc +strlen(chain));*/
             v=u;    }
             fv=fu;    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
           }    return out;
         }  }
   }  
   nrerror("Too many iterations in brent");  
   *xmin=x;  char *cutl(char *blocc, char *alocc, char *in, char occ)
   return fx;  {
 }    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
        and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 /****************** mnbrak ***********************/       gives blocc="abcdef" and alocc="ghi2j".
        If occ is not found blocc is null and alocc is equal to in. Returns blocc
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    */
             double (*func)(double))    char *s, *t;
 {    t=in;s=in;
   double ulim,u,r,q, dum;    while ((*in != occ) && (*in != '\0')){
   double fu;      *alocc++ = *in++;
      }
   *fa=(*func)(*ax);    if( *in == occ){
   *fb=(*func)(*bx);      *(alocc)='\0';
   if (*fb > *fa) {      s=++in;
     SHFT(dum,*ax,*bx,dum)    }
       SHFT(dum,*fb,*fa,dum)   
       }    if (s == t) {/* occ not found */
   *cx=(*bx)+GOLD*(*bx-*ax);      *(alocc-(in-s))='\0';
   *fc=(*func)(*cx);      in=s;
   while (*fb > *fc) {    }
     r=(*bx-*ax)*(*fb-*fc);    while ( *in != '\0'){
     q=(*bx-*cx)*(*fb-*fa);      *blocc++ = *in++;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    *blocc='\0';
     if ((*bx-u)*(u-*cx) > 0.0) {    return t;
       fu=(*func)(u);  }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  char *cutv(char *blocc, char *alocc, char *in, char occ)
       fu=(*func)(u);  {
       if (fu < *fc) {    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
           SHFT(*fb,*fc,fu,(*func)(u))       gives blocc="abcdef2ghi" and alocc="j".
           }       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    */
       u=ulim;    char *s, *t;
       fu=(*func)(u);    t=in;s=in;
     } else {    while (*in != '\0'){
       u=(*cx)+GOLD*(*cx-*bx);      while( *in == occ){
       fu=(*func)(u);        *blocc++ = *in++;
     }        s=in;
     SHFT(*ax,*bx,*cx,u)      }
       SHFT(*fa,*fb,*fc,fu)      *blocc++ = *in++;
       }    }
 }    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
 /*************** linmin ************************/    else
       *(blocc-(in-s)-1)='\0';
 int ncom;    in=s;
 double *pcom,*xicom;    while ( *in != '\0'){
 double (*nrfunc)(double []);      *alocc++ = *in++;
      }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {    *alocc='\0';
   double brent(double ax, double bx, double cx,    return s;
                double (*f)(double), double tol, double *xmin);  }
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int nbocc(char *s, char occ)
               double *fc, double (*func)(double));  {
   int j;    int i,j=0;
   double xx,xmin,bx,ax;    int lg=20;
   double fx,fb,fa;    i=0;
      lg=strlen(s);
   ncom=n;    for(i=0; i<= lg; i++) {
   pcom=vector(1,n);      if  (s[i] == occ ) j++;
   xicom=vector(1,n);    }
   nrfunc=func;    return j;
   for (j=1;j<=n;j++) {  }
     pcom[j]=p[j];  
     xicom[j]=xi[j];  /* void cutv(char *u,char *v, char*t, char occ) */
   }  /* { */
   ax=0.0;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   xx=1.0;  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /*      gives u="abcdef2ghi" and v="j" *\/ */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /*   int i,lg,j,p=0; */
 #ifdef DEBUG  /*   i=0; */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /*   lg=strlen(t); */
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /*   for(j=0; j<=lg-1; j++) { */
 #endif  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   for (j=1;j<=n;j++) {  /*   } */
     xi[j] *= xmin;  
     p[j] += xi[j];  /*   for(j=0; j<p; j++) { */
   }  /*     (u[j] = t[j]); */
   free_vector(xicom,1,n);  /*   } */
   free_vector(pcom,1,n);  /*      u[p]='\0'; */
 }  
   /*    for(j=0; j<= lg; j++) { */
 char *asc_diff_time(long time_sec, char ascdiff[])  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
 {  /*   } */
   long sec_left, days, hours, minutes;  /* } */
   days = (time_sec) / (60*60*24);  
   sec_left = (time_sec) % (60*60*24);  #ifdef _WIN32
   hours = (sec_left) / (60*60) ;  char * strsep(char **pp, const char *delim)
   sec_left = (sec_left) %(60*60);  {
   minutes = (sec_left) /60;    char *p, *q;
   sec_left = (sec_left) % (60);           
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);      if ((p = *pp) == NULL)
   return ascdiff;      return 0;
 }    if ((q = strpbrk (p, delim)) != NULL)
     {
 /*************** powell ************************/      *pp = q + 1;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      *q = '\0';
             double (*func)(double []))    }
 {    else
   void linmin(double p[], double xi[], int n, double *fret,      *pp = 0;
               double (*func)(double []));    return p;
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  #endif
   double fp,fptt;  
   double *xits;  /********************** nrerror ********************/
   int niterf, itmp;  
   void nrerror(char error_text[])
   pt=vector(1,n);  {
   ptt=vector(1,n);    fprintf(stderr,"ERREUR ...\n");
   xit=vector(1,n);    fprintf(stderr,"%s\n",error_text);
   xits=vector(1,n);    exit(EXIT_FAILURE);
   *fret=(*func)(p);  }
   for (j=1;j<=n;j++) pt[j]=p[j];  /*********************** vector *******************/
   for (*iter=1;;++(*iter)) {  double *vector(int nl, int nh)
     fp=(*fret);  {
     ibig=0;    double *v;
     del=0.0;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     last_time=curr_time;    if (!v) nrerror("allocation failure in vector");
     (void) gettimeofday(&curr_time,&tzp);    return v-nl+NR_END;
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);  }
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);  
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */  /************************ free vector ******************/
    for (i=1;i<=n;i++) {  void free_vector(double*v, int nl, int nh)
       printf(" %d %.12f",i, p[i]);  {
       fprintf(ficlog," %d %.12lf",i, p[i]);    free((FREE_ARG)(v+nl-NR_END));
       fprintf(ficrespow," %.12lf", p[i]);  }
     }  
     printf("\n");  /************************ivector *******************************/
     fprintf(ficlog,"\n");  int *ivector(long nl,long nh)
     fprintf(ficrespow,"\n");fflush(ficrespow);  {
     if(*iter <=3){    int *v;
       tm = *localtime(&curr_time.tv_sec);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       strcpy(strcurr,asctime(&tm));    if (!v) nrerror("allocation failure in ivector");
 /*       asctime_r(&tm,strcurr); */    return v-nl+NR_END;
       forecast_time=curr_time;  }
       itmp = strlen(strcurr);  
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */  /******************free ivector **************************/
         strcurr[itmp-1]='\0';  void free_ivector(int *v, long nl, long nh)
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  {
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    free((FREE_ARG)(v+nl-NR_END));
       for(niterf=10;niterf<=30;niterf+=10){  }
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);  
         tmf = *localtime(&forecast_time.tv_sec);  /************************lvector *******************************/
 /*      asctime_r(&tmf,strfor); */  long *lvector(long nl,long nh)
         strcpy(strfor,asctime(&tmf));  {
         itmp = strlen(strfor);    long *v;
         if(strfor[itmp-1]=='\n')    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         strfor[itmp-1]='\0';    if (!v) nrerror("allocation failure in ivector");
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    return v-nl+NR_END;
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  }
       }  
     }  /******************free lvector **************************/
     for (i=1;i<=n;i++) {  void free_lvector(long *v, long nl, long nh)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
       printf("fret=%lf \n",*fret);  
       fprintf(ficlog,"fret=%lf \n",*fret);  /******************* imatrix *******************************/
 #endif  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       printf("%d",i);fflush(stdout);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       fprintf(ficlog,"%d",i);fflush(ficlog);  { 
       linmin(p,xit,n,fret,func);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       if (fabs(fptt-(*fret)) > del) {    int **m; 
         del=fabs(fptt-(*fret));    
         ibig=i;    /* allocate pointers to rows */ 
       }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()"); 
       printf("%d %.12e",i,(*fret));    m += NR_END; 
       fprintf(ficlog,"%d %.12e",i,(*fret));    m -= nrl; 
       for (j=1;j<=n;j++) {    
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    
         printf(" x(%d)=%.12e",j,xit[j]);    /* allocate rows and set pointers to them */ 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       for(j=1;j<=n;j++) {    m[nrl] += NR_END; 
         printf(" p=%.12e",p[j]);    m[nrl] -= ncl; 
         fprintf(ficlog," p=%.12e",p[j]);    
       }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       printf("\n");    
       fprintf(ficlog,"\n");    /* return pointer to array of pointers to rows */ 
 #endif    return m; 
     }  } 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /****************** free_imatrix *************************/
       int k[2],l;  void free_imatrix(m,nrl,nrh,ncl,nch)
       k[0]=1;        int **m;
       k[1]=-1;        long nch,ncl,nrh,nrl; 
       printf("Max: %.12e",(*func)(p));       /* free an int matrix allocated by imatrix() */ 
       fprintf(ficlog,"Max: %.12e",(*func)(p));  { 
       for (j=1;j<=n;j++) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         printf(" %.12e",p[j]);    free((FREE_ARG) (m+nrl-NR_END)); 
         fprintf(ficlog," %.12e",p[j]);  } 
       }  
       printf("\n");  /******************* matrix *******************************/
       fprintf(ficlog,"\n");  double **matrix(long nrl, long nrh, long ncl, long nch)
       for(l=0;l<=1;l++) {  {
         for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    double **m;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         }    if (!m) nrerror("allocation failure 1 in matrix()");
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m += NR_END;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m -= nrl;
       }  
 #endif    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
       free_vector(xit,1,n);    m[nrl] -= ncl;
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       free_vector(pt,1,n);    return m;
       return;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
     }  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     for (j=1;j<=n;j++) {     */
       ptt[j]=2.0*p[j]-pt[j];  }
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    free((FREE_ARG)(m+nrl-NR_END));
       if (t < 0.0) {  }
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /******************* ma3x *******************************/
           xi[j][ibig]=xi[j][n];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
           xi[j][n]=xit[j];  {
         }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 #ifdef DEBUG    double ***m;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         for(j=1;j<=n;j++){    if (!m) nrerror("allocation failure 1 in matrix()");
           printf(" %.12e",xit[j]);    m += NR_END;
           fprintf(ficlog," %.12e",xit[j]);    m -= nrl;
         }  
         printf("\n");    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         fprintf(ficlog,"\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
     }  
   }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 /**** Prevalence limit (stable or period prevalence)  ****************/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl][ncl] -= nll;
 {    for (j=ncl+1; j<=nch; j++) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      m[nrl][j]=m[nrl][j-1]+nlay;
      matrix by transitions matrix until convergence is reached */    
     for (i=nrl+1; i<=nrh; i++) {
   int i, ii,j,k;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double min, max, maxmin, maxmax,sumnew=0.;      for (j=ncl+1; j<=nch; j++) 
   double **matprod2();        m[i][j]=m[i][j-1]+nlay;
   double **out, cov[NCOVMAX], **pmij();    }
   double **newm;    return m; 
   double agefin, delaymax=50 ; /* Max number of years to converge */    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   for (ii=1;ii<=nlstate+ndeath;ii++)    */
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    cov[1]=1.;  {
      free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    free((FREE_ARG)(m+nrl-NR_END));
     newm=savm;  }
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /*************** function subdirf ***********/
    char *subdirf(char fileres[])
       for (k=1; k<=cptcovn;k++) {  {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    /* Caution optionfilefiname is hidden */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    strcat(tmpout,fileres);
       for (k=1; k<=cptcovprod;k++)    return tmpout;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /*************** function subdirf2 ***********/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  char *subdirf2(char fileres[], char *preop)
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  {
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    
     /* Caution optionfilefiname is hidden */
     savm=oldm;    strcpy(tmpout,optionfilefiname);
     oldm=newm;    strcat(tmpout,"/");
     maxmax=0.;    strcat(tmpout,preop);
     for(j=1;j<=nlstate;j++){    strcat(tmpout,fileres);
       min=1.;    return tmpout;
       max=0.;  }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  /*************** function subdirf3 ***********/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  char *subdirf3(char fileres[], char *preop, char *preop2)
         prlim[i][j]= newm[i][j]/(1-sumnew);  {
         max=FMAX(max,prlim[i][j]);    
         min=FMIN(min,prlim[i][j]);    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
       maxmin=max-min;    strcat(tmpout,"/");
       maxmax=FMAX(maxmax,maxmin);    strcat(tmpout,preop);
     }    strcat(tmpout,preop2);
     if(maxmax < ftolpl){    strcat(tmpout,fileres);
       return prlim;    return tmpout;
     }  }
   }   
 }  /*************** function subdirfext ***********/
   char *subdirfext(char fileres[], char *preop, char *postop)
 /*************** transition probabilities ***************/  {
     
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    strcpy(tmpout,preop);
 {    strcat(tmpout,fileres);
   double s1, s2;    strcat(tmpout,postop);
   /*double t34;*/    return tmpout;
   int i,j,j1, nc, ii, jj;  }
   
     for(i=1; i<= nlstate; i++){  /*************** function subdirfext3 ***********/
       for(j=1; j<i;j++){  char *subdirfext3(char fileres[], char *preop, char *postop)
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
           /*s2 += param[i][j][nc]*cov[nc];*/    
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* Caution optionfilefiname is hidden */
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/");
         ps[i][j]=s2;    strcat(tmpout,preop);
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */    strcat(tmpout,fileres);
       }    strcat(tmpout,postop);
       for(j=i+1; j<=nlstate+ndeath;j++){    return tmpout;
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];   
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */  char *asc_diff_time(long time_sec, char ascdiff[])
         }  {
         ps[i][j]=s2;    long sec_left, days, hours, minutes;
       }    days = (time_sec) / (60*60*24);
     }    sec_left = (time_sec) % (60*60*24);
     /*ps[3][2]=1;*/    hours = (sec_left) / (60*60) ;
        sec_left = (sec_left) %(60*60);
     for(i=1; i<= nlstate; i++){    minutes = (sec_left) /60;
       s1=0;    sec_left = (sec_left) % (60);
       for(j=1; j<i; j++)    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
         s1+=exp(ps[i][j]);    return ascdiff;
       for(j=i+1; j<=nlstate+ndeath; j++)  }
         s1+=exp(ps[i][j]);  
       ps[i][i]=1./(s1+1.);  /***************** f1dim *************************/
       for(j=1; j<i; j++)  extern int ncom; 
         ps[i][j]= exp(ps[i][j])*ps[i][i];  extern double *pcom,*xicom;
       for(j=i+1; j<=nlstate+ndeath; j++)  extern double (*nrfunc)(double []); 
         ps[i][j]= exp(ps[i][j])*ps[i][i];   
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  double f1dim(double x) 
     } /* end i */  { 
        int j; 
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    double f;
       for(jj=1; jj<= nlstate+ndeath; jj++){    double *xt; 
         ps[ii][jj]=0;   
         ps[ii][ii]=1;    xt=vector(1,ncom); 
       }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     }    f=(*nrfunc)(xt); 
        free_vector(xt,1,ncom); 
     return f; 
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */  } 
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */  
 /*         printf("ddd %lf ",ps[ii][jj]); */  /*****************brent *************************/
 /*       } */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 /*       printf("\n "); */  {
 /*        } */    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
 /*        printf("\n ");printf("%lf ",cov[2]); */     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
        /*     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
       for(i=1; i<= npar; i++) printf("%f ",x[i]);     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
       goto end;*/     * returned function value. 
     return ps;    */
 }    int iter; 
     double a,b,d,etemp;
 /**************** Product of 2 matrices ******************/    double fu=0,fv,fw,fx;
     double ftemp=0.;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 {    double e=0.0; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times   
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    a=(ax < cx ? ax : cx); 
   /* in, b, out are matrice of pointers which should have been initialized    b=(ax > cx ? ax : cx); 
      before: only the contents of out is modified. The function returns    x=w=v=bx; 
      a pointer to pointers identical to out */    fw=fv=fx=(*f)(x); 
   long i, j, k;    for (iter=1;iter<=ITMAX;iter++) { 
   for(i=nrl; i<= nrh; i++)      xm=0.5*(a+b); 
     for(k=ncolol; k<=ncoloh; k++)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         out[i][k] +=in[i][j]*b[j][k];      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
   return out;  #ifdef DEBUGBRENT
 }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 /************* Higher Matrix Product ***************/  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        *xmin=x; 
 {        return fx; 
   /* Computes the transition matrix starting at age 'age' over      } 
      'nhstepm*hstepm*stepm' months (i.e. until      ftemp=fu;
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying      if (fabs(e) > tol1) { 
      nhstepm*hstepm matrices.        r=(x-w)*(fx-fv); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        q=(x-v)*(fx-fw); 
      (typically every 2 years instead of every month which is too big        p=(x-v)*q-(x-w)*r; 
      for the memory).        q=2.0*(q-r); 
      Model is determined by parameters x and covariates have to be        if (q > 0.0) p = -p; 
      included manually here.        q=fabs(q); 
         etemp=e; 
      */        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   int i, j, d, h, k;                                  d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double **out, cov[NCOVMAX];        else { 
   double **newm;                                  d=p/q; 
                                   u=x+d; 
   /* Hstepm could be zero and should return the unit matrix */                                  if (u-a < tol2 || b-u < tol2) 
   for (i=1;i<=nlstate+ndeath;i++)                                          d=SIGN(tol1,xm-x); 
     for (j=1;j<=nlstate+ndeath;j++){        } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      } else { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   for(h=1; h <=nhstepm; h++){      fu=(*f)(u); 
     for(d=1; d <=hstepm; d++){      if (fu <= fx) { 
       newm=savm;        if (u >= x) a=x; else b=x; 
       /* Covariates have to be included here again */        SHFT(v,w,x,u) 
       cov[1]=1.;        SHFT(fv,fw,fx,fu) 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      } else { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        if (u < x) a=u; else b=u; 
       for (k=1; k<=cptcovage;k++)        if (fu <= fw || w == x) { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                                  v=w; 
       for (k=1; k<=cptcovprod;k++)                                  w=u; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];                                  fv=fw; 
                                   fw=fu; 
         } else if (fu <= fv || v == x || v == w) { 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/                                  v=u; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/                                  fv=fu; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        } 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      } 
       savm=oldm;    } 
       oldm=newm;    nrerror("Too many iterations in brent"); 
     }    *xmin=x; 
     for(i=1; i<=nlstate+ndeath; i++)    return fx; 
       for(j=1;j<=nlstate+ndeath;j++) {  } 
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /****************** mnbrak ***********************/
          */  
       }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   } /* end h */              double (*func)(double)) 
   return po;  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
 }  the downhill direction (defined by the function as evaluated at the initial points) and returns
   new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
   values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
 /*************** log-likelihood *************/     */
 double func( double *x)    double ulim,u,r,q, dum;
 {    double fu; 
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double scale=10.;
   double **out;    int iterscale=0;
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
   int s1, s2;    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
   double bbh, survp;  
   long ipmx;  
   /*extern weight */    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
   /* We are differentiating ll according to initial status */    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /*   *bx = *ax - (*ax - *bx)/scale; */
   /*for(i=1;i<imx;i++)    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
     printf(" %d\n",s[4][i]);    /* } */
   */  
   cov[1]=1.;    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      SHFT(dum,*fb,*fa,dum) 
     } 
   if(mle==1){    *cx=(*bx)+GOLD*(*bx-*ax); 
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    *fc=(*func)(*cx); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  #ifdef DEBUG
       for(mi=1; mi<= wav[i]-1; mi++){    printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
         for (ii=1;ii<=nlstate+ndeath;ii++)    fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
           for (j=1;j<=nlstate+ndeath;j++){  #endif
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      r=(*bx-*ax)*(*fb-*fc); 
           }      q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */
         for(d=0; d<dh[mi][i]; d++){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
           newm=savm;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
           for (kk=1; kk<=cptcovage;kk++) {      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        fu=(*func)(u); 
           }  #ifdef DEBUG
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        /* f(x)=A(x-u)**2+f(u) */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        double A, fparabu; 
           savm=oldm;        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
           oldm=newm;        fparabu= *fa - A*(*ax-u)*(*ax-u);
         } /* end mult */        printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
              fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        /* And thus,it can be that fu > *fc even if fparabu < *fc */
         /* But now since version 0.9 we anticipate for bias at large stepm.        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
          * If stepm is larger than one month (smallest stepm) and if the exact delay          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
          * (in months) between two waves is not a multiple of stepm, we rounded to        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
          * the nearest (and in case of equal distance, to the lowest) interval but now  #endif 
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  #ifdef MNBRAKORIGINAL
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the  #else
          * probability in order to take into account the bias as a fraction of the way  /*       if (fu > *fc) { */
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies  /* #ifdef DEBUG */
          * -stepm/2 to stepm/2 .  /*       printf("mnbrak4  fu > fc \n"); */
          * For stepm=1 the results are the same as for previous versions of Imach.  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
          * For stepm > 1 the results are less biased than in previous versions.  /* #endif */
          */  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
         s1=s[mw[mi][i]][i];  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
         s2=s[mw[mi+1][i]][i];  /*      dum=u; /\* Shifting c and u *\/ */
         bbh=(double)bh[mi][i]/(double)stepm;  /*      u = *cx; */
         /* bias bh is positive if real duration  /*      *cx = dum; */
          * is higher than the multiple of stepm and negative otherwise.  /*      dum = fu; */
          */  /*      fu = *fc; */
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  /*      *fc =dum; */
         if( s2 > nlstate){  /*       } else { /\* end *\/ */
           /* i.e. if s2 is a death state and if the date of death is known  /* #ifdef DEBUG */
              then the contribution to the likelihood is the probability to  /*       printf("mnbrak3  fu < fc \n"); */
              die between last step unit time and current  step unit time,  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
              which is also equal to probability to die before dh  /* #endif */
              minus probability to die before dh-stepm .  /*      dum=u; /\* Shifting c and u *\/ */
              In version up to 0.92 likelihood was computed  /*      u = *cx; */
         as if date of death was unknown. Death was treated as any other  /*      *cx = dum; */
         health state: the date of the interview describes the actual state  /*      dum = fu; */
         and not the date of a change in health state. The former idea was  /*      fu = *fc; */
         to consider that at each interview the state was recorded  /*      *fc =dum; */
         (healthy, disable or death) and IMaCh was corrected; but when we  /*       } */
         introduced the exact date of death then we should have modified  #ifdef DEBUGMNBRAK
         the contribution of an exact death to the likelihood. This new                   double A, fparabu; 
         contribution is smaller and very dependent of the step unit       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
         stepm. It is no more the probability to die between last interview       fparabu= *fa - A*(*ax-u)*(*ax-u);
         and month of death but the probability to survive from last       printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
         interview up to one month before death multiplied by the       fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
         probability to die within a month. Thanks to Chris  #endif
         Jackson for correcting this bug.  Former versions increased        dum=u; /* Shifting c and u */
         mortality artificially. The bad side is that we add another loop        u = *cx;
         which slows down the processing. The difference can be up to 10%        *cx = dum;
         lower mortality.        dum = fu;
           */        fu = *fc;
           lli=log(out[s1][s2] - savm[s1][s2]);        *fc =dum;
   #endif
       } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
         } else if  (s2==-2) {  #ifdef DEBUG
           for (j=1,survp=0. ; j<=nlstate; j++)        printf("\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];        fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
           /*survp += out[s1][j]; */  #endif
           lli= log(survp);        fu=(*func)(u); 
         }        if (fu < *fc) { 
          #ifdef DEBUG
         else if  (s2==-4) {                                  printf("\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
           for (j=3,survp=0. ; j<=nlstate; j++)                              fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];  #endif
           lli= log(survp);                            SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         }                                  SHFT(*fb,*fc,fu,(*func)(u)) 
   #ifdef DEBUG
         else if  (s2==-5) {                                          printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx));
           for (j=1,survp=0. ; j<=2; j++)    #endif
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];        } 
           lli= log(survp);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
         }  #ifdef DEBUG
                printf("\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
         else{        fprintf(ficlog,"\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  #endif
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */        u=ulim; 
         }        fu=(*func)(u); 
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/      } else { /* u could be left to b (if r > q parabola has a maximum) */
         /*if(lli ==000.0)*/  #ifdef DEBUG
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */        printf("\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
         ipmx +=1;        fprintf(ficlog,"\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
         sw += weight[i];  #endif
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        u=(*cx)+GOLD*(*cx-*bx); 
       } /* end of wave */        fu=(*func)(u); 
     } /* end of individual */  #ifdef DEBUG
   }  else if(mle==2){        printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  #endif
       for(mi=1; mi<= wav[i]-1; mi++){      } /* end tests */
         for (ii=1;ii<=nlstate+ndeath;ii++)      SHFT(*ax,*bx,*cx,u) 
           for (j=1;j<=nlstate+ndeath;j++){      SHFT(*fa,*fb,*fc,fu) 
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #ifdef DEBUG
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
           }        fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
         for(d=0; d<=dh[mi][i]; d++){  #endif
           newm=savm;    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  } 
           for (kk=1; kk<=cptcovage;kk++) {  
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*************** linmin ************************/
           }  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
           savm=oldm;  the value of func at the returned location p . This is actually all accomplished by calling the
           oldm=newm;  routines mnbrak and brent .*/
         } /* end mult */  int ncom; 
        double *pcom,*xicom;
         s1=s[mw[mi][i]][i];  double (*nrfunc)(double []); 
         s2=s[mw[mi+1][i]][i];   
         bbh=(double)bh[mi][i]/(double)stepm;  #ifdef LINMINORIGINAL
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         ipmx +=1;  #else
         sw += weight[i];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) 
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  #endif
       } /* end of wave */  { 
     } /* end of individual */    double brent(double ax, double bx, double cx, 
   }  else if(mle==3){  /* exponential inter-extrapolation */                 double (*f)(double), double tol, double *xmin); 
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double f1dim(double x); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       for(mi=1; mi<= wav[i]-1; mi++){                double *fc, double (*func)(double)); 
         for (ii=1;ii<=nlstate+ndeath;ii++)    int j; 
           for (j=1;j<=nlstate+ndeath;j++){    double xx,xmin,bx,ax; 
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double fx,fb,fa;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }  #ifdef LINMINORIGINAL
         for(d=0; d<dh[mi][i]; d++){  #else
           newm=savm;    double scale=10., axs, xxs; /* Scale added for infinity */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #endif
           for (kk=1; kk<=cptcovage;kk++) {    
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    ncom=n; 
           }    pcom=vector(1,n); 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    xicom=vector(1,n); 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    nrfunc=func; 
           savm=oldm;    for (j=1;j<=n;j++) { 
           oldm=newm;      pcom[j]=p[j]; 
         } /* end mult */      xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
          } 
         s1=s[mw[mi][i]][i];  
         s2=s[mw[mi+1][i]][i];  #ifdef LINMINORIGINAL
         bbh=(double)bh[mi][i]/(double)stepm;    xx=1.;
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */  #else
         ipmx +=1;    axs=0.0;
         sw += weight[i];    xxs=1.;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    do{
       } /* end of wave */      xx= xxs;
     } /* end of individual */  #endif
   }else if (mle==4){  /* ml=4 no inter-extrapolation */      ax=0.;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
       for(mi=1; mi<= wav[i]-1; mi++){      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
         for (ii=1;ii<=nlstate+ndeath;ii++)      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
           for (j=1;j<=nlstate+ndeath;j++){      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
           }  #ifdef LINMINORIGINAL
         for(d=0; d<dh[mi][i]; d++){  #else
           newm=savm;      if (fx != fx){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;                          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
           for (kk=1; kk<=cptcovage;kk++) {                          printf("|");
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];                          fprintf(ficlog,"|");
           }  #ifdef DEBUGLINMIN
                                  printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #endif
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      }
           savm=oldm;    }while(fx != fx && xxs > 1.e-5);
           oldm=newm;  #endif
         } /* end mult */    
        #ifdef DEBUGLINMIN
         s1=s[mw[mi][i]][i];    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
         s2=s[mw[mi+1][i]][i];    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
         if( s2 > nlstate){  #endif
           lli=log(out[s1][s2] - savm[s1][s2]);  #ifdef LINMINORIGINAL
         }else{  #else
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          if(fb == fx){ /* Flat function in the direction */
         }                  xmin=xx;
         ipmx +=1;      *flat=1;
         sw += weight[i];          }else{
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      *flat=0;
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */  #endif
       } /* end of wave */                  /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
     } /* end of individual */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    /* fmin = f(p[j] + xmin * xi[j]) */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
       for(mi=1; mi<= wav[i]-1; mi++){    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
         for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef DEBUG
           for (j=1;j<=nlstate+ndeath;j++){    printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
           }  #ifdef LINMINORIGINAL
         for(d=0; d<dh[mi][i]; d++){  #else
           newm=savm;                          }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #endif
           for (kk=1; kk<=cptcovage;kk++) {  #ifdef DEBUGLINMIN
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    printf("linmin end ");
           }    fprintf(ficlog,"linmin end ");
          #endif
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    for (j=1;j<=n;j++) { 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #ifdef LINMINORIGINAL
           savm=oldm;      xi[j] *= xmin; 
           oldm=newm;  #else
         } /* end mult */  #ifdef DEBUGLINMIN
            if(xxs <1.0)
         s1=s[mw[mi][i]][i];        printf(" before xi[%d]=%12.8f", j,xi[j]);
         s2=s[mw[mi+1][i]][i];  #endif
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
         ipmx +=1;  #ifdef DEBUGLINMIN
         sw += weight[i];      if(xxs <1.0)
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/  #endif
       } /* end of wave */  #endif
     } /* end of individual */      p[j] += xi[j]; /* Parameters values are updated accordingly */
   } /* End of if */    } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  #ifdef DEBUGLINMIN
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    printf("\n");
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
   return -l;    fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
 }    for (j=1;j<=n;j++) { 
       printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
 /*************** log-likelihood *************/      fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
 double funcone( double *x)      if(j % ncovmodel == 0){
 {        printf("\n");
   /* Same as likeli but slower because of a lot of printf and if */        fprintf(ficlog,"\n");
   int i, ii, j, k, mi, d, kk;      }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    }
   double **out;  #else
   double lli; /* Individual log likelihood */  #endif
   double llt;    free_vector(xicom,1,n); 
   int s1, s2;    free_vector(pcom,1,n); 
   double bbh, survp;  } 
   /*extern weight */  
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /*************** powell ************************/
   /*for(i=1;i<imx;i++)  /*
     printf(" %d\n",s[4][i]);  Minimization of a function func of n variables. Input consists of an initial starting point
   */  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   cov[1]=1.;  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   such that failure to decrease by more than this amount on one iteration signals doneness. On
   for(k=1; k<=nlstate; k++) ll[k]=0.;  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   function value at p , and iter is the number of iterations taken. The routine linmin is used.
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){   */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  #ifdef LINMINORIGINAL
     for(mi=1; mi<= wav[i]-1; mi++){  #else
       for (ii=1;ii<=nlstate+ndeath;ii++)          int *flatdir; /* Function is vanishing in that direction */
         for (j=1;j<=nlstate+ndeath;j++){          int flat=0, flatd=0; /* Function is vanishing in that direction */
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         }              double (*func)(double [])) 
       for(d=0; d<dh[mi][i]; d++){  { 
         newm=savm;  #ifdef LINMINORIGINAL
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;   void linmin(double p[], double xi[], int n, double *fret, 
         for (kk=1; kk<=cptcovage;kk++) {                double (*func)(double [])); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #else 
         }   void linmin(double p[], double xi[], int n, double *fret, 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                                                   double (*func)(double []),int *flat); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
         savm=oldm;   int i,ibig,j,jk,k; 
         oldm=newm;    double del,t,*pt,*ptt,*xit;
       } /* end mult */    double directest;
          double fp,fptt;
       s1=s[mw[mi][i]][i];    double *xits;
       s2=s[mw[mi+1][i]][i];    int niterf, itmp;
       bbh=(double)bh[mi][i]/(double)stepm;  #ifdef LINMINORIGINAL
       /* bias is positive if real duration  #else
        * is higher than the multiple of stepm and negative otherwise.  
        */    flatdir=ivector(1,n); 
       if( s2 > nlstate && (mle <5) ){  /* Jackson */    for (j=1;j<=n;j++) flatdir[j]=0; 
         lli=log(out[s1][s2] - savm[s1][s2]);  #endif
       } else if  (s2==-2) {  
         for (j=1,survp=0. ; j<=nlstate; j++)    pt=vector(1,n); 
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];    ptt=vector(1,n); 
         lli= log(survp);    xit=vector(1,n); 
       }else if (mle==1){    xits=vector(1,n); 
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */    *fret=(*func)(p); 
       } else if(mle==2){    for (j=1;j<=n;j++) pt[j]=p[j]; 
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */    rcurr_time = time(NULL);  
       } else if(mle==3){  /* exponential inter-extrapolation */    for (*iter=1;;++(*iter)) { 
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */      fp=(*fret); /* From former iteration or initial value */
       } else if (mle==4){  /* mle=4 no inter-extrapolation */      ibig=0; 
         lli=log(out[s1][s2]); /* Original formula */      del=0.0; 
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */      rlast_time=rcurr_time;
         lli=log(out[s1][s2]); /* Original formula */      /* (void) gettimeofday(&curr_time,&tzp); */
       } /* End of if */      rcurr_time = time(NULL);  
       ipmx +=1;      curr_time = *localtime(&rcurr_time);
       sw += weight[i];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       if(globpr){      for (i=1;i<=n;i++) {
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\        fprintf(ficrespow," %.12lf", p[i]);
  %11.6f %11.6f %11.6f ", \      }
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],      fprintf(ficrespow,"\n");fflush(ficrespow);
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);      printf("\n#model=  1      +     age ");
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){      fprintf(ficlog,"\n#model=  1      +     age ");
           llt +=ll[k]*gipmx/gsw;      if(nagesqr==1){
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);          printf("  + age*age  ",Tvar[j]);
         }          fprintf(ficlog,"  + age*age  ",Tvar[j]);
         fprintf(ficresilk," %10.6f\n", -llt);      }
       }      for(j=1;j <=ncovmodel-2;j++){
     } /* end of wave */        if(Typevar[j]==0) {
   } /* end of individual */          printf("  +      V%d  ",Tvar[j]);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          fprintf(ficlog,"  +      V%d  ",Tvar[j]);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        }else if(Typevar[j]==1) {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          printf("  +    V%d*age ",Tvar[j]);
   if(globpr==0){ /* First time we count the contributions and weights */          fprintf(ficlog,"  +    V%d*age ",Tvar[j]);
     gipmx=ipmx;        }else if(Typevar[j]==2) {
     gsw=sw;          printf("  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
   }          fprintf(ficlog,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
   return -l;        }
 }      }
       printf("\n");
   /*     printf("12   47.0114589    0.0154322   33.2424412    0.3279905    2.3731903  */
 /*************** function likelione ***********/  /* 13  -21.5392400    0.1118147    1.2680506    1.2973408   -1.0663662  */
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))      fprintf(ficlog,"\n");
 {      for(i=1,jk=1; i <=nlstate; i++){
   /* This routine should help understanding what is done with        for(k=1; k <=(nlstate+ndeath); k++){
      the selection of individuals/waves and          if (k != i) {
      to check the exact contribution to the likelihood.            printf("%d%d ",i,k);
      Plotting could be done.            fprintf(ficlog,"%d%d ",i,k);
    */            for(j=1; j <=ncovmodel; j++){
   int k;              printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
   if(*globpri !=0){ /* Just counts and sums, no printings */              jk++; 
     strcpy(fileresilk,"ilk");            }
     strcat(fileresilk,fileres);            printf("\n");
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {            fprintf(ficlog,"\n");
       printf("Problem with resultfile: %s\n", fileresilk);          }
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);        }
     }      }
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");      if(*iter <=3){
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");        tml = *localtime(&rcurr_time);
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */        strcpy(strcurr,asctime(&tml));
     for(k=1; k<=nlstate; k++)        rforecast_time=rcurr_time; 
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);        itmp = strlen(strcurr);
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   }                                  strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   *fretone=(*funcone)(p);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   if(*globpri !=0){        for(niterf=10;niterf<=30;niterf+=10){
     fclose(ficresilk);                                  rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));                                  forecast_time = *localtime(&rforecast_time);
     fflush(fichtm);                                  strcpy(strfor,asctime(&forecast_time));
   }                                  itmp = strlen(strfor);
   return;                                  if(strfor[itmp-1]=='\n')
 }                                          strfor[itmp-1]='\0';
                                   printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
                                   fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 /*********** Maximum Likelihood Estimation ***************/        }
       }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      for (i=1;i<=n;i++) { /* For each direction i */
 {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
   int i,j, iter;        fptt=(*fret); 
   double **xi;  #ifdef DEBUG
   double fret;        printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   double fretone; /* Only one call to likelihood */        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   /*  char filerespow[FILENAMELENGTH];*/  #endif
   xi=matrix(1,npar,1,npar);        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
   for (i=1;i<=npar;i++)        fprintf(ficlog,"%d",i);fflush(ficlog);
     for (j=1;j<=npar;j++)  #ifdef LINMINORIGINAL
       xi[i][j]=(i==j ? 1.0 : 0.0);        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  #else
   strcpy(filerespow,"pow");        linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
   strcat(filerespow,fileres);                          flatdir[i]=flat; /* Function is vanishing in that direction i */
   if((ficrespow=fopen(filerespow,"w"))==NULL) {  #endif
     printf("Problem with resultfile: %s\n", filerespow);                          /* Outputs are fret(new point p) p is updated and xit rescaled */
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
   }                                  /* because that direction will be replaced unless the gain del is small */
   fprintf(ficrespow,"# Powell\n# iter -2*LL");                                  /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
   for (i=1;i<=nlstate;i++)                                  /* Unless the n directions are conjugate some gain in the determinant may be obtained */
     for(j=1;j<=nlstate+ndeath;j++)                                  /* with the new direction. */
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);                                  del=fabs(fptt-(*fret)); 
   fprintf(ficrespow,"\n");                                  ibig=i; 
         } 
   powell(p,xi,npar,ftol,&iter,&fret,func);  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   free_matrix(xi,1,npar,1,npar);        fprintf(ficlog,"%d %.12e",i,(*fret));
   fclose(ficrespow);        for (j=1;j<=n;j++) {
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));                                  xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));                                  printf(" x(%d)=%.12e",j,xit[j]);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));                                  fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
 }        for(j=1;j<=n;j++) {
                                   printf(" p(%d)=%.12e",j,p[j]);
 /**** Computes Hessian and covariance matrix ***/                                  fprintf(ficlog," p(%d)=%.12e",j,p[j]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        }
 {        printf("\n");
   double  **a,**y,*x,pd;        fprintf(ficlog,"\n");
   double **hess;  #endif
   int i, j,jk;      } /* end loop on each direction i */
   int *indx;      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
       /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);      /* New value of last point Pn is not computed, P(n-1) */
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);        for(j=1;j<=n;j++) {
   void lubksb(double **a, int npar, int *indx, double b[]) ;                                  if(flatdir[j] >0){
   void ludcmp(double **a, int npar, int *indx, double *d) ;                                          printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
   double gompertz(double p[]);                                          fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
   hess=matrix(1,npar,1,npar);                                  }
                                   /* printf("\n"); */
   printf("\nCalculation of the hessian matrix. Wait...\n");                                  /* fprintf(ficlog,"\n"); */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");                          }
   for (i=1;i<=npar;i++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
     printf("%d",i);fflush(stdout);        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
     fprintf(ficlog,"%d",i);fflush(ficlog);        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
            /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);        /* decreased of more than 3.84  */
            /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
     /*  printf(" %f ",p[i]);        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/        /* By adding 10 parameters more the gain should be 18.31 */
   }                          
          /* Starting the program with initial values given by a former maximization will simply change */
   for (i=1;i<=npar;i++) {        /* the scales of the directions and the directions, because the are reset to canonical directions */
     for (j=1;j<=npar;j++)  {        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
       if (j>i) {        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
         printf(".%d%d",i,j);fflush(stdout);  #ifdef DEBUG
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        int k[2],l;
         hess[i][j]=hessij(p,delti,i,j,func,npar);        k[0]=1;
                k[1]=-1;
         hess[j][i]=hess[i][j];            printf("Max: %.12e",(*func)(p));
         /*printf(" %lf ",hess[i][j]);*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
       }        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
   printf("\n");        }
   fprintf(ficlog,"\n");        printf("\n");
         fprintf(ficlog,"\n");
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        for(l=0;l<=1;l++) {
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          for (j=1;j<=n;j++) {
              ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   a=matrix(1,npar,1,npar);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   y=matrix(1,npar,1,npar);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   x=vector(1,npar);          }
   indx=ivector(1,npar);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        }
   ludcmp(a,npar,indx,&pd);  #endif
   
