Diff for /imach/src/imach.c between versions 1.54 and 1.125

version 1.54, 2002/07/24 09:07:45 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.125  2006/04/04 15:20:31  lievre
       Errors in calculation of health expectancies. Age was not initialized.
   This program computes Healthy Life Expectancies from    Forecasting file added.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.124  2006/03/22 17:13:53  lievre
   interviewed on their health status or degree of disability (in the    Parameters are printed with %lf instead of %f (more numbers after the comma).
   case of a health survey which is our main interest) -2- at least a    The log-likelihood is printed in the log file
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.123  2006/03/20 10:52:43  brouard
   computed from the time spent in each health state according to a    * imach.c (Module): <title> changed, corresponds to .htm file
   model. More health states you consider, more time is necessary to reach the    name. <head> headers where missing.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    * imach.c (Module): Weights can have a decimal point as for
   probability to be observed in state j at the second wave    English (a comma might work with a correct LC_NUMERIC environment,
   conditional to be observed in state i at the first wave. Therefore    otherwise the weight is truncated).
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Modification of warning when the covariates values are not 0 or
   'age' is age and 'sex' is a covariate. If you want to have a more    1.
   complex model than "constant and age", you should modify the program    Version 0.98g
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.122  2006/03/20 09:45:41  brouard
   convergence.    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
   The advantage of this computer programme, compared to a simple    otherwise the weight is truncated).
   multinomial logistic model, is clear when the delay between waves is not    Modification of warning when the covariates values are not 0 or
   identical for each individual. Also, if a individual missed an    1.
   intermediate interview, the information is lost, but taken into    Version 0.98g
   account using an interpolation or extrapolation.    
     Revision 1.121  2006/03/16 17:45:01  lievre
   hPijx is the probability to be observed in state i at age x+h    * imach.c (Module): Comments concerning covariates added
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Module): refinements in the computation of lli if
   states. This elementary transition (by month or quarter trimester,    status=-2 in order to have more reliable computation if stepm is
   semester or year) is model as a multinomial logistic.  The hPx    not 1 month. Version 0.98f
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.120  2006/03/16 15:10:38  lievre
   hPijx.    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Also this programme outputs the covariance matrix of the parameters but also    not 1 month. Version 0.98f
   of the life expectancies. It also computes the stable prevalence.   
       Revision 1.119  2006/03/15 17:42:26  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Bug if status = -2, the loglikelihood was
            Institut national d'études démographiques, Paris.    computed as likelihood omitting the logarithm. Version O.98e
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.118  2006/03/14 18:20:07  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): varevsij Comments added explaining the second
   software can be distributed freely for non commercial use. Latest version    table of variances if popbased=1 .
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   **********************************************************************/    (Module): Function pstamp added
      (Module): Version 0.98d
 #include <math.h>  
 #include <stdio.h>    Revision 1.117  2006/03/14 17:16:22  brouard
 #include <stdlib.h>    (Module): varevsij Comments added explaining the second
 #include <unistd.h>    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define MAXLINE 256    (Module): Function pstamp added
 #define GNUPLOTPROGRAM "gnuplot"    (Module): Version 0.98d
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.116  2006/03/06 10:29:27  brouard
 /*#define DEBUG*/    (Module): Variance-covariance wrong links and
 #define unix    varian-covariance of ej. is needed (Saito).
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
 #define NINTERVMAX 8    filename with strsep.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.113  2006/02/24 14:20:24  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Memory leaks checks with valgrind and:
 #define MAXN 20000    datafile was not closed, some imatrix were not freed and on matrix
 #define YEARM 12. /* Number of months per year */    allocation too.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.112  2006/01/30 09:55:26  brouard
 #ifdef windows    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.111  2006/01/25 20:38:18  brouard
 #else    (Module): Lots of cleaning and bugs added (Gompertz)
 #define DIRSEPARATOR '/'    (Module): Comments can be added in data file. Missing date values
 #define ODIRSEPARATOR '\\'    can be a simple dot '.'.
 #endif  
     Revision 1.110  2006/01/25 00:51:50  brouard
 char version[80]="Imach version 0.8k, July 2002, INED-EUROREVES ";    (Module): Lots of cleaning and bugs added (Gompertz)
 int erreur; /* Error number */  
 int nvar;    Revision 1.109  2006/01/24 19:37:15  brouard
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    (Module): Comments (lines starting with a #) are allowed in data.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.108  2006/01/19 18:05:42  lievre
 int ndeath=1; /* Number of dead states */    Gnuplot problem appeared...
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    To be fixed
 int popbased=0;  
     Revision 1.107  2006/01/19 16:20:37  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Test existence of gnuplot in imach path
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.106  2006/01/19 13:24:36  brouard
 int mle, weightopt;    Some cleaning and links added in html output
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.105  2006/01/05 20:23:19  lievre
 double jmean; /* Mean space between 2 waves */    *** empty log message ***
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.104  2005/09/30 16:11:43  lievre
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): sump fixed, loop imx fixed, and simplifications.
 FILE *ficlog;    (Module): If the status is missing at the last wave but we know
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    that the person is alive, then we can code his/her status as -2
 FILE *ficresprobmorprev;    (instead of missing=-1 in earlier versions) and his/her
 FILE *fichtm; /* Html File */    contributions to the likelihood is 1 - Prob of dying from last
 FILE *ficreseij;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 char filerese[FILENAMELENGTH];    the healthy state at last known wave). Version is 0.98
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.103  2005/09/30 15:54:49  lievre
 FILE  *ficresvpl;    (Module): sump fixed, loop imx fixed, and simplifications.
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.102  2004/09/15 17:31:30  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Add the possibility to read data file including tab characters.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.101  2004/09/15 10:38:38  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Fix on curr_time
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.100  2004/07/12 18:29:06  brouard
 char fileregp[FILENAMELENGTH];    Add version for Mac OS X. Just define UNIX in Makefile
 char popfile[FILENAMELENGTH];  
     Revision 1.99  2004/06/05 08:57:40  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    *** empty log message ***
   