   for (j=1;j<=npar;j++) {  #ifdef LINMINORIGINAL
     for (i=1;i<=npar;i++) x[i]=0;  #else
     x[j]=1;        free_ivector(flatdir,1,n); 
     lubksb(a,npar,indx,x);  #endif
     for (i=1;i<=npar;i++){        free_vector(xit,1,n); 
       matcov[i][j]=x[i];        free_vector(xits,1,n); 
     }        free_vector(ptt,1,n); 
   }        free_vector(pt,1,n); 
         return; 
   printf("\n#Hessian matrix#\n");      } /* enough precision */ 
   fprintf(ficlog,"\n#Hessian matrix#\n");      if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations."); 
   for (i=1;i<=npar;i++) {      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
     for (j=1;j<=npar;j++) {        ptt[j]=2.0*p[j]-pt[j]; 
       printf("%.3e ",hess[i][j]);        xit[j]=p[j]-pt[j]; 
       fprintf(ficlog,"%.3e ",hess[i][j]);        pt[j]=p[j]; 
     }      } 
     printf("\n");      fptt=(*func)(ptt); /* f_3 */
     fprintf(ficlog,"\n");  #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
   }                  if (*iter <=4) {
   #else
   /* Recompute Inverse */  #endif
   for (i=1;i<=npar;i++)  #ifdef POWELLNOF3INFF1TEST    /* skips test F3 <F1 */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  #else
   ludcmp(a,npar,indx,&pd);      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
   #endif
   /*  printf("\n#Hessian matrix recomputed#\n");        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
         /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   for (j=1;j<=npar;j++) {        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
     for (i=1;i<=npar;i++) x[i]=0;        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
     x[j]=1;        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
     lubksb(a,npar,indx,x);        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */
     for (i=1;i<=npar;i++){        /* also  lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */
       y[i][j]=x[i];        /* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */
       printf("%.3e ",y[i][j]);        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
       fprintf(ficlog,"%.3e ",y[i][j]);        /*  Even if f3 <f1, directest can be negative and t >0 */
     }        /* mu² and del² are equal when f3=f1 */
     printf("\n");                          /* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */
     fprintf(ficlog,"\n");                          /* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */
   }                          /* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0  */
   */                          /* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0  */
   #ifdef NRCORIGINAL
   free_matrix(a,1,npar,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
   free_matrix(y,1,npar,1,npar);  #else
   free_vector(x,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
   free_ivector(indx,1,npar);        t= t- del*SQR(fp-fptt);
   free_matrix(hess,1,npar,1,npar);  #endif
         directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
   #ifdef DEBUG
 }        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 /*************** hessian matrix ****************/        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 {        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   int i;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   int l=1, lmax=20;        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   double k1,k2;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   double p2[NPARMAX+1];  #endif
   double res;  #ifdef POWELLORIGINAL
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;        if (t < 0.0) { /* Then we use it for new direction */
   double fx;  #else
   int k=0,kmax=10;        if (directest*t < 0.0) { /* Contradiction between both tests */
   double l1;                                  printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
           printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   fx=func(x);          fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
   for (i=1;i<=npar;i++) p2[i]=x[i];          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   for(l=0 ; l <=lmax; l++){        } 
     l1=pow(10,l);        if (directest < 0.0) { /* Then we use it for new direction */
     delts=delt;  #endif
     for(k=1 ; k <kmax; k=k+1){  #ifdef DEBUGLINMIN
       delt = delta*(l1*k);          printf("Before linmin in direction P%d-P0\n",n);
       p2[theta]=x[theta] +delt;          for (j=1;j<=n;j++) {
       k1=func(p2)-fx;            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
       p2[theta]=x[theta]-delt;            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
       k2=func(p2)-fx;            if(j % ncovmodel == 0){
       /*res= (k1-2.0*fx+k2)/delt/delt; */              printf("\n");
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */              fprintf(ficlog,"\n");
                  }
 #ifdef DEBUG          }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  #endif
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  #ifdef LINMINORIGINAL
 #endif          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  #else
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
         k=kmax;          flatdir[i]=flat; /* Function is vanishing in that direction i */
       }  #endif
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          
         k=kmax; l=lmax*10.;  #ifdef DEBUGLINMIN
       }          for (j=1;j<=n;j++) { 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
         delts=delt;            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
       }            if(j % ncovmodel == 0){
     }              printf("\n");
   }              fprintf(ficlog,"\n");
   delti[theta]=delts;            }
   return res;          }
    #endif
 }          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
 {          }
   int i;  #ifdef LINMINORIGINAL
   int l=1, l1, lmax=20;  #else
   double k1,k2,k3,k4,res,fx;          for (j=1, flatd=0;j<=n;j++) {
   double p2[NPARMAX+1];            if(flatdir[j]>0)
   int k;              flatd++;
           }
   fx=func(x);          if(flatd >0){
   for (k=1; k<=2; k++) {            printf("%d flat directions\n",flatd);
     for (i=1;i<=npar;i++) p2[i]=x[i];            fprintf(ficlog,"%d flat directions\n",flatd);
     p2[thetai]=x[thetai]+delti[thetai]/k;            for (j=1;j<=n;j++) { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              if(flatdir[j]>0){
     k1=func(p2)-fx;                printf("%d ",j);
                  fprintf(ficlog,"%d ",j);
     p2[thetai]=x[thetai]+delti[thetai]/k;              }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            }
     k2=func(p2)-fx;            printf("\n");
              fprintf(ficlog,"\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;          }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  #endif
     k3=func(p2)-fx;          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
            fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
     p2[thetai]=x[thetai]-delti[thetai]/k;          
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #ifdef DEBUG
     k4=func(p2)-fx;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 #ifdef DEBUG          for(j=1;j<=n;j++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            printf(" %lf",xit[j]);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            fprintf(ficlog," %lf",xit[j]);
 #endif          }
   }          printf("\n");
   return res;          fprintf(ficlog,"\n");
 }  #endif
         } /* end of t or directest negative */
 /************** Inverse of matrix **************/  #ifdef POWELLNOF3INFF1TEST
 void ludcmp(double **a, int n, int *indx, double *d)  #else
 {        } /* end if (fptt < fp)  */
   int i,imax,j,k;  #endif
   double big,dum,sum,temp;  #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
   double *vv;      } /*NODIRECTIONCHANGEDUNTILNITER  No change in drections until some iterations are done */
    #else
   vv=vector(1,n);  #endif
   *d=1.0;                  } /* loop iteration */ 
   for (i=1;i<=n;i++) {  } 
     big=0.0;    
     for (j=1;j<=n;j++)  /**** Prevalence limit (stable or period prevalence)  ****************/
       if ((temp=fabs(a[i][j])) > big) big=temp;    
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres)
     vv[i]=1.0/big;    {
   }      /* Computes the prevalence limit in each live state at age x and for covariate combination ij 
   for (j=1;j<=n;j++) {         (and selected quantitative values in nres)
     for (i=1;i<j;i++) {         by left multiplying the unit
       sum=a[i][j];         matrix by transitions matrix until convergence is reached with precision ftolpl */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
       a[i][j]=sum;    /* Wx is row vector: population in state 1, population in state 2, population dead */
     }    /* or prevalence in state 1, prevalence in state 2, 0 */
     big=0.0;    /* newm is the matrix after multiplications, its rows are identical at a factor */
     for (i=j;i<=n;i++) {    /* Initial matrix pimij */
       sum=a[i][j];    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
       for (k=1;k<j;k++)    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
         sum -= a[i][k]*a[k][j];    /*  0,                   0                  , 1} */
       a[i][j]=sum;    /*
       if ( (dum=vv[i]*fabs(sum)) >= big) {     * and after some iteration: */
         big=dum;    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
         imax=i;    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
       }    /*  0,                   0                  , 1} */
     }    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
     if (j != imax) {    /* {0.51571254859325999, 0.4842874514067399, */
       for (k=1;k<=n;k++) {    /*  0.51326036147820708, 0.48673963852179264} */
         dum=a[imax][k];    /* If we start from prlim again, prlim tends to a constant matrix */
         a[imax][k]=a[j][k];      
         a[j][k]=dum;    int i, ii,j,k;
       }    double *min, *max, *meandiff, maxmax,sumnew=0.;
       *d = -(*d);    /* double **matprod2(); */ /* test */
       vv[imax]=vv[j];    double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
     }    double **newm;
     indx[j]=imax;    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
     if (a[j][j] == 0.0) a[j][j]=TINY;    int ncvloop=0;
     if (j != n) {    
       dum=1.0/(a[j][j]);    min=vector(1,nlstate);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    max=vector(1,nlstate);
     }    meandiff=vector(1,nlstate);
   }  
   free_vector(vv,1,n);  /* Doesn't work */          /* Starting with matrix unity */
 ;    for (ii=1;ii<=nlstate+ndeath;ii++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void lubksb(double **a, int n, int *indx, double b[])      }
 {    
   int i,ii=0,ip,j;    cov[1]=1.;
   double sum;    
      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=n;i++) {    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
     ip=indx[i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     sum=b[ip];      ncvloop++;
     b[ip]=b[i];      newm=savm;
     if (ii)      /* Covariates have to be included here again */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      cov[2]=agefin;
     else if (sum) ii=i;      if(nagesqr==1)
     b[i]=sum;        cov[3]= agefin*agefin;;
   }      for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
   for (i=n;i>=1;i--) {                          /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
     sum=b[i];        cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        /* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
     b[i]=sum/a[i][i];      }
   }      for (k=1; k<=nsq;k++) { /* For single varying covariates only */
 }                          /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
         cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
 void pstamp(FILE *fichier)        /* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
 {      }
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);      for (k=1; k<=cptcovage;k++){  /* For product with age */
 }        if(Dummy[Tvar[Tage[k]]]){
           cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
 /************ Frequencies ********************/        } else{
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])          cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
 {  /* Some frequencies */        }
          /* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      }
   int first;      for (k=1; k<=cptcovprod;k++){ /* For product without age */
   double ***freq; /* Frequencies */        /* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
   double *pp, **prop;        if(Dummy[Tvard[k][1]==0]){
   double pos,posprop, k2, dateintsum=0,k2cpt=0;          if(Dummy[Tvard[k][2]==0]){
   char fileresp[FILENAMELENGTH];            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
            }else{
   pp=vector(1,nlstate);            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k];
   prop=matrix(1,nlstate,iagemin,iagemax+3);          }
   strcpy(fileresp,"p");        }else{
   strcat(fileresp,fileres);          if(Dummy[Tvard[k][2]==0]){
   if((ficresp=fopen(fileresp,"w"))==NULL) {            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]];
     printf("Problem with prevalence resultfile: %s\n", fileresp);          }else{
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);            cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]];
     exit(0);          }
   }        }
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);      }
   j1=0;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   j=cptcoveff;      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   first=1;                  /* age and covariate values of ij are in 'cov' */
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   for(k1=1; k1<=j;k1++){      
     for(i1=1; i1<=ncodemax[k1];i1++){      savm=oldm;
       j1++;      oldm=newm;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/      for(j=1; j<=nlstate; j++){
       for (i=-5; i<=nlstate+ndeath; i++)          max[j]=0.;
         for (jk=-5; jk<=nlstate+ndeath; jk++)          min[j]=1.;
           for(m=iagemin; m <= iagemax+3; m++)      }
             freq[i][jk][m]=0;      for(i=1;i<=nlstate;i++){
         sumnew=0;
     for (i=1; i<=nlstate; i++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for(m=iagemin; m <= iagemax+3; m++)        for(j=1; j<=nlstate; j++){ 
         prop[i][m]=0;          prlim[i][j]= newm[i][j]/(1-sumnew);
                max[j]=FMAX(max[j],prlim[i][j]);
       dateintsum=0;          min[j]=FMIN(min[j],prlim[i][j]);
       k2cpt=0;        }
       for (i=1; i<=imx; i++) {      }
         bool=1;  
         if  (cptcovn>0) {      maxmax=0.;
           for (z1=1; z1<=cptcoveff; z1++)      for(j=1; j<=nlstate; j++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
               bool=0;        maxmax=FMAX(maxmax,meandiff[j]);
         }        /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
         if (bool==1){      } /* j loop */
           for(m=firstpass; m<=lastpass; m++){      *ncvyear= (int)age- (int)agefin;
             k2=anint[m][i]+(mint[m][i]/12.);      /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/      if(maxmax < ftolpl){
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
               if(agev[m][i]==1) agev[m][i]=iagemax+2;        free_vector(min,1,nlstate);
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];        free_vector(max,1,nlstate);
               if (m<lastpass) {        free_vector(meandiff,1,nlstate);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        return prlim;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];      }
               }    } /* age loop */
                    /* After some age loop it doesn't converge */
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
                 dateintsum=dateintsum+k2;  Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
                 k2cpt++;    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
               }    free_vector(min,1,nlstate);
               /*}*/    free_vector(max,1,nlstate);
           }    free_vector(meandiff,1,nlstate);
         }    
       }    return prlim; /* should not reach here */
          }
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/  
       pstamp(ficresp);  
       if  (cptcovn>0) {   /**** Back Prevalence limit (stable or period prevalence)  ****************/
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
         fprintf(ficresp, "**********\n#");   /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
       }   double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij)
       for(i=1; i<=nlstate;i++)  {
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit
       fprintf(ficresp, "\n");       matrix by transitions matrix until convergence is reached with precision ftolpl */
          /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
       for(i=iagemin; i <= iagemax+3; i++){    /* Wx is row vector: population in state 1, population in state 2, population dead */
         if(i==iagemax+3){    /* or prevalence in state 1, prevalence in state 2, 0 */
           fprintf(ficlog,"Total");    /* newm is the matrix after multiplications, its rows are identical at a factor */
         }else{    /* Initial matrix pimij */
           if(first==1){    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
             first=0;    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
             printf("See log file for details...\n");    /*  0,                   0                  , 1} */
           }    /*
           fprintf(ficlog,"Age %d", i);     * and after some iteration: */
         }    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
         for(jk=1; jk <=nlstate ; jk++){    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /*  0,                   0                  , 1} */
             pp[jk] += freq[jk][m][i];    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
         }    /* {0.51571254859325999, 0.4842874514067399, */
         for(jk=1; jk <=nlstate ; jk++){    /*  0.51326036147820708, 0.48673963852179264} */
           for(m=-1, pos=0; m <=0 ; m++)    /* If we start from prlim again, prlim tends to a constant matrix */
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10){    int i, ii,j,k;
             if(first==1){    double *min, *max, *meandiff, maxmax,sumnew=0.;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    /* double **matprod2(); */ /* test */
             }    double **out, cov[NCOVMAX+1], **bmij();
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double **newm;
           }else{    double         **dnewm, **doldm, **dsavm;  /* for use */
             if(first==1)    double         **oldm, **savm;  /* for use */
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
           }    int ncvloop=0;
         }    
     min=vector(1,nlstate);
         for(jk=1; jk <=nlstate ; jk++){    max=vector(1,nlstate);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    meandiff=vector(1,nlstate);
             pp[jk] += freq[jk][m][i];  
         }                dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){          oldm=oldms; savm=savms;
           pos += pp[jk];  
           posprop += prop[jk][i];          /* Starting with matrix unity */
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){                  for (j=1;j<=nlstate+ndeath;j++){
           if(pos>=1.e-5){        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(first==1)      }
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    cov[1]=1.;
           }else{    
             if(first==1)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
           }    for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /* A changer en age */
           if( i <= iagemax){      ncvloop++;
             if(pos>=1.e-5){      newm=savm; /* oldm should be kept from previous iteration or unity at start */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);                  /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */
               /*probs[i][jk][j1]= pp[jk]/pos;*/      /* Covariates have to be included here again */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      cov[2]=agefin;
             }      if(nagesqr==1)
             else        cov[3]= agefin*agefin;;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);      for (k=1; k<=cptcovn;k++) {
           }        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         }        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
                /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
         for(jk=-1; jk <=nlstate+ndeath; jk++)      }
           for(m=-1; m <=nlstate+ndeath; m++)      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
             if(freq[jk][m][i] !=0 ) {      for (k=1; k<=cptcovprod;k++) /* Useless */
             if(first==1)        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);      
             }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         if(i <= iagemax)      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           fprintf(ficresp,"\n");      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         if(first==1)      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
           printf("Others in log...\n");      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
         fprintf(ficlog,"\n");                  /* ij should be linked to the correct index of cov */
       }                  /* age and covariate values ij are in 'cov', but we need to pass
     }                   * ij for the observed prevalence at age and status and covariate
   }                   * number:  prevacurrent[(int)agefin][ii][ij]
   dateintmean=dateintsum/k2cpt;                   */
        /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
   fclose(ficresp);      /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);      out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */
   free_vector(pp,1,nlstate);      savm=oldm;
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);      oldm=newm;
   /* End of Freq */      for(j=1; j<=nlstate; j++){
 }        max[j]=0.;
         min[j]=1.;
 /************ Prevalence ********************/      }
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)      for(j=1; j<=nlstate; j++){ 
 {          for(i=1;i<=nlstate;i++){
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people          /* bprlim[i][j]= newm[i][j]/(1-sumnew); */
      in each health status at the date of interview (if between dateprev1 and dateprev2).          bprlim[i][j]= newm[i][j];
      We still use firstpass and lastpass as another selection.          max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */
   */          min[i]=FMIN(min[i],bprlim[i][j]);
          }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      }
   double ***freq; /* Frequencies */                  
   double *pp, **prop;      maxmax=0.;
   double pos,posprop;      for(i=1; i<=nlstate; i++){
   double  y2; /* in fractional years */        meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */
   int iagemin, iagemax;        maxmax=FMAX(maxmax,meandiff[i]);
         /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */
   iagemin= (int) agemin;      } /* j loop */
   iagemax= (int) agemax;      *ncvyear= -( (int)age- (int)agefin);
   /*pp=vector(1,nlstate);*/      /* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear);*/
   prop=matrix(1,nlstate,iagemin,iagemax+3);      if(maxmax < ftolpl){
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/        /* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
   j1=0;        free_vector(min,1,nlstate);
          free_vector(max,1,nlstate);
   j=cptcoveff;        free_vector(meandiff,1,nlstate);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        return bprlim;
        }
   for(k1=1; k1<=j;k1++){    } /* age loop */
     for(i1=1; i1<=ncodemax[k1];i1++){      /* After some age loop it doesn't converge */
       j1++;    printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
        Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
       for (i=1; i<=nlstate; i++)      /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
         for(m=iagemin; m <= iagemax+3; m++)    free_vector(min,1,nlstate);
           prop[i][m]=0.0;    free_vector(max,1,nlstate);
          free_vector(meandiff,1,nlstate);
       for (i=1; i<=imx; i++) { /* Each individual */    
         bool=1;    return bprlim; /* should not reach here */
         if  (cptcovn>0) {  }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*************** transition probabilities ***************/ 
               bool=0;  
         }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         if (bool==1) {  {
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/    /* According to parameters values stored in x and the covariate's values stored in cov,
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */       computes the probability to be observed in state j being in state i by appying the
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */       model to the ncovmodel covariates (including constant and age).
               if(agev[m][i]==0) agev[m][i]=iagemax+1;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
               if(agev[m][i]==1) agev[m][i]=iagemax+2;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);       ncth covariate in the global vector x is given by the formula:
               if (s[m][i]>0 && s[m][i]<=nlstate) {       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
                 prop[s[m][i]][iagemax+3] += weight[i];       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
               }       Outputs ps[i][j] the probability to be observed in j being in j according to
             }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
           } /* end selection of waves */    */
         }    double s1, lnpijopii;
       }    /*double t34;*/
       for(i=iagemin; i <= iagemax+3; i++){      int i,j, nc, ii, jj;
          
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {    for(i=1; i<= nlstate; i++){
           posprop += prop[jk][i];      for(j=1; j<i;j++){
         }        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           /*lnpijopii += param[i][j][nc]*cov[nc];*/
         for(jk=1; jk <=nlstate ; jk++){              lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
           if( i <=  iagemax){          /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             if(posprop>=1.e-5){        }
               probs[i][jk][j1]= prop[jk][i]/posprop;        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             }        /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           }      }
         }/* end jk */      for(j=i+1; j<=nlstate+ndeath;j++){
       }/* end i */        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     } /* end i1 */          /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   } /* end k1 */          lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
            /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/        }
   /*free_vector(pp,1,nlstate);*/        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);      }
 }  /* End of prevalence */    }
     
 /************* Waves Concatenation ***************/    for(i=1; i<= nlstate; i++){
       s1=0;
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      for(j=1; j<i; j++){
 {        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
      Death is a valid wave (if date is known).      }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for(j=i+1; j<=nlstate+ndeath; j++){
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
      and mw[mi+1][i]. dh depends on stepm.        /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
      */      }
       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   int i, mi, m;      ps[i][i]=1./(s1+1.);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      /* Computing other pijs */
      double sum=0., jmean=0.;*/      for(j=1; j<i; j++)
   int first;        ps[i][j]= exp(ps[i][j])*ps[i][i];
   int j, k=0,jk, ju, jl;      for(j=i+1; j<=nlstate+ndeath; j++)
   double sum=0.;        ps[i][j]= exp(ps[i][j])*ps[i][i];
   first=0;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   jmin=1e+5;    } /* end i */
   jmax=-1;    
   jmean=0.;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   for(i=1; i<=imx; i++){      for(jj=1; jj<= nlstate+ndeath; jj++){
     mi=0;        ps[ii][jj]=0;
     m=firstpass;        ps[ii][ii]=1;
     while(s[m][i] <= nlstate){      }
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)    }
         mw[++mi][i]=m;    
       if(m >=lastpass)    
         break;    /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       else    /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         m++;    /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     }/* end while */    /*   } */
     if (s[m][i] > nlstate){    /*   printf("\n "); */
       mi++;     /* Death is another wave */    /* } */
       /* if(mi==0)  never been interviewed correctly before death */    /* printf("\n ");printf("%lf ",cov[2]);*/
          /* Only death is a correct wave */    /*
       mw[mi][i]=m;      for(i=1; i<= npar; i++) printf("%f ",x[i]);
     }                  goto end;*/
     return ps;
     wav[i]=mi;  }
     if(mi==0){  
       nbwarn++;  /*************** backward transition probabilities ***************/ 
       if(first==0){  
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);   /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */
         first=1;  /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */
       }   double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )
       if(first==1){  {
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);    /* Computes the backward probability at age agefin and covariate ij
       }     * and returns in **ps as well as **bmij.
     } /* end mi==0 */     */
   } /* End individuals */    int i, ii, j,k;
     
   for(i=1; i<=imx; i++){    double **out, **pmij();
     for(mi=1; mi<wav[i];mi++){    double sumnew=0.;
       if (stepm <=0)    double agefin;
         dh[mi][i]=1;    
       else{    double **dnewm, **dsavm, **doldm;
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */    double **bbmij;
           if (agedc[i] < 2*AGESUP) {    
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    doldm=ddoldms; /* global pointers */
             if(j==0) j=1;  /* Survives at least one month after exam */    dnewm=ddnewms;
             else if(j<0){    dsavm=ddsavms;
               nberr++;    
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    agefin=cov[2];
               j=1; /* Temporary Dangerous patch */    /* bmij *//* age is cov[2], ij is included in cov, but we need for
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);       the observed prevalence (with this covariate ij) */
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate);
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);    /* We do have the matrix Px in savm  and we need pij */
             }    for (j=1;j<=nlstate+ndeath;j++){
             k=k+1;      sumnew=0.; /* w1 p11 + w2 p21 only on live states */
             if (j >= jmax){      for (ii=1;ii<=nlstate;ii++){
               jmax=j;        sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij];
               ijmax=i;      } /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */
             }      for (ii=1;ii<=nlstate+ndeath;ii++){
             if (j <= jmin){        if(sumnew >= 1.e-10){
               jmin=j;          /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */
               ijmin=i;          /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
             }          /* }else if(agefin >= agemaxpar+stepm/YEARM){ */
             sum=sum+j;          /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/          /* }else */
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/          doldm[ii][j]=(ii==j ? 1./sumnew : 0.0);
           }        }else{
         }          printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin);
         else{        }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      } /*End ii */
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */    } /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */
     /* left Product of this diag matrix by dsavm=Px (newm=dsavm*doldm) */
           k=k+1;    bbmij=matprod2(dnewm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, doldm); /* Bug Valgrind */
           if (j >= jmax) {    /* dsavm=doldm; /\* dsavm is now diag [1/(w_1p1i+w_2 p2i)] but can be overwritten*\/ */
             jmax=j;    /* doldm=dnewm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
             ijmax=i;    /* dnewm=dsavm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
           }    /* left Product of this matrix by diag matrix of prevalences (savm) */
           else if (j <= jmin){    for (j=1;j<=nlstate+ndeath;j++){
             jmin=j;      for (ii=1;ii<=nlstate+ndeath;ii++){
             ijmin=i;        dsavm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij] : 0.0);
           }      }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    } /* End j, At the end oldm is diag[1/(w_1p1i+w_2 p2i)] */
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/    ps=matprod2(doldm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dnewm); /* Bug Valgrind */
           if(j<0){    /* newm or out is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
             nberr++;    /* end bmij */
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    return ps; 
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  }
           }  /*************** transition probabilities ***************/ 
           sum=sum+j;  
         }  double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         jk= j/stepm;  {
         jl= j -jk*stepm;    /* According to parameters values stored in x and the covariate's values stored in cov,
         ju= j -(jk+1)*stepm;       computes the probability to be observed in state j being in state i by appying the
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */       model to the ncovmodel covariates (including constant and age).
           if(jl==0){       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
             dh[mi][i]=jk;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
             bh[mi][i]=0;       ncth covariate in the global vector x is given by the formula:
           }else{ /* We want a negative bias in order to only have interpolation ie       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
                   * at the price of an extra matrix product in likelihood */       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
             dh[mi][i]=jk+1;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
             bh[mi][i]=ju;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
           }       Outputs ps[i][j] the probability to be observed in j being in j according to
         }else{       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
           if(jl <= -ju){    */
             dh[mi][i]=jk;    double s1, lnpijopii;
             bh[mi][i]=jl;       /* bias is positive if real duration    /*double t34;*/
                                  * is higher than the multiple of stepm and negative otherwise.    int i,j, nc, ii, jj;
                                  */  
           }    for(i=1; i<= nlstate; i++){
           else{      for(j=1; j<i;j++){
             dh[mi][i]=jk+1;        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             bh[mi][i]=ju;          /*lnpijopii += param[i][j][nc]*cov[nc];*/
           }          lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
           if(dh[mi][i]==0){          /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             dh[mi][i]=1; /* At least one step */        }
             bh[mi][i]=ju; /* At least one step */        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/        /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           }      }
         } /* end if mle */      for(j=i+1; j<=nlstate+ndeath;j++){
       }        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     } /* end wave */          /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   }          lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   jmean=sum/k;          /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);        }
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
  }      }
     }
 /*********** Tricode ****************************/    
 void tricode(int *Tvar, int **nbcode, int imx)    for(i=1; i<= nlstate; i++){
 {      s1=0;
        for(j=1; j<i; j++){
   int Ndum[20],ij=1, k, j, i, maxncov=19;        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   int cptcode=0;        /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   cptcoveff=0;      }
        for(j=i+1; j<=nlstate+ndeath; j++){
   for (k=0; k<maxncov; k++) Ndum[k]=0;        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   for (k=1; k<=7; k++) ncodemax[k]=0;        /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum      ps[i][i]=1./(s1+1.);
                                modality*/      /* Computing other pijs */
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/      for(j=1; j<i; j++)
       Ndum[ij]++; /*store the modality */        ps[i][j]= exp(ps[i][j])*ps[i][i];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      for(j=i+1; j<=nlstate+ndeath; j++)
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable        ps[i][j]= exp(ps[i][j])*ps[i][i];
                                        Tvar[j]. If V=sex and male is 0 and      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                                        female is 1, then  cptcode=1.*/    } /* end i */
     }    
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for (i=0; i<=cptcode; i++) {      for(jj=1; jj<= nlstate+ndeath; jj++){
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */        ps[ii][jj]=0;
     }        ps[ii][ii]=1;
       }
     ij=1;    }
     for (i=1; i<=ncodemax[j]; i++) {    /* Added for backcast */ /* Transposed matrix too */
       for (k=0; k<= maxncov; k++) {    for(jj=1; jj<= nlstate+ndeath; jj++){
         if (Ndum[k] != 0) {      s1=0.;
           nbcode[Tvar[j]][ij]=k;      for(ii=1; ii<= nlstate+ndeath; ii++){
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */        s1+=ps[ii][jj];
                }
           ij++;      for(ii=1; ii<= nlstate; ii++){
         }        ps[ii][jj]=ps[ii][jj]/s1;
         if (ij > ncodemax[j]) break;      }
       }      }
     }    /* Transposition */
   }      for(jj=1; jj<= nlstate+ndeath; jj++){
       for(ii=jj; ii<= nlstate+ndeath; ii++){
  for (k=0; k< maxncov; k++) Ndum[k]=0;        s1=ps[ii][jj];
         ps[ii][jj]=ps[jj][ii];
  for (i=1; i<=ncovmodel-2; i++) {        ps[jj][ii]=s1;
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/      }
    ij=Tvar[i];    }
    Ndum[ij]++;    /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
  }    /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
     /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
  ij=1;    /*   } */
  for (i=1; i<= maxncov; i++) {    /*   printf("\n "); */
    if((Ndum[i]!=0) && (i<=ncovcol)){    /* } */
      Tvaraff[ij]=i; /*For printing */    /* printf("\n ");printf("%lf ",cov[2]);*/
      ij++;    /*
    }      for(i=1; i<= npar; i++) printf("%f ",x[i]);
  }      goto end;*/
      return ps;
  cptcoveff=ij-1; /*Number of simple covariates*/  }
 }  
   
 /*********** Health Expectancies ****************/  /**************** Product of 2 matrices ******************/
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   {
 {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   /* Health expectancies, no variances */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;    /* in, b, out are matrice of pointers which should have been initialized 
   double age, agelim, hf;       before: only the contents of out is modified. The function returns
   double ***p3mat;       a pointer to pointers identical to out */
   double eip;    int i, j, k;
     for(i=nrl; i<= nrh; i++)
   pstamp(ficreseij);      for(k=ncolol; k<=ncoloh; k++){
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");        out[i][k]=0.;
   fprintf(ficreseij,"# Age");        for(j=ncl; j<=nch; j++)
   for(i=1; i<=nlstate;i++){          out[i][k] +=in[i][j]*b[j][k];
     for(j=1; j<=nlstate;j++){      }
       fprintf(ficreseij," e%1d%1d ",i,j);    return out;
     }  }
     fprintf(ficreseij," e%1d. ",i);  
   }  
   fprintf(ficreseij,"\n");  /************* Higher Matrix Product ***************/
   
    double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres )
   if(estepm < stepm){  {
     printf ("Problem %d lower than %d\n",estepm, stepm);    /* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over 
   }       'nhstepm*hstepm*stepm' months (i.e. until
   else  hstepm=estepm;         age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   /* We compute the life expectancy from trapezoids spaced every estepm months       nhstepm*hstepm matrices. 
    * This is mainly to measure the difference between two models: for example       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
    * if stepm=24 months pijx are given only every 2 years and by summing them       (typically every 2 years instead of every month which is too big 
    * we are calculating an estimate of the Life Expectancy assuming a linear       for the memory).
    * progression in between and thus overestimating or underestimating according       Model is determined by parameters x and covariates have to be 
    * to the curvature of the survival function. If, for the same date, we       included manually here. 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear       */
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */    int i, j, d, h, k;
     double **out, cov[NCOVMAX+1];
   /* For example we decided to compute the life expectancy with the smallest unit */    double **newm;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double agexact;
      nhstepm is the number of hstepm from age to agelim    double agebegin, ageend;
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    /* Hstepm could be zero and should return the unit matrix */
      and note for a fixed period like estepm months */    for (i=1;i<=nlstate+ndeath;i++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (j=1;j<=nlstate+ndeath;j++){
      survival function given by stepm (the optimization length). Unfortunately it        oldm[i][j]=(i==j ? 1.0 : 0.0);
      means that if the survival funtion is printed only each two years of age and if        po[i][j][0]=(i==j ? 1.0 : 0.0);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      }
      results. So we changed our mind and took the option of the best precision.    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   */    for(h=1; h <=nhstepm; h++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for(d=1; d <=hstepm; d++){
         newm=savm;
   agelim=AGESUP;        /* Covariates have to be included here again */
   /* If stepm=6 months */        cov[1]=1.;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        cov[2]=agexact;
            if(nagesqr==1)
 /* nhstepm age range expressed in number of stepm */          cov[3]= agexact*agexact;
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);        for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */                          /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
   /* if (stepm >= YEARM) hstepm=1;*/          cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          /* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         for (k=1; k<=nsq;k++) { /* For single varying covariates only */
   for (age=bage; age<=fage; age ++){          /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
           cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
           /* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);          }
            for (k=1; k<=cptcovage;k++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          if(Dummy[Tvar[Tage[k]]]){
                cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
     printf("%d|",(int)age);fflush(stdout);          } else{
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);            cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
              }
           /* printf("hPxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
     /* Computing expectancies */        }
     for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovprod;k++){ /*  */
       for(j=1; j<=nlstate;j++)          /* printf("hPxij Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        }
                  /* for (k=1; k<=cptcovn;k++)  */
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        /*        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
         /* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */
         }        /*        cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; */
            /* for (k=1; k<=cptcovprod;k++) /\* Useless because included in cptcovn *\/ */
     fprintf(ficreseij,"%3.0f",age );        /*        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; */
     for(i=1; i<=nlstate;i++){        
       eip=0;        
       for(j=1; j<=nlstate;j++){        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         eip +=eij[i][j][(int)age];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );                          /* right multiplication of oldm by the current matrix */
       }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       fprintf(ficreseij,"%9.4f", eip );                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     }        /* if((int)age == 70){ */
     fprintf(ficreseij,"\n");        /*        printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
            /*        for(i=1; i<=nlstate+ndeath; i++) { */
   }        /*          printf("%d pmmij ",i); */
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*          for(j=1;j<=nlstate+ndeath;j++) { */
   printf("\n");        /*            printf("%f ",pmmij[i][j]); */
   fprintf(ficlog,"\n");        /*          } */
          /*          printf(" oldm "); */
 }        /*          for(j=1;j<=nlstate+ndeath;j++) { */
         /*            printf("%f ",oldm[i][j]); */
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )        /*          } */
         /*          printf("\n"); */
 {        /*        } */
   /* Covariances of health expectancies eij and of total life expectancies according        /* } */
    to initial status i, ei. .        savm=oldm;
   */        oldm=newm;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;      }
   double age, agelim, hf;      for(i=1; i<=nlstate+ndeath; i++)
   double ***p3matp, ***p3matm, ***varhe;        for(j=1;j<=nlstate+ndeath;j++) {
   double **dnewm,**doldm;                                  po[i][j][h]=newm[i][j];
   double *xp, *xm;                                  /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   double **gp, **gm;        }
   double ***gradg, ***trgradg;      /*printf("h=%d ",h);*/
   int theta;    } /* end h */
           /*     printf("\n H=%d \n",h); */
   double eip, vip;    return po;
   }
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);  
   xp=vector(1,npar);  /************* Higher Back Matrix Product ***************/
   xm=vector(1,npar);  /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */
   dnewm=matrix(1,nlstate*nlstate,1,npar);  double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij )
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);  {
      /* Computes the transition matrix starting at age 'age' over
   pstamp(ficresstdeij);       'nhstepm*hstepm*stepm' months (i.e. until
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
   fprintf(ficresstdeij,"# Age");       nhstepm*hstepm matrices.
   for(i=1; i<=nlstate;i++){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
     for(j=1; j<=nlstate;j++)       (typically every 2 years instead of every month which is too big
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);       for the memory).
     fprintf(ficresstdeij," e%1d. ",i);       Model is determined by parameters x and covariates have to be
   }       included manually here.
   fprintf(ficresstdeij,"\n");  
     */
   pstamp(ficrescveij);  
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");    int i, j, d, h, k;
   fprintf(ficrescveij,"# Age");    double **out, cov[NCOVMAX+1];
   for(i=1; i<=nlstate;i++)    double **newm;
     for(j=1; j<=nlstate;j++){    double agexact;
       cptj= (j-1)*nlstate+i;    double agebegin, ageend;
       for(i2=1; i2<=nlstate;i2++)    double **oldm, **savm;
         for(j2=1; j2<=nlstate;j2++){  
           cptj2= (j2-1)*nlstate+i2;    oldm=oldms;savm=savms;
           if(cptj2 <= cptj)    /* Hstepm could be zero and should return the unit matrix */
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);    for (i=1;i<=nlstate+ndeath;i++)
         }      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(ficrescveij,"\n");        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
   if(estepm < stepm){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     printf ("Problem %d lower than %d\n",estepm, stepm);    for(h=1; h <=nhstepm; h++){
   }      for(d=1; d <=hstepm; d++){
   else  hstepm=estepm;          newm=savm;
   /* We compute the life expectancy from trapezoids spaced every estepm months        /* Covariates have to be included here again */
    * This is mainly to measure the difference between two models: for example        cov[1]=1.;
    * if stepm=24 months pijx are given only every 2 years and by summing them        agexact=age-((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
    * we are calculating an estimate of the Life Expectancy assuming a linear        /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */
    * progression in between and thus overestimating or underestimating according        cov[2]=agexact;
    * to the curvature of the survival function. If, for the same date, we        if(nagesqr==1)
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          cov[3]= agexact*agexact;
    * to compare the new estimate of Life expectancy with the same linear        for (k=1; k<=cptcovn;k++)
    * hypothesis. A more precise result, taking into account a more precise          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
    * curvature will be obtained if estepm is as small as stepm. */        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
   /* For example we decided to compute the life expectancy with the smallest unit */          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
      nhstepm is the number of hstepm from age to agelim        /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
      nstepm is the number of stepm from age to agelin.        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
      Look at hpijx to understand the reason of that which relies in memory size          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
      and note for a fixed period like estepm months */        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                          
      survival function given by stepm (the optimization length). Unfortunately it                          
      means that if the survival funtion is printed only each two years of age and if        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
      results. So we changed our mind and took the option of the best precision.        /* Careful transposed matrix */
   */        /* age is in cov[2] */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */
         /*                                                 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */
   /* If stepm=6 months */        out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\
   /* nhstepm age range expressed in number of stepm */                     1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   agelim=AGESUP;        /* if((int)age == 70){ */
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);        /*        printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */        /*        for(i=1; i<=nlstate+ndeath; i++) { */
   /* if (stepm >= YEARM) hstepm=1;*/        /*          printf("%d pmmij ",i); */
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        /*          for(j=1;j<=nlstate+ndeath;j++) { */
          /*            printf("%f ",pmmij[i][j]); */
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*          } */
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*          printf(" oldm "); */
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);        /*          for(j=1;j<=nlstate+ndeath;j++) { */
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);        /*            printf("%f ",oldm[i][j]); */
   gp=matrix(0,nhstepm,1,nlstate*nlstate);        /*          } */
   gm=matrix(0,nhstepm,1,nlstate*nlstate);        /*          printf("\n"); */
         /*        } */
   for (age=bage; age<=fage; age ++){        /* } */
         savm=oldm;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        oldm=newm;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      }
        for(i=1; i<=nlstate+ndeath; i++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
     /* Computing  Variances of health expectancies */          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to        }
        decrease memory allocation */      /*printf("h=%d ",h);*/
     for(theta=1; theta <=npar; theta++){    } /* end h */
       for(i=1; i<=npar; i++){    /*     printf("\n H=%d \n",h); */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    return po;
         xm[i] = x[i] - (i==theta ?delti[theta]:0);  }
       }  
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);    
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);    #ifdef NLOPT
      double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
       for(j=1; j<= nlstate; j++){    double fret;
         for(i=1; i<=nlstate; i++){    double *xt;
           for(h=0; h<=nhstepm-1; h++){    int j;
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;    myfunc_data *d2 = (myfunc_data *) pd;
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;  /* xt = (p1-1); */
           }    xt=vector(1,n); 
         }    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
       }  
          fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
       for(ij=1; ij<= nlstate*nlstate; ij++)    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
         for(h=0; h<=nhstepm-1; h++){    printf("Function = %.12lf ",fret);
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
         }    printf("\n");
     }/* End theta */   free_vector(xt,1,n);
        return fret;
      }
     for(h=0; h<=nhstepm-1; h++)  #endif
       for(j=1; j<=nlstate*nlstate;j++)  
         for(theta=1; theta <=npar; theta++)  /*************** log-likelihood *************/
           trgradg[h][j][theta]=gradg[h][theta][j];  double func( double *x)
      {
     int i, ii, j, k, mi, d, kk;
      for(ij=1;ij<=nlstate*nlstate;ij++)    int ioffset=0;
       for(ji=1;ji<=nlstate*nlstate;ji++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         varhe[ij][ji][(int)age] =0.;    double **out;
     double lli; /* Individual log likelihood */
      printf("%d|",(int)age);fflush(stdout);    int s1, s2;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
      for(h=0;h<=nhstepm-1;h++){    double bbh, survp;
       for(k=0;k<=nhstepm-1;k++){    long ipmx;
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);    double agexact;
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);    /*extern weight */
         for(ij=1;ij<=nlstate*nlstate;ij++)    /* We are differentiating ll according to initial status */
           for(ji=1;ji<=nlstate*nlstate;ji++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;    /*for(i=1;i<imx;i++) 
       }      printf(" %d\n",s[4][i]);
     }    */
   
     /* Computing expectancies */    ++countcallfunc;
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);    
     for(i=1; i<=nlstate;i++)    cov[1]=1.;
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;    ioffset=0;
              if(mle==1){
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         /* Computes the values of the ncovmodel covariates of the model
         }           depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
            Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
     fprintf(ficresstdeij,"%3.0f",age );           to be observed in j being in i according to the model.
     for(i=1; i<=nlstate;i++){        */
       eip=0.;        ioffset=2+nagesqr+cptcovage;
       vip=0.;     /* Fixed */
       for(j=1; j<=nlstate;j++){        for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */
         eip += eij[i][j][(int)age];          cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */        }
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       }           has been calculated etc */
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));        /* For an individual i, wav[i] gives the number of effective waves */
     }        /* We compute the contribution to Likelihood of each effective transition
     fprintf(ficresstdeij,"\n");           mw[mi][i] is real wave of the mi th effectve wave */
         /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
     fprintf(ficrescveij,"%3.0f",age );           s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)           And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i]
       for(j=1; j<=nlstate;j++){           But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
         cptj= (j-1)*nlstate+i;           meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
         for(i2=1; i2<=nlstate;i2++)        */
           for(j2=1; j2<=nlstate;j2++){        for(mi=1; mi<= wav[i]-1; mi++){
             cptj2= (j2-1)*nlstate+i2;          for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/
             if(cptj2 <= cptj)            cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i];
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);          }
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficrescveij,"\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);          for(d=0; d<dh[mi][i]; d++){
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);            newm=savm;
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);            cov[2]=agexact;
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if(nagesqr==1)
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              cov[3]= agexact*agexact;  /* Should be changed here */
   printf("\n");            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficlog,"\n");              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
             }
   free_vector(xm,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_vector(xp,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);            savm=oldm;
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);            oldm=newm;
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);          } /* end mult */
 }          
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 /************ Variance ******************/          /* But now since version 0.9 we anticipate for bias at large stepm.
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 {           * (in months) between two waves is not a multiple of stepm, we rounded to 
   /* Variance of health expectancies */           * the nearest (and in case of equal distance, to the lowest) interval but now
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   /* double **newm;*/           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   double **dnewm,**doldm;           * probability in order to take into account the bias as a fraction of the way
   double **dnewmp,**doldmp;                                   * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   int i, j, nhstepm, hstepm, h, nstepm ;                                   * -stepm/2 to stepm/2 .
   int k, cptcode;                                   * For stepm=1 the results are the same as for previous versions of Imach.
   double *xp;                                   * For stepm > 1 the results are less biased than in previous versions. 
   double **gp, **gm;  /* for var eij */                                   */
   double ***gradg, ***trgradg; /*for var eij */          s1=s[mw[mi][i]][i];
   double **gradgp, **trgradgp; /* for var p point j */          s2=s[mw[mi+1][i]][i];
   double *gpp, *gmp; /* for var p point j */          bbh=(double)bh[mi][i]/(double)stepm; 
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */          /* bias bh is positive if real duration
   double ***p3mat;           * is higher than the multiple of stepm and negative otherwise.
   double age,agelim, hf;           */
   double ***mobaverage;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   int theta;          if( s2 > nlstate){ 
   char digit[4];            /* i.e. if s2 is a death state and if the date of death is known 
   char digitp[25];               then the contribution to the likelihood is the probability to 
                die between last step unit time and current  step unit time, 
   char fileresprobmorprev[FILENAMELENGTH];               which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
   if(popbased==1){               In version up to 0.92 likelihood was computed
     if(mobilav!=0)               as if date of death was unknown. Death was treated as any other
       strcpy(digitp,"-populbased-mobilav-");               health state: the date of the interview describes the actual state
     else strcpy(digitp,"-populbased-nomobil-");               and not the date of a change in health state. The former idea was
   }               to consider that at each interview the state was recorded
   else               (healthy, disable or death) and IMaCh was corrected; but when we
     strcpy(digitp,"-stablbased-");               introduced the exact date of death then we should have modified
                the contribution of an exact death to the likelihood. This new
   if (mobilav!=0) {               contribution is smaller and very dependent of the step unit
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);               stepm. It is no more the probability to die between last interview
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){               and month of death but the probability to survive from last
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);               interview up to one month before death multiplied by the
       printf(" Error in movingaverage mobilav=%d\n",mobilav);               probability to die within a month. Thanks to Chris
     }               Jackson for correcting this bug.  Former versions increased
   }               mortality artificially. The bad side is that we add another loop
                which slows down the processing. The difference can be up to 10%
   strcpy(fileresprobmorprev,"prmorprev");               lower mortality.
   sprintf(digit,"%-d",ij);            */
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/            /* If, at the beginning of the maximization mostly, the
   strcat(fileresprobmorprev,digit); /* Tvar to be done */               cumulative probability or probability to be dead is
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */               constant (ie = 1) over time d, the difference is equal to
   strcat(fileresprobmorprev,fileres);               0.  out[s1][3] = savm[s1][3]: probability, being at state
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {               s1 at precedent wave, to be dead a month before current
     printf("Problem with resultfile: %s\n", fileresprobmorprev);               wave is equal to probability, being at state s1 at
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);               precedent wave, to be dead at mont of the current
   }               wave. Then the observed probability (that this person died)
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);               is null according to current estimated parameter. In fact,
                 it should be very low but not zero otherwise the log go to
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);               infinity.
   pstamp(ficresprobmorprev);            */
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);  /* #ifdef INFINITYORIGINAL */
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  /* #else */
     fprintf(ficresprobmorprev," p.%-d SE",j);  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
     for(i=1; i<=nlstate;i++)  /*          lli=log(mytinydouble); */
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  /*        else */
   }    /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   fprintf(ficresprobmorprev,"\n");  /* #endif */
   fprintf(ficgp,"\n# Routine varevsij");            lli=log(out[s1][s2] - savm[s1][s2]);
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/            
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          } else if  ( s2==-1 ) { /* alive */
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);            for (j=1,survp=0. ; j<=nlstate; j++) 
 /*   } */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            /*survp += out[s1][j]; */
   pstamp(ficresvij);            lli= log(survp);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");          }
   if(popbased==1)          else if  (s2==-4) { 
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");            for (j=3,survp=0. ; j<=nlstate; j++)  
   else              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");            lli= log(survp); 
   fprintf(ficresvij,"# Age");          } 
   for(i=1; i<=nlstate;i++)          else if  (s2==-5) { 
     for(j=1; j<=nlstate;j++)            for (j=1,survp=0. ; j<=2; j++)  
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   fprintf(ficresvij,"\n");            lli= log(survp); 
           } 
   xp=vector(1,npar);          else{
   dnewm=matrix(1,nlstate,1,npar);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   doldm=matrix(1,nlstate,1,nlstate);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          } 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   gpp=vector(nlstate+1,nlstate+ndeath);          ipmx +=1;
   gmp=vector(nlstate+1,nlstate+ndeath);          sw += weight[i];
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            /* if (lli < log(mytinydouble)){ */
   if(estepm < stepm){          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
     printf ("Problem %d lower than %d\n",estepm, stepm);          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
   }          /* } */
   else  hstepm=estepm;          } /* end of wave */
   /* For example we decided to compute the life expectancy with the smallest unit */      } /* end of individual */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    }  else if(mle==2){
      nhstepm is the number of hstepm from age to agelim      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      nstepm is the number of stepm from age to agelin.        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
      Look at hpijx to understand the reason of that which relies in memory size        for(mi=1; mi<= wav[i]-1; mi++){
      and note for a fixed period like k years */          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            for (j=1;j<=nlstate+ndeath;j++){
      survival function given by stepm (the optimization length). Unfortunately it              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      means that if the survival funtion is printed every two years of age and if              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            }
      results. So we changed our mind and took the option of the best precision.          for(d=0; d<=dh[mi][i]; d++){
   */            newm=savm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   agelim = AGESUP;            cov[2]=agexact;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            if(nagesqr==1)
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              cov[3]= agexact*agexact;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            for (kk=1; kk<=cptcovage;kk++) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            }
     gp=matrix(0,nhstepm,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     gm=matrix(0,nhstepm,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
     for(theta=1; theta <=npar; theta++){          } /* end mult */
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/        
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            bbh=(double)bh[mi][i]/(double)stepm; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
       if (popbased==1) {          sw += weight[i];
         if(mobilav ==0){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(i=1; i<=nlstate;i++)        } /* end of wave */
             prlim[i][i]=probs[(int)age][i][ij];      } /* end of individual */
         }else{ /* mobilav */    }  else if(mle==3){  /* exponential inter-extrapolation */
           for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             prlim[i][i]=mobaverage[(int)age][i][ij];        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<= nlstate; j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(h=0; h<=nhstepm; h++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
       }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       /* This for computing probability of death (h=1 means            cov[2]=agexact;
          computed over hstepm matrices product = hstepm*stepm months)            if(nagesqr==1)
          as a weighted average of prlim.              cov[3]= agexact*agexact;
       */            for (kk=1; kk<=cptcovage;kk++) {
       for(j=nlstate+1;j<=nlstate+ndeath;j++){              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
         for(i=1,gpp[j]=0.; i<= nlstate; i++)            }
           gpp[j] += prlim[i][i]*p3mat[i][j][1];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                             1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /* end probability of death */            savm=oldm;
             oldm=newm;
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */          } /* end mult */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            s1=s[mw[mi][i]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
       if (popbased==1) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         if(mobilav ==0){          ipmx +=1;
           for(i=1; i<=nlstate;i++)          sw += weight[i];
             prlim[i][i]=probs[(int)age][i][ij];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }else{ /* mobilav */        } /* end of wave */
           for(i=1; i<=nlstate;i++)      } /* end of individual */
             prlim[i][i]=mobaverage[(int)age][i][ij];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<= nlstate; j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(h=0; h<=nhstepm; h++){            for (j=1;j<=nlstate+ndeath;j++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
       }          for(d=0; d<dh[mi][i]; d++){
       /* This for computing probability of death (h=1 means            newm=savm;
          computed over hstepm matrices product = hstepm*stepm months)            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
          as a weighted average of prlim.            cov[2]=agexact;
       */            if(nagesqr==1)
       for(j=nlstate+1;j<=nlstate+ndeath;j++){              cov[3]= agexact*agexact;
         for(i=1,gmp[j]=0.; i<= nlstate; i++)            for (kk=1; kk<=cptcovage;kk++) {
          gmp[j] += prlim[i][i]*p3mat[i][j][1];              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
       }                }
       /* end probability of death */          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<= nlstate; j++) /* vareij */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(h=0; h<=nhstepm; h++){            savm=oldm;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            oldm=newm;
         }          } /* end mult */
         
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */          s1=s[mw[mi][i]][i];
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          s2=s[mw[mi+1][i]][i];
       }          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
     } /* End theta */          } else if  ( s2==-1 ) { /* alive */
             for (j=1,survp=0. ; j<=nlstate; j++) 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */              survp += out[s1][j];
             lli= log(survp);
     for(h=0; h<=nhstepm; h++) /* veij */          }else{
       for(j=1; j<=nlstate;j++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for(theta=1; theta <=npar; theta++)          }
           trgradg[h][j][theta]=gradg[h][theta][j];          ipmx +=1;
           sw += weight[i];
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(theta=1; theta <=npar; theta++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         trgradgp[j][theta]=gradgp[theta][j];        } /* end of wave */
        } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i=1;i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
       for(j=1;j<=nlstate;j++)        for(mi=1; mi<= wav[i]-1; mi++){
         vareij[i][j][(int)age] =0.;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     for(h=0;h<=nhstepm;h++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(k=0;k<=nhstepm;k++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          for(d=0; d<dh[mi][i]; d++){
         for(i=1;i<=nlstate;i++)            newm=savm;
           for(j=1;j<=nlstate;j++)            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            cov[2]=agexact;
       }            if(nagesqr==1)
     }              cov[3]= agexact*agexact;
              for (kk=1; kk<=cptcovage;kk++) {
     /* pptj */              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);            }
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          
     for(j=nlstate+1;j<=nlstate+ndeath;j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=nlstate+1;i<=nlstate+ndeath;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         varppt[j][i]=doldmp[j][i];            savm=oldm;
     /* end ppptj */            oldm=newm;
     /*  x centered again */          } /* end mult */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
     if (popbased==1) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       if(mobilav ==0){          ipmx +=1;
         for(i=1; i<=nlstate;i++)          sw += weight[i];
           prlim[i][i]=probs[(int)age][i][ij];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }else{ /* mobilav */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         for(i=1; i<=nlstate;i++)        } /* end of wave */
           prlim[i][i]=mobaverage[(int)age][i][ij];      } /* end of individual */
       }    } /* End of if */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                  /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     /* This for computing probability of death (h=1 means    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
        computed over hstepm (estepm) matrices product = hstepm*stepm months)    return -l;
        as a weighted average of prlim.  }
     */  
     for(j=nlstate+1;j<=nlstate+ndeath;j++){  /*************** log-likelihood *************/
       for(i=1,gmp[j]=0.;i<= nlstate; i++)  double funcone( double *x)
         gmp[j] += prlim[i][i]*p3mat[i][j][1];  {
     }        /* Same as func but slower because of a lot of printf and if */
     /* end probability of death */    int i, ii, j, k, mi, d, kk;
     int ioffset=0;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    double **out;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    double lli; /* Individual log likelihood */
       for(i=1; i<=nlstate;i++){    double llt;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    int s1, s2;
       }    int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
     }  
     fprintf(ficresprobmorprev,"\n");    double bbh, survp;
     double agexact;
     fprintf(ficresvij,"%.0f ",age );    double agebegin, ageend;
     for(i=1; i<=nlstate;i++)    /*extern weight */
       for(j=1; j<=nlstate;j++){    /* We are differentiating ll according to initial status */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       }    /*for(i=1;i<imx;i++) 
     fprintf(ficresvij,"\n");      printf(" %d\n",s[4][i]);
     free_matrix(gp,0,nhstepm,1,nlstate);    */
     free_matrix(gm,0,nhstepm,1,nlstate);    cov[1]=1.;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    ioffset=0;
   } /* End age */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_vector(gpp,nlstate+1,nlstate+ndeath);      ioffset=2+nagesqr+cptcovage;
   free_vector(gmp,nlstate+1,nlstate+ndeath);      /* Fixed */
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */        cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");  /*    cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i];  */
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */  /*    cov[2+6]=covar[Tvar[6]][i];  */
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */  /*    cov[2+6]=covar[2][i]; V2  */
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */  /*    cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i];  */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));  /*    cov[2+7]=covar[Tvar[7]][i];  */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));  /*    cov[2+7]=covar[7][i]; V7=V1*V2  */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));  /*    cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i];  */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));  /*    cov[2+9]=covar[Tvar[9]][i];  */
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);  /*    cov[2+9]=covar[1][i]; V1  */
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      }
 */      /* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */      /*   cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      /* } */
       /* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */
   free_vector(xp,1,npar);      /*   cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */
   free_matrix(doldm,1,nlstate,1,nlstate);      /* } */
   free_matrix(dnewm,1,nlstate,1,npar);      
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      /* Wave varying (but not age varying) */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/
   fclose(ficresprobmorprev);                                  cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i];
   fflush(ficgp);                          }
   fflush(fichtm);        /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */
 }  /* end varevsij */                                  /* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */
                                   /* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */
 /************ Variance of prevlim ******************/                                  /* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])                                  /* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */
 {                                  /* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */
   /* Variance of prevalence limit */        /* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/                          /*      iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */
   double **newm;                          /*      /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */
   double **dnewm,**doldm;                          /*      cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */
   int i, j, nhstepm, hstepm;        /* } */
   int k, cptcode;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double *xp;                                  for (j=1;j<=nlstate+ndeath;j++){
   double *gp, *gm;                                          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **gradg, **trgradg;                                          savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age,agelim;                                  }
   int theta;        
          agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
   pstamp(ficresvpl);        ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");        for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
   fprintf(ficresvpl,"# Age");                                  /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   for(i=1; i<=nlstate;i++)                                          and mw[mi+1][i]. dh depends on stepm.*/
       fprintf(ficresvpl," %1d-%1d",i,i);                                  newm=savm;
   fprintf(ficresvpl,"\n");                                  agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                                   cov[2]=agexact;
   xp=vector(1,npar);                                  if(nagesqr==1)
   dnewm=matrix(1,nlstate,1,npar);                                          cov[3]= agexact*agexact;
   doldm=matrix(1,nlstate,1,nlstate);                                  for (kk=1; kk<=cptcovage;kk++) {
                                            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   hstepm=1*YEARM; /* Every year of age */                                  }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                                  /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */
   agelim = AGESUP;                                  /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                                                                                   1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (stepm >= YEARM) hstepm=1;                                  /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                                  /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
     gradg=matrix(1,npar,1,nlstate);                                  savm=oldm;
     gp=vector(1,nlstate);                                  oldm=newm;
     gm=vector(1,nlstate);        } /* end mult */
         
     for(theta=1; theta <=npar; theta++){        s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */        s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /* if(s2==-1){ */
       }        /*        printf(" s1=%d, s2=%d i=%d \n", s1, s2, i); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /*        /\* exit(1); *\/ */
       for(i=1;i<=nlstate;i++)        /* } */
         gp[i] = prlim[i][i];        bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias is positive if real duration
       for(i=1; i<=npar; i++) /* Computes gradient */         * is higher than the multiple of stepm and negative otherwise.
         xp[i] = x[i] - (i==theta ?delti[theta]:0);         */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       for(i=1;i<=nlstate;i++)                                  lli=log(out[s1][s2] - savm[s1][s2]);
         gm[i] = prlim[i][i];        } else if  ( s2==-1 ) { /* alive */
                                   for (j=1,survp=0. ; j<=nlstate; j++) 
       for(i=1;i<=nlstate;i++)                                          survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                                  lli= log(survp);
     } /* End theta */        }else if (mle==1){
                                   lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     trgradg =matrix(1,nlstate,1,npar);        } else if(mle==2){
                                   lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(j=1; j<=nlstate;j++)        } else if(mle==3){  /* exponential inter-extrapolation */
       for(theta=1; theta <=npar; theta++)                                  lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         trgradg[j][theta]=gradg[theta][j];        } else if (mle==4){  /* mle=4 no inter-extrapolation */
                                   lli=log(out[s1][s2]); /* Original formula */
     for(i=1;i<=nlstate;i++)        } else{  /* mle=0 back to 1 */
       varpl[i][(int)age] =0.;                                  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                                  /*lli=log(out[s1][s2]); */ /* Original formula */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        } /* End of if */
     for(i=1;i<=nlstate;i++)        ipmx +=1;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficresvpl,"%.0f ",age );        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(i=1; i<=nlstate;i++)        if(globpr){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));                                  fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\
     fprintf(ficresvpl,"\n");   %11.6f %11.6f %11.6f ", \
     free_vector(gp,1,nlstate);                                                                  num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
     free_vector(gm,1,nlstate);                                                                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     free_matrix(gradg,1,npar,1,nlstate);                                  for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     free_matrix(trgradg,1,nlstate,1,npar);                                          llt +=ll[k]*gipmx/gsw;
   } /* End age */                                          fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                                   }
   free_vector(xp,1,npar);                                  fprintf(ficresilk," %10.6f\n", -llt);
   free_matrix(doldm,1,nlstate,1,npar);        }
   free_matrix(dnewm,1,nlstate,1,nlstate);          } /* end of wave */
   } /* end of individual */
 }  for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 /************ Variance of one-step probabilities  ******************/  l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])  if(globpr==0){ /* First time we count the contributions and weights */
 {          gipmx=ipmx;
   int i, j=0,  i1, k1, l1, t, tj;          gsw=sw;
   int k2, l2, j1,  z1;  }
   int k=0,l, cptcode;  return -l;
   int first=1, first1;  }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;  
   double **dnewm,**doldm;  
   double *xp;  /*************** function likelione ***********/
   double *gp, *gm;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   double **gradg, **trgradg;  {
   double **mu;    /* This routine should help understanding what is done with 
   double age,agelim, cov[NCOVMAX];       the selection of individuals/waves and
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */       to check the exact contribution to the likelihood.
   int theta;       Plotting could be done.
   char fileresprob[FILENAMELENGTH];     */
   char fileresprobcov[FILENAMELENGTH];    int k;
   char fileresprobcor[FILENAMELENGTH];  
     if(*globpri !=0){ /* Just counts and sums, no printings */
   double ***varpij;      strcpy(fileresilk,"ILK_"); 
       strcat(fileresilk,fileresu);
   strcpy(fileresprob,"prob");      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   strcat(fileresprob,fileres);        printf("Problem with resultfile: %s\n", fileresilk);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     printf("Problem with resultfile: %s\n", fileresprob);      }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   }      fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
   strcpy(fileresprobcov,"probcov");      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   strcat(fileresprobcov,fileres);      for(k=1; k<=nlstate; k++) 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     printf("Problem with resultfile: %s\n", fileresprobcov);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    }
   }  
   strcpy(fileresprobcor,"probcor");    *fretone=(*funcone)(p);
   strcat(fileresprobcor,fileres);    if(*globpri !=0){
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      fclose(ficresilk);
     printf("Problem with resultfile: %s\n", fileresprobcor);      if (mle ==0)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
   }      else if(mle >=1)
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      for (k=1; k<= nlstate ; k++) {
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
   pstamp(ficresprob);  <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      }
   fprintf(ficresprob,"# Age");      fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
   pstamp(ficresprobcov);  <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
   fprintf(ficresprobcov,"# Age");  <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
   pstamp(ficresprobcor);      fflush(fichtm);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    }
   fprintf(ficresprobcor,"# Age");    return;
   }
   
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++){  /*********** Maximum Likelihood Estimation ***************/
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  {
     }      int i,j, iter=0;
  /* fprintf(ficresprob,"\n");    double **xi;
   fprintf(ficresprobcov,"\n");    double fret;
   fprintf(ficresprobcor,"\n");    double fretone; /* Only one call to likelihood */
  */    /*  char filerespow[FILENAMELENGTH];*/
  xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  #ifdef NLOPT
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    int creturn;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    nlopt_opt opt;
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
   first=1;    double *lb;
   fprintf(ficgp,"\n# Routine varprob");    double minf; /* the minimum objective value, upon return */
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    double * p1; /* Shifted parameters from 0 instead of 1 */
   fprintf(fichtm,"\n");    myfunc_data dinst, *d = &dinst;
   #endif
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);  
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\  
   file %s<br>\n",optionfilehtmcov);    xi=matrix(1,npar,1,npar);
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\    for (i=1;i<=npar;i++)
 and drawn. It helps understanding how is the covariance between two incidences.\      for (j=1;j<=npar;j++)
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        xi[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \    printf("Powell\n");  fprintf(ficlog,"Powell\n");
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \    strcpy(filerespow,"POW_"); 
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \    strcat(filerespow,fileres);
 standard deviations wide on each axis. <br>\    if((ficrespow=fopen(filerespow,"w"))==NULL) {
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\      printf("Problem with resultfile: %s\n", filerespow);
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
   cov[1]=1;    for (i=1;i<=nlstate;i++)
   tj=cptcoveff;      for(j=1;j<=nlstate+ndeath;j++)
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   j1=0;    fprintf(ficrespow,"\n");
   for(t=1; t<=tj;t++){  #ifdef POWELL
     for(i1=1; i1<=ncodemax[t];i1++){    powell(p,xi,npar,ftol,&iter,&fret,func);
       j1++;  #endif
       if  (cptcovn>0) {  
         fprintf(ficresprob, "\n#********** Variable ");  #ifdef NLOPT
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  #ifdef NEWUOA
         fprintf(ficresprob, "**********\n#\n");    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
         fprintf(ficresprobcov, "\n#********** Variable ");  #else
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
         fprintf(ficresprobcov, "**********\n#\n");  #endif
            lb=vector(0,npar-1);
         fprintf(ficgp, "\n#********** Variable ");    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    nlopt_set_lower_bounds(opt, lb);
         fprintf(ficgp, "**********\n#\n");    nlopt_set_initial_step1(opt, 0.1);
            
            p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    d->function = func;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    nlopt_set_min_objective(opt, myfunc, d);
            nlopt_set_xtol_rel(opt, ftol);
         fprintf(ficresprobcor, "\n#********** Variable ");        if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      printf("nlopt failed! %d\n",creturn); 
         fprintf(ficresprobcor, "**********\n#");        }
       }    else {
            printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       for (age=bage; age<=fage; age ++){      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
         cov[2]=age;      iter=1; /* not equal */
         for (k=1; k<=cptcovn;k++) {    }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    nlopt_destroy(opt);
         }  #endif
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free_matrix(xi,1,npar,1,npar);
         for (k=1; k<=cptcovprod;k++)    fclose(ficrespow);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
            fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  
         gp=vector(1,(nlstate)*(nlstate+ndeath));  }
         gm=vector(1,(nlstate)*(nlstate+ndeath));  
      /**** Computes Hessian and covariance matrix ***/
         for(theta=1; theta <=npar; theta++){  void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           for(i=1; i<=npar; i++)  {
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    double  **a,**y,*x,pd;
              /* double **hess; */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    int i, j;
              int *indx;
           k=0;  
           for(i=1; i<= (nlstate); i++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
             for(j=1; j<=(nlstate+ndeath);j++){    double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
               k=k+1;    void lubksb(double **a, int npar, int *indx, double b[]) ;
               gp[k]=pmmij[i][j];    void ludcmp(double **a, int npar, int *indx, double *d) ;
             }    double gompertz(double p[]);
           }    /* hess=matrix(1,npar,1,npar); */
            
           for(i=1; i<=npar; i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
        for (i=1;i<=npar;i++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      printf("%d-",i);fflush(stdout);
           k=0;      fprintf(ficlog,"%d-",i);fflush(ficlog);
           for(i=1; i<=(nlstate); i++){     
             for(j=1; j<=(nlstate+ndeath);j++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
               k=k+1;      
               gm[k]=pmmij[i][j];      /*  printf(" %f ",p[i]);
             }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           }    }
          