 #define NR_END 1    Revision 1.98  2004/05/16 15:05:56  brouard
 #define FREE_ARG char*    New version 0.97 . First attempt to estimate force of mortality
 #define FTOL 1.0e-10    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 #define NRANSI     This is the basic analysis of mortality and should be done before any
 #define ITMAX 200     other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 #define TOL 2.0e-4     from other sources like vital statistic data.
   
 #define CGOLD 0.3819660     The same imach parameter file can be used but the option for mle should be -3.
 #define ZEPS 1.0e-10   
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 #define GOLD 1.618034   
 #define GLIMIT 100.0     The output is very simple: only an estimate of the intercept and of
 #define TINY 1.0e-20     the slope with 95% confident intervals.
   
 static double maxarg1,maxarg2;    Current limitations:
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    A) Even if you enter covariates, i.e. with the
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
       B) There is no computation of Life Expectancy nor Life Table.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 static double sqrarg;    suppressed.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int imx;     rewritten within the same printf. Workaround: many printfs.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 int estepm;    (Repository): Using imachwizard code to output a more meaningful covariance
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    matrix (cov(a12,c31) instead of numbers.
   
 int m,nb;    Revision 1.94  2003/06/27 13:00:02  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Just cleaning
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.93  2003/06/25 16:33:55  brouard
 double dateintmean=0;    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 double *weight;    (Module): Version 0.96b
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.92  2003/06/25 16:30:45  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 /**************** split *************************/    (Repository): Elapsed time after each iteration is now output. It
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    helps to forecast when convergence will be reached. Elapsed time
 {    is stamped in powell.  We created a new html file for the graphs
    char *s;                             /* pointer */    concerning matrix of covariance. It has extension -cov.htm.
    int  l1, l2;                         /* length counters */  
     Revision 1.90  2003/06/24 12:34:15  brouard
    l1 = strlen( path );                 /* length of path */    (Module): Some bugs corrected for windows. Also, when
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    mle=-1 a template is output in file "or"mypar.txt with the design
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    of the covariance matrix to be input.
    if ( s == NULL ) {                   /* no directory, so use current */  
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Revision 1.89  2003/06/24 12:30:52  brouard
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    (Module): Some bugs corrected for windows. Also, when
 #if     defined(__bsd__)                /* get current working directory */    mle=-1 a template is output in file "or"mypar.txt with the design
       extern char       *getwd( );    of the covariance matrix to be input.
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.88  2003/06/23 17:54:56  brouard
 #else    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       extern char       *getcwd( );  
     Revision 1.87  2003/06/18 12:26:01  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Version 0.96
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.86  2003/06/17 20:04:08  brouard
       }    (Module): Change position of html and gnuplot routines and added
       strcpy( name, path );             /* we've got it */    routine fileappend.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.85  2003/06/17 13:12:43  brouard
       l2 = strlen( s );                 /* length of filename */    * imach.c (Repository): Check when date of death was earlier that