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    for (i=1;i<=npar;i++) {
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];        for (j=1;j<=npar;j++)  {
         }        if (j>i) { 
           printf(".%d-%d",i,j);fflush(stdout);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
           for(theta=1; theta <=npar; theta++)          hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
             trgradg[j][theta]=gradg[theta][j];          
                  hess[j][i]=hess[i][j];    
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          /*printf(" %lf ",hess[i][j]);*/
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        }
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      }
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    }
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    printf("\n");
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fprintf(ficlog,"\n");
   
         pmij(pmmij,cov,ncovmodel,x,nlstate);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
            fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         k=0;    
         for(i=1; i<=(nlstate); i++){    a=matrix(1,npar,1,npar);
           for(j=1; j<=(nlstate+ndeath);j++){    y=matrix(1,npar,1,npar);
             k=k+1;    x=vector(1,npar);
             mu[k][(int) age]=pmmij[i][j];    indx=ivector(1,npar);
           }    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    ludcmp(a,npar,indx,&pd);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  
             varpij[i][j][(int)age] = doldm[i][j];    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
         /*printf("\n%d ",(int)age);      x[j]=1;
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      lubksb(a,npar,indx,x);
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      for (i=1;i<=npar;i++){ 
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        matcov[i][j]=x[i];
           }*/      }
     }
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);    printf("\n#Hessian matrix#\n");
         fprintf(ficresprobcor,"\n%d ",(int)age);    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      for (j=1;j<=npar;j++) { 
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        printf("%.6e ",hess[i][j]);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        fprintf(ficlog,"%.6e ",hess[i][j]);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      printf("\n");
         }      fprintf(ficlog,"\n");
         i=0;    }
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){    /* printf("\n#Covariance matrix#\n"); */
             i=i++;    /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    /* for (i=1;i<=npar;i++) {  */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    /*   for (j=1;j<=npar;j++) {  */
             for (j=1; j<=i;j++){    /*     printf("%.6e ",matcov[i][j]); */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    /*   } */
             }    /*   printf("\n"); */
           }    /*   fprintf(ficlog,"\n"); */
         }/* end of loop for state */    /* } */
       } /* end of loop for age */  
     /* Recompute Inverse */
       /* Confidence intervalle of pij  */    /* for (i=1;i<=npar;i++) */
       /*    /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
         fprintf(ficgp,"\nset noparametric;unset label");    /* ludcmp(a,npar,indx,&pd); */
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    /*  printf("\n#Hessian matrix recomputed#\n"); */
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    /* for (j=1;j<=npar;j++) { */
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    /*   for (i=1;i<=npar;i++) x[i]=0; */
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    /*   x[j]=1; */
       */    /*   lubksb(a,npar,indx,x); */
     /*   for (i=1;i<=npar;i++){  */
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    /*     y[i][j]=x[i]; */
       first1=1;    /*     printf("%.3e ",y[i][j]); */
       for (k2=1; k2<=(nlstate);k2++){    /*     fprintf(ficlog,"%.3e ",y[i][j]); */
         for (l2=1; l2<=(nlstate+ndeath);l2++){    /*   } */
           if(l2==k2) continue;    /*   printf("\n"); */
           j=(k2-1)*(nlstate+ndeath)+l2;    /*   fprintf(ficlog,"\n"); */
           for (k1=1; k1<=(nlstate);k1++){    /* } */
             for (l1=1; l1<=(nlstate+ndeath);l1++){  
               if(l1==k1) continue;    /* Verifying the inverse matrix */
               i=(k1-1)*(nlstate+ndeath)+l1;  #ifdef DEBUGHESS
               if(i<=j) continue;    y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
               for (age=bage; age<=fage; age ++){  
                 if ((int)age %5==0){     printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;     fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    for (j=1;j<=npar;j++) {
                   mu1=mu[i][(int) age]/stepm*YEARM ;      for (i=1;i<=npar;i++){ 
                   mu2=mu[j][(int) age]/stepm*YEARM;        printf("%.2f ",y[i][j]);
                   c12=cv12/sqrt(v1*v2);        fprintf(ficlog,"%.2f ",y[i][j]);
                   /* Computing eigen value of matrix of covariance */      }
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      printf("\n");
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      fprintf(ficlog,"\n");
                   /* Eigen vectors */    }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  #endif
                   /*v21=sqrt(1.-v11*v11); *//* error */  
                   v21=(lc1-v1)/cv12*v11;    free_matrix(a,1,npar,1,npar);
                   v12=-v21;    free_matrix(y,1,npar,1,npar);
                   v22=v11;    free_vector(x,1,npar);
                   tnalp=v21/v11;    free_ivector(indx,1,npar);
                   if(first1==1){    /* free_matrix(hess,1,npar,1,npar); */
                     first1=0;  
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  
                   }  }
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  
                   /*printf(fignu*/  /*************** hessian matrix ****************/
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */  { /* Around values of x, computes the function func and returns the scales delti and hessian */
                   if(first==1){    int i;
                     first=0;    int l=1, lmax=20;
                     fprintf(ficgp,"\nset parametric;unset label");    double k1,k2, res, fx;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    double p2[MAXPARM+1]; /* identical to x */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    int k=0,kmax=10;
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    double l1;
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\  
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\    fx=func(x);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    for (i=1;i<=npar;i++) p2[i]=x[i];
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);      l1=pow(10,l);
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      delts=delt;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      for(k=1 ; k <kmax; k=k+1){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        delt = delta*(l1*k);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        p2[theta]=x[theta] +delt;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        p2[theta]=x[theta]-delt;
                   }else{        k2=func(p2)-fx;
                     first=0;        /*res= (k1-2.0*fx+k2)/delt/delt; */
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);        res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  #ifdef DEBUGHESSII
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  #endif
                   }/* if first */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                 } /* age mod 5 */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
               } /* end loop age */          k=kmax;
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        }
               first=1;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
             } /*l12 */          k=kmax; l=lmax*10;
           } /* k12 */        }
         } /*l1 */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       }/* k1 */          delts=delt;
     } /* loop covariates */        }
   }      } /* End loop k */
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    }
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    delti[theta]=delts;
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    return res; 
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);    
   free_vector(xp,1,npar);  }
   fclose(ficresprob);  
   fclose(ficresprobcov);  double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   fclose(ficresprobcor);  {
   fflush(ficgp);    int i;
   fflush(fichtmcov);    int l=1, lmax=20;
 }    double k1,k2,k3,k4,res,fx;
     double p2[MAXPARM+1];
     int k, kmax=1;
 /******************* Printing html file ***********/    double v1, v2, cv12, lc1, lc2;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
                   int lastpass, int stepm, int weightopt, char model[],\    int firstime=0;
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    
                   int popforecast, int estepm ,\    fx=func(x);
                   double jprev1, double mprev1,double anprev1, \    for (k=1; k<=kmax; k=k+10) {
                   double jprev2, double mprev2,double anprev2){      for (i=1;i<=npar;i++) p2[i]=x[i];
   int jj1, k1, i1, cpt;      p2[thetai]=x[thetai]+delti[thetai]*k;
       p2[thetaj]=x[thetaj]+delti[thetaj]*k;
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \      k1=func(p2)-fx;
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \    
 </ul>");      p2[thetai]=x[thetai]+delti[thetai]*k;
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",      k2=func(p2)-fx;
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));    
    fprintf(fichtm,"\      p2[thetai]=x[thetai]-delti[thetai]*k;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));      k3=func(p2)-fx;
    fprintf(fichtm,"\    
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",      p2[thetai]=x[thetai]-delti[thetai]*k;
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
    fprintf(fichtm,"\      k4=func(p2)-fx;
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \      res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
    <a href=\"%s\">%s</a> <br>\n",      if(k1*k2*k3*k4 <0.){
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));        firstime=1;
    fprintf(fichtm,"\        kmax=kmax+10;
  - Population projections by age and states: \      }
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));      if(kmax >=10 || firstime ==1){
         printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");        fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol);
         printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
  m=cptcoveff;        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      }
   #ifdef DEBUGHESSIJ
  jj1=0;      v1=hess[thetai][thetai];
  for(k1=1; k1<=m;k1++){      v2=hess[thetaj][thetaj];
    for(i1=1; i1<=ncodemax[k1];i1++){      cv12=res;
      jj1++;      /* Computing eigen value of Hessian matrix */
      if (cptcovn > 0) {      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
        for (cpt=1; cpt<=cptcoveff;cpt++)      if ((lc2 <0) || (lc1 <0) ){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
      }        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      /* Pij */        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \      }
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);      #endif
      /* Quasi-incidences */    }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\    return res;
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \  }
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);  
        /* Period (stable) prevalence in each health state */      /* Not done yet: Was supposed to fix if not exactly at the maximum */
        for(cpt=1; cpt<nlstate;cpt++){  /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \  /* { */
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);  /*   int i; */
        }  /*   int l=1, lmax=20; */
      for(cpt=1; cpt<=nlstate;cpt++) {  /*   double k1,k2,k3,k4,res,fx; */
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \  /*   double p2[MAXPARM+1]; */
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);  /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
      }  /*   int k=0,kmax=10; */
    } /* end i1 */  /*   double l1; */
  }/* End k1 */    
  fprintf(fichtm,"</ul>");  /*   fx=func(x); */
   /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
   /*     l1=pow(10,l); */
  fprintf(fichtm,"\  /*     delts=delt; */
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\  /*     for(k=1 ; k <kmax; k=k+1){ */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);  /*       delt = delti*(l1*k); */
   /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
  fprintf(fichtm,"\  /*       k1=func(p2)-fx; */
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",        
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
  fprintf(fichtm,"\  /*       k2=func(p2)-fx; */
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",        
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
  fprintf(fichtm,"\  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \  /*       k3=func(p2)-fx; */
    <a href=\"%s\">%s</a> <br>\n</li>",        
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
  fprintf(fichtm,"\  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \  /*       k4=func(p2)-fx; */
    <a href=\"%s\">%s</a> <br>\n</li>",  /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));  /* #ifdef DEBUGHESSIJ */
  fprintf(fichtm,"\  /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",  /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));  /* #endif */
  fprintf(fichtm,"\  /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",  /*      k=kmax; */
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));  /*       } */
  fprintf(fichtm,"\  /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\  /*      k=kmax; l=lmax*10; */
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));  /*       } */
   /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
 /*  if(popforecast==1) fprintf(fichtm,"\n */  /*      delts=delt; */
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */  /*       } */
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */  /*     } /\* End loop k *\/ */
 /*      <br>",fileres,fileres,fileres,fileres); */  /*   } */
 /*  else  */  /*   delti[theta]=delts; */
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */  /*   return res;  */
  fflush(fichtm);  /* } */
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");  
   
  m=cptcoveff;  /************** Inverse of matrix **************/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
  jj1=0;    int i,imax,j,k; 
  for(k1=1; k1<=m;k1++){    double big,dum,sum,temp; 
    for(i1=1; i1<=ncodemax[k1];i1++){    double *vv; 
      jj1++;   
      if (cptcovn > 0) {    vv=vector(1,n); 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    *d=1.0; 
        for (cpt=1; cpt<=cptcoveff;cpt++)    for (i=1;i<=n;i++) { 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      big=0.0; 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      for (j=1;j<=n;j++) 
      }        if ((temp=fabs(a[i][j])) > big) big=temp; 
      for(cpt=1; cpt<=nlstate;cpt++) {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \      vv[i]=1.0/big; 
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\    } 
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);      for (j=1;j<=n;j++) { 
      }      for (i=1;i<j;i++) { 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \        sum=a[i][j]; 
 health expectancies in states (1) and (2): %s%d.png<br>\        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);        a[i][j]=sum; 
    } /* end i1 */      } 
  }/* End k1 */      big=0.0; 
  fprintf(fichtm,"</ul>");      for (i=j;i<=n;i++) { 
  fflush(fichtm);        sum=a[i][j]; 
 }        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
 /******************* Gnuplot file **************/        a[i][j]=sum; 
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
   char dirfileres[132],optfileres[132];          imax=i; 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        } 
   int ng;      } 
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */      if (j != imax) { 
 /*     printf("Problem with file %s",optionfilegnuplot); */        for (k=1;k<=n;k++) { 
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */          dum=a[imax][k]; 
 /*   } */          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
   /*#ifdef windows */        } 
   fprintf(ficgp,"cd \"%s\" \n",pathc);        *d = -(*d); 
     /*#endif */        vv[imax]=vv[j]; 
   m=pow(2,cptcoveff);      } 
       indx[j]=imax; 
   strcpy(dirfileres,optionfilefiname);      if (a[j][j] == 0.0) a[j][j]=TINY; 
   strcpy(optfileres,"vpl");      if (j != n) { 
  /* 1eme*/        dum=1.0/(a[j][j]); 
   for (cpt=1; cpt<= nlstate ; cpt ++) {        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
    for (k1=1; k1<= m ; k1 ++) {      } 
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);    } 
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);    free_vector(vv,1,n);  /* Doesn't work */
      fprintf(ficgp,"set xlabel \"Age\" \n\  ;
 set ylabel \"Probability\" \n\  } 
 set ter png small\n\  
 set size 0.65,0.65\n\  void lubksb(double **a, int n, int *indx, double b[]) 
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);  { 
     int i,ii=0,ip,j; 
      for (i=1; i<= nlstate ; i ++) {    double sum; 
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   
        else fprintf(ficgp," \%%*lf (\%%*lf)");    for (i=1;i<=n;i++) { 
      }      ip=indx[i]; 
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);      sum=b[ip]; 
      for (i=1; i<= nlstate ; i ++) {      b[ip]=b[i]; 
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      if (ii) 
        else fprintf(ficgp," \%%*lf (\%%*lf)");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
      }      else if (sum) ii=i; 
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);      b[i]=sum; 
      for (i=1; i<= nlstate ; i ++) {    } 
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (i=n;i>=1;i--) { 
        else fprintf(ficgp," \%%*lf (\%%*lf)");      sum=b[i]; 
      }        for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));      b[i]=sum/a[i][i]; 
    }    } 
   }  } 
   /*2 eme*/  
    void pstamp(FILE *fichier)
   for (k1=1; k1<= m ; k1 ++) {  {
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  }
      
     for (i=1; i<= nlstate+1 ; i ++) {  /************ Frequencies ********************/
       k=2*i;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                    int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \
       for (j=1; j<= nlstate+1 ; j ++) {                    int firstpass,  int lastpass, int stepm, int weightopt, char model[])
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  {  /* Some frequencies */
         else fprintf(ficgp," \%%*lf (\%%*lf)");    
       }      int i, m, jk, j1, bool, z1,j, k, iv;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    int iind=0, iage=0;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    int mi; /* Effective wave */
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    int first;
       for (j=1; j<= nlstate+1 ; j ++) {    double ***freq; /* Frequencies */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double *meanq;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double **meanqt;
       }      double *pp, **prop, *posprop, *pospropt;
       fprintf(ficgp,"\" t\"\" w l 0,");    double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
       for (j=1; j<= nlstate+1 ; j ++) {    double agebegin, ageend;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      
         else fprintf(ficgp," \%%*lf (\%%*lf)");    pp=vector(1,nlstate);
       }      prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ 
       else fprintf(ficgp,"\" t\"\" w l 0,");    pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ 
     }    /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
   }    meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
      meanqt=matrix(1,lastpass,1,nqtveff);
   /*3eme*/    strcpy(fileresp,"P_");
      strcat(fileresp,fileresu);
   for (k1=1; k1<= m ; k1 ++) {    /*strcat(fileresphtm,fileresu);*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
       /*       k=2+nlstate*(2*cpt-2); */      printf("Problem with prevalence resultfile: %s\n", fileresp);
       k=2+(nlstate+1)*(cpt-1);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);      exit(0);
       fprintf(ficgp,"set ter png small\n\    }
 set size 0.65,0.65\n\    
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);    strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      fflush(ficlog);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      exit(70); 
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    }
            else{
       */      fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
       for (i=1; i< nlstate ; i ++) {  <hr size=\"2\" color=\"#EC5E5E\"> \n                                    \
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/              fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
            }
       }    fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm);
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);    
     }    strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
   }    if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
        printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
   /* CV preval stable (period) */      fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
   for (k1=1; k1<= m ; k1 ++) {      fflush(ficlog);
     for (cpt=1; cpt<=nlstate ; cpt ++) {      exit(70); 
       k=3;    } else{
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);      fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\  <hr size=\"2\" color=\"#EC5E5E\"> \n                                    \
 set ter png small\nset size 0.65,0.65\n\  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
 unset log y\n\              fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);    }
          fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr);
       for (i=1; i< nlstate ; i ++)    
         fprintf(ficgp,"+$%d",k+i+1);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    j1=0;
          
       l=3+(nlstate+ndeath)*cpt;    /* j=ncoveff;  /\* Only fixed dummy covariates *\/ */
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);    j=cptcoveff;  /* Only dummy covariates of the model */
       for (i=1; i< nlstate ; i ++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         l=3+(nlstate+ndeath)*cpt;    
         fprintf(ficgp,"+$%d",l+i+1);    first=1;
       }    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
     }       reference=low_education V1=0,V2=0
   }         med_educ                V1=1 V2=0, 
         high_educ               V1=0 V2=1
   /* proba elementaires */       Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff 
   for(i=1,jk=1; i <=nlstate; i++){    */
     for(k=1; k <=(nlstate+ndeath); k++){    
       if (k != i) {    for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination in order of model, excluding quantitatives V4=0, V3=0 for example, fixed or varying covariates */
         for(j=1; j <=ncovmodel; j++){      posproptt=0.;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           jk++;        scanf("%d", i);*/
           fprintf(ficgp,"\n");      for (i=-5; i<=nlstate+ndeath; i++)  
         }        for (jk=-5; jk<=nlstate+ndeath; jk++)  
       }          for(m=iagemin; m <= iagemax+3; m++)
     }            freq[i][jk][m]=0;
    }      
       for (i=1; i<=nlstate; i++)  {
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        for(m=iagemin; m <= iagemax+3; m++)
      for(jk=1; jk <=m; jk++) {          prop[i][m]=0;
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);        posprop[i]=0;
        if (ng==2)        pospropt[i]=0;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      }
        else      /* for (z1=1; z1<= nqfveff; z1++) {   */
          fprintf(ficgp,"\nset title \"Probability\"\n");      /*   meanq[z1]+=0.; */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      /*   for(m=1;m<=lastpass;m++){ */
        i=1;      /*  meanqt[m][z1]=0.; */
        for(k2=1; k2<=nlstate; k2++) {      /*   } */
          k3=i;      /* } */
          for(k=1; k<=(nlstate+ndeath); k++) {      
            if (k != k2){      dateintsum=0;
              if(ng==2)      k2cpt=0;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      /* For that combination of covariate j1, we count and print the frequencies in one pass */
              else      for (iind=1; iind<=imx; iind++) { /* For each individual iind */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        bool=1;
              ij=1;        if(anyvaryingduminmodel==0){ /* If All fixed covariates */
              for(j=3; j <=ncovmodel; j++) {          if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            /* for (z1=1; z1<= nqfveff; z1++) {   */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            /*   meanq[z1]+=coqvar[Tvar[z1]][iind];  /\* Computes mean of quantitative with selected filter *\/ */
                  ij++;            /* } */
                }            for (z1=1; z1<=cptcoveff; z1++) {  
                else              /* if(Tvaraff[z1] ==-20){ */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              /*   /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
              }              /* }else  if(Tvaraff[z1] ==-10){ */
              fprintf(ficgp,")/(1");              /*   /\* sumnew+=coqvar[z1][iind]; *\/ */
                            /* }else  */
              for(k1=1; k1 <=nlstate; k1++){                if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                /* Tests if this individual iind responded to j1 (V4=1 V3=0) */
                ij=1;                bool=0;
                for(j=3; j <=ncovmodel; j++){                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                   bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                   j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
                    ij++;                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
                  }              } /* Onlyf fixed */
                  else            } /* end z1 */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          } /* cptcovn > 0 */
                }        } /* end any */
                fprintf(ficgp,")");        if (bool==1){ /* We selected an individual iind satisfying combination j1 or all fixed */
              }          /* for(m=firstpass; m<=lastpass; m++){ */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);          for(mi=1; mi<wav[iind];mi++){ /* For that wave */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            m=mw[mi][iind];
              i=i+ncovmodel;            if(anyvaryingduminmodel==1){ /* Some are varying covariates */
            }              for (z1=1; z1<=cptcoveff; z1++) {
          } /* end k */                if( Fixed[Tmodelind[z1]]==1){
        } /* end k2 */                  iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
      } /* end jk */                  if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */
    } /* end ng */                    bool=0;
    fflush(ficgp);                }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */
 }  /* end gnuplot */                  if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
                     bool=0;
                   }
 /*************** Moving average **************/                }
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){              }
             }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop  */
   int i, cpt, cptcod;            /* bool =0 we keep that guy which corresponds to the combination of dummy values */
   int modcovmax =1;            if(bool==1){
   int mobilavrange, mob;              /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
   double age;                 and mw[mi+1][iind]. dh depends on stepm. */
               agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose              ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */
                            a covariate has 2 modalities */              if(m >=firstpass && m <=lastpass){
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */                k2=anint[m][iind]+(mint[m][iind]/12.);
                 /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){                if(agev[m][iind]==0) agev[m][iind]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
     if(mobilav==1) mobilavrange=5; /* default */                if(agev[m][iind]==1) agev[m][iind]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
     else mobilavrange=mobilav;                if (s[m][iind]>0 && s[m][iind]<=nlstate)  /* If status at wave m is known and a live state */
     for (age=bage; age<=fage; age++)                  prop[s[m][iind]][(int)agev[m][iind]] += weight[iind];  /* At age of beginning of transition, where status is known */
       for (i=1; i<=nlstate;i++)                if (m<lastpass) {
         for (cptcod=1;cptcod<=modcovmax;cptcod++)                  /* if(s[m][iind]==4 && s[m+1][iind]==4) */
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];                  /*   printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */
     /* We keep the original values on the extreme ages bage, fage and for                  if(s[m][iind]==-1)
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2                    printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));
        we use a 5 terms etc. until the borders are no more concerned.                  freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */
     */                  /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */
     for (mob=3;mob <=mobilavrange;mob=mob+2){                  freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){                }
         for (i=1; i<=nlstate;i++){              } /* end if between passes */  
           for (cptcod=1;cptcod<=modcovmax;cptcod++){              if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99)) {
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];                dateintsum=dateintsum+k2;
               for (cpt=1;cpt<=(mob-1)/2;cpt++){                k2cpt++;
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];                /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];              }
               }            } /* end bool 2 */
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;          } /* end m */
           }        } /* end bool */
         }      } /* end iind = 1 to imx */
       }/* end age */      /* prop[s][age] is feeded for any initial and valid live state as well as
     }/* end mob */         freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */
   }else return -1;      
   return 0;      
 }/* End movingaverage */      /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       pstamp(ficresp);
       if  (cptcoveff>0){
 /************** Forecasting ******************/        fprintf(ficresp, "\n#********** Variable "); 
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){        fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
   /* proj1, year, month, day of starting projection        fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
      agemin, agemax range of age        fprintf(ficlog, "\n#********** Variable "); 
      dateprev1 dateprev2 range of dates during which prevalence is computed        for (z1=1; z1<=cptcoveff; z1++){
      anproj2 year of en of projection (same day and month as proj1).          if(DummyV[z1]){
   */            fprintf(ficresp, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;            fprintf(ficresphtm, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   int *popage;            fprintf(ficresphtmfr, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   double agec; /* generic age */            fprintf(ficlog, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          }else{
   double *popeffectif,*popcount;            fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   double ***p3mat;            fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   double ***mobaverage;            fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   char fileresf[FILENAMELENGTH];            fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           }
   agelim=AGESUP;        }
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);        fprintf(ficresp, "**********\n#");
          fprintf(ficresphtm, "**********</h3>\n");
   strcpy(fileresf,"f");        fprintf(ficresphtmfr, "**********</h3>\n");
   strcat(fileresf,fileres);        fprintf(ficlog, "**********\n");
   if((ficresf=fopen(fileresf,"w"))==NULL) {      }
     printf("Problem with forecast resultfile: %s\n", fileresf);      fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      for(i=1; i<=nlstate;i++) {
   }        fprintf(ficresp, " Age Prev(%d)  N(%d)  N  ",i,i);
   printf("Computing forecasting: result on file '%s' \n", fileresf);        fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      }
       fprintf(ficresp, "\n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      fprintf(ficresphtm, "\n");
       
   if (mobilav!=0) {      /* Header of frequency table by age */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){      fprintf(ficresphtmfr,"<th>Age</th> ");
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      for(jk=-1; jk <=nlstate+ndeath; jk++){
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        for(m=-1; m <=nlstate+ndeath; m++){
     }          if(jk!=0 && m!=0)
   }            fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m);
         }
   stepsize=(int) (stepm+YEARM-1)/YEARM;      }
   if (stepm<=12) stepsize=1;      fprintf(ficresphtmfr, "\n");
   if(estepm < stepm){      
     printf ("Problem %d lower than %d\n",estepm, stepm);      /* For each age */
   }      for(iage=iagemin; iage <= iagemax+3; iage++){
   else  hstepm=estepm;          fprintf(ficresphtm,"<tr>");
         if(iage==iagemax+1){
   hstepm=hstepm/stepm;          fprintf(ficlog,"1");
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and          fprintf(ficresphtmfr,"<tr><th>0</th> ");
                                fractional in yp1 */        }else if(iage==iagemax+2){
   anprojmean=yp;          fprintf(ficlog,"0");
   yp2=modf((yp1*12),&yp);          fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
   mprojmean=yp;        }else if(iage==iagemax+3){
   yp1=modf((yp2*30.5),&yp);          fprintf(ficlog,"Total");
   jprojmean=yp;          fprintf(ficresphtmfr,"<tr><th>Total</th> ");
   if(jprojmean==0) jprojmean=1;        }else{
   if(mprojmean==0) jprojmean=1;          if(first==1){
             first=0;
   i1=cptcoveff;            printf("See log file for details...\n");
   if (cptcovn < 1){i1=1;}          }
            fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage);
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);          fprintf(ficlog,"Age %d", iage);
          }
   fprintf(ficresf,"#****** Routine prevforecast **\n");        for(jk=1; jk <=nlstate ; jk++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 /*            if (h==(int)(YEARM*yearp)){ */            pp[jk] += freq[jk][m][iage]; 
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(jk=1; jk <=nlstate ; jk++){
       k=k+1;          for(m=-1, pos=0; m <=0 ; m++)
       fprintf(ficresf,"\n#******");            pos += freq[jk][m][iage];
       for(j=1;j<=cptcoveff;j++) {          if(pp[jk]>=1.e-10){
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            if(first==1){
       }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficresf,"******\n");            }
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");            fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(j=1; j<=nlstate+ndeath;j++){          }else{
         for(i=1; i<=nlstate;i++)                          if(first==1)
           fprintf(ficresf," p%d%d",i,j);              printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         fprintf(ficresf," p.%d",j);            fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }          }
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {        }
         fprintf(ficresf,"\n");        
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);          for(jk=1; jk <=nlstate ; jk++){ 
           /* posprop[jk]=0; */
         for (agec=fage; agec>=(ageminpar-1); agec--){          for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);            pp[jk] += freq[jk][m][iage];
           nhstepm = nhstepm/hstepm;        } /* pp[jk] is the total number of transitions starting from state jk and any ending status until this age */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
           oldm=oldms;savm=savms;        for(jk=1,pos=0, pospropta=0.; jk <=nlstate ; jk++){
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);            pos += pp[jk]; /* pos is the total number of transitions until this age */
                  posprop[jk] += prop[jk][iage]; /* prop is the number of transitions from a live state
           for (h=0; h<=nhstepm; h++){                                            from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
             if (h*hstepm/YEARM*stepm ==yearp) {          pospropta += prop[jk][iage]; /* prop is the number of transitions from a live state
               fprintf(ficresf,"\n");                                          from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
               for(j=1;j<=cptcoveff;j++)        }
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(jk=1; jk <=nlstate ; jk++){
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);          if(pos>=1.e-5){
             }            if(first==1)
             for(j=1; j<=nlstate+ndeath;j++) {              printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               ppij=0.;            fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               for(i=1; i<=nlstate;i++) {          }else{
                 if (mobilav==1)            if(first==1)
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];              printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                 else {            fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];          }
                 }          if( iage <= iagemax){
                 if (h*hstepm/YEARM*stepm== yearp) {            if(pos>=1.e-5){
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);              fprintf(ficresp," %d %.5f %.0f %.0f",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
                 }              fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
               } /* end i */              /*probs[iage][jk][j1]= pp[jk]/pos;*/
               if (h*hstepm/YEARM*stepm==yearp) {              /*printf("\niage=%d jk=%d j1=%d %.5f %.0f %.0f %f",iage,jk,j1,pp[jk]/pos, pp[jk],pos,probs[iage][jk][j1]);*/
                 fprintf(ficresf," %.3f", ppij);            }
               }            else{
             }/* end j */              fprintf(ficresp," %d NaNq %.0f %.0f",iage,prop[jk][iage],pospropta);
           } /* end h */              fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[jk][iage],pospropta);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
         } /* end agec */          }
       } /* end yearp */          pospropt[jk] +=posprop[jk];
     } /* end cptcod */        } /* end loop jk */
   } /* end  cptcov */        /* pospropt=0.; */
                for(jk=-1; jk <=nlstate+ndeath; jk++){
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(m=-1; m <=nlstate+ndeath; m++){
             if(freq[jk][m][iage] !=0 ) { /* minimizing output */
   fclose(ficresf);              if(first==1){
 }                printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]);
               }
 /************** Forecasting *****not tested NB*************/              fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            }
              if(jk!=0 && m!=0)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][iage]);
   int *popage;          }
   double calagedatem, agelim, kk1, kk2;        } /* end loop jk */
   double *popeffectif,*popcount;        posproptt=0.; 
   double ***p3mat,***tabpop,***tabpopprev;        for(jk=1; jk <=nlstate; jk++){
   double ***mobaverage;          posproptt += pospropt[jk];
   char filerespop[FILENAMELENGTH];        }
         fprintf(ficresphtmfr,"</tr>\n ");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if(iage <= iagemax){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresp,"\n");
   agelim=AGESUP;          fprintf(ficresphtm,"</tr>\n");
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        }
          if(first==1)
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          printf("Others in log...\n");
          fprintf(ficlog,"\n");
        } /* end loop age iage */
   strcpy(filerespop,"pop");      fprintf(ficresphtm,"<tr><th>Tot</th>");
   strcat(filerespop,fileres);      for(jk=1; jk <=nlstate ; jk++){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        if(posproptt < 1.e-5){
     printf("Problem with forecast resultfile: %s\n", filerespop);          fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[jk],posproptt);   
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);        }else{
   }          fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[jk]/posproptt,pospropt[jk],posproptt);    
   printf("Computing forecasting: result on file '%s' \n", filerespop);        }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);      }
       fprintf(ficresphtm,"</tr>\n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      fprintf(ficresphtm,"</table>\n");
       fprintf(ficresphtmfr,"</table>\n");
   if (mobilav!=0) {      if(posproptt < 1.e-5){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){        fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        fprintf(ficres,"\n  This combination (%d) is not valid and no result will be produced\n\n",j1);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        invalidvarcomb[j1]=1;
     }      }else{
   }        fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1);
         invalidvarcomb[j1]=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;      }
   if (stepm<=12) stepsize=1;      fprintf(ficresphtmfr,"</table>\n");
      } /* end selected combination of covariate j1 */
   agelim=AGESUP;    dateintmean=dateintsum/k2cpt; 
      
   hstepm=1;    fclose(ficresp);
   hstepm=hstepm/stepm;    fclose(ficresphtm);
      fclose(ficresphtmfr);
   if (popforecast==1) {    free_vector(meanq,1,nqfveff);
     if((ficpop=fopen(popfile,"r"))==NULL) {    free_matrix(meanqt,1,lastpass,1,nqtveff);
       printf("Problem with population file : %s\n",popfile);exit(0);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+3+AGEMARGE);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    free_vector(pospropt,1,nlstate);
     }    free_vector(posprop,1,nlstate);
     popage=ivector(0,AGESUP);    free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+3+AGEMARGE);
     popeffectif=vector(0,AGESUP);    free_vector(pp,1,nlstate);
     popcount=vector(0,AGESUP);    /* End of freqsummary */
      }
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  /************ Prevalence ********************/
      void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     imx=i;  {  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   }       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){    */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   
       k=k+1;    int i, m, jk, j1, bool, z1,j, iv;
       fprintf(ficrespop,"\n#******");    int mi; /* Effective wave */
       for(j=1;j<=cptcoveff;j++) {    int iage;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double agebegin, ageend;
       }  
       fprintf(ficrespop,"******\n");    double **prop;
       fprintf(ficrespop,"# Age");    double posprop; 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    double  y2; /* in fractional years */
       if (popforecast==1)  fprintf(ficrespop," [Population]");    int iagemin, iagemax;
          int first; /** to stop verbosity which is redirected to log file */
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      iagemin= (int) agemin;
            iagemax= (int) agemax;
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){    /*pp=vector(1,nlstate);*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); 
           nhstepm = nhstepm/hstepm;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
              j1=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    /*j=cptcoveff;*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if (cptcovn<1) {j=1;ncodemax[1]=1;}
            