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    current date of interview. It may happen when the death was just
       strcpy( name, s );                /* save file name */    prior to the death. In this case, dh was negative and likelihood
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    was wrong (infinity). We still send an "Error" but patch by
       dirc[l1-l2] = 0;                  /* add zero */    assuming that the date of death was just one stepm after the
    }    interview.
    l1 = strlen( dirc );                 /* length of directory */    (Repository): Because some people have very long ID (first column)
 #ifdef windows    we changed int to long in num[] and we added a new lvector for
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    memory allocation. But we also truncated to 8 characters (left
 #else    truncation)
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Repository): No more line truncation errors.
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.84  2003/06/13 21:44:43  brouard
    s++;    * imach.c (Repository): Replace "freqsummary" at a correct
    strcpy(ext,s);                       /* save extension */    place. It differs from routine "prevalence" which may be called
    l1= strlen( name);    many times. Probs is memory consuming and must be used with
    l2= strlen( s)+1;    parcimony.
    strncpy( finame, name, l1-l2);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.83  2003/06/10 13:39:11  lievre
 }    *** empty log message ***
   
     Revision 1.82  2003/06/05 15:57:20  brouard
 /******************************************/    Add log in  imach.c and  fullversion number is now printed.
   
 void replace(char *s, char*t)  */
 {  /*
   int i;     Interpolated Markov Chain
   int lg=20;  
   i=0;    Short summary of the programme:
   lg=strlen(t);   
   for(i=0; i<= lg; i++) {    This program computes Healthy Life Expectancies from
     (s[i] = t[i]);    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     if (t[i]== '\\') s[i]='/';    first survey ("cross") where individuals from different ages are
   }    interviewed on their health status or degree of disability (in the
 }    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 int nbocc(char *s, char occ)    (if any) in individual health status.  Health expectancies are
 {    computed from the time spent in each health state according to a
   int i,j=0;    model. More health states you consider, more time is necessary to reach the
   int lg=20;    Maximum Likelihood of the parameters involved in the model.  The
   i=0;    simplest model is the multinomial logistic model where pij is the
   lg=strlen(s);    probability to be observed in state j at the second wave
   for(i=0; i<= lg; i++) {    conditional to be observed in state i at the first wave. Therefore
   if  (s[i] == occ ) j++;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   }    'age' is age and 'sex' is a covariate. If you want to have a more
   return j;    complex model than "constant and age", you should modify the program
 }    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 void cutv(char *u,char *v, char*t, char occ)    convergence.
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it    The advantage of this computer programme, compared to a simple
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    multinomial logistic model, is clear when the delay between waves is not
      gives u="abcedf" and v="ghi2j" */    identical for each individual. Also, if a individual missed an
   int i,lg,j,p=0;    intermediate interview, the information is lost, but taken into
   i=0;    account using an interpolation or extrapolation.  
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    hPijx is the probability to be observed in state i at age x+h
   }    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
   lg=strlen(t);    states. This elementary transition (by month, quarter,
   for(j=0; j<p; j++) {    semester or year) is modelled as a multinomial logistic.  The hPx
     (u[j] = t[j]);    matrix is simply the matrix product of nh*stepm elementary matrices
   }    and the contribution of each individual to the likelihood is simply
      u[p]='\0';    hPijx.
   
    for(j=0; j<= lg; j++) {    Also this programme outputs the covariance matrix of the parameters but also
     if (j>=(p+1))(v[j-p-1] = t[j]);    of the life expectancies. It also computes the period (stable) prevalence.
   }   
 }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 /********************** nrerror ********************/    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 void nrerror(char error_text[])    It is copyrighted identically to a GNU software product, ie programme and
 {    software can be distributed freely for non commercial use. Latest version
   fprintf(stderr,"ERREUR ...\n");    can be accessed at http://euroreves.ined.fr/imach .
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /*********************** vector *******************/   
 double *vector(int nl, int nh)    **********************************************************************/
 {  /*
   double *v;    main
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    read parameterfile
   if (!v) nrerror("allocation failure in vector");    read datafile
   return v-nl+NR_END;    concatwav
 }    freqsummary
     if (mle >= 1)
 /************************ free vector ******************/      mlikeli
 void free_vector(double*v, int nl, int nh)    print results files
 {    if mle==1
   free((FREE_ARG)(v+nl-NR_END));       computes hessian
 }    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 /************************ivector *******************************/    open gnuplot file
 int *ivector(long nl,long nh)    open html file
 {    period (stable) prevalence
   int *v;     for age prevalim()
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    h Pij x
   if (!v) nrerror("allocation failure in ivector");    variance of p varprob
   return v-nl+NR_END;    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
 /******************free ivector **************************/    prevalence()
 void free_ivector(int *v, long nl, long nh)     movingaverage()
 {    varevsij()
   free((FREE_ARG)(v+nl-NR_END));    if popbased==1 varevsij(,popbased)
 }    total life expectancies
     Variance of period (stable) prevalence
 /******************* imatrix *******************************/   end
 int **imatrix(long nrl, long nrh, long ncl, long nch)   */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   
 {   
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   
   int **m;    
     #include <math.h>
   /* allocate pointers to rows */   #include <stdio.h>
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   #include <stdlib.h>
   if (!m) nrerror("allocation failure 1 in matrix()");   #include <string.h>
   m += NR_END;   #include <unistd.h>
   m -= nrl;   
     #include <limits.h>
     #include <sys/types.h>
   /* allocate rows and set pointers to them */   #include <sys/stat.h>
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   #include <errno.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   extern int errno;
   m[nrl] += NR_END;   
   m[nrl] -= ncl;   /* #include <sys/time.h> */
     #include <time.h>
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   #include "timeval.h"
     
   /* return pointer to array of pointers to rows */   /* #include <libintl.h> */
   return m;   /* #define _(String) gettext (String) */
 }   
   #define MAXLINE 256
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define GNUPLOTPROGRAM "gnuplot"
       int **m;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       long nch,ncl,nrh,nrl;   #define FILENAMELENGTH 132
      /* free an int matrix allocated by imatrix() */   
 {   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   free((FREE_ARG) (m+nrl-NR_END));   
 }   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define NINTERVMAX 8
 {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   double **m;  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define YEARM 12. /* Number of months per year */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define AGESUP 130
   m += NR_END;  #define AGEBASE 40
   m -= nrl;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define DIRSEPARATOR '/'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define CHARSEPARATOR "/"
   m[nrl] += NR_END;  #define ODIRSEPARATOR '\\'
   m[nrl] -= ncl;  #else
   #define DIRSEPARATOR '\\'
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define CHARSEPARATOR "\\"
   return m;  #define ODIRSEPARATOR '/'
 }  #endif
   
 /*************************free matrix ************************/  /* $Id$ */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /* $State$ */
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   free((FREE_ARG)(m+nrl-NR_END));  char fullversion[]="$Revision$ $Date$";
 }  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 /******************* ma3x *******************************/  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int npar=NPARMAX;
   double ***m;  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   if (!m) nrerror("allocation failure 1 in matrix()");  int popbased=0;
   m += NR_END;  
   m -= nrl;  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int jmin, jmax; /* min, max spacing between 2 waves */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int ijmin, ijmax; /* Individuals having jmin and jmax */
   m[nrl] += NR_END;  int gipmx, gsw; /* Global variables on the number of contributions
   m[nrl] -= ncl;                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m[nrl][ncl] += NR_END;  double jmean; /* Mean space between 2 waves */
   m[nrl][ncl] -= nll;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   for (j=ncl+1; j<=nch; j++)   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     m[nrl][j]=m[nrl][j-1]+nlay;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     FILE *ficlog, *ficrespow;
   for (i=nrl+1; i<=nrh; i++) {  int globpr; /* Global variable for printing or not */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  double fretone; /* Only one call to likelihood */
     for (j=ncl+1; j<=nch; j++)   long ipmx; /* Number of contributions */
       m[i][j]=m[i][j-1]+nlay;  double sw; /* Sum of weights */
   }  char filerespow[FILENAMELENGTH];
   return m;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /*************************free ma3x ************************/  FILE *ficresprobmorprev;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  FILE *fichtm, *fichtmcov; /* Html File */
 {  FILE *ficreseij;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char filerese[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  FILE *ficresstdeij;
   free((FREE_ARG)(m+nrl-NR_END));  char fileresstde[FILENAMELENGTH];
 }  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
 /***************** f1dim *************************/  FILE  *ficresvij;
 extern int ncom;   char fileresv[FILENAMELENGTH];
 extern double *pcom,*xicom;  FILE  *ficresvpl;
 extern double (*nrfunc)(double []);   char fileresvpl[FILENAMELENGTH];
    char title[MAXLINE];
 double f1dim(double x)   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   int j;   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   double f;  char command[FILENAMELENGTH];
   double *xt;   int  outcmd=0;
    