           for (h=0; h<=nhstepm; h++){    first=1;
             if (h==(int) (calagedatem+YEARM*cpt)) {    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for (i=1; i<=nlstate; i++)  
             }        for(iage=iagemin-AGEMARGE; iage <= iagemax+3+AGEMARGE; iage++)
             for(j=1; j<=nlstate+ndeath;j++) {          prop[i][iage]=0.0;
               kk1=0.;kk2=0;      printf("Prevalence combination of varying and fixed dummies %d\n",j1);
               for(i=1; i<=nlstate;i++) {                    /* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */
                 if (mobilav==1)      fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      
                 else {      for (i=1; i<=imx; i++) { /* Each individual */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        bool=1;
                 }        /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
               }        for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */
               if (h==(int)(calagedatem+12*cpt)){          m=mw[mi][i];
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          /* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */
                   /*fprintf(ficrespop," %.3f", kk1);          /* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          for (z1=1; z1<=cptcoveff; z1++){
               }            if( Fixed[Tmodelind[z1]]==1){
             }              iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
             for(i=1; i<=nlstate;i++){              if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */
               kk1=0.;                bool=0;
                 for(j=1; j<=nlstate;j++){            }else if( Fixed[Tmodelind[z1]]== 0)  /* fixed */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
                 }                bool=0;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];              }
             }          }
           if(bool==1){ /* Otherwise we skip that wave/person */
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)            agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
           }            if(m >=firstpass && m <=lastpass){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
   /******/                if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+3+AGEMARGE){
                   printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d  m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); 
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                  exit(1);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  }
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           nhstepm = nhstepm/hstepm;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
                            prop[s[m][i]][iagemax+3] += weight[i]; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                } /* end valid statuses */ 
           oldm=oldms;savm=savms;              } /* end selection of dates */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              } /* end selection of waves */
           for (h=0; h<=nhstepm; h++){          } /* end bool */
             if (h==(int) (calagedatem+YEARM*cpt)) {        } /* end wave */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      } /* end individual */
             }      for(i=iagemin; i <= iagemax+3; i++){  
             for(j=1; j<=nlstate+ndeath;j++) {        for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
               kk1=0.;kk2=0;          posprop += prop[jk][i]; 
               for(i=1; i<=nlstate;i++) {                      } 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            
               }        for(jk=1; jk <=nlstate ; jk++){       
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                  if( i <=  iagemax){ 
             }            if(posprop>=1.e-5){ 
           }              probs[i][jk][j1]= prop[jk][i]/posprop;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            } else{
         }              if(first==1){
       }                first=0;
    }                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,j1,probs[i][jk][j1]);
   }              }
              }
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          } 
         }/* end jk */ 
   if (popforecast==1) {      }/* end i */ 
     free_ivector(popage,0,AGESUP);       /*} *//* end i1 */
     free_vector(popeffectif,0,AGESUP);    } /* end j1 */
     free_vector(popcount,0,AGESUP);    
   }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*free_vector(pp,1,nlstate);*/
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+3+AGEMARGE);
   fclose(ficrespop);  }  /* End of prevalence */
 } /* End of popforecast */  
   /************* Waves Concatenation ***************/
 int fileappend(FILE *fichier, char *optionfich)  
 {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   if((fichier=fopen(optionfich,"a"))==NULL) {  {
     printf("Problem with file: %s\n", optionfich);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     fprintf(ficlog,"Problem with file: %s\n", optionfich);       Death is a valid wave (if date is known).
     return (0);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   fflush(fichier);       and mw[mi+1][i]. dh depends on stepm.
   return (1);    */
 }  
     int i=0, mi=0, m=0, mli=0;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 /**************** function prwizard **********************/       double sum=0., jmean=0.;*/
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)    int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0;
 {    int j, k=0,jk, ju, jl;
     double sum=0.;
   /* Wizard to print covariance matrix template */    first=0;
     firstwo=0;
   char ca[32], cb[32], cc[32];    firsthree=0;
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;    firstfour=0;
   int numlinepar;    jmin=100000;
     jmax=-1;
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    jmean=0.;
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
   for(i=1; i <=nlstate; i++){  /* Treating live states */
     jj=0;    for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
     for(j=1; j <=nlstate+ndeath; j++){      mi=0;  /* First valid wave */
       if(j==i) continue;      mli=0; /* Last valid wave */
       jj++;      m=firstpass;
       /*ca[0]= k+'a'-1;ca[1]='\0';*/      while(s[m][i] <= nlstate){  /* a live state */
       printf("%1d%1d",i,j);        if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */
       fprintf(ficparo,"%1d%1d",i,j);          mli=m-1;/* mw[++mi][i]=m-1; */
       for(k=1; k<=ncovmodel;k++){        }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
         /*        printf(" %lf",param[i][j][k]); */          mw[++mi][i]=m;
         /*        fprintf(ficparo," %lf",param[i][j][k]); */          mli=m;
         printf(" 0.");        } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */
         fprintf(ficparo," 0.");        if(m < lastpass){ /* m < lastpass, standard case */
       }          m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */
       printf("\n");        }
       fprintf(ficparo,"\n");        else{ /* m >= lastpass, eventual special issue with warning */
     }  #ifdef UNKNOWNSTATUSNOTCONTRIBUTING
   }          break;
   printf("# Scales (for hessian or gradient estimation)\n");  #else
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");          if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/            if(firsthree == 0){
   for(i=1; i <=nlstate; i++){              printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
     jj=0;              firsthree=1;
     for(j=1; j <=nlstate+ndeath; j++){            }
       if(j==i) continue;            fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
       jj++;            mw[++mi][i]=m;
       fprintf(ficparo,"%1d%1d",i,j);            mli=m;
       printf("%1d%1d",i,j);          }
       fflush(stdout);          if(s[m][i]==-2){ /* Vital status is really unknown */
       for(k=1; k<=ncovmodel;k++){            nbwarn++;
         /*      printf(" %le",delti3[i][j][k]); */            if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified? */
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */              printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
         printf(" 0.");              fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
         fprintf(ficparo," 0.");            }
       }            break;
       numlinepar++;          }
       printf("\n");          break;
       fprintf(ficparo,"\n");  #endif
     }        }/* End m >= lastpass */
   }      }/* end while */
   printf("# Covariance matrix\n");  
 /* # 121 Var(a12)\n\ */      /* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */
 /* # 122 Cov(b12,a12) Var(b12)\n\ */      /* After last pass */
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */  /* Treating death states */
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */      if (s[m][i] > nlstate){  /* In a death state */
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */        /* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */        /* } */
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */        mi++;     /* Death is another wave */
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */        /* if(mi==0)  never been interviewed correctly before death */
   fflush(stdout);        /* Only death is a correct wave */
   fprintf(ficparo,"# Covariance matrix\n");        mw[mi][i]=m;
   /* # 121 Var(a12)\n\ */      }
   /* # 122 Cov(b12,a12) Var(b12)\n\ */  #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE
   /* #   ...\n\ */      else if ((int) andc[i] != 9999) { /* Status is negative. A death occured after lastpass, we can't take it into account because of potential bias */
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */        /* m++; */
          /* mi++; */
   for(itimes=1;itimes<=2;itimes++){        /* s[m][i]=nlstate+1;  /\* We are setting the status to the last of non live state *\/ */
     jj=0;        /* mw[mi][i]=m; */
     for(i=1; i <=nlstate; i++){        if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
       for(j=1; j <=nlstate+ndeath; j++){          if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */
         if(j==i) continue;            nbwarn++;
         for(k=1; k<=ncovmodel;k++){            if(firstfiv==0){
           jj++;              printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
           ca[0]= k+'a'-1;ca[1]='\0';              firstfiv=1;
           if(itimes==1){            }else{
             printf("#%1d%1d%d",i,j,k);              fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
             fprintf(ficparo,"#%1d%1d%d",i,j,k);            }
           }else{          }else{ /* Death occured afer last wave potential bias */
             printf("%1d%1d%d",i,j,k);            nberr++;
             fprintf(ficparo,"%1d%1d%d",i,j,k);            if(firstwo==0){
             /*  printf(" %.5le",matcov[i][j]); */              printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
           }              firstwo=1;
           ll=0;            }
           for(li=1;li <=nlstate; li++){            fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
             for(lj=1;lj <=nlstate+ndeath; lj++){          }
               if(lj==li) continue;        }else{ /* end date of interview is known */
               for(lk=1;lk<=ncovmodel;lk++){          /* death is known but not confirmed by death status at any wave */
                 ll++;          if(firstfour==0){
                 if(ll<=jj){            printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
                   cb[0]= lk +'a'-1;cb[1]='\0';            firstfour=1;
                   if(ll<jj){          }
                     if(itimes==1){          fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        }
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      } /* end if date of death is known */
                     }else{  #endif
                       printf(" 0.");      wav[i]=mi; /* mi should be the last effective wave (or mli) */
                       fprintf(ficparo," 0.");      /* wav[i]=mw[mi][i]; */
                     }      if(mi==0){
                   }else{        nbwarn++;
                     if(itimes==1){        if(first==0){
                       printf(" Var(%s%1d%1d)",ca,i,j);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);          first=1;
                     }else{        }
                       printf(" 0.");        if(first==1){
                       fprintf(ficparo," 0.");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
                     }        }
                   }      } /* end mi==0 */
                 }    } /* End individuals */
               } /* end lk */    /* wav and mw are no more changed */
             } /* end lj */          
           } /* end li */    
           printf("\n");    for(i=1; i<=imx; i++){
           fprintf(ficparo,"\n");      for(mi=1; mi<wav[i];mi++){
           numlinepar++;        if (stepm <=0)
         } /* end k*/          dh[mi][i]=1;
       } /*end j */        else{
     } /* end i */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   } /* end itimes */            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 } /* end of prwizard */              if(j==0) j=1;  /* Survives at least one month after exam */
 /******************* Gompertz Likelihood ******************************/              else if(j<0){
 double gompertz(double x[])                nberr++;
 {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double A,B,L=0.0,sump=0.,num=0.;                j=1; /* Temporary Dangerous patch */
   int i,n=0; /* n is the size of the sample */                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for (i=0;i<=imx-1 ; i++) {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     sump=sump+weight[i];              }
     /*    sump=sump+1;*/              k=k+1;
     num=num+1;              if (j >= jmax){
   }                jmax=j;
                  ijmax=i;
                }
   /* for (i=0; i<=imx; i++)              if (j <= jmin){
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/                jmin=j;
                 ijmin=i;
   for (i=1;i<=imx ; i++)              }
     {              sum=sum+j;
       if (cens[i] == 1 && wav[i]>1)              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                  }
       if (cens[i] == 0 && wav[i]>1)          }
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))          else{
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
        /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */                                          
       if (wav[i] > 1 ) { /* ??? */            k=k+1;
         L=L+A*weight[i];            if (j >= jmax) {
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/              jmax=j;
       }              ijmax=i;
     }            }
             else if (j <= jmin){
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/              jmin=j;
                ijmin=i;
   return -2*L*num/sump;            }
 }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 /******************* Printing html file ***********/            if(j<0){
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \              nberr++;
                   int lastpass, int stepm, int weightopt, char model[],\              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   int imx,  double p[],double **matcov,double agemortsup){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   int i,k;            }
             sum=sum+j;
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");          }
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);          jk= j/stepm;
   for (i=1;i<=2;i++)          jl= j -jk*stepm;
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));          ju= j -(jk+1)*stepm;
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   fprintf(fichtm,"</ul>");            if(jl==0){
               dh[mi][i]=jk;
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");                    * to avoid the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
  for (k=agegomp;k<(agemortsup-2);k++)              bh[mi][i]=ju;
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);            }
           }else{
              if(jl <= -ju){
   fflush(fichtm);              dh[mi][i]=jk;
 }              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
 /******************* Gnuplot file **************/                                   */
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            }
             else{
   char dirfileres[132],optfileres[132];              dh[mi][i]=jk+1;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              bh[mi][i]=ju;
   int ng;            }
             if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
   /*#ifdef windows */              bh[mi][i]=ju; /* At least one step */
   fprintf(ficgp,"cd \"%s\" \n",pathc);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     /*#endif */            }
           } /* end if mle */
         }
   strcpy(dirfileres,optionfilefiname);      } /* end wave */
   strcpy(optfileres,"vpl");    }
   fprintf(ficgp,"set out \"graphmort.png\"\n ");    jmean=sum/k;
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   fprintf(ficgp, "set ter png small\n set log y\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   fprintf(ficgp, "set size 0.65,0.65\n");  }
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);  
   /*********** Tricode ****************************/
 }   void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum)
   {
     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
      * Boring subroutine which should only output nbcode[Tvar[j]][k]
      * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable
 /***********************************************/     * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually);
 /**************** Main Program *****************/    */
 /***********************************************/  
     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 int main(int argc, char *argv[])    int modmaxcovj=0; /* Modality max of covariates j */
 {    int cptcode=0; /* Modality max of covariates j */
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    int modmincovj=0; /* Modality min of covariates j */
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;  
   int linei, month, year,iout;  
   int jj, ll, li, lj, lk, imk;    /* cptcoveff=0;  */
   int numlinepar=0; /* Current linenumber of parameter file */          /* *cptcov=0; */
   int itimes;   
   int NDIM=2;    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   
   char ca[32], cb[32], cc[32];    /* Loop on covariates without age and products and no quantitative variable */
   char dummy[]="                         ";    /* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */
   /*  FILE *fichtm; *//* Html File */    for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */
   /* FILE *ficgp;*/ /*Gnuplot File */      for (j=-1; (j < maxncov); j++) Ndum[j]=0;
   struct stat info;      if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ 
   double agedeb, agefin,hf;        switch(Fixed[k]) {
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        case 0: /* Testing on fixed dummy covariate, simple or product of fixed */
                                   for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
   double fret;                                          ij=(int)(covar[Tvar[k]][i]);
   double **xi,tmp,delta;                                          /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                            * If product of Vn*Vm, still boolean *:
   double dum; /* Dummy variable */                                           * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   double ***p3mat;                                           * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   double ***mobaverage;                                          /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
   int *indx;                                                   modality of the nth covariate of individual i. */
   char line[MAXLINE], linepar[MAXLINE];                                          if (ij > modmaxcovj)
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];                                                  modmaxcovj=ij; 
   char pathr[MAXLINE], pathimach[MAXLINE];                                          else if (ij < modmincovj) 
   char **bp, *tok, *val; /* pathtot */                                                  modmincovj=ij; 
   int firstobs=1, lastobs=10;                                          if ((ij < -1) && (ij > NCOVMAX)){
   int sdeb, sfin; /* Status at beginning and end */                                                  printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   int c,  h , cpt,l;                                                  exit(1);
   int ju,jl, mi;                                          }else
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                                                  Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;                                          /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */                                          /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   int mobilav=0,popforecast=0;                                          /* getting the maximum value of the modality of the covariate
   int hstepm, nhstepm;                                                   (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   int agemortsup;                                                   female ies 1, then modmaxcovj=1.
   float  sumlpop=0.;                                          */
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;                                  } /* end for loop on individuals i */
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;                                  printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
                                   fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
   double bage, fage, age, agelim, agebase;                                  cptcode=modmaxcovj;
   double ftolpl=FTOL;                                  /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   double **prlim;                                  /*for (i=0; i<=cptcode; i++) {*/
   double *severity;                                  for (j=modmincovj;  j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */
   double ***param; /* Matrix of parameters */                                          printf("Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
   double  *p;                                          fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
   double **matcov; /* Matrix of covariance */                                          if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */
   double ***delti3; /* Scale */                                                  if( j != -1){
   double *delti; /* Scale */                                                          ncodemax[k]++;  /* ncodemax[k]= Number of modalities of the k th
   double ***eij, ***vareij;                                                                                                                                   covariate for which somebody answered excluding 
   double **varpl; /* Variances of prevalence limits by age */                                                                                                                                   undefined. Usually 2: 0 and 1. */
   double *epj, vepp;                                                  }
   double kk1, kk2;                                                  ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;                                                                                                                                                  covariate for which somebody answered including 
   double **ximort;                                                                                                                                                  undefined. Usually 3: -1, 0 and 1. */
   char *alph[]={"a","a","b","c","d","e"}, str[4];                                          }       /* In fact  ncodemax[k]=2 (dichotom. variables only) but it could be more for
   int *dcwave;                                                   * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
                                   } /* Ndum[-1] number of undefined modalities */
   char z[1]="c", occ;                          
                                   /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                                  /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */
   char  *strt, strtend[80];                                  /* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */
   char *stratrunc;                                  /* modmincovj=3; modmaxcovj = 7; */
   int lstra;                                  /* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */
                                   /* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */
   long total_usecs;                            /*             defining two dummy variables: variables V1_1 and V1_2.*/
                  /* nbcode[Tvar[j]][ij]=k; */
 /*   setlocale (LC_ALL, ""); */                /* nbcode[Tvar[j]][1]=0; */
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */                /* nbcode[Tvar[j]][2]=1; */
 /*   textdomain (PACKAGE); */                /* nbcode[Tvar[j]][3]=2; */
 /*   setlocale (LC_CTYPE, ""); */                /* To be continued (not working yet). */
 /*   setlocale (LC_MESSAGES, ""); */                ij=0; /* ij is similar to i but can jump over null modalities */
                                   for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            if (Ndum[i] == 0) { /* If nobody responded to this modality k */
   (void) gettimeofday(&start_time,&tzp);                    break;
   curr_time=start_time;                  }
   tm = *localtime(&start_time.tv_sec);                                          ij++;
   tmg = *gmtime(&start_time.tv_sec);                                          nbcode[Tvar[k]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/
   strcpy(strstart,asctime(&tm));                                          cptcode = ij; /* New max modality for covar j */
                                   } /* end of loop on modality i=-1 to 1 or more */
 /*  printf("Localtime (at start)=%s",strstart); */                                  break;
 /*  tp.tv_sec = tp.tv_sec +86400; */        case 1: /* Testing on varying covariate, could be simple and
 /*  tm = *localtime(&start_time.tv_sec); */                 * should look at waves or product of fixed *
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */                 * varying. No time to test -1, assuming 0 and 1 only */
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */                                  ij=0;
 /*   tmg.tm_hour=tmg.tm_hour + 1; */                                  for(i=0; i<=1;i++){
 /*   tp.tv_sec = mktime(&tmg); */                                          nbcode[Tvar[k]][++ij]=i;
 /*   strt=asctime(&tmg); */                                  }
 /*   printf("Time(after) =%s",strstart);  */                                  break;
 /*  (void) time (&time_value);        default:
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);                                  break;
 *  tm = *localtime(&time_value);        } /* end switch */
 *  strstart=asctime(&tm);      } /* end dummy test */
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);      
 */      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
       /*  /\*recode from 0 *\/ */
   nberr=0; /* Number of errors and warnings */      /*                               k is a modality. If we have model=V1+V1*sex  */
   nbwarn=0;      /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   getcwd(pathcd, size);      /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
       /*  } */
   printf("\n%s\n%s",version,fullversion);      /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
   if(argc <=1){      /*  if (ij > ncodemax[j]) { */
     printf("\nEnter the parameter file name: ");      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
     fgets(pathr,FILENAMELENGTH,stdin);      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
     i=strlen(pathr);      /*    break; */
     if(pathr[i-1]=='\n')      /*  } */
       pathr[i-1]='\0';      /*   }  /\* end of loop on modality k *\/ */
    for (tok = pathr; tok != NULL; ){    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
       printf("Pathr |%s|\n",pathr);    
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
       printf("val= |%s| pathr=%s\n",val,pathr);    /* Look at fixed dummy (single or product) covariates to check empty modalities */
       strcpy (pathtot, val);    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
       if(pathr[0] == '\0') break; /* Dirty */      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
     }      ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ 
   }      Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */
   else{      /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1,  {2, 1, 1, 1, 2, 1, 1, 0, 0} */
     strcpy(pathtot,argv[1]);    } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */
   }    
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/    ij=0;
   /*cygwin_split_path(pathtot,path,optionfile);    /* for (i=0; i<=  maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    for (k=1; k<=  cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   /* cutv(path,optionfile,pathtot,'\\');*/      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
       /* if((Ndum[i]!=0) && (i<=ncovcol)){  /\* Tvar[i] <= ncovmodel ? *\/ */
   /* Split argv[0], imach program to get pathimach */      if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){  /* Only Dummy and non empty in the model */
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);        /* If product not in single variable we don't print results */
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);        ++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */
  /*   strcpy(pathimach,argv[0]); */        Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */        Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        if(Fixed[k]!=0)
   chdir(path); /* Can be a relative path */          anyvaryingduminmodel=1;
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */                          /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */
     printf("Current directory %s!\n",pathcd);                          /*   Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */
   strcpy(command,"mkdir ");                          /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */
   strcat(command,optionfilefiname);                          /*   Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */
   if((outcmd=system(command)) != 0){                          /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);                          /*   Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */      } 
     /* fclose(ficlog); */    } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */
 /*     exit(1); */    /* ij--; */
   }    /* cptcoveff=ij; /\*Number of total covariates*\/ */
 /*   if((imk=mkdir(optionfilefiname))<0){ */    *cptcov=ij; /*Number of total real effective covariates: effective
 /*     perror("mkdir"); */                                                           * because they can be excluded from the model and real
 /*   } */                                                           * if in the model but excluded because missing values, but how to get k from ij?*/
     for(j=ij+1; j<= cptcovt; j++){
   /*-------- arguments in the command line --------*/      Tvaraff[j]=0;
       Tmodelind[j]=0;
   /* Log file */    }
   strcat(filelog, optionfilefiname);    for(j=ntveff+1; j<= cptcovt; j++){
   strcat(filelog,".log");    /* */      TmodelInvind[j]=0;
   if((ficlog=fopen(filelog,"w"))==NULL)    {    }
     printf("Problem with logfile %s\n",filelog);    /* To be sorted */
     goto end;    ;
   }  }
   fprintf(ficlog,"Log filename:%s\n",filelog);  
   fprintf(ficlog,"\n%s\n%s",version,fullversion);  
   fprintf(ficlog,"\nEnter the parameter file name: \n");  /*********** Health Expectancies ****************/
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\  
  path=%s \n\   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[], int nres )
  optionfile=%s\n\  
  optionfilext=%s\n\  {
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm;
   printf("Local time (at start):%s",strstart);    int nhstepma, nstepma; /* Decreasing with age */
   fprintf(ficlog,"Local time (at start): %s",strstart);    double age, agelim, hf;
   fflush(ficlog);    double ***p3mat;
 /*   (void) gettimeofday(&curr_time,&tzp); */    double eip;
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */  
     /* pstamp(ficreseij); */
   /* */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   strcpy(fileres,"r");    fprintf(ficreseij,"# Age");
   strcat(fileres, optionfilefiname);    for(i=1; i<=nlstate;i++){
   strcat(fileres,".txt");    /* Other files have txt extension */      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
   /*---------arguments file --------*/      }
       fprintf(ficreseij," e%1d. ",i);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    }
     printf("Problem with optionfile %s\n",optionfile);    fprintf(ficreseij,"\n");
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);  
     fflush(ficlog);    
     goto end;    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   strcpy(filereso,"o");     * This is mainly to measure the difference between two models: for example
   strcat(filereso,fileres);     * if stepm=24 months pijx are given only every 2 years and by summing them
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */     * we are calculating an estimate of the Life Expectancy assuming a linear 
     printf("Problem with Output resultfile: %s\n", filereso);     * progression in between and thus overestimating or underestimating according
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);     * to the curvature of the survival function. If, for the same date, we 
     fflush(ficlog);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     goto end;     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   /* Reads comments: lines beginning with '#' */  
   numlinepar=0;    /* For example we decided to compute the life expectancy with the smallest unit */
   while((c=getc(ficpar))=='#' && c!= EOF){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     ungetc(c,ficpar);       nhstepm is the number of hstepm from age to agelim 
     fgets(line, MAXLINE, ficpar);       nstepm is the number of stepm from age to agelin. 
     numlinepar++;       Look at hpijx to understand the reason of that which relies in memory size
     puts(line);       and note for a fixed period like estepm months */
     fputs(line,ficparo);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fputs(line,ficlog);       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
   ungetc(c,ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    */
   numlinepar++;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    agelim=AGESUP;
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    /* If stepm=6 months */
   fflush(ficlog);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   while((c=getc(ficpar))=='#' && c!= EOF){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);  /* nhstepm age range expressed in number of stepm */
     numlinepar++;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     puts(line);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fputs(line,ficparo);    /* if (stepm >= YEARM) hstepm=1;*/
     fputs(line,ficlog);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   ungetc(c,ficpar);  
     for (age=bage; age<=fage; age ++){ 
          nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   covar=matrix(0,NCOVMAX,1,n);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/      /* if (stepm >= YEARM) hstepm=1;*/
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */      /* If stepm=6 months */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres);  
   delti=delti3[1][1];      
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */      
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);      printf("%d|",(int)age);fflush(stdout);
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);      
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      /* Computing expectancies */
     fclose (ficparo);      for(i=1; i<=nlstate;i++)
     fclose (ficlog);        for(j=1; j<=nlstate;j++)
     goto end;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     exit(0);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   }            
   else if(mle==-3) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);  
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);          }
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);  
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(ficreseij,"%3.0f",age );
     matcov=matrix(1,npar,1,npar);      for(i=1; i<=nlstate;i++){
   }        eip=0;
   else{        for(j=1; j<=nlstate;j++){
     /* Read guess parameters */          eip +=eij[i][j][(int)age];
     /* Reads comments: lines beginning with '#' */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);        fprintf(ficreseij,"%9.4f", eip );
       fgets(line, MAXLINE, ficpar);      }
       numlinepar++;      fprintf(ficreseij,"\n");
       puts(line);      
       fputs(line,ficparo);    }
       fputs(line,ficlog);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    printf("\n");
     ungetc(c,ficpar);    fprintf(ficlog,"\n");
        
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  }
     for(i=1; i <=nlstate; i++){  
       j=0;   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[], int nres )
       for(jj=1; jj <=nlstate+ndeath; jj++){  
         if(jj==i) continue;  {
         j++;    /* Covariances of health expectancies eij and of total life expectancies according
         fscanf(ficpar,"%1d%1d",&i1,&j1);       to initial status i, ei. .
         if ((i1 != i) && (j1 != j)){    */
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 It might be a problem of design; if ncovcol and the model are correct\n \    int nhstepma, nstepma; /* Decreasing with age */
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);    double age, agelim, hf;
           exit(1);    double ***p3matp, ***p3matm, ***varhe;
         }    double **dnewm,**doldm;
         fprintf(ficparo,"%1d%1d",i1,j1);    double *xp, *xm;
         if(mle==1)    double **gp, **gm;
           printf("%1d%1d",i,j);    double ***gradg, ***trgradg;
         fprintf(ficlog,"%1d%1d",i,j);    int theta;
         for(k=1; k<=ncovmodel;k++){  
           fscanf(ficpar," %lf",&param[i][j][k]);    double eip, vip;
           if(mle==1){  
             printf(" %lf",param[i][j][k]);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
             fprintf(ficlog," %lf",param[i][j][k]);    xp=vector(1,npar);
           }    xm=vector(1,npar);
           else    dnewm=matrix(1,nlstate*nlstate,1,npar);
             fprintf(ficlog," %lf",param[i][j][k]);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           fprintf(ficparo," %lf",param[i][j][k]);    
         }    pstamp(ficresstdeij);
         fscanf(ficpar,"\n");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         numlinepar++;    fprintf(ficresstdeij,"# Age");
         if(mle==1)    for(i=1; i<=nlstate;i++){
           printf("\n");      for(j=1; j<=nlstate;j++)
         fprintf(ficlog,"\n");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         fprintf(ficparo,"\n");      fprintf(ficresstdeij," e%1d. ",i);
       }    }
     }      fprintf(ficresstdeij,"\n");
     fflush(ficlog);  
     pstamp(ficrescveij);
     p=param[1][1];    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
        fprintf(ficrescveij,"# Age");
     /* Reads comments: lines beginning with '#' */    for(i=1; i<=nlstate;i++)
     while((c=getc(ficpar))=='#' && c!= EOF){      for(j=1; j<=nlstate;j++){
       ungetc(c,ficpar);        cptj= (j-1)*nlstate+i;
       fgets(line, MAXLINE, ficpar);        for(i2=1; i2<=nlstate;i2++)
       numlinepar++;          for(j2=1; j2<=nlstate;j2++){
       puts(line);            cptj2= (j2-1)*nlstate+i2;
       fputs(line,ficparo);            if(cptj2 <= cptj)
       fputs(line,ficlog);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     }          }
     ungetc(c,ficpar);      }
     fprintf(ficrescveij,"\n");
     for(i=1; i <=nlstate; i++){    
       for(j=1; j <=nlstate+ndeath-1; j++){    if(estepm < stepm){
         fscanf(ficpar,"%1d%1d",&i1,&j1);      printf ("Problem %d lower than %d\n",estepm, stepm);
         if ((i1-i)*(j1-j)!=0){    }
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    else  hstepm=estepm;   
           exit(1);    /* We compute the life expectancy from trapezoids spaced every estepm months
         }     * This is mainly to measure the difference between two models: for example
         printf("%1d%1d",i,j);     * if stepm=24 months pijx are given only every 2 years and by summing them
         fprintf(ficparo,"%1d%1d",i1,j1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficlog,"%1d%1d",i1,j1);     * progression in between and thus overestimating or underestimating according
         for(k=1; k<=ncovmodel;k++){     * to the curvature of the survival function. If, for the same date, we 
           fscanf(ficpar,"%le",&delti3[i][j][k]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           printf(" %le",delti3[i][j][k]);     * to compare the new estimate of Life expectancy with the same linear 
           fprintf(ficparo," %le",delti3[i][j][k]);     * hypothesis. A more precise result, taking into account a more precise
           fprintf(ficlog," %le",delti3[i][j][k]);     * curvature will be obtained if estepm is as small as stepm. */
         }  
         fscanf(ficpar,"\n");    /* For example we decided to compute the life expectancy with the smallest unit */
         numlinepar++;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         printf("\n");       nhstepm is the number of hstepm from age to agelim 
         fprintf(ficparo,"\n");       nstepm is the number of stepm from age to agelin. 
         fprintf(ficlog,"\n");       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fflush(ficlog);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
     delti=delti3[1][1];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
     /* Reads comments: lines beginning with '#' */    /* If stepm=6 months */
     while((c=getc(ficpar))=='#' && c!= EOF){    /* nhstepm age range expressed in number of stepm */
       ungetc(c,ficpar);    agelim=AGESUP;
       fgets(line, MAXLINE, ficpar);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       numlinepar++;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       puts(line);    /* if (stepm >= YEARM) hstepm=1;*/
       fputs(line,ficparo);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fputs(line,ficlog);    
     }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     ungetc(c,ficpar);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     matcov=matrix(1,npar,1,npar);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     for(i=1; i <=npar; i++){    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       fscanf(ficpar,"%s",&str);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       if(mle==1)  
         printf("%s",str);    for (age=bage; age<=fage; age ++){ 
       fprintf(ficlog,"%s",str);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       fprintf(ficparo,"%s",str);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for(j=1; j <=i; j++){      /* if (stepm >= YEARM) hstepm=1;*/
         fscanf(ficpar," %le",&matcov[i][j]);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         if(mle==1){                  
           printf(" %.5le",matcov[i][j]);      /* If stepm=6 months */
         }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
         fprintf(ficlog," %.5le",matcov[i][j]);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         fprintf(ficparo," %.5le",matcov[i][j]);      
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fscanf(ficpar,"\n");                  
       numlinepar++;      /* Computing  Variances of health expectancies */
       if(mle==1)      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
         printf("\n");         decrease memory allocation */
       fprintf(ficlog,"\n");      for(theta=1; theta <=npar; theta++){
       fprintf(ficparo,"\n");        for(i=1; i<=npar; i++){ 
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for(i=1; i <=npar; i++)          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       for(j=i+1;j<=npar;j++)        }
         matcov[i][j]=matcov[j][i];        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij, nres);  
            hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij, nres);  
     if(mle==1)                          
       printf("\n");        for(j=1; j<= nlstate; j++){
     fprintf(ficlog,"\n");          for(i=1; i<=nlstate; i++){
                for(h=0; h<=nhstepm-1; h++){
     fflush(ficlog);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                  gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     /*-------- Rewriting parameter file ----------*/            }
     strcpy(rfileres,"r");    /* "Rparameterfile */          }
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        }
     strcat(rfileres,".");    /* */                          
     strcat(rfileres,optionfilext);    /* Other files have txt extension */        for(ij=1; ij<= nlstate*nlstate; ij++)
     if((ficres =fopen(rfileres,"w"))==NULL) {          for(h=0; h<=nhstepm-1; h++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          }
     }      }/* End theta */
     fprintf(ficres,"#%s\n",version);      
   }    /* End of mle != -3 */      
       for(h=0; h<=nhstepm-1; h++)
   /*-------- data file ----------*/        for(j=1; j<=nlstate*nlstate;j++)
   if((fic=fopen(datafile,"r"))==NULL)    {          for(theta=1; theta <=npar; theta++)
     printf("Problem while opening datafile: %s\n", datafile);goto end;            trgradg[h][j][theta]=gradg[h][theta][j];
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;      
   }                  
       for(ij=1;ij<=nlstate*nlstate;ij++)
   n= lastobs;        for(ji=1;ji<=nlstate*nlstate;ji++)
   severity = vector(1,maxwav);          varhe[ij][ji][(int)age] =0.;
   outcome=imatrix(1,maxwav+1,1,n);                  
   num=lvector(1,n);      printf("%d|",(int)age);fflush(stdout);
   moisnais=vector(1,n);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   annais=vector(1,n);      for(h=0;h<=nhstepm-1;h++){
   moisdc=vector(1,n);        for(k=0;k<=nhstepm-1;k++){
   andc=vector(1,n);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   agedc=vector(1,n);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   cod=ivector(1,n);          for(ij=1;ij<=nlstate*nlstate;ij++)
   weight=vector(1,n);            for(ji=1;ji<=nlstate*nlstate;ji++)
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   mint=matrix(1,maxwav,1,n);        }
   anint=matrix(1,maxwav,1,n);      }
   s=imatrix(1,maxwav+1,1,n);                  
   tab=ivector(1,NCOVMAX);      /* Computing expectancies */
   ncodemax=ivector(1,8);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres);  
       for(i=1; i<=nlstate;i++)
   i=1;        for(j=1; j<=nlstate;j++)
   linei=0;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     linei=linei+1;                                          
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       if(line[j] == '\t')                                          
         line[j] = ' ';          }
     }                  
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){      fprintf(ficresstdeij,"%3.0f",age );
       ;      for(i=1; i<=nlstate;i++){
     };        eip=0.;
     line[j+1]=0;  /* Trims blanks at end of line */        vip=0.;
     if(line[0]=='#'){        for(j=1; j<=nlstate;j++){
       fprintf(ficlog,"Comment line\n%s\n",line);          eip += eij[i][j][(int)age];
       printf("Comment line\n%s\n",line);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       continue;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
     for (j=maxwav;j>=1;j--){        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       cutv(stra, strb,line,' ');      }
       errno=0;      fprintf(ficresstdeij,"\n");
       lval=strtol(strb,&endptr,10);                  
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/      fprintf(ficrescveij,"%3.0f",age );
       if( strb[0]=='\0' || (*endptr != '\0')){      for(i=1; i<=nlstate;i++)
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);        for(j=1; j<=nlstate;j++){
         exit(1);          cptj= (j-1)*nlstate+i;
       }          for(i2=1; i2<=nlstate;i2++)
       s[j][i]=lval;            for(j2=1; j2<=nlstate;j2++){
                    cptj2= (j2-1)*nlstate+i2;
       strcpy(line,stra);              if(cptj2 <= cptj)
       cutv(stra, strb,line,' ');                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){            }
       }        }
       else  if(iout=sscanf(strb,"%s.") != 0){      fprintf(ficrescveij,"\n");
         month=99;                  
         year=9999;    }
       }else{    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         exit(1);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       anint[j][i]= (double) year;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       mint[j][i]= (double)month;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       strcpy(line,stra);    printf("\n");
     } /* ENd Waves */    fprintf(ficlog,"\n");
              
     cutv(stra, strb,line,' ');    free_vector(xm,1,npar);
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    free_vector(xp,1,npar);
     }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       month=99;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       year=9999;  }
     }else{   
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);  /************ Variance ******************/
       exit(1);   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres)
     }   {
     andc[i]=(double) year;     /* Variance of health expectancies */
     moisdc[i]=(double) month;     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     strcpy(line,stra);     /* double **newm;*/
         /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     cutv(stra, strb,line,' ');    
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){     /* int movingaverage(); */
     }     double **dnewm,**doldm;
     else  if(iout=sscanf(strb,"%s.") != 0){     double **dnewmp,**doldmp;
       month=99;     int i, j, nhstepm, hstepm, h, nstepm ;
       year=9999;     int k;
     }else{     double *xp;
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);     double **gp, **gm;  /* for var eij */
       exit(1);     double ***gradg, ***trgradg; /*for var eij */
     }     double **gradgp, **trgradgp; /* for var p point j */
     annais[i]=(double)(year);     double *gpp, *gmp; /* for var p point j */
     moisnais[i]=(double)(month);     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     strcpy(line,stra);     double ***p3mat;
         double age,agelim, hf;
     cutv(stra, strb,line,' ');     /* double ***mobaverage; */
     errno=0;     int theta;
     dval=strtod(strb,&endptr);     char digit[4];
     if( strb[0]=='\0' || (*endptr != '\0')){     char digitp[25];
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);  
       exit(1);     char fileresprobmorprev[FILENAMELENGTH];
     }  
     weight[i]=dval;     if(popbased==1){
     strcpy(line,stra);       if(mobilav!=0)
             strcpy(digitp,"-POPULBASED-MOBILAV_");
     for (j=ncovcol;j>=1;j--){       else strcpy(digitp,"-POPULBASED-NOMOBIL_");
       cutv(stra, strb,line,' ');     }
       errno=0;     else 
       lval=strtol(strb,&endptr,10);       strcpy(digitp,"-STABLBASED_");
       if( strb[0]=='\0' || (*endptr != '\0')){  
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);     /* if (mobilav!=0) { */
         exit(1);     /*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
       }     /*   if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
       if(lval <-1 || lval >1){     /*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \     /*     printf(" Error in movingaverage mobilav=%d\n",mobilav); */
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \     /*   } */
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \     /* } */
  For example, for multinomial values like 1, 2 and 3,\n \  
  build V1=0 V2=0 for the reference value (1),\n \     strcpy(fileresprobmorprev,"PRMORPREV-"); 
         V1=1 V2=0 for (2) \n \     sprintf(digit,"%-d",ij);
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
  output of IMaCh is often meaningless.\n \     strcat(fileresprobmorprev,digit); /* Tvar to be done */
  Exiting.\n",lval,linei, i,line,j);     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         exit(1);     strcat(fileresprobmorprev,fileresu);
       }     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       covar[j][i]=(double)(lval);       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       strcpy(line,stra);       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }     }
     lstra=strlen(stra);     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */     pstamp(ficresprobmorprev);
       stratrunc = &(stra[lstra-9]);     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       num[i]=atol(stratrunc);     fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies");
     }     for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
     else       fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
       num[i]=atol(stra);     }
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){     for(j=1;j<=cptcoveff;j++) 
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/       fprintf(ficresprobmorprev,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,j)]);
         fprintf(ficresprobmorprev,"\n");
     i=i+1;  
   } /* End loop reading  data */     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fclose(fic);     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   /* printf("ii=%d", ij);       fprintf(ficresprobmorprev," p.%-d SE",j);
      scanf("%d",i);*/       for(i=1; i<=nlstate;i++)
   imx=i-1; /* Number of individuals */         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
   /* for (i=1; i<=imx; i++){     fprintf(ficresprobmorprev,"\n");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;     fprintf(ficgp,"\n# Routine varevsij");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;     fprintf(ficgp,"\nunset title \n");
     }*/     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
    /*  for (i=1; i<=imx; i++){     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      if (s[4][i]==9)  s[4][i]=-1;     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/     /*   } */
       varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /* for (i=1; i<=imx; i++) */     pstamp(ficresvij);
       fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;     if(popbased==1)
      else weight[i]=1;*/       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
      else
   /* Calculation of the number of parameters from char model */       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */     fprintf(ficresvij,"# Age");
   Tprod=ivector(1,15);     for(i=1; i<=nlstate;i++)
   Tvaraff=ivector(1,15);       for(j=1; j<=nlstate;j++)
   Tvard=imatrix(1,15,1,2);         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   Tage=ivector(1,15);           fprintf(ficresvij,"\n");
      
   if (strlen(model) >1){ /* If there is at least 1 covariate */     xp=vector(1,npar);
     j=0, j1=0, k1=1, k2=1;     dnewm=matrix(1,nlstate,1,npar);
     j=nbocc(model,'+'); /* j=Number of '+' */     doldm=matrix(1,nlstate,1,nlstate);
     j1=nbocc(model,'*'); /* j1=Number of '*' */     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     cptcovn=j+1;     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     cptcovprod=j1; /*Number of products */  
         gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     strcpy(modelsav,model);     gpp=vector(nlstate+1,nlstate+ndeath);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){     gmp=vector(nlstate+1,nlstate+ndeath);
       printf("Error. Non available option model=%s ",model);     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficlog,"Error. Non available option model=%s ",model);    
       goto end;     if(estepm < stepm){
     }       printf ("Problem %d lower than %d\n",estepm, stepm);
         }
     /* This loop fills the array Tvar from the string 'model'.*/     else  hstepm=estepm;   
      /* For example we decided to compute the life expectancy with the smallest unit */
     for(i=(j+1); i>=1;i--){     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */        nhstepm is the number of hstepm from age to agelim 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */        nstepm is the number of stepm from age to agelim. 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        Look at function hpijx to understand why because of memory size limitations, 
       /*scanf("%d",i);*/        we decided (b) to get a life expectancy respecting the most precise curvature of the
       if (strchr(strb,'*')) {  /* Model includes a product */        survival function given by stepm (the optimization length). Unfortunately it
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        means that if the survival funtion is printed every two years of age and if
         if (strcmp(strc,"age")==0) { /* Vn*age */        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           cptcovprod--;        results. So we changed our mind and took the option of the best precision.
           cutv(strb,stre,strd,'V');     */
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           cptcovage++;     agelim = AGESUP;
             Tage[cptcovage]=i;     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             /*printf("stre=%s ", stre);*/       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         }       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         else if (strcmp(strd,"age")==0) { /* or age*Vn */       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           cptcovprod--;       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           cutv(strb,stre,strc,'V');       gp=matrix(0,nhstepm,1,nlstate);
           Tvar[i]=atoi(stre);       gm=matrix(0,nhstepm,1,nlstate);
           cptcovage++;                  
           Tage[cptcovage]=i;                  
         }       for(theta=1; theta <=npar; theta++){
         else {  /* Age is not in the model */         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           Tvar[i]=ncovcol+k1;         }
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */                          
           Tprod[k1]=i;         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nresult);
           Tvard[k1][1]=atoi(strc); /* m*/                          
           Tvard[k1][2]=atoi(stre); /* n */         if (popbased==1) {
           Tvar[cptcovn+k2]=Tvard[k1][1];           if(mobilav ==0){
           Tvar[cptcovn+k2+1]=Tvard[k1][2];             for(i=1; i<=nlstate;i++)
           for (k=1; k<=lastobs;k++)               prlim[i][i]=probs[(int)age][i][ij];
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];           }else{ /* mobilav */ 
           k1++;             for(i=1; i<=nlstate;i++)
           k2=k2+2;               prlim[i][i]=mobaverage[(int)age][i][ij];
         }           }
       }         }
       else { /* no more sum */                          
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  /* Returns p3mat[i][j][h] for h=1 to nhstepm */
        /*  scanf("%d",i);*/         for(j=1; j<= nlstate; j++){
       cutv(strd,strc,strb,'V');           for(h=0; h<=nhstepm; h++){
       Tvar[i]=atoi(strc);             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       }               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       strcpy(modelsav,stra);             }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);         }
         scanf("%d",i);*/         /* Next for computing probability of death (h=1 means
     } /* end of loop + */            computed over hstepm matrices product = hstepm*stepm months) 
   } /* end model */            as a weighted average of prlim.
           */
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.         for(j=nlstate+1;j<=nlstate+ndeath;j++){
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/           for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);         }    
   printf("cptcovprod=%d ", cptcovprod);         /* end probability of death */
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);                          
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   scanf("%d ",i);*/           xp[i] = x[i] - (i==theta ?delti[theta]:0);
                           