   xt=vector(1,ncom);   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];   
   f=(*nrfunc)(xt);   char filelog[FILENAMELENGTH]; /* Log file */
   free_vector(xt,1,ncom);   char filerest[FILENAMELENGTH];
   return f;   char fileregp[FILENAMELENGTH];
 }   char popfile[FILENAMELENGTH];
   
 /*****************brent *************************/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   
 {   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   int iter;   struct timezone tzp;
   double a,b,d,etemp;  extern int gettimeofday();
   double fu,fv,fw,fx;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   double ftemp;  long time_value;
   double p,q,r,tol1,tol2,u,v,w,x,xm;   extern long time();
   double e=0.0;   char strcurr[80], strfor[80];
    
   a=(ax < cx ? ax : cx);   char *endptr;
   b=(ax > cx ? ax : cx);   long lval;
   x=w=v=bx;   double dval;
   fw=fv=fx=(*f)(x);   
   for (iter=1;iter<=ITMAX;iter++) {   #define NR_END 1
     xm=0.5*(a+b);   #define FREE_ARG char*
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);   #define FTOL 1.0e-10
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  #define NRANSI
     fprintf(ficlog,".");fflush(ficlog);  #define ITMAX 200
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define TOL 2.0e-4
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define CGOLD 0.3819660
 #endif  #define ZEPS 1.0e-10
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
       *xmin=x;   
       return fx;   #define GOLD 1.618034
     }   #define GLIMIT 100.0
     ftemp=fu;  #define TINY 1.0e-20
     if (fabs(e) > tol1) {   
       r=(x-w)*(fx-fv);   static double maxarg1,maxarg2;
       q=(x-v)*(fx-fw);   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       p=(x-v)*q-(x-w)*r;   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       q=2.0*(q-r);    
       if (q > 0.0) p = -p;   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       q=fabs(q);   #define rint(a) floor(a+0.5)
       etemp=e;   
       e=d;   static double sqrarg;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         d=CGOLD*(e=(x >= xm ? a-x : b-x));   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
       else {   int agegomp= AGEGOMP;
         d=p/q;   
         u=x+d;   int imx;
         if (u-a < tol2 || b-u < tol2)   int stepm=1;
           d=SIGN(tol1,xm-x);   /* Stepm, step in month: minimum step interpolation*/
       }   
     } else {   int estepm;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     }   
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   int m,nb;
     fu=(*f)(u);   long *num;
     if (fu <= fx) {   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       if (u >= x) a=x; else b=x;   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       SHFT(v,w,x,u)   double **pmmij, ***probs;
         SHFT(fv,fw,fx,fu)   double *ageexmed,*agecens;
         } else {   double dateintmean=0;
           if (u < x) a=u; else b=u;   
           if (fu <= fw || w == x) {   double *weight;
             v=w;   int **s; /* Status */
             w=u;   double *agedc, **covar, idx;
             fv=fw;   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
             fw=fu;   double *lsurv, *lpop, *tpop;
           } else if (fu <= fv || v == x || v == w) {   
             v=u;   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
             fv=fu;   double ftolhess; /* Tolerance for computing hessian */
           }   
         }   /**************** split *************************/
   }   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   nrerror("Too many iterations in brent");   {
   *xmin=x;     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   return fx;        the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }     */
     char  *ss;                            /* pointer */
 /****************** mnbrak ***********************/    int   l1, l2;                         /* length counters */
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     l1 = strlen(path );                   /* length of path */
             double (*func)(double))     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double ulim,u,r,q, dum;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double fu;       strcpy( name, path );               /* we got the fullname name because no directory */
        /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   *fa=(*func)(*ax);         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   *fb=(*func)(*bx);       /* get current working directory */
   if (*fb > *fa) {       /*    extern  char* getcwd ( char *buf , int len);*/
     SHFT(dum,*ax,*bx,dum)       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       SHFT(dum,*fb,*fa,dum)         return( GLOCK_ERROR_GETCWD );
       }       }
   *cx=(*bx)+GOLD*(*bx-*ax);       /* got dirc from getcwd*/
   *fc=(*func)(*cx);       printf(" DIRC = %s \n",dirc);
   while (*fb > *fc) {     } else {                              /* strip direcotry from path */
     r=(*bx-*ax)*(*fb-*fc);       ss++;                               /* after this, the filename */
     q=(*bx-*cx)*(*fb-*fa);       l2 = strlen( ss );                  /* length of filename */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));       strcpy( name, ss );         /* save file name */
     ulim=(*bx)+GLIMIT*(*cx-*bx);       strncpy( dirc, path, l1 - l2 );     /* now the directory */
     if ((*bx-u)*(u-*cx) > 0.0) {       dirc[l1-l2] = 0;                    /* add zero */
       fu=(*func)(u);       printf(" DIRC2 = %s \n",dirc);
     } else if ((*cx-u)*(u-ulim) > 0.0) {     }
       fu=(*func)(u);     /* We add a separator at the end of dirc if not exists */
       if (fu < *fc) {     l1 = strlen( dirc );                  /* length of directory */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))     if( dirc[l1-1] != DIRSEPARATOR ){
           SHFT(*fb,*fc,fu,(*func)(u))       dirc[l1] =  DIRSEPARATOR;
           }       dirc[l1+1] = 0;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {       printf(" DIRC3 = %s \n",dirc);
       u=ulim;     }
       fu=(*func)(u);     ss = strrchr( name, '.' );            /* find last / */
     } else {     if (ss >0){
       u=(*cx)+GOLD*(*cx-*bx);       ss++;
       fu=(*func)(u);       strcpy(ext,ss);                     /* save extension */
     }       l1= strlen( name);
     SHFT(*ax,*bx,*cx,u)       l2= strlen(ss)+1;
       SHFT(*fa,*fb,*fc,fu)       strncpy( finame, name, l1-l2);
       }       finame[l1-l2]= 0;
 }     }
   