     /*  if(mle==1){*/         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nresult);
   if (weightopt != 1) { /* Maximisation without weights*/                          
     for(i=1;i<=n;i++) weight[i]=1.0;         if (popbased==1) {
   }           if(mobilav ==0){
     /*-calculation of age at interview from date of interview and age at death -*/             for(i=1; i<=nlstate;i++)
   agev=matrix(1,maxwav,1,imx);               prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   for (i=1; i<=imx; i++) {             for(i=1; i<=nlstate;i++)
     for(m=2; (m<= maxwav); m++) {               prlim[i][i]=mobaverage[(int)age][i][ij];
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){           }
         anint[m][i]=9999;         }
         s[m][i]=-1;                          
       }         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){                          
         nberr++;         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);           for(h=0; h<=nhstepm; h++){
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         s[m][i]=-1;               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       }           }
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){         }
         nberr++;         /* This for computing probability of death (h=1 means
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);            computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);            as a weighted average of prlim.
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */         */
       }         for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }           for(i=1,gmp[j]=0.; i<= nlstate; i++)
   }             gmp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
   for (i=1; i<=imx; i++)  {         /* end probability of death */
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                          
     for(m=firstpass; (m<= lastpass); m++){         for(j=1; j<= nlstate; j++) /* vareij */
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){           for(h=0; h<=nhstepm; h++){
         if (s[m][i] >= nlstate+1) {             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           if(agedc[i]>0)           }
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)                          
               agev[m][i]=agedc[i];         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             else {         }
               if ((int)andc[i]!=9999){                          
                 nbwarn++;       } /* End theta */
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);                  
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                 agev[m][i]=-1;                  
               }       for(h=0; h<=nhstepm; h++) /* veij */
             }         for(j=1; j<=nlstate;j++)
         }           for(theta=1; theta <=npar; theta++)
         else if(s[m][i] !=9){ /* Standard case, age in fractional             trgradg[h][j][theta]=gradg[h][theta][j];
                                  years but with the precision of a month */                  
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)         for(theta=1; theta <=npar; theta++)
             agev[m][i]=1;           trgradgp[j][theta]=gradgp[theta][j];
           else if(agev[m][i] <agemin){                  
             agemin=agev[m][i];                  
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           }       for(i=1;i<=nlstate;i++)
           else if(agev[m][i] >agemax){         for(j=1;j<=nlstate;j++)
             agemax=agev[m][i];           vareij[i][j][(int)age] =0.;
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                  
           }       for(h=0;h<=nhstepm;h++){
           /*agev[m][i]=anint[m][i]-annais[i];*/         for(k=0;k<=nhstepm;k++){
           /*     agev[m][i] = age[i]+2*m;*/           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         }           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         else { /* =9 */           for(i=1;i<=nlstate;i++)
           agev[m][i]=1;             for(j=1;j<=nlstate;j++)
           s[m][i]=-1;               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }         }
       }       }
       else /*= 0 Unknown */                  
         agev[m][i]=1;       /* pptj */
     }       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   }       for(j=nlstate+1;j<=nlstate+ndeath;j++)
   for (i=1; i<=imx; i++)  {         for(i=nlstate+1;i<=nlstate+ndeath;i++)
     for(m=firstpass; (m<=lastpass); m++){           varppt[j][i]=doldmp[j][i];
       if (s[m][i] > (nlstate+ndeath)) {       /* end ppptj */
         nberr++;       /*  x centered again */
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                      
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nresult);
         goto end;                  
       }       if (popbased==1) {
     }         if(mobilav ==0){
   }           for(i=1; i<=nlstate;i++)
              prlim[i][i]=probs[(int)age][i][ij];
   /*for (i=1; i<=imx; i++){         }else{ /* mobilav */ 
   for (m=firstpass; (m<lastpass); m++){           for(i=1; i<=nlstate;i++)
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);             prlim[i][i]=mobaverage[(int)age][i][ij];
 }         }
        }
 }*/                  
        /* This for computing probability of death (h=1 means
           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          as a weighted average of prlim.
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij, nres);  
   agegomp=(int)agemin;       for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_vector(severity,1,maxwav);         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   free_imatrix(outcome,1,maxwav+1,1,n);           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   free_vector(moisnais,1,n);       }    
   free_vector(annais,1,n);       /* end probability of death */
   /* free_matrix(mint,1,maxwav,1,n);                  
      free_matrix(anint,1,maxwav,1,n);*/       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   free_vector(moisdc,1,n);       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   free_vector(andc,1,n);         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          for(i=1; i<=nlstate;i++){
               fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   wav=ivector(1,imx);         }
   dh=imatrix(1,lastpass-firstpass+1,1,imx);       } 
   bh=imatrix(1,lastpass-firstpass+1,1,imx);       fprintf(ficresprobmorprev,"\n");
   mw=imatrix(1,lastpass-firstpass+1,1,imx);                  
           fprintf(ficresvij,"%.0f ",age );
   /* Concatenates waves */       for(i=1; i<=nlstate;i++)
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);         for(j=1; j<=nlstate;j++){
            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */         }
        fprintf(ficresvij,"\n");
   Tcode=ivector(1,100);       free_matrix(gp,0,nhstepm,1,nlstate);
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);       free_matrix(gm,0,nhstepm,1,nlstate);
   ncodemax[1]=1;       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of     } /* End age */
                                  the estimations*/     free_vector(gpp,nlstate+1,nlstate+ndeath);
   h=0;     free_vector(gmp,nlstate+1,nlstate+ndeath);
   m=pow(2,cptcoveff);     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   for(k=1;k<=cptcoveff; k++){     /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
     for(i=1; i <=(m/pow(2,k));i++){     fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
       for(j=1; j <= ncodemax[k]; j++){     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           h++;     fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;     /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/     /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         }     /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       }     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     }     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
   }     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      codtab[1][2]=1;codtab[2][2]=2; */     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   /* for(i=1; i <=m ;i++){     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
      for(k=1; k <=cptcovn; k++){      */
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);     /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
      }     fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
      printf("\n");  
      }     free_vector(xp,1,npar);
      scanf("%d",i);*/     free_matrix(doldm,1,nlstate,1,nlstate);
         free_matrix(dnewm,1,nlstate,1,npar);
   /*------------ gnuplot -------------*/     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcpy(optionfilegnuplot,optionfilefiname);     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   if(mle==-3)     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     strcat(optionfilegnuplot,"-mort");     /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   strcat(optionfilegnuplot,".gp");     fclose(ficresprobmorprev);
      fflush(ficgp);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {     fflush(fichtm); 
     printf("Problem with file %s",optionfilegnuplot);   }  /* end varevsij */
   }  
   else{  /************ Variance of prevlim ******************/
     fprintf(ficgp,"\n# %s\n", version);   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres)
     fprintf(ficgp,"# %s\n", optionfilegnuplot);  {
     fprintf(ficgp,"set missing 'NaNq'\n");    /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   /*  fclose(ficgp);*/  
   /*--------- index.htm --------*/    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */    double *xp;
   if(mle==-3)    double *gp, *gm;
     strcat(optionfilehtm,"-mort");    double **gradg, **trgradg;
   strcat(optionfilehtm,".htm");    double **mgm, **mgp;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    double age,agelim;
     printf("Problem with %s \n",optionfilehtm), exit(0);    int theta;
   }    
     pstamp(ficresvpl);
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   strcat(optionfilehtmcov,"-cov.htm");    fprintf(ficresvpl,"# Age");
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    for(i=1; i<=nlstate;i++)
     printf("Problem with %s \n",optionfilehtmcov), exit(0);        fprintf(ficresvpl," %1d-%1d",i,i);
   }    fprintf(ficresvpl,"\n");
   else{  
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    xp=vector(1,npar);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    dnewm=matrix(1,nlstate,1,npar);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\    doldm=matrix(1,nlstate,1,nlstate);
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);    
   }    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    agelim = AGESUP;
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 \n\      if (stepm >= YEARM) hstepm=1;
 <hr  size=\"2\" color=\"#EC5E5E\">\      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
  <ul><li><h4>Parameter files</h4>\n\      gradg=matrix(1,npar,1,nlstate);
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\      mgp=matrix(1,npar,1,nlstate);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\      mgm=matrix(1,npar,1,nlstate);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\      gp=vector(1,nlstate);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\      gm=vector(1,nlstate);
  - Date and time at start: %s</ul>\n",\  
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\      for(theta=1; theta <=npar; theta++){
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\        for(i=1; i<=npar; i++){ /* Computes gradient */
           fileres,fileres,\          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);        }
   fflush(fichtm);        if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
   strcpy(pathr,path);        else
   strcat(pathr,optionfilefiname);          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
   chdir(optionfilefiname); /* Move to directory named optionfile */        for(i=1;i<=nlstate;i++){
            gp[i] = prlim[i][i];
   /* Calculates basic frequencies. Computes observed prevalence at single age          mgp[theta][i] = prlim[i][i];
      and prints on file fileres'p'. */        }
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   fprintf(fichtm,"\n");        if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\        else
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
           imx,agemin,agemax,jmin,jmax,jmean);        for(i=1;i<=nlstate;i++){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          gm[i] = prlim[i][i];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          mgm[theta][i] = prlim[i][i];
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1;i<=nlstate;i++)
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
            /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
          } /* End theta */
   /* For Powell, parameters are in a vector p[] starting at p[1]  
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      trgradg =matrix(1,nlstate,1,npar);
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
       for(j=1; j<=nlstate;j++)
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   if (mle==-3){      /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
     ximort=matrix(1,NDIM,1,NDIM);      /*   printf("\nmgm mgp %d ",(int)age); */
     cens=ivector(1,n);      /*   for(j=1; j<=nlstate;j++){ */
     ageexmed=vector(1,n);      /*  printf(" %d ",j); */
     agecens=vector(1,n);      /*  for(theta=1; theta <=npar; theta++) */
     dcwave=ivector(1,n);      /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
        /*  printf("\n "); */
     for (i=1; i<=imx; i++){      /*   } */
       dcwave[i]=-1;      /* } */
       for (m=firstpass; m<=lastpass; m++)      /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
         if (s[m][i]>nlstate) {      /*   printf("\n gradg %d ",(int)age); */
           dcwave[i]=m;      /*   for(j=1; j<=nlstate;j++){ */
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/      /*  printf("%d ",j); */
           break;      /*  for(theta=1; theta <=npar; theta++) */
         }      /*    printf("%d %lf ",theta,gradg[theta][j]); */
     }      /*  printf("\n "); */
       /*   } */
     for (i=1; i<=imx; i++) {      /* } */
       if (wav[i]>0){  
         ageexmed[i]=agev[mw[1][i]][i];      for(i=1;i<=nlstate;i++)
         j=wav[i];        varpl[i][(int)age] =0.;
         agecens[i]=1.;      if((int)age==79 ||(int)age== 80  ||(int)age== 81){
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         if (ageexmed[i]> 1 && wav[i] > 0){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           agecens[i]=agev[mw[j][i]][i];      }else{
           cens[i]= 1;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         }else if (ageexmed[i]< 1)      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           cens[i]= -1;      }
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)      for(i=1;i<=nlstate;i++)
           cens[i]=0 ;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       }  
       else cens[i]=-1;      fprintf(ficresvpl,"%.0f ",age );
     }      for(i=1; i<=nlstate;i++)
            fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     for (i=1;i<=NDIM;i++) {      fprintf(ficresvpl,"\n");
       for (j=1;j<=NDIM;j++)      free_vector(gp,1,nlstate);
         ximort[i][j]=(i == j ? 1.0 : 0.0);      free_vector(gm,1,nlstate);
     }      free_matrix(mgm,1,npar,1,nlstate);
          free_matrix(mgp,1,npar,1,nlstate);
     p[1]=0.0268; p[NDIM]=0.083;      free_matrix(gradg,1,npar,1,nlstate);
     /*printf("%lf %lf", p[1], p[2]);*/      free_matrix(trgradg,1,nlstate,1,npar);
        } /* End age */
      
     printf("Powell\n");  fprintf(ficlog,"Powell\n");    free_vector(xp,1,npar);
     strcpy(filerespow,"pow-mort");    free_matrix(doldm,1,nlstate,1,npar);
     strcat(filerespow,fileres);    free_matrix(dnewm,1,nlstate,1,nlstate);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {  
       printf("Problem with resultfile: %s\n", filerespow);  }
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);  
     }  /************ Variance of one-step probabilities  ******************/
     fprintf(ficrespow,"# Powell\n# iter -2*LL");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     /*  for (i=1;i<=nlstate;i++)   {
         for(j=1;j<=nlstate+ndeath;j++)     int i, j=0,  k1, l1, tj;
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);     int k2, l2, j1,  z1;
     */     int k=0, l;
     fprintf(ficrespow,"\n");     int first=1, first1, first2;
         double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);     double **dnewm,**doldm;
     fclose(ficrespow);     double *xp;
         double *gp, *gm;
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);     double **gradg, **trgradg;
      double **mu;
     for(i=1; i <=NDIM; i++)     double age, cov[NCOVMAX+1];
       for(j=i+1;j<=NDIM;j++)     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
         matcov[i][j]=matcov[j][i];     int theta;
         char fileresprob[FILENAMELENGTH];
     printf("\nCovariance matrix\n ");     char fileresprobcov[FILENAMELENGTH];
     for(i=1; i <=NDIM; i++) {     char fileresprobcor[FILENAMELENGTH];
       for(j=1;j<=NDIM;j++){     double ***varpij;
         printf("%f ",matcov[i][j]);  
       }     strcpy(fileresprob,"PROB_"); 
       printf("\n ");     strcat(fileresprob,fileres);
     }     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           printf("Problem with resultfile: %s\n", fileresprob);
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     for (i=1;i<=NDIM;i++)     }
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));     strcpy(fileresprobcov,"PROBCOV_"); 
      strcat(fileresprobcov,fileresu);
     lsurv=vector(1,AGESUP);     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     lpop=vector(1,AGESUP);       printf("Problem with resultfile: %s\n", fileresprobcov);
     tpop=vector(1,AGESUP);       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     lsurv[agegomp]=100000;     }
         strcpy(fileresprobcor,"PROBCOR_"); 
     for (k=agegomp;k<=AGESUP;k++) {     strcat(fileresprobcor,fileresu);
       agemortsup=k;     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;       printf("Problem with resultfile: %s\n", fileresprobcor);
     }       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         }
     for (k=agegomp;k<agemortsup;k++)     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     for (k=agegomp;k<agemortsup;k++){     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       sumlpop=sumlpop+lpop[k];     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     }     pstamp(ficresprob);
         fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     tpop[agegomp]=sumlpop;     fprintf(ficresprob,"# Age");
     for (k=agegomp;k<(agemortsup-3);k++){     pstamp(ficresprobcov);
       /*  tpop[k+1]=2;*/     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       tpop[k+1]=tpop[k]-lpop[k];     fprintf(ficresprobcov,"# Age");
     }     pstamp(ficresprobcor);
         fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         fprintf(ficresprobcor,"# Age");
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");  
     for (k=agegomp;k<(agemortsup-2);k++)  
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);     for(i=1; i<=nlstate;i++)
           for(j=1; j<=(nlstate+ndeath);j++){
             fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */         fprintf(ficresprobcov," p%1d-%1d ",i,j);
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);         fprintf(ficresprobcor," p%1d-%1d ",i,j);
           }  
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \     /* fprintf(ficresprob,"\n");
                      stepm, weightopt,\        fprintf(ficresprobcov,"\n");
                      model,imx,p,matcov,agemortsup);        fprintf(ficresprobcor,"\n");
         */
     free_vector(lsurv,1,AGESUP);     xp=vector(1,npar);
     free_vector(lpop,1,AGESUP);     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(tpop,1,AGESUP);     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   } /* Endof if mle==-3 */     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   else{ /* For mle >=1 */     first=1;
       fprintf(ficgp,"\n# Routine varprob");
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);     fprintf(fichtm,"\n");
     for (k=1; k<=npar;k++)  
       printf(" %d %8.5f",k,p[k]);     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
     printf("\n");     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
     globpr=1; /* to print the contributions */     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */  and drawn. It helps understanding how is the covariance between two incidences.\
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     for (k=1; k<=npar;k++)     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       printf(" %d %8.5f",k,p[k]);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     printf("\n");  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     if(mle>=1){ /* Could be 1 or 2 */  standard deviations wide on each axis. <br>\
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);     cov[1]=1;
         /* tj=cptcoveff; */
         tj = (int) pow(2,cptcoveff);
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     j1=0;
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     for(j1=1; j1<=tj;j1++){  /* For each valid combination of covariates or only once*/
     for(i=1,jk=1; i <=nlstate; i++){       if  (cptcovn>0) {
       for(k=1; k <=(nlstate+ndeath); k++){         fprintf(ficresprob, "\n#********** Variable "); 
         if (k != i) {         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           printf("%d%d ",i,k);         fprintf(ficresprob, "**********\n#\n");
           fprintf(ficlog,"%d%d ",i,k);         fprintf(ficresprobcov, "\n#********** Variable "); 
           fprintf(ficres,"%1d%1d ",i,k);         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           for(j=1; j <=ncovmodel; j++){         fprintf(ficresprobcov, "**********\n#\n");
             printf("%lf ",p[jk]);                          
             fprintf(ficlog,"%lf ",p[jk]);         fprintf(ficgp, "\n#********** Variable "); 
             fprintf(ficres,"%lf ",p[jk]);         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             jk++;         fprintf(ficgp, "**********\n#\n");
           }                          
           printf("\n");                          
           fprintf(ficlog,"\n");         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           fprintf(ficres,"\n");         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         }         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       }                          
     }         fprintf(ficresprobcor, "\n#********** Variable ");    
     if(mle!=0){         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
       /* Computing hessian and covariance matrix */         fprintf(ficresprobcor, "**********\n#");    
       ftolhess=ftol; /* Usually correct */         if(invalidvarcomb[j1]){
       hesscov(matcov, p, npar, delti, ftolhess, func);           fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); 
     }           fprintf(fichtmcov,"\n<h3>Combination (%d) ignored because no cases </h3>\n",j1); 
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");           continue;
     printf("# Scales (for hessian or gradient estimation)\n");         }
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");       }
     for(i=1,jk=1; i <=nlstate; i++){       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       for(j=1; j <=nlstate+ndeath; j++){       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         if (j!=i) {       gp=vector(1,(nlstate)*(nlstate+ndeath));
           fprintf(ficres,"%1d%1d",i,j);       gm=vector(1,(nlstate)*(nlstate+ndeath));
           printf("%1d%1d",i,j);       for (age=bage; age<=fage; age ++){ 
           fprintf(ficlog,"%1d%1d",i,j);         cov[2]=age;
           for(k=1; k<=ncovmodel;k++){         if(nagesqr==1)
             printf(" %.5e",delti[jk]);           cov[3]= age*age;
             fprintf(ficlog," %.5e",delti[jk]);         for (k=1; k<=cptcovn;k++) {
             fprintf(ficres," %.5e",delti[jk]);           cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
             jk++;           /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
           }                                                                      * 1  1 1 1 1
           printf("\n");                                                                      * 2  2 1 1 1
           fprintf(ficlog,"\n");                                                                      * 3  1 2 1 1
           fprintf(ficres,"\n");                                                                      */
         }           /* nbcode[1][1]=0 nbcode[1][2]=1;*/
       }         }
     }         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
             for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         for (k=1; k<=cptcovprod;k++)
     if(mle>=1)           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                          
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                          
     /* # 121 Var(a12)\n\ */         for(theta=1; theta <=npar; theta++){
     /* # 122 Cov(b12,a12) Var(b12)\n\ */           for(i=1; i<=npar; i++)
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */                                  
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */           pmij(pmmij,cov,ncovmodel,xp,nlstate);
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */                                  
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */           k=0;
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */           for(i=1; i<= (nlstate); i++){
                 for(j=1; j<=(nlstate+ndeath);j++){
                   k=k+1;
     /* Just to have a covariance matrix which will be more understandable               gp[k]=pmmij[i][j];
        even is we still don't want to manage dictionary of variables             }
     */           }
     for(itimes=1;itimes<=2;itimes++){                                  
       jj=0;           for(i=1; i<=npar; i++)
       for(i=1; i <=nlstate; i++){             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         for(j=1; j <=nlstate+ndeath; j++){                                  
           if(j==i) continue;           pmij(pmmij,cov,ncovmodel,xp,nlstate);
           for(k=1; k<=ncovmodel;k++){           k=0;
             jj++;           for(i=1; i<=(nlstate); i++){
             ca[0]= k+'a'-1;ca[1]='\0';             for(j=1; j<=(nlstate+ndeath);j++){
             if(itimes==1){               k=k+1;
               if(mle>=1)               gm[k]=pmmij[i][j];
                 printf("#%1d%1d%d",i,j,k);             }
               fprintf(ficlog,"#%1d%1d%d",i,j,k);           }
               fprintf(ficres,"#%1d%1d%d",i,j,k);                                  
             }else{           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               if(mle>=1)             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                 printf("%1d%1d%d",i,j,k);         }
               fprintf(ficlog,"%1d%1d%d",i,j,k);  
               fprintf(ficres,"%1d%1d%d",i,j,k);         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             }           for(theta=1; theta <=npar; theta++)
             ll=0;             trgradg[j][theta]=gradg[theta][j];
             for(li=1;li <=nlstate; li++){                          
               for(lj=1;lj <=nlstate+ndeath; lj++){         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                 if(lj==li) continue;         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                 for(lk=1;lk<=ncovmodel;lk++){                          
                   ll++;         pmij(pmmij,cov,ncovmodel,x,nlstate);
                   if(ll<=jj){                          
                     cb[0]= lk +'a'-1;cb[1]='\0';         k=0;
                     if(ll<jj){         for(i=1; i<=(nlstate); i++){
                       if(itimes==1){           for(j=1; j<=(nlstate+ndeath);j++){
                         if(mle>=1)             k=k+1;
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);             mu[k][(int) age]=pmmij[i][j];
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);           }
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);         }
                       }else{         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                         if(mle>=1)           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                           printf(" %.5e",matcov[jj][ll]);             varpij[i][j][(int)age] = doldm[i][j];
                         fprintf(ficlog," %.5e",matcov[jj][ll]);                          
                         fprintf(ficres," %.5e",matcov[jj][ll]);         /*printf("\n%d ",(int)age);
                       }           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                     }else{           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                       if(itimes==1){           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                         if(mle>=1)           }*/
                           printf(" Var(%s%1d%1d)",ca,i,j);                          
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);         fprintf(ficresprob,"\n%d ",(int)age);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);         fprintf(ficresprobcov,"\n%d ",(int)age);
                       }else{         fprintf(ficresprobcor,"\n%d ",(int)age);
                         if(mle>=1)                          
                           printf(" %.5e",matcov[jj][ll]);         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                         fprintf(ficlog," %.5e",matcov[jj][ll]);           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                         fprintf(ficres," %.5e",matcov[jj][ll]);         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                       }           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                     }           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                   }         }
                 } /* end lk */         i=0;
               } /* end lj */         for (k=1; k<=(nlstate);k++){
             } /* end li */           for (l=1; l<=(nlstate+ndeath);l++){ 
             if(mle>=1)             i++;
               printf("\n");             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
             fprintf(ficlog,"\n");             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
             fprintf(ficres,"\n");             for (j=1; j<=i;j++){
             numlinepar++;               /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
           } /* end k*/               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         } /*end j */               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       } /* end i */             }
     } /* end itimes */           }
             }/* end of loop for state */
     fflush(ficlog);       } /* end of loop for age */
     fflush(ficres);       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     while((c=getc(ficpar))=='#' && c!= EOF){       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       ungetc(c,ficpar);       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       fgets(line, MAXLINE, ficpar);      
       puts(line);       /* Confidence intervalle of pij  */
       fputs(line,ficparo);       /*
     }         fprintf(ficgp,"\nunset parametric;unset label");
     ungetc(c,ficpar);         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
             fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     estepm=0;         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     if (estepm==0 || estepm < stepm) estepm=stepm;         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     if (fage <= 2) {         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       bage = ageminpar;       */
       fage = agemaxpar;                  
     }       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
           first1=1;first2=2;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");       for (k2=1; k2<=(nlstate);k2++){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);         for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);           if(l2==k2) continue;
               j=(k2-1)*(nlstate+ndeath)+l2;
     while((c=getc(ficpar))=='#' && c!= EOF){           for (k1=1; k1<=(nlstate);k1++){
       ungetc(c,ficpar);             for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       fgets(line, MAXLINE, ficpar);               if(l1==k1) continue;
       puts(line);               i=(k1-1)*(nlstate+ndeath)+l1;
       fputs(line,ficparo);               if(i<=j) continue;
     }               for (age=bage; age<=fage; age ++){ 
     ungetc(c,ficpar);                 if ((int)age %5==0){
                       v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                   mu1=mu[i][(int) age]/stepm*YEARM ;
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                   mu2=mu[j][(int) age]/stepm*YEARM;
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                   c12=cv12/sqrt(v1*v2);
                       /* Computing eigen value of matrix of covariance */
     while((c=getc(ficpar))=='#' && c!= EOF){                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       ungetc(c,ficpar);                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       fgets(line, MAXLINE, ficpar);                   if ((lc2 <0) || (lc1 <0) ){
       puts(line);                     if(first2==1){
       fputs(line,ficparo);                       first1=0;
     }                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
     ungetc(c,ficpar);                     }
                         fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                         /* lc1=fabs(lc1); */ /* If we want to have them positive */
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;                     /* lc2=fabs(lc2); */
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;                   }
                                                                      
     fscanf(ficpar,"pop_based=%d\n",&popbased);                   /* Eigen vectors */
     fprintf(ficparo,"pop_based=%d\n",popbased);                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     fprintf(ficres,"pop_based=%d\n",popbased);                     /*v21=sqrt(1.-v11*v11); *//* error */
                       v21=(lc1-v1)/cv12*v11;
     while((c=getc(ficpar))=='#' && c!= EOF){                   v12=-v21;
       ungetc(c,ficpar);                   v22=v11;
       fgets(line, MAXLINE, ficpar);                   tnalp=v21/v11;
       puts(line);                   if(first1==1){
       fputs(line,ficparo);                     first1=0;
     }                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     ungetc(c,ficpar);                   }
                       fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);                   /*printf(fignu*/
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);                   if(first==1){
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);                     first=0;
     /* day and month of proj2 are not used but only year anproj2.*/                     fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                         fprintf(ficgp,"\nset parametric;unset label");
                         fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                         fprintf(ficgp,"\nset ter svg size 640, 480");
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/   :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">                                                                                                                                           \
      %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */                             subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,      \
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);                             subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                         fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\                     fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                           fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
    /*------------ free_vector  -------------*/                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \
    /*  chdir(path); */                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),                                                                         \
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     free_ivector(wav,1,imx);                   }else{
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                     first=0;
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     free_lvector(num,1,n);                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     free_vector(agedc,1,n);                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
     /*free_matrix(covar,0,NCOVMAX,1,n);*/                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),                                 \
     /*free_matrix(covar,1,NCOVMAX,1,n);*/                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     fclose(ficparo);                   }/* if first */
     fclose(ficres);                 } /* age mod 5 */
                } /* end loop age */
                fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/               first=1;
               } /*l12 */
     strcpy(filerespl,"pl");           } /* k12 */
     strcat(filerespl,fileres);         } /*l1 */
     if((ficrespl=fopen(filerespl,"w"))==NULL) {       }/* k1 */
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;     }  /* loop on combination of covariates j1 */
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     }     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     pstamp(ficrespl);     free_vector(xp,1,npar);
     fprintf(ficrespl,"# Period (stable) prevalence \n");     fclose(ficresprob);
     fprintf(ficrespl,"#Age ");     fclose(ficresprobcov);
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);     fclose(ficresprobcor);
     fprintf(ficrespl,"\n");     fflush(ficgp);
       fflush(fichtmcov);
     prlim=matrix(1,nlstate,1,nlstate);   }
   
     agebase=ageminpar;  
     agelim=agemaxpar;  /******************* Printing html file ***********/
     ftolpl=1.e-10;  void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
     i1=cptcoveff;                    int lastpass, int stepm, int weightopt, char model[],\
     if (cptcovn < 1){i1=1;}                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int prevfcast, int backcast, int estepm , \
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){                    double jprev1, double mprev1,double anprev1, double dateprev1, \
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    double jprev2, double mprev2,double anprev2, double dateprev2){
         k=k+1;    int jj1, k1, i1, cpt, k4, nres;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
         printf("\n#******");     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
         fprintf(ficlog,"\n#******");  </ul>");
         for(j=1;j<=cptcoveff;j++) {     fprintf(fichtm,"<ul><li> model=1+age+%s\n \
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  </ul>", model);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
         }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
         fprintf(ficrespl,"******\n");     fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
         printf("******\n");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
         fprintf(ficlog,"******\n");     fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
             fprintf(fichtm,"\
         for (age=agebase; age<=agelim; age++){   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);             stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
           fprintf(ficrespl,"%.0f ",age );     fprintf(fichtm,"\
           for(j=1;j<=cptcoveff;j++)   - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);             stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
           for(i=1; i<=nlstate;i++)     fprintf(fichtm,"\
             fprintf(ficrespl," %.5f", prlim[i][i]);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficrespl,"\n");             subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
         }     fprintf(fichtm,"\
       }   - Period (stable) back prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     }             subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
     fclose(ficrespl);     fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
     /*------------- h Pij x at various ages ------------*/     <a href=\"%s\">%s</a> <br>\n",
               estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);     if(prevfcast==1){
     if((ficrespij=fopen(filerespij,"w"))==NULL) {       fprintf(fichtm,"\
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;   - Prevalence projections by age and states:                            \
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
     }     }
     printf("Computing pij: result on file '%s' \n", filerespij);  
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);     fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
    
     stepsize=(int) (stepm+YEARM-1)/YEARM;     m=pow(2,cptcoveff);
     /*if (stepm<=24) stepsize=2;*/     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
     agelim=AGESUP;     jj1=0;
     hstepm=stepsize*YEARM; /* Every year of age */  
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     for(nres=1; nres <= nresult; nres++) /* For each resultline */
      for(k1=1; k1<=m;k1++){
     /* hstepm=1;   aff par mois*/       if(TKresult[nres]!= k1)
     pstamp(ficrespij);         continue;
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");  
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){       /* for(i1=1; i1<=ncodemax[k1];i1++){ */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       jj1++;
         k=k+1;       if (cptcovn > 0) {
         fprintf(ficrespij,"\n#****** ");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         for(j=1;j<=cptcoveff;j++)         for (cpt=1; cpt<=cptcoveff;cpt++){ 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);
         fprintf(ficrespij,"******\n");           printf(" V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);fflush(stdout);
                   /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */           /* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/          printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);fflush(stdout);
         }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         
           oldm=oldms;savm=savms;         /* if(nqfveff+nqtveff 0) */ /* Test to be done */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");         if(invalidvarcomb[k1]){
           for(i=1; i<=nlstate;i++)           fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); 
             for(j=1; j<=nlstate+ndeath;j++)           printf("\nCombination (%d) ignored because no cases \n",k1); 
               fprintf(ficrespij," %1d-%1d",i,j);           continue;
           fprintf(ficrespij,"\n");         }
           for (h=0; h<=nhstepm; h++){       }
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );       /* aij, bij */
             for(i=1; i<=nlstate;i++)       fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
               for(j=1; j<=nlstate+ndeath;j++)  <img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);       /* Pij */
             fprintf(ficrespij,"\n");       fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
           }  <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       /* Quasi-incidences */
           fprintf(ficrespij,"\n");       fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \
       }   incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
     }  divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
   <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);       /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
     fclose(ficrespij);         fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       }
     for(i=1;i<=AGESUP;i++)       /* State specific survival functions (period) */
       for(j=1;j<=NCOVMAX;j++)       for(cpt=1; cpt<=nlstate;cpt++){
         for(k=1;k<=NCOVMAX;k++)         fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\
           probs[i][j][k]=0.;   Or probability to survive in various states (1 to %d) being in state %d at different ages.     \
    <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
     /*---------- Forecasting ------------------*/       }
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/       /* Period (stable) prevalence in each health state */
     if(prevfcast==1){       for(cpt=1; cpt<=nlstate;cpt++){
       /*    if(stepm ==1){*/         fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);  <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/       }
       /*      }  */       if(backcast==1){
       /*      else{ */         /* Period (stable) back prevalence in each health state */
       /*        erreur=108; */         for(cpt=1; cpt<=nlstate;cpt++){
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */           fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */  <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1);
       /*      } */         }
     }       }
         if(prevfcast==1){
          /* Projection of prevalence up to period (stable) prevalence in each health state */
     /*---------- Health expectancies and variances ------------*/         for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
     strcpy(filerest,"t");  <img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1);
     strcat(filerest,fileres);         }
     if((ficrest=fopen(filerest,"w"))==NULL) {       }
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;           
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;       for(cpt=1; cpt<=nlstate;cpt++) {
     }         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);  <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);       }
        /* } /\* end i1 *\/ */
      }/* End k1 */
     strcpy(filerese,"e");     fprintf(fichtm,"</ul>");
     strcat(filerese,fileres);  
     if((ficreseij=fopen(filerese,"w"))==NULL) {     fprintf(fichtm,"\
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
     }   - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);  But because parameters are usually highly correlated (a higher incidence of disability \
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);  and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
     strcpy(fileresstde,"stde");  variances but at the covariance matrix. And instead of looking at the estimated coefficients \
     strcat(fileresstde,fileres);  (parameters) of the logistic regression, it might be more meaningful to visualize the \
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {  covariance matrix of the one-step probabilities. \
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);  See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);  
     }     fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);             subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);     fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     strcpy(filerescve,"cve");             subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
     strcat(filerescve,fileres);  
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {     fprintf(fichtm,"\
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);             subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
     }     fprintf(fichtm,"\
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
     strcpy(fileresv,"v");     fprintf(fichtm,"\
     strcat(fileresv,fileres);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     if((ficresvij=fopen(fileresv,"w"))==NULL) {     <a href=\"%s\">%s</a> <br>\n</li>",
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);             estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);     fprintf(fichtm,"\
     }   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);             estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);     fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */             estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);     fprintf(fichtm,"\
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);             subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
     */  
   /*  if(popforecast==1) fprintf(fichtm,"\n */
     if (mobilav!=0) {  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){  /*      <br>",fileres,fileres,fileres,fileres); */
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  /*  else  */
         printf(" Error in movingaverage mobilav=%d\n",mobilav);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       }     fflush(fichtm);
     }     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){     m=pow(2,cptcoveff);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         k=k+1;  
         fprintf(ficrest,"\n#****** ");     jj1=0;
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     for(nres=1; nres <= nresult; nres++) /* For each resultline */
         fprintf(ficrest,"******\n");     for(k1=1; k1<=m;k1++){
        if(TKresult[nres]!= k1)
         fprintf(ficreseij,"\n#****** ");         continue;
         fprintf(ficresstdeij,"\n#****** ");       /* for(i1=1; i1<=ncodemax[k1];i1++){ */
         fprintf(ficrescveij,"\n#****** ");       jj1++;
         for(j=1;j<=cptcoveff;j++) {       if (cptcovn > 0) {
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         for (cpt=1; cpt<=cptcoveff;cpt++)  /**< cptcoveff number of variables */
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);
         }           /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
         fprintf(ficreseij,"******\n");         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
         fprintf(ficresstdeij,"******\n");          fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         fprintf(ficrescveij,"******\n");        }
   
         fprintf(ficresvij,"\n#****** ");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         if(invalidvarcomb[k1]){
         fprintf(ficresvij,"******\n");           fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); 
            continue;
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);         }
         oldm=oldms;savm=savms;       }
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);         for(cpt=1; cpt<=nlstate;cpt++) {
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);           fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \
    prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d.svg\"> %s_%d-%d.svg</a>\n <br>\
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
         oldm=oldms;savm=savms;       }
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
         if(popbased==1){  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);  true period expectancies (those weighted with period prevalences are also\
         }   drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences:  <a href=\"%s_%d.svg\">%s_%d.svg</a>\n<br>\
         pstamp(ficrest);  <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");       /* } /\* end i1 *\/ */
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);     }/* End k1 */
         fprintf(ficrest,"\n");     fprintf(fichtm,"</ul>");
      fflush(fichtm);
         epj=vector(1,nlstate+1);  }
         for(age=bage; age <=fage ;age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  /******************* Gnuplot file **************/
           if (popbased==1) {  void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){
             if(mobilav ==0){  
               for(i=1; i<=nlstate;i++)    char dirfileres[132],optfileres[132];
                 prlim[i][i]=probs[(int)age][i][k];    char gplotcondition[132];
             }else{ /* mobilav */    int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,ij=0, ijp=0, l=0;
               for(i=1; i<=nlstate;i++)    int lv=0, vlv=0, kl=0;
                 prlim[i][i]=mobaverage[(int)age][i][k];    int ng=0;
             }    int vpopbased;
           }    int ioffset; /* variable offset for columns */
            int nres=0; /* Index of resultline */
           fprintf(ficrest," %4.0f",age);  
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
             for(i=1, epj[j]=0.;i <=nlstate;i++) {  /*     printf("Problem with file %s",optionfilegnuplot); */
               epj[j] += prlim[i][i]*eij[i][j][(int)age];  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  /*   } */
             }  
             epj[nlstate+1] +=epj[j];    /*#ifdef windows */
           }    fprintf(ficgp,"cd \"%s\" \n",pathc);
     /*#endif */
           for(i=1, vepp=0.;i <=nlstate;i++)    m=pow(2,cptcoveff);
             for(j=1;j <=nlstate;j++)  
               vepp += vareij[i][j][(int)age];    /* Contribution to likelihood */
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    /* Plot the probability implied in the likelihood */
           for(j=1;j <=nlstate;j++){    fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
           }    /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
           fprintf(ficrest,"\n");    fprintf(ficgp,"\nset ter pngcairo size 640, 480");
         }  /* nice for mle=4 plot by number of matrix products.
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);     replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
         free_vector(epj,1,nlstate+1);    /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
       }    fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
     }    fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
     free_vector(weight,1,n);    fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
     free_imatrix(Tvard,1,15,1,2);    fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
     free_imatrix(s,1,maxwav+1,1,n);    for (i=1; i<= nlstate ; i ++) {
     free_matrix(anint,1,maxwav,1,n);      fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
     free_matrix(mint,1,maxwav,1,n);      fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
     free_ivector(cod,1,n);      fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
     free_ivector(tab,1,NCOVMAX);      for (j=2; j<= nlstate+ndeath ; j ++) {
     fclose(ficreseij);        fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
     fclose(ficresstdeij);      }
     fclose(ficrescveij);      fprintf(ficgp,";\nset out; unset ylabel;\n"); 
     fclose(ficresvij);    }
     fclose(ficrest);    /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */                
     fclose(ficpar);    /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
      /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
     /*------- Variance of period (stable) prevalence------*/      fprintf(ficgp,"\nset out;unset log\n");
     /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
     strcpy(fileresvpl,"vpl");  
     strcat(fileresvpl,fileres);    strcpy(dirfileres,optionfilefiname);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    strcpy(optfileres,"vpl");
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);    /* 1eme*/
       exit(0);    for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */
     }      for (k1=1; k1<= m ; k1 ++){ /* For each valid combination of covariate */
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);        for(nres=1; nres <= nresult; nres++){ /* For each resultline */
           /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){          if(TKresult[nres]!= k1)
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            continue;
         k=k+1;          /* We are interested in selected combination by the resultline */
         fprintf(ficresvpl,"\n#****** ");          printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt);
         for(j=1;j<=cptcoveff;j++)          fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files  and live state =%d ", cpt);
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (k=1; k<=cptcoveff; k++){    /* For each covariate k get corresponding value lv for combination k1 */
         fprintf(ficresvpl,"******\n");            lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */
                  /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
         varpl=matrix(1,nlstate,(int) bage, (int) fage);            /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
         oldm=oldms;savm=savms;            /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);            vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */
       }            printf(" V%d=%d ",Tvaraff[k],vlv);
     }            fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
     fclose(ficresvpl);          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
     /*---------- End : free ----------------*/            fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }       
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          printf("\n#\n");
           fprintf(ficgp,"\n#\n");
   }  /* mle==-3 arrives here for freeing */          if(invalidvarcomb[k1]){
   free_matrix(prlim,1,nlstate,1,nlstate);            fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            continue;
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          }
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
     free_matrix(covar,0,NCOVMAX,1,n);          fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
     free_matrix(matcov,1,npar,1,npar);          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
     /*free_vector(delti,1,npar);*/        
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for (i=1; i<= nlstate ; i ++) {
     free_matrix(agev,1,maxwav,1,imx);            if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            else        fprintf(ficgp," %%*lf (%%*lf)");
           }
     free_ivector(ncodemax,1,8);          fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
     free_ivector(Tvar,1,15);          for (i=1; i<= nlstate ; i ++) {
     free_ivector(Tprod,1,15);            if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
     free_ivector(Tvaraff,1,15);            else fprintf(ficgp," %%*lf (%%*lf)");
     free_ivector(Tage,1,15);          } 
     free_ivector(Tcode,1,100);          fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
           for (i=1; i<= nlstate ; i ++) {
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);            if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
     free_imatrix(codtab,1,100,1,10);            else fprintf(ficgp," %%*lf (%%*lf)");
   fflush(fichtm);          }  
   fflush(ficgp);          fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
            if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
             /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
   if((nberr >0) || (nbwarn>0)){            fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1 */
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);            if(cptcoveff ==0){
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);              fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line ",        2+(cpt-1),  cpt );
   }else{            }else{
     printf("End of Imach\n");              kl=0;
     fprintf(ficlog,"End of Imach\n");              for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
   }                lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
   printf("See log file on %s\n",filelog);                /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
   (void) gettimeofday(&end_time,&tzp);                /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
   tm = *localtime(&end_time.tv_sec);                vlv= nbcode[Tvaraff[k]][lv];
   tmg = *gmtime(&end_time.tv_sec);                kl++;
   strcpy(strtend,asctime(&tm));                /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);                /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);                /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));                /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                 if(k==cptcoveff){
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);                  fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));                          4+(cpt-1),  cpt );  /* 4 or 6 ?*/
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);                }else{
   /*  printf("Total time was %d uSec.\n", total_usecs);*/                  fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
 /*   if(fileappend(fichtm,optionfilehtm)){ */                  kl++;
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);                }
   fclose(fichtm);              } /* end covariate */
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);            } /* end if no covariate */
   fclose(fichtmcov);          } /* end if backcast */
   fclose(ficgp);          fprintf(ficgp,"\nset out \n");
   fclose(ficlog);        } /* nres */
   /*------ End -----------*/      } /* k1 */
     } /* cpt */
   
    printf("Before Current directory %s!\n",pathcd);    
    if(chdir(pathcd) != 0)    /*2 eme*/
     printf("Can't move to directory %s!\n",path);    for (k1=1; k1<= m ; k1 ++){  
   if(getcwd(pathcd,MAXLINE) > 0)      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
     printf("Current directory %s!\n",pathcd);        if(TKresult[nres]!= k1)
   /*strcat(plotcmd,CHARSEPARATOR);*/          continue;
   sprintf(plotcmd,"gnuplot");        fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
 #ifndef UNIX        for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
 #endif          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
   if(!stat(plotcmd,&info)){          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
     if(!stat(getenv("GNUPLOTBIN"),&info)){          vlv= nbcode[Tvaraff[k]][lv];
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);          fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
     }else        }
       strcpy(pplotcmd,plotcmd);        /* for(k=1; k <= ncovds; k++){ */
 #ifdef UNIX        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
     strcpy(plotcmd,GNUPLOTPROGRAM);          printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
     if(!stat(plotcmd,&info)){          fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);        }
     }else        fprintf(ficgp,"\n#\n");
       strcpy(pplotcmd,plotcmd);        if(invalidvarcomb[k1]){
 #endif          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
   }else          continue;
     strcpy(pplotcmd,plotcmd);        }
                            
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);        fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);        for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           if(vpopbased==0)
   if((outcmd=system(plotcmd)) != 0){            fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
     printf("\n Problem with gnuplot\n");          else
   }            fprintf(ficgp,"\nreplot ");
   printf(" Wait...");          for (i=1; i<= nlstate+1 ; i ++) {
   while (z[0] != 'q') {            k=2*i;
     /* chdir(path); */            fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
     printf("\nType e to edit output files, g to graph again and q for exiting: ");            for (j=1; j<= nlstate+1 ; j ++) {
     scanf("%s",z);              if (j==i) fprintf(ficgp," %%lf (%%lf)");
 /*     if (z[0] == 'c') system("./imach"); */              else fprintf(ficgp," %%*lf (%%*lf)");
     if (z[0] == 'e') {            }   
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);            if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
       system(optionfilehtm);            else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
     }            fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
     else if (z[0] == 'g') system(plotcmd);            for (j=1; j<= nlstate+1 ; j ++) {
     else if (z[0] == 'q') exit(0);              if (j==i) fprintf(ficgp," %%lf (%%lf)");
   }              else fprintf(ficgp," %%*lf (%%*lf)");
   end:            }   
   while (z[0] != 'q') {            fprintf(ficgp,"\" t\"\" w l lt 0,");
     printf("\nType  q for exiting: ");            fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
     scanf("%s",z);            for (j=1; j<= nlstate+1 ; j ++) {
   }              if (j==i) fprintf(ficgp," %%lf (%%lf)");
 }              else fprintf(ficgp," %%*lf (%%*lf)");
             }   
             if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
             else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
           } /* state */
         } /* vpopbased */
         fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
       } /* end nres */
     } /* k1 end 2 eme*/
           
           
     /*3eme*/
     for (k1=1; k1<= m ; k1 ++){
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= k1)
           continue;
   
         for (cpt=1; cpt<= nlstate ; cpt ++) {
           fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files:  combination=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
                           
           /*       k=2+nlstate*(2*cpt-2); */
           k=2+(nlstate+1)*(cpt-1);
           fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
           fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
           /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                                   
           */
           for (i=1; i< nlstate ; i ++) {
             fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
             /*    fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                                   
           } 
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
         }
       } /* end nres */
     } /* end kl 3eme */
     
     /* 4eme */
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<=m; k1++){    /* For each covariate and each value */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/
           fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
         
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3;
           for (i=1; i<= nlstate ; i ++){
             if(i==1){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
             }else{
               fprintf(ficgp,", '' ");
             }
             l=(nlstate+ndeath)*(i-1)+1;
             fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
             for (j=2; j<= nlstate+ndeath ; j ++)
               fprintf(ficgp,"+$%d",k+l+j-1);
             fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/ 
       } /* end nres */
     } /* end covariate k1 */  
   
   /* 5eme */
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1++){ /* For each covariate combination if any */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
           fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
         
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3;
           for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
             if(j==1)
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
             else
               fprintf(ficgp,", '' ");
             l=(nlstate+ndeath)*(cpt-1) +j;
             fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
             /* for (i=2; i<= nlstate+ndeath ; i ++) */
             /*   fprintf(ficgp,"+$%d",k+l+i-1); */
             fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
           } /* nlstate */
           fprintf(ficgp,", '' ");
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
           for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
             l=(nlstate+ndeath)*(cpt-1) +j;
             if(j < nlstate)
               fprintf(ficgp,"$%d +",k+l);
             else
               fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
           }
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/ 
       } /* end covariate */  
     } /* end nres */
     
   /* 6eme */
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       if(TKresult[nres]!= k1)
         continue;
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         } 
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
         
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3; /* Offset */
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     
   /* 7eme */
     if(backcast == 1){
       /* CV back preval stable (period) for each covariate */
       for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3; /* Offset */
           for (i=1; i<= nlstate ; i ++){
             if(i==1)
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));
             else
               fprintf(ficgp,", '' ");
             /* l=(nlstate+ndeath)*(i-1)+1; */
             l=(nlstate+ndeath)*(cpt-1)+1;
             /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
             /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
             fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+(cpt-1)+i-1); /* a vérifier */
             /* for (j=2; j<= nlstate ; j ++) */
             /*    fprintf(ficgp,"+$%d",k+l+j-1); */
             /*    /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */
             fprintf(ficgp,") t \"bprev(%d,%d)\" w l",i,cpt);
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/ 
       } /* end covariate */  
     } /* End if backcast */
     
     /* 8eme */
     if(prevfcast==1){
       /* Projection from cross-sectional to stable (period) for each covariate */
       
       for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
           for (i=1; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
             /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             if(i==1){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
             }else{
               fprintf(ficgp,",\\\n '' ");
             }
             if(cptcoveff ==0){ /* No covariate */
               ioffset=2; /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               fprintf(ficgp," u %d:(", ioffset); 
               if(i==nlstate+1)
                 fprintf(ficgp," $%d/(1.-$%d)) t 'pw.%d' with line ",      \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
               else
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ",      \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
             }else{ /* more than 2 covariates */
               if(cptcoveff ==1){
                 ioffset=4; /* Age is in 4 */
               }else{
                 ioffset=6; /* Age is in 6 */
                 /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                 /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
               }   
               fprintf(ficgp," u %d:(",ioffset); 
               kl=0;
               strcpy(gplotcondition,"(");
               for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */
                 kl++;
                 sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);
                 kl++;
                 if(k <cptcoveff && cptcoveff>1)
                   sprintf(gplotcondition+strlen(gplotcondition)," && ");
               }
               strcpy(gplotcondition+strlen(gplotcondition),")");
               /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
               /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
               /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
               if(i==nlstate+1){
                 fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
               }else{
                 fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt );
               }
             } /* end if covariate */
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if prevfcast */
     
     
     /* 9eme writing MLE parameters */
     fprintf(ficgp,"\n##############\n#9eme MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
     }
     fprintf(ficgp,"##############\n#\n");
     
     /*goto avoid;*/
     /* 10eme Graphics of probabilities or incidences using written MLE parameters */
     fprintf(ficgp,"\n##############\n#10eme Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
     for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
       fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n");
       fprintf(ficgp,"#model=%s \n",model);
       fprintf(ficgp,"# Type of graphic ng=%d\n",ng);
       fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */
       for(jk=1; jk <=m; jk++)  /* For each combination of covariate */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= jk)
           continue;
         fprintf(ficgp,"# Combination of dummy  jk=%d and ",jk);
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         } 
         fprintf(ficgp,"\n#\n");
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
         fprintf(ficgp,"\nset ter svg size 640, 480 ");
         if (ng==1){
           fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
           fprintf(ficgp,"\nunset log y");
         }else if (ng==2){
           fprintf(ficgp,"\nset ylabel \"Probability\"\n");
           fprintf(ficgp,"\nset log y");
         }else if (ng==3){
           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           fprintf(ficgp,"\nset log y");
         }else
           fprintf(ficgp,"\nunset title ");
         fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
         i=1;
         for(k2=1; k2<=nlstate; k2++) {
           k3=i;
           for(k=1; k<=(nlstate+ndeath); k++) {
             if (k != k2){
               switch( ng) {
               case 1:
                 if(nagesqr==0)
                   fprintf(ficgp," p%d+p%d*x",i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                 break;
               case 2: /* ng=2 */
                 if(nagesqr==0)
                   fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                 break;
               case 3:
                 if(nagesqr==0)
                   fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                 break;
               }
               ij=1;/* To be checked else nbcode[0][0] wrong */
               ijp=1; /* product no age */
               /* for(j=3; j <=ncovmodel-nagesqr; j++) { */
               for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
                 /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                 if(j==Tage[ij]) { /* Product by age */
                   if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                     if(DummyV[j]==0){
                       fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);;
                     }else{ /* quantitative */
                       fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                       /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                     }
                     ij++;
                   }
                 }else if(j==Tprod[ijp]) { /* */ 
                   /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                   if(ijp <=cptcovprod) { /* Product */
                     if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
                       if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
                         /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(jk,j)],nbcode[Tvard[ijp][2]][codtabm(jk,j)]); */
                         fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                       }else{ /* Vn is dummy and Vm is quanti */
                         /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(jk,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                         fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                       }
                     }else{ /* Vn*Vm Vn is quanti */
                       if(DummyV[Tvard[ijp][2]]==0){
                         fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                       }else{ /* Both quanti */
                         fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                       }
                     }
                     ijp++;
                   }
                 } else{  /* simple covariate */
                   /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(jk,j)]); /\* Valgrind bug nbcode *\/ */
                   if(Dummy[j]==0){
                     fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /*  */
                   }else{ /* quantitative */
                     fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */
                     /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                   }
                 } /* end simple */
               } /* end j */
             }else{
               i=i-ncovmodel;
               if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */
                 fprintf(ficgp," (1.");
             }
             
             if(ng != 1){
               fprintf(ficgp,")/(1");
               
               for(k1=1; k1 <=nlstate; k1++){ 
                 if(nagesqr==0)
                   fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                  
                 ij=1;
                 for(j=3; j <=ncovmodel-nagesqr; j++){
                   if((j-2)==Tage[ij]) { /* Bug valgrind */
                     if(ij <=cptcovage) { /* Bug valgrind */
                       fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                       /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                       ij++;
                     }
                   }
                   else
                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);/* Valgrind bug nbcode */
                 }
                 fprintf(ficgp,")");
               }
               fprintf(ficgp,")");
               if(ng ==2)
                 fprintf(ficgp," t \"p%d%d\" ", k2,k);
               else /* ng= 3 */
                 fprintf(ficgp," t \"i%d%d\" ", k2,k);
             }else{ /* end ng <> 1 */
               if( k !=k2) /* logit p11 is hard to draw */
                 fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
             }
             if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
               fprintf(ficgp,",");
             if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath))
               fprintf(ficgp,",");
             i=i+ncovmodel;
           } /* end k */
         } /* end k2 */
         fprintf(ficgp,"\n set out\n");
       } /* end jk */
     } /* end ng */
     /* avoid: */
     fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   /* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */
    int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){
      
      int i, cpt, cptcod;
      int modcovmax =1;
      int mobilavrange, mob;
      int iage=0;
   
      double sum=0.;
      double age;
      double *sumnewp, *sumnewm;
      double *agemingood, *agemaxgood; /* Currently identical for all covariates */
     
     
      /* modcovmax=2*cptcoveff;/\* Max number of modalities. We suppose  */
      /*              a covariate has 2 modalities, should be equal to ncovcombmax  *\/ */
   
      sumnewp = vector(1,ncovcombmax);
      sumnewm = vector(1,ncovcombmax);
      agemingood = vector(1,ncovcombmax);  
      agemaxgood = vector(1,ncovcombmax);
   
      for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
        sumnewm[cptcod]=0.;
        sumnewp[cptcod]=0.;
        agemingood[cptcod]=0;
        agemaxgood[cptcod]=0;
      }
      if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */
     
      if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
        if(mobilav==1) mobilavrange=5; /* default */
        else mobilavrange=mobilav;
        for (age=bage; age<=fage; age++)
          for (i=1; i<=nlstate;i++)
            for (cptcod=1;cptcod<=ncovcombmax;cptcod++)
              mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
        /* We keep the original values on the extreme ages bage, fage and for 
           fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           we use a 5 terms etc. until the borders are no more concerned. 
        */ 
        for (mob=3;mob <=mobilavrange;mob=mob+2){
          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
            for (i=1; i<=nlstate;i++){
              for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                }
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
              }
            }
          }/* end age */
        }/* end mob */
      }else
        return -1;
      for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
        /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */
        if(invalidvarcomb[cptcod]){
          printf("\nCombination (%d) ignored because no cases \n",cptcod); 
          continue;
        }
   
        agemingood[cptcod]=fage-(mob-1)/2;
        for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, finding the youngest wrong */
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
          }
          if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
            agemingood[cptcod]=age;
          }else{ /* bad */
            for (i=1; i<=nlstate;i++){
              mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
            } /* i */
          } /* end bad */
        }/* age */
        sum=0.;
        for (i=1; i<=nlstate;i++){
          sum+=mobaverage[(int)agemingood[cptcod]][i][cptcod];
        }
        if(fabs(sum - 1.) > 1.e-3) { /* bad */
          printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any descending age!\n",cptcod);
          /* for (i=1; i<=nlstate;i++){ */
          /*   mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
          /* } /\* i *\/ */
        } /* end bad */
        /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
        /* From youngest, finding the oldest wrong */
        agemaxgood[cptcod]=bage+(mob-1)/2;
        for (age=bage+(mob-1)/2; age<=fage; age++){
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
          }
          if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
            agemaxgood[cptcod]=age;
          }else{ /* bad */
            for (i=1; i<=nlstate;i++){
              mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
            } /* i */
          } /* end bad */
        }/* age */
        sum=0.;
        for (i=1; i<=nlstate;i++){
          sum+=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
        }
        if(fabs(sum - 1.) > 1.e-3) { /* bad */
          printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any ascending age!\n",cptcod);
          /* for (i=1; i<=nlstate;i++){ */
          /*   mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
          /* } /\* i *\/ */
        } /* end bad */
                   
        for (age=bage; age<=fage; age++){
          /* printf("%d %d ", cptcod, (int)age); */
          sumnewp[cptcod]=0.;
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewp[cptcod]+=probs[(int)age][i][cptcod];
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            /* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */
          }
          /* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */
        }
        /* printf("\n"); */
        /* } */
        /* brutal averaging */
        for (i=1; i<=nlstate;i++){
          for (age=1; age<=bage; age++){
            mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
            /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */
          }        
          for (age=fage; age<=AGESUP; age++){
            mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
            /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */
          }
        } /* end i status */
        for (i=nlstate+1; i<=nlstate+ndeath;i++){
          for (age=1; age<=AGESUP; age++){
            /*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*/
            mobaverage[(int)age][i][cptcod]=0.;
          }
        }
      }/* end cptcod */
      free_vector(sumnewm,1, ncovcombmax);
      free_vector(sumnewp,1, ncovcombmax);
      free_vector(agemaxgood,1, ncovcombmax);
      free_vector(agemingood,1, ncovcombmax);
      return 0;
    }/* End movingaverage */
    
   
   /************** Forecasting ******************/
    void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
      int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     /* double ***mobaverage; */
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
     /*          firstpass, lastpass,  stepm,  weightopt, model); */
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
     fprintf(ficlog,"\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
     
   /*            if (h==(int)(YEARM*yearp)){ */
     for(nres=1; nres <= nresult; nres++) /* For each resultline */
     for(k=1; k<=i1;k++){
       if(TKresult[nres]!= k)
         continue;
       if(invalidvarcomb[k]){
         printf("\nCombination (%d) projection ignored because no cases \n",k); 
         continue;
       }
       fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
       for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
         fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
       }
       fprintf(ficresf," yearproj age");
       for(j=1; j<=nlstate+ndeath;j++){ 
         for(i=1; i<=nlstate;i++)        
           fprintf(ficresf," p%d%d",i,j);
         fprintf(ficresf," wp.%d",j);
       }
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
         fprintf(ficresf,"\n");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
         for (agec=fage; agec>=(ageminpar-1); agec--){ 
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
           nhstepm = nhstepm/hstepm; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres);
           
           for (h=0; h<=nhstepm; h++){
             if (h*hstepm/YEARM*stepm ==yearp) {
               fprintf(ficresf,"\n");
               for(j=1;j<=cptcoveff;j++) 
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
             } 
             for(j=1; j<=nlstate+ndeath;j++) {
               ppij=0.;
               for(i=1; i<=nlstate;i++) {
                 if (mobilav==1) 
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][k];
                 else {
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k];
                 }
                 if (h*hstepm/YEARM*stepm== yearp) {
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);
                 }
               } /* end i */
               if (h*hstepm/YEARM*stepm==yearp) {
                 fprintf(ficresf," %.3f", ppij);
               }
             }/* end j */
           } /* end h */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         } /* end agec */
       } /* end yearp */
     } /* end  k */
           
     fclose(ficresf);
     printf("End of Computing forecasting \n");
     fprintf(ficlog,"End of Computing forecasting\n");
   
   }
   
   /* /\************** Back Forecasting ******************\/ */
   /* void prevbackforecast(char fileres[], double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */
   /*   /\* back1, year, month, day of starting backection  */
   /*      agemin, agemax range of age */
   /*      dateprev1 dateprev2 range of dates during which prevalence is computed */
   /*      anback2 year of en of backection (same day and month as back1). */
   /*   *\/ */
   /*   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; */
   /*   double agec; /\* generic age *\/ */
   /*   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; */
   /*   double *popeffectif,*popcount; */
   /*   double ***p3mat; */
   /*   /\* double ***mobaverage; *\/ */
   /*   char fileresfb[FILENAMELENGTH]; */
           
   /*   agelim=AGESUP; */
   /*   /\* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people */
   /*      in each health status at the date of interview (if between dateprev1 and dateprev2). */
   /*      We still use firstpass and lastpass as another selection. */
   /*   *\/ */
   /*   /\* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ *\/ */
   /*   /\*              firstpass, lastpass,  stepm,  weightopt, model); *\/ */
   /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
           
   /*   strcpy(fileresfb,"FB_");  */
   /*   strcat(fileresfb,fileresu); */
   /*   if((ficresfb=fopen(fileresfb,"w"))==NULL) { */
   /*     printf("Problem with back forecast resultfile: %s\n", fileresfb); */
   /*     fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); */
   /*   } */
   /*   printf("Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
   /*   fprintf(ficlog,"Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
           
   /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
           
   /*   /\* if (mobilav!=0) { *\/ */
   /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
   /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
   /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*   } *\/ */
   /*   /\* } *\/ */
           
   /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
   /*   if (stepm<=12) stepsize=1; */
   /*   if(estepm < stepm){ */
   /*     printf ("Problem %d lower than %d\n",estepm, stepm); */
   /*   } */
   /*   else  hstepm=estepm;    */
           
   /*   hstepm=hstepm/stepm;  */
   /*   yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
   /*                                fractional in yp1 *\/ */
   /*   anprojmean=yp; */
   /*   yp2=modf((yp1*12),&yp); */
   /*   mprojmean=yp; */
   /*   yp1=modf((yp2*30.5),&yp); */
   /*   jprojmean=yp; */
   /*   if(jprojmean==0) jprojmean=1; */
   /*   if(mprojmean==0) jprojmean=1; */
           
   /*   i1=cptcoveff; */
   /*   if (cptcovn < 1){i1=1;} */
     
   /*   fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);  */
     
   /*   fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); */
           
   /*      /\*           if (h==(int)(YEARM*yearp)){ *\/ */
   /*   for(cptcov=1, k=0;cptcov<=i1;cptcov++){ */
   /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
   /*       k=k+1; */
   /*       fprintf(ficresfb,"\n#****** hbijx=probability over h years, hp.jx is weighted by observed prev \n#"); */
   /*       for(j=1;j<=cptcoveff;j++) { */
   /*                              fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*       } */
   /*       fprintf(ficresfb," yearbproj age"); */
   /*       for(j=1; j<=nlstate+ndeath;j++){  */
   /*                              for(i=1; i<=nlstate;i++)               */
   /*           fprintf(ficresfb," p%d%d",i,j); */
   /*                              fprintf(ficresfb," p.%d",j); */
   /*       } */
   /*       for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) {  */
   /*                              /\* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  *\/ */
   /*                              fprintf(ficresfb,"\n"); */
   /*                              fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp);    */
   /*                              for (agec=fage; agec>=(ageminpar-1); agec--){  */
   /*                                      nhstepm=(int) rint((agelim-agec)*YEARM/stepm);  */
   /*                                      nhstepm = nhstepm/hstepm;  */
   /*                                      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*                                      oldm=oldms;savm=savms; */
   /*                                      hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm,oldm,savm, dnewm, doldm, dsavm, k);       */
   /*                                      for (h=0; h<=nhstepm; h++){ */
   /*                                              if (h*hstepm/YEARM*stepm ==yearp) { */
   /*               fprintf(ficresfb,"\n"); */
   /*               for(j=1;j<=cptcoveff;j++)  */
   /*                 fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*                                                      fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec+h*hstepm/YEARM*stepm); */
   /*                                              }  */
   /*                                              for(j=1; j<=nlstate+ndeath;j++) { */
   /*                                                      ppij=0.; */
   /*                                                      for(i=1; i<=nlstate;i++) { */
   /*                                                              if (mobilav==1)  */
   /*                                                                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; */
   /*                                                              else { */
   /*                                                                      ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; */
   /*                                                              } */
   /*                                                              if (h*hstepm/YEARM*stepm== yearp) { */
   /*                                                                      fprintf(ficresfb," %.3f", p3mat[i][j][h]); */
   /*                                                              } */
   /*                                                      } /\* end i *\/ */
   /*                                                      if (h*hstepm/YEARM*stepm==yearp) { */
   /*                                                              fprintf(ficresfb," %.3f", ppij); */
   /*                                                      } */
   /*                                              }/\* end j *\/ */
   /*                                      } /\* end h *\/ */
   /*                                      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*                              } /\* end agec *\/ */
   /*       } /\* end yearp *\/ */
   /*     } /\* end cptcod *\/ */
   /*   } /\* end  cptcov *\/ */
           
   /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
           
   /*   fclose(ficresfb); */
   /*   printf("End of Computing Back forecasting \n"); */
   /*   fprintf(ficlog,"End of Computing Back forecasting\n"); */
           
   /* } */
   
   /************** Forecasting *****not tested NB*************/
   /* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */
     
   /*   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */
   /*   int *popage; */
   /*   double calagedatem, agelim, kk1, kk2; */
   /*   double *popeffectif,*popcount; */
   /*   double ***p3mat,***tabpop,***tabpopprev; */
   /*   /\* double ***mobaverage; *\/ */
   /*   char filerespop[FILENAMELENGTH]; */
   
   /*   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   agelim=AGESUP; */
   /*   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */
     
   /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
     
     
   /*   strcpy(filerespop,"POP_");  */
   /*   strcat(filerespop,fileresu); */
   /*   if((ficrespop=fopen(filerespop,"w"))==NULL) { */
   /*     printf("Problem with forecast resultfile: %s\n", filerespop); */
   /*     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */
   /*   } */
   /*   printf("Computing forecasting: result on file '%s' \n", filerespop); */
   /*   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */
   
   /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
   
   /*   /\* if (mobilav!=0) { *\/ */
   /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
   /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
   /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*   } *\/ */
   /*   /\* } *\/ */
   
   /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
   /*   if (stepm<=12) stepsize=1; */
     
   /*   agelim=AGESUP; */
     
   /*   hstepm=1; */
   /*   hstepm=hstepm/stepm;  */
           
   /*   if (popforecast==1) { */
   /*     if((ficpop=fopen(popfile,"r"))==NULL) { */
   /*       printf("Problem with population file : %s\n",popfile);exit(0); */
   /*       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */
   /*     }  */
   /*     popage=ivector(0,AGESUP); */
   /*     popeffectif=vector(0,AGESUP); */
   /*     popcount=vector(0,AGESUP); */
       
   /*     i=1;    */
   /*     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */
       
   /*     imx=i; */
   /*     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */
   /*   } */
     
   /*   for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */
   /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
   /*       k=k+1; */
   /*       fprintf(ficrespop,"\n#******"); */
   /*       for(j=1;j<=cptcoveff;j++) { */
   /*      fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*       } */
   /*       fprintf(ficrespop,"******\n"); */
   /*       fprintf(ficrespop,"# Age"); */
   /*       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */
   /*       if (popforecast==1)  fprintf(ficrespop," [Population]"); */
         
   /*       for (cpt=0; cpt<=0;cpt++) {  */
   /*      fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
           
   /*      for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
   /*        nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
   /*        nhstepm = nhstepm/hstepm;  */
             
   /*        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*        oldm=oldms;savm=savms; */
   /*        hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
             
   /*        for (h=0; h<=nhstepm; h++){ */
   /*          if (h==(int) (calagedatem+YEARM*cpt)) { */
   /*            fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
   /*          }  */
   /*          for(j=1; j<=nlstate+ndeath;j++) { */
   /*            kk1=0.;kk2=0; */
   /*            for(i=1; i<=nlstate;i++) {               */
   /*              if (mobilav==1)  */
   /*                kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */
   /*              else { */
   /*                kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */
   /*              } */
   /*            } */
   /*            if (h==(int)(calagedatem+12*cpt)){ */
   /*              tabpop[(int)(agedeb)][j][cptcod]=kk1; */
   /*              /\*fprintf(ficrespop," %.3f", kk1); */
   /*                if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */
   /*            } */
   /*          } */
   /*          for(i=1; i<=nlstate;i++){ */
   /*            kk1=0.; */
   /*            for(j=1; j<=nlstate;j++){ */
   /*              kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  */
   /*            } */
   /*            tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */
   /*          } */
               
   /*          if (h==(int)(calagedatem+12*cpt)) */
   /*            for(j=1; j<=nlstate;j++)  */
   /*              fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */
   /*        } */
   /*        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*      } */
   /*       } */
         
   /*       /\******\/ */
         
   /*       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  */
   /*      fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
   /*      for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
   /*        nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
   /*        nhstepm = nhstepm/hstepm;  */
             
   /*        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*        oldm=oldms;savm=savms; */
   /*        hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
   /*        for (h=0; h<=nhstepm; h++){ */
   /*          if (h==(int) (calagedatem+YEARM*cpt)) { */
   /*            fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
   /*          }  */
   /*          for(j=1; j<=nlstate+ndeath;j++) { */
   /*            kk1=0.;kk2=0; */
   /*            for(i=1; i<=nlstate;i++) {               */
   /*              kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];     */
   /*            } */
   /*            if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);         */
   /*          } */
   /*        } */
   /*        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*      } */
   /*       } */
   /*     }  */
   /*   } */
     
   /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
     
   /*   if (popforecast==1) { */
   /*     free_ivector(popage,0,AGESUP); */
   /*     free_vector(popeffectif,0,AGESUP); */
   /*     free_vector(popcount,0,AGESUP); */
   /*   } */
   /*   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   fclose(ficrespop); */
   /* } /\* End of popforecast *\/ */
    
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=1;i<=imx ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0, iv=0, v;
     int lstra;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
   
     DummyV=ivector(1,NCOVMAX); /* 1 to 3 */
     FixedV=ivector(1,NCOVMAX); /* 1 to 3 */
   
     for(v=1; v <=ncovcol;v++){
       DummyV[v]=0;
       FixedV[v]=0;
     }
     for(v=ncovcol+1; v <=ncovcol+nqv;v++){
       DummyV[v]=1;
       FixedV[v]=0;
     }
     for(v=ncovcol+nqv+1; v <=ncovcol+nqv+ntv;v++){
       DummyV[v]=0;
       FixedV[v]=1;
     }
     for(v=ncovcol+nqv+ntv+1; v <=ncovcol+nqv+ntv+nqtv;v++){
       DummyV[v]=1;
       FixedV[v]=1;
     }
     for(v=1; v <=ncovcol+nqv+ntv+nqtv;v++){
       printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
       fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
     }
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
       
       /* Loops on waves */
       for (j=maxwav;j>=1;j--){
         for (iv=nqtv;iv>=1;iv--){  /* Loop  on time varying quantitative variables */
           cutv(stra, strb, line, ' '); 
           if(strb[0]=='.') { /* Missing value */
             lval=-1;
             cotqvar[j][iv][i]=-1; /* 0.0/0.0 */
             cotvar[j][ntv+iv][i]=-1; /* For performance reasons */
             if(isalpha(strb[1])) { /* .m or .d Really Missing value */
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog);
               return 1;
             }
           }else{
             errno=0;
             /* what_kind_of_number(strb); */
             dval=strtod(strb,&endptr); 
             /* if( strb[0]=='\0' || (*endptr != '\0')){ */
             /* if(strb != endptr && *endptr == '\0') */
             /*    dval=dlval; */
             /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
             if( strb[0]=='\0' || (*endptr != '\0')){
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog);
               return 1;
             }
             cotqvar[j][iv][i]=dval; 
             cotvar[j][ntv+iv][i]=dval; 
           }
           strcpy(line,stra);
         }/* end loop ntqv */
         
         for (iv=ntv;iv>=1;iv--){  /* Loop  on time varying dummies */
           cutv(stra, strb, line, ' '); 
           if(strb[0]=='.') { /* Missing value */
             lval=-1;
           }else{
             errno=0;
             lval=strtol(strb,&endptr,10); 
             /*    if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
             if( strb[0]=='\0' || (*endptr != '\0')){
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog);
               return 1;
             }
           }
           if(lval <-1 || lval >1){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
             return 1;
           }
           cotvar[j][iv][i]=(double)(lval);
           strcpy(line,stra);
         }/* end loop ntv */
         
         /* Statuses  at wave */
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing value */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         
         s[j][i]=lval;
         
         /* Date of Interview */
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* End loop on waves */
       
       /* Date of death */
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       /* Date of birth */
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
         
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       /* Sample weight */
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (iv=nqv;iv>=1;iv--){  /* Loop  on fixed quantitative variables */
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing value */
           lval=-1;
         }else{
           errno=0;
           /* what_kind_of_number(strb); */
           dval=strtod(strb,&endptr);
           /* if(strb != endptr && *endptr == '\0') */
           /*   dval=dlval; */
           /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog);
             return 1;
           }
           coqvar[iv][i]=dval; 
           covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ 
         }
         strcpy(line,stra);
       }/* end loop nqv */
       
       /* Covariate values */
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing covariate value */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     
     *imax=i-1; /* Number of individuals */
     fclose(fic);
     
     return (0);
     /* endread: */
     printf("Exiting readdata: ");
     fclose(fic);
     return (1);
   }
   
   void removefirstspace(char **stri){/*, char stro[]) {*/
     char *p1 = *stri, *p2 = *stri;
     while (*p2 == ' ')
       p2++; 
     /* while ((*p1++ = *p2++) !=0) */
     /*   ; */
     /* do */
     /*   while (*p2 == ' ') */
     /*     p2++; */
     /* while (*p1++ == *p2++); */
     *stri=p2; 
   }
   
   int decoderesult ( char resultline[], int nres)
   /**< This routine decode one result line and returns the combination # of dummy covariates only **/
   {
     int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0;
     char resultsav[MAXLINE];
     int resultmodel[MAXLINE];
     int modelresult[MAXLINE];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     removefirstspace(&resultline);
     printf("decoderesult:%s\n",resultline);
   
     if (strstr(resultline,"v") !=0){
       printf("Error. 'v' must be in upper case 'V' result: %s ",resultline);
       fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultline);fflush(ficlog);
       return 1;
     }
     trimbb(resultsav, resultline);
     if (strlen(resultsav) >1){
       j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' */
     }
     if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */
       printf("ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);
       fprintf(ficlog,"ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);
     }
     for(k=1; k<=j;k++){ /* Loop on any covariate of the result line */
       if(nbocc(resultsav,'=') >1){
          cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' 
                                         resultsav= V4=1 V5=25.1 V3=0 strb=V3=0 stra= V4=1 V5=25.1 */
          cutl(strc,strd,strb,'=');  /* strb:V4=1 strc=1 strd=V4 */
       }else
         cutl(strc,strd,resultsav,'=');
       Tvalsel[k]=atof(strc); /* 1 */
       
       cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */;
       Tvarsel[k]=atoi(strc);
       /* Typevarsel[k]=1;  /\* 1 for age product *\/ */
       /* cptcovsel++;     */
       if (nbocc(stra,'=') >0)
         strcpy(resultsav,stra); /* and analyzes it */
     }
     /* Checking for missing or useless values in comparison of current model needs */
     for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       if(Typevar[k1]==0){ /* Single covariate in model */
         match=0;
         for(k2=1; k2 <=j;k2++){/* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
           if(Tvar[k1]==Tvarsel[k2]) {/* Tvar[1]=5 == Tvarsel[2]=5   */
             modelresult[k2]=k1;/* modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
             match=1;
             break;
           }
         }
         if(match == 0){
           printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);
         }
       }
     }
     /* Checking for missing or useless values in comparison of current model needs */
     for(k2=1; k2 <=j;k2++){ /* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
       match=0;
       for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         if(Typevar[k1]==0){ /* Single */
           if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4   */
             resultmodel[k1]=k2;  /* resultmodel[2]=1 resultmodel[1]=2  resultmodel[3]=3  resultmodel[6]=4 resultmodel[9]=5 */
             ++match;
           }
         }
       }
       if(match == 0){
         printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);
       }else if(match > 1){
         printf("Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model);
       }
     }
         
     /* We need to deduce which combination number is chosen and save quantitative values */
     /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
     /* result line V4=1 V5=25.1 V3=0  V2=8 V1=1 */
     /* should give a combination of dummy V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 5 + (1offset) = 6*/
     /* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
     /* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/
     /*    1 0 0 0 */
     /*    2 1 0 0 */
     /*    3 0 1 0 */ 
     /*    4 1 1 0 */ /* V4=1, V3=1, V1=0 */
     /*    5 0 0 1 */
     /*    6 1 0 1 */ /* V4=1, V3=0, V1=1 */
     /*    7 0 1 1 */
     /*    8 1 1 1 */
     /* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */
     /* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */
     /* V5*age V5 known which value for nres?  */
     /* Tqinvresult[2]=8 Tqinvresult[1]=25.1  */
     for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* model line */
       if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Single dummy */
         k3= resultmodel[k1]; /* resultmodel[2(V4)] = 1=k3 */
         k2=(int)Tvarsel[k3]; /*  Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */
         k+=Tvalsel[k3]*pow(2,k4);  /*  Tvalsel[1]=1  */
         Tresult[nres][k4+1]=Tvalsel[k3];/* Tresult[nres][1]=1(V4=1)  Tresult[nres][2]=0(V3=0) */
         Tvresult[nres][k4+1]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
         Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */
         printf("Decoderesult Dummy k=%d, V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k2, k3, (int)Tvalsel[k3], k4);
         k4++;;
       }  else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Single quantitative */
         k3q= resultmodel[k1]; /* resultmodel[2] = 1=k3 */
         k2q=(int)Tvarsel[k3q]; /*  Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */
         Tqresult[nres][k4q+1]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */
         Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */
         Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
         printf("Decoderesult Quantitative nres=%d, V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]);
         k4q++;;
       }
     }
     
     TKresult[nres]=++k; /* Combination for the nresult and the model */
     return (0);
   }
   
   int decodemodel( char model[], int lastobs)
    /**< This routine decodes the model and returns:
           * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
           * - nagesqr = 1 if age*age in the model, otherwise 0.
           * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
           * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
           * - cptcovage number of covariates with age*products =2
           * - cptcovs number of simple covariates
           * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
           *     which is a new column after the 9 (ncovcol) variables. 
           * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
           * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
           *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
           * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
           */
   {
     int i, j, k, ks, v;
     int  j1, k1, k2, k3, k4;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
           printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
           fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
           return 1;
         }
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                        * cst, age and age*age 
                        * V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/
         /* including age products which are counted in cptcovage.
          * but the covariates which are products must be treated 
          * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
         
         
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[2]=1 Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
         
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/
           Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;
         }
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               Typevar[k]=1;  /* 1 for age product */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               Typevar[k]=1;  /* 1 for age product */
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but
                                                   because this model-covariate is a construction we invent a new column
                                                   which is after existing variables ncovcol+nqv+ntv+nqtv + k1
                                                   If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                                   Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               Typevar[k]=2;  /* 2 for double fixed dummy covariates */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;  /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */
               /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */
               /* Tvar[cptcovt+k2+1]=Tvard[k1][2];  /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */
               /*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */
               /*                     1  2   3      4     5 | Tvar[5+1)=1, Tvar[7]=2   */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */
             cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */
             Tvar[k]=atoi(strd);
             Typevar[k]=0;  /* 0 for simple covariates */
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
                                   /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
                                     scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
     
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
        printf("cptcovprod=%d ", cptcovprod);
        fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
        scanf("%d ",i);*/
   
   
   /* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind
      of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */
   /* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1  = 5 possible variables data: 2 fixed 3, varying
      model=        V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place
      k =           1    2   3     4       5       6      7      8        9
      Tvar[k]=      5    4   3 1+1+2+1+1=6 5       2      7      1        5
      Typevar[k]=   0    0   0     2       1       0      2      1        1
      Fixed[k]      1    1   1     1       3       0    0 or 2   2        3
      Dummy[k]      1    0   0     0       3       1      1      2        3
             Tmodelind[combination of covar]=k;
   */  
   /* Dispatching between quantitative and time varying covariates */
     /* If Tvar[k] >ncovcol it is a product */
     /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p  Vp=Vn*Vm for product */
           /* Computing effective variables, ie used by the model, that is from the cptcovt variables */
     printf("Model=%s\n\
   Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
   Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
   Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
     fprintf(ficlog,"Model=%s\n\
   Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
   Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
   Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
     for(k=1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;}
     for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */
       if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */
         Fixed[k]= 0;
         Dummy[k]= 0;
         ncoveff++;
         ncovf++;
         nsd++;
         modell[k].maintype= FTYPE;
         TvarsD[nsd]=Tvar[k];
         TvarsDind[nsd]=k;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       }else if( Tvar[k] <=ncovcol &&  Typevar[k]==2){ /* Product of fixed dummy (<=ncovcol) covariates */
         Fixed[k]= 0;
         Dummy[k]= 0;
         ncoveff++;
         ncovf++;
         modell[k].maintype= FTYPE;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       }else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */
         Fixed[k]= 0;
         Dummy[k]= 1;
         nqfveff++;
         modell[k].maintype= FTYPE;
         modell[k].subtype= FQ;
         nsq++;
         TvarsQ[nsq]=Tvar[k];
         TvarsQind[nsq]=k;
         ncovf++;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
         TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
       }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying variables */
         Fixed[k]= 1;
         Dummy[k]= 0;
         ntveff++; /* Only simple time varying dummy variable */
         modell[k].maintype= VTYPE;
         modell[k].subtype= VD;
         nsd++;
         TvarsD[nsd]=Tvar[k];
         TvarsDind[nsd]=k;
         ncovv++; /* Only simple time varying variables */
         TvarV[ncovv]=Tvar[k];
         TvarVind[ncovv]=k;
         TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4  TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
         TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
         printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv);
         printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv);
       }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv  && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/
         Fixed[k]= 1;
         Dummy[k]= 1;
         nqtveff++;
         modell[k].maintype= VTYPE;
         modell[k].subtype= VQ;
         ncovv++; /* Only simple time varying variables */
         nsq++;
         TvarsQ[nsq]=Tvar[k];
         TvarsQind[nsq]=k;
         TvarV[ncovv]=Tvar[k];
         TvarVind[ncovv]=k;
         TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
         TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
         TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */
         /* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */
         printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv);
         printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv);
       }else if (Typevar[k] == 1) {  /* product with age */
         ncova++;
         TvarA[ncova]=Tvar[k];
         TvarAind[ncova]=k;
         if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */
           Fixed[k]= 2;
           Dummy[k]= 2;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APFD;
           /* ncoveff++; */
         }else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/
           Fixed[k]= 2;
           Dummy[k]= 3;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APFQ;                /*      Product age * fixed quantitative */
           /* nqfveff++;  /\* Only simple fixed quantitative variable *\/ */
         }else if( Tvar[k] <=ncovcol+nqv+ntv ){
           Fixed[k]= 3;
           Dummy[k]= 2;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APVD;                /*      Product age * varying dummy */
           /* ntveff++; /\* Only simple time varying dummy variable *\/ */
         }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){
           Fixed[k]= 3;
           Dummy[k]= 3;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APVQ;                /*      Product age * varying quantitative */
           /* nqtveff++;/\* Only simple time varying quantitative variable *\/ */
         }
       }else if (Typevar[k] == 2) {  /* product without age */
         k1=Tposprod[k];
         if(Tvard[k1][1] <=ncovcol){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDD;              /*      Product fixed dummy * fixed dummy */
             ncovf++; /* Fixed variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 0;  /* or 2 ?*/
             Dummy[k]= 1;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDQ;              /*      Product fixed dummy * fixed quantitative */
             ncovf++; /* Varying variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product fixed dummy * varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product fixed dummy * varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else if(Tvard[k1][1] <=ncovcol+nqv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 0;  /* or 2 ?*/
             Dummy[k]= 1;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDQ;              /*      Product fixed quantitative * fixed dummy */
             ncovf++; /* Fixed variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product fixed quantitative * varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product fixed quantitative * varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product time varying dummy * fixed dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying dummy * fixed quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product time varying dummy * time varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying dummy * time varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying quantitative * fixed dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product time varying quantitative * fixed quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying quantitative * time varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product time varying quantitative * time varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else{
           printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
           fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
         } /*end k1*/
       }else{
         printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
         fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
       }
       printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
       printf("           modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype);
       fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
     }
     /* Searching for doublons in the model */
     for(k1=1; k1<= cptcovt;k1++){
       for(k2=1; k2 <k1;k2++){
         if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){
           if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */
             if(Tvar[k1]==Tvar[k2]){
               printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
               fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
               return(1);
             }
           }else if (Typevar[k1] ==2){
             k3=Tposprod[k1];
             k4=Tposprod[k2];
             if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){
               printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
               fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
               return(1);
             }
           }
         }
       }
     }
     printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
     fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
     printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq);
     fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq);
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
     printf("Exiting decodemodel: ");
     return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
     int firstone=0;
     
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
             s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           if(firstone == 0){
             firstone=1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
           }
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
                 /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           } /* end if */
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           } /* en if 9*/
           else { /* =9 */
             /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else if(s[m][i]==0) /*= 0 Unknown */
           agev[m][i]=1;
         else{
           printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           agev[m][i]=0;
         }
       } /* End for lastpass */
     }
       
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
   }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1, k4=0, nres=0 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
     agebase=ageminpar;
     agelim=agemaxpar;
   
     /* i1=pow(2,ncoveff); */
     i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
     if (cptcovn < 1){i1=1;}
   
     for(k=1; k<=i1;k++){ /* For each combination k of dummy covariates in the model */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(TKresult[nres]!= k)
           continue;
   
         /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
         /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         /* k=k+1; */
         /* to clean */
         //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
         fprintf(ficrespl,"#******");
         printf("#******");
         fprintf(ficlog,"#******");
         for(j=1;j<=cptcoveff ;j++) {/* all covariates */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         if(invalidvarcomb[k]){
           printf("\nCombination (%d) ignored because no case \n",k); 
           fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); 
           fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); 
           continue;
         }
   
         fprintf(ficrespl,"#Age ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
         fprintf(ficrespl,"Total Years_to_converge\n");
       
         for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
           prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           tot=0.;
           for(i=1; i<=nlstate;i++){
             tot +=  prlim[i][i];
             fprintf(ficrespl," %.5f", prlim[i][i]);
           }
           fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
         } /* Age */
         /* was end of cptcod */
       } /* cptcov */
     } /* nres */
     return 0;
   }
   
   int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
           /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
           
           /* Computes the back prevalence limit  for any combination      of covariate values 
      * at any age between ageminpar and agemaxpar
            */
     int i, j, k, i1, nres=0 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
     /* double ***mobaverage; */
     /* double      **dnewm, **doldm, **dsavm;  /\* for use *\/ */
   
     strcpy(fileresplb,"PLB_");
     strcat(fileresplb,fileresu);
     if((ficresplb=fopen(fileresplb,"w"))==NULL) {
       printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
       fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
     }
     printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
     fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
     pstamp(ficresplb);
     fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficresplb,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
     fprintf(ficresplb,"\n");
     
     
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
     
     agebase=ageminpar;
     agelim=agemaxpar;
     
     
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(TKresult[nres]!= k)
           continue;
         //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
         fprintf(ficresplb,"#******");
         printf("#******");
         fprintf(ficlog,"#******");
         for(j=1;j<=cptcoveff ;j++) {/* all covariates */
           fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         }
         fprintf(ficresplb,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         if(invalidvarcomb[k]){
           printf("\nCombination (%d) ignored because no cases \n",k); 
           fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); 
           fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); 
           continue;
         }
       
         fprintf(ficresplb,"#Age ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);
         fprintf(ficresplb,"Total Years_to_converge\n");
       
       
         for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
           if(mobilavproj > 0){
             /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */
             /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
             bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k);
           }else if (mobilavproj == 0){
             printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
             fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
             exit(1);
           }else{
             /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
             bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k);
           }
           fprintf(ficresplb,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           tot=0.;
           for(i=1; i<=nlstate;i++){
             tot +=  bprlim[i][i];
             fprintf(ficresplb," %.5f", bprlim[i][i]);
           }
           fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);
         } /* Age */
         /* was end of cptcod */
       } /* end of any combination */
     } /* end of nres */  
     /* hBijx(p, bage, fage); */
     /* fclose(ficrespijb); */
     
     return 0;
   }
    
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k, k4, nres=0;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
                   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
                   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                   /*      k=k+1;  */
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){
         if(TKresult[nres]!= k)
           continue;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
       return 0;
   }
    
    int hBijx(double *p, int bage, int fage, double ***prevacurrent){
       /*------------- h Bij x at various ages ------------*/
   
     int stepsize;
     /* int agelim; */
           int ageminl;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k, nres;
           
     double agedeb;
     double ***p3mat;
           
     strcpy(filerespijb,"PIJB_");  strcat(filerespijb,fileresu);
     if((ficrespijb=fopen(filerespijb,"w"))==NULL) {
       printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1;
       fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1;
     }
     printf("Computing pij back: result on file '%s' \n", filerespijb);
     fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
     
     /* agelim=AGESUP; */
     ageminl=30;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
     
     /* hstepm=1;   aff par mois*/
     pstamp(ficrespijb);
     fprintf(ficrespijb,"#****** h Pij x Back Probability to be in state i at age x-h being in j at x ");
     i1= pow(2,cptcoveff);
     /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
     /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
     /*    k=k+1;  */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(TKresult[nres]!= k)
           continue;
         fprintf(ficrespijb,"\n#****** ");
         for(j=1;j<=cptcoveff;j++)
           fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         }
         fprintf(ficrespijb,"******\n");
         if(invalidvarcomb[k]){
           fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); 
           continue;
         }
         
         /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
         for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
           /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
           nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           /* oldm=oldms;savm=savms; */
           /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
           hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k);
           /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
           fprintf(ficrespijb,"# Cov Agex agex-h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespijb," %1d-%1d",i,j);
           fprintf(ficrespijb,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );
             /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespijb," %.5f", p3mat[i][j][h]);
             fprintf(ficrespijb,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespijb,"\n");
         } /* end age deb */
       } /* end combination */
     } /* end nres */
     return 0;
    } /*  hBijx */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyear=0; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
     int nres=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
     double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     /* double ***mobaverage; */
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char  modeltemp[MAXLINE];
     char resultline[MAXLINE];
     
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int backcast=0;
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double **bprlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000;
   
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       if(!fgets(pathr,FILENAMELENGTH,stdin)){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
       }
       i=strlen(pathr);
       if( i==0 ){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 11) {
         printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         printf("but line=%s\n",line);
       }
       printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     coqvar=matrix(1,nqv,1,n);  /**< Fixed quantitative covariate */
     cotvar=ma3x(1,maxwav,1,ntv+nqtv,1,n);  /**< Time varying covariate (dummy and quantitative)*/
     cotqvar=ma3x(1,maxwav,1,nqtv,1,n);  /**< Time varying quantitative covariate */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }  else if(mle==-5) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }  else{ /* Begin of mle != -1 or -5 */
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
       
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
       
       /* Reads covariance matrix */
       delti=delti3[1][1];
                   
                   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
                   
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
                   
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
                   
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else{
           if(mle==1)
             printf("%1d%1d%d",i1,j1,jk);
         }
         fprintf(ficlog,"%1d%1d%d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
                                   printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
     
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     weight=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     for(i=1;i<=n;i++){
       num[i]=0;
       moisnais[i]=0;
       annais[i]=0;
       moisdc[i]=0;
       andc[i]=0;
       agedc[i]=0;
       cod[i]=0;
       weight[i]=1.0; /* Equal weights, 1 by default */
     }
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
     */
     
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     TvarsDind=ivector(1,NCOVMAX); /*  */
     TvarsD=ivector(1,NCOVMAX); /*  */
     TvarsQind=ivector(1,NCOVMAX); /*  */
     TvarsQ=ivector(1,NCOVMAX); /*  */
     TvarF=ivector(1,NCOVMAX); /*  */
     TvarFind=ivector(1,NCOVMAX); /*  */
     TvarV=ivector(1,NCOVMAX); /*  */
     TvarVind=ivector(1,NCOVMAX); /*  */
     TvarA=ivector(1,NCOVMAX); /*  */
     TvarAind=ivector(1,NCOVMAX); /*  */
     TvarFD=ivector(1,NCOVMAX); /*  */
     TvarFDind=ivector(1,NCOVMAX); /*  */
     TvarFQ=ivector(1,NCOVMAX); /*  */
     TvarFQind=ivector(1,NCOVMAX); /*  */
     TvarVD=ivector(1,NCOVMAX); /*  */
     TvarVDind=ivector(1,NCOVMAX); /*  */
     TvarVQ=ivector(1,NCOVMAX); /*  */
     TvarVQind=ivector(1,NCOVMAX); /*  */
   
     Tvalsel=vector(1,NCOVMAX); /*  */
     Tvarsel=ivector(1,NCOVMAX); /*  */
     Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */
     Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */
     Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */
     Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
        Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
     Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an
                                   * individual dummy, fixed or varying:
                                   * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,
                                   * 3, 1, 0, 0, 0, 0, 0, 0},
                                   * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , 
                                   * V1 df, V2 qf, V3 & V4 dv, V5 qv
                                   * Tmodelind[1]@9={9,0,3,2,}*/
     TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/
     TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an
                                   * individual quantitative, fixed or varying:
                                   * Tmodelqind[1]=1,Tvaraff[1]@9={4,
                                   * 3, 1, 0, 0, 0, 0, 0, 0},
                                   * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3  = {4, 3, 5}*/
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     /* free_vector(moisdc,1,n); */
     /* free_vector(andc,1,n); */
     /* */
     
     wav=ivector(1,imx);
     /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
     dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
     bh=imatrix(1,lastpass-firstpass+2,1,imx);
     mw=imatrix(1,lastpass-firstpass+2,1,imx);
      
     /* Concatenates waves */
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     */
   
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     cptcoveff=0;
     if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
       tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     }
     
     ncovcombmax=pow(2,cptcoveff);
     invalidvarcomb=ivector(1, ncovcombmax); 
     for(i=1;i<ncovcombmax;i++)
       invalidvarcomb[i]=0;
     
     /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
     
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
      * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
      * (currently 0 or 1) in the data.
      * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
      * corresponding modality (h,j).
      */
   
     h=0;
     /*if (cptcovn > 0) */
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to m=2**k
              * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
              * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
        /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
        * and the value of each covariate?
        * V1=1, V2=1, V3=2, V4=1 ?
        * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
        * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
        * In order to get the real value in the data, we use nbcode
        * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
        * We are keeping this crazy system in order to be able (in the future?) 
        * to have more than 2 values (0 or 1) for a covariate.
        * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
        * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
        *              bbbbbbbb
        *              76543210     
        *   h-1        00000101 (6-1=5)
        *(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift
        *           &
        *     1        00000001 (1)
        *              00000000        = 1 & ((h-1) >> (k-1))
        *          +1= 00000001 =1 
        *
        * h=14, k=3 => h'=h-1=13, k'=k-1=2
        *          h'      1101 =2^3+2^2+0x2^1+2^0
        *    >>k'            11
        *          &   00000001
        *            = 00000001
        *      +1    = 00000010=2    =  codtabm(14,3)   
        * Reverse h=6 and m=16?
        * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
        * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
        * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
        * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
        * V3=decodtabm(14,3,2**4)=2
        *          h'=13   1101 =2^3+2^2+0x2^1+2^0
        *(h-1) >> (j-1)    0011 =13 >> 2
        *          &1 000000001
        *           = 000000001
        *         +1= 000000010 =2
        *                  2211
        *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
        *                  V3=2
                    * codtabm and decodtabm are identical
        */
   
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br>  \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   <font size=\"2\">IMaCh-%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age 
                    and for any valid combination of covariates
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \
                 firstpass, lastpass,  stepm,  weightopt, model);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
   
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
                   for(i=1;i<=NDIM;i++)
                           for(j=1;j<=NDIM;j++)
                                   ximort[i][j]=0.;
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
                   
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
       
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
           
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
                                   matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
                                   printf("%f ",matcov[i][j]);
                                   fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
                   ageminpar=50;
                   agemaxpar=100;
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else{
                           printf("Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
                           fprintf(ficlog,"Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   }
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
       free_matrix(ximort,1,NDIM,1,NDIM);
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
   #ifdef GSL
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard  */
     else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximization */
         /* mlikeli uses func not funcone */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
         globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
         /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       }
       globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
       
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       while(fgets(line, MAXLINE, ficpar)) {
         /* If line starts with a # it is a comment */
         if (line[0] == '#') {
           numlinepar++;
           fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           continue;
         }else
           break;
       }
       
       /* while((c=getc(ficpar))=='#' && c!= EOF){ */
       /*   ungetc(c,ficpar); */
       /*   fgets(line, MAXLINE, ficpar); */
       /*   fputs(line,stdout); */
       /*   fputs(line,ficparo); */
       /* } */
       /* ungetc(c,ficpar); */
       
       estepm=0;
       if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
         
         if (num_filled != 6) {
           printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
           fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
           goto end;
         }
         printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
       }
       /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
       /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
       
       /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
                   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficres);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficres);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);
       fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       /* Results */
       nresult=0;
       while(fgets(line, MAXLINE, ficpar)) {
         /* If line starts with a # it is a comment */
         if (line[0] == '#') {
           numlinepar++;
           fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           fputs(line,ficres);
           continue;
         }else
           break;
       }
       if (!feof(ficpar))
       while((num_filled=sscanf(line,"result:%[^\n]\n",resultline)) !=EOF){
         if (num_filled == 0){
           resultline[0]='\0';
         break;
         } else if (num_filled != 1){
           printf("ERROR %d: result line should be at minimum 'result=' %s\n",num_filled, line);
         }
         nresult++; /* Sum of resultlines */
         printf("Result %d: result=%s\n",nresult, resultline);
         if(nresult > MAXRESULTLINES){
           printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);
           fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);
           goto end;
         }
         decoderesult(resultline, nresult); /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */
         fprintf(ficparo,"result: %s\n",resultline);
         fprintf(ficres,"result: %s\n",resultline);
         fprintf(ficlog,"result: %s\n",resultline);
         while(fgets(line, MAXLINE, ficpar)) {
           /* If line starts with a # it is a comment */
           if (line[0] == '#') {
             numlinepar++;
             fputs(line,stdout);
             fputs(line,ficparo);
             fputs(line,ficres);
             fputs(line,ficlog);
             continue;
           }else
             break;
         }
         if (feof(ficpar))
           break;
         else{ /* Processess output results for this combination of covariate values */
         }                            
       } /* end while */
   
   
       
       /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
         printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
         fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else{
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p);
       }
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,backcast, estepm, \
                    jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2);
                   
       /*------------ free_vector  -------------*/
       /*  chdir(path); */
                   
       /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
       /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
                   
                   
       /* Other results (useful)*/
                   
                   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
       
       /* ncovcombmax=  pow(2,cptcoveff); */
       /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
       
       /* Prevalence for each covariates in probs[age][status][cov] */
       probs= ma3x(1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */
           for(k=1;k<=ncovcombmax;k++)
             probs[i][j][k]=0.;
       prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       if (mobilav!=0 ||mobilavproj !=0 ) {
         mobaverages= ma3x(1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
         for(i=1;i<=AGESUP;i++)
           for(j=1;j<=nlstate;j++)
             for(k=1;k<=ncovcombmax;k++)
               mobaverages[i][j][k]=0.;
         mobaverage=mobaverages;
         if (mobilav!=0) {
           printf("Movingaveraging observed prevalence\n");
           if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){
             fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             printf(" Error in movingaverage mobilav=%d\n",mobilav);
           }
         }
         /* /\* Prevalence for each covariates in probs[age][status][cov] *\/ */
         /* prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
         else if (mobilavproj !=0) {
           printf("Movingaveraging projected observed prevalence\n");
           if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){
             fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);
             printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);
           }
         }
       }/* end if moving average */
       
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
       }
       if(backcast==1){
         ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
         ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
         ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
   
         /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
   
         bprlim=matrix(1,nlstate,1,nlstate);
         back_prevalence_limit(p, bprlim,  ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);
         fclose(ficresplb);
   
         hBijx(p, bage, fage, mobaverage);
         fclose(ficrespijb);
         free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */
   
         /* prevbackforecast(fileresu, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, mobilavproj,
            bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */
         free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
         free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
         free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
       }
       
    
       /* ------ Other prevalence ratios------------ */
   
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
                   
                   
       /*---------- Health expectancies, no variances ------------*/
                   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
   
       pstamp(ficreseij);
                   
       i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
       if (cptcovn < 1){i1=1;}
       
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(TKresult[nres]!= k)
           continue;
         fprintf(ficreseij,"\n#****** ");
         printf("\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficreseij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         }
         fprintf(ficreseij,"******\n");
         printf("******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres);  
         
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
       }
       fclose(ficreseij);
       printf("done evsij\n");fflush(stdout);
       fprintf(ficlog,"done evsij\n");fflush(ficlog);
                   
       /*---------- State-specific expectancies and variances ------------*/
                   
                   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
                   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout);
       fprintf(ficlog,"      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
       if (cptcovn < 1){i1=1;}
       
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(TKresult[nres]!= k)
           continue;
         printf("\n#****** Selected:");
         fprintf(ficrest,"\n#****** Selected:");
         fprintf(ficlog,"\n#****** Selected:");
         for(j=1;j<=cptcoveff;j++){ 
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficrest,"******\n");
         fprintf(ficlog,"******\n");
         printf("******\n");
         
         fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficrescveij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           fprintf(ficresstdeij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficrescveij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresstdeij,"******\n");
         fprintf(ficrescveij,"******\n");
         
         fprintf(ficresvij,"\n#****** ");
         /* pstamp(ficresvij); */
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresvij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         printf(" cvevsij ");
         fprintf(ficlog, " cvevsij ");
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart, nres);
         printf(" end cvevsij \n ");
         fprintf(ficlog, " end cvevsij \n ");
         
         /*
          */
         /* goto endfree; */
         
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         pstamp(ficrest);
         
         
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           oldm=oldms;savm=savms; /* ZZ Segmentation fault */
           cptcod= 0; /* To be deleted */
           printf("varevsij vpopbased=%d \n",vpopbased);
           fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart, nres); /* cptcod not initialized Intel */
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
           if(vpopbased==1)
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
           else
             fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
           fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
           /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
           epj=vector(1,nlstate+1);
           printf("Computing age specific period (stable) prevalences in each health state \n");
           fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */
             if (vpopbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
             
             fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
             /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
             /* printf(" age %4.0f ",age); */
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
               }
               epj[nlstate+1] +=epj[j];
             }
             /* printf(" age %4.0f \n",age); */
             
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
         } /* End vpopbased */
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
         printf("done selection\n");fflush(stdout);
         fprintf(ficlog,"done selection\n");fflush(ficlog);
         
         /*}*/
       } /* End k selection */
   
       printf("done State-specific expectancies\n");fflush(stdout);
       fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);
   
       /*------- Variance of period (stable) prevalence------*/   
       
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
       
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
       
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){
         if(TKresult[nres]!= k)
           continue;
         fprintf(ficresvpl,"\n#****** ");
         printf("\n#****** ");
         fprintf(ficlog,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresvpl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart, nres);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       
       fclose(ficresvpl);
       printf("done variance-covariance of period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);
       
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
       
       
       /*---------- End : free ----------------*/
       if (mobilav!=0 ||mobilavproj !=0)
         free_ma3x(mobaverages,1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */
       free_ma3x(probs,1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     }  /* mle==-3 arrives here for freeing */
     /* endfree:*/
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n);
     free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,1,n);
     free_matrix(coqvar,1,maxwav,1,n);
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     free_matrix(hess,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     
     free_ivector(ncodemax,1,NCOVMAX);
     free_ivector(ncodemaxwundef,1,NCOVMAX);
     free_ivector(Dummy,-1,NCOVMAX);
     free_ivector(Fixed,-1,NCOVMAX);
     free_ivector(DummyV,1,NCOVMAX);
     free_ivector(FixedV,1,NCOVMAX);
     free_ivector(Typevar,-1,NCOVMAX);
     free_ivector(Tvar,1,NCOVMAX);
     free_ivector(TvarsQ,1,NCOVMAX);
     free_ivector(TvarsQind,1,NCOVMAX);
     free_ivector(TvarsD,1,NCOVMAX);
     free_ivector(TvarsDind,1,NCOVMAX);
     free_ivector(TvarFD,1,NCOVMAX);
     free_ivector(TvarFDind,1,NCOVMAX);
     free_ivector(TvarF,1,NCOVMAX);
     free_ivector(TvarFind,1,NCOVMAX);
     free_ivector(TvarV,1,NCOVMAX);
     free_ivector(TvarVind,1,NCOVMAX);
     free_ivector(TvarA,1,NCOVMAX);
     free_ivector(TvarAind,1,NCOVMAX);
     free_ivector(TvarFQ,1,NCOVMAX);
     free_ivector(TvarFQind,1,NCOVMAX);
     free_ivector(TvarVD,1,NCOVMAX);
     free_ivector(TvarVDind,1,NCOVMAX);
     free_ivector(TvarVQ,1,NCOVMAX);
     free_ivector(TvarVQind,1,NCOVMAX);
     free_ivector(Tvarsel,1,NCOVMAX);
     free_vector(Tvalsel,1,NCOVMAX);
     free_ivector(Tposprod,1,NCOVMAX);
     free_ivector(Tprod,1,NCOVMAX);
     free_ivector(Tvaraff,1,NCOVMAX);
     free_ivector(invalidvarcomb,1,ncovcombmax);
     free_ivector(Tage,1,NCOVMAX);
     free_ivector(Tmodelind,1,NCOVMAX);
     free_ivector(TmodelInvind,1,NCOVMAX);
     free_ivector(TmodelInvQind,1,NCOVMAX);
     
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
     /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
     
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
     
     
     printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
     if (_chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(_getcwd(pathcd,MAXLINE) > 0)
   #else
       if(chdir(pathcd) != 0)
         printf("Can't move to directory %s!\n", path);
     if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
     
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
   end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.125  
changed lines
  Added in v.1.240


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>