 /*************** linmin ************************/    return( 0 );                          /* we're done */
   }
 int ncom;   
 double *pcom,*xicom;  
 double (*nrfunc)(double []);   /******************************************/
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   void replace_back_to_slash(char *s, char*t)
 {   {
   double brent(double ax, double bx, double cx,     int i;
                double (*f)(double), double tol, double *xmin);     int lg=0;
   double f1dim(double x);     i=0;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,     lg=strlen(t);
               double *fc, double (*func)(double));     for(i=0; i<= lg; i++) {
   int j;       (s[i] = t[i]);
   double xx,xmin,bx,ax;       if (t[i]== '\\') s[i]='/';
   double fx,fb,fa;    }
    }
   ncom=n;   
   pcom=vector(1,n);   int nbocc(char *s, char occ)
   xicom=vector(1,n);   {
   nrfunc=func;     int i,j=0;
   for (j=1;j<=n;j++) {     int lg=20;
     pcom[j]=p[j];     i=0;
     xicom[j]=xi[j];     lg=strlen(s);
   }     for(i=0; i<= lg; i++) {
   ax=0.0;     if  (s[i] == occ ) j++;
   xx=1.0;     }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     return j;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);   }
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  void cutv(char *u,char *v, char*t, char occ)
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  {
 #endif    /* cuts string t into u and v where u ends before first occurence of char 'occ'
   for (j=1;j<=n;j++) {        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     xi[j] *= xmin;        gives u="abcedf" and v="ghi2j" */
     p[j] += xi[j];     int i,lg,j,p=0;
   }     i=0;
   free_vector(xicom,1,n);     for(j=0; j<=strlen(t)-1; j++) {
   free_vector(pcom,1,n);       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 }     }
   
 /*************** powell ************************/    lg=strlen(t);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     for(j=0; j<p; j++) {
             double (*func)(double []))       (u[j] = t[j]);
 {     }
   void linmin(double p[], double xi[], int n, double *fret,        u[p]='\0';
               double (*func)(double []));   
   int i,ibig,j;      for(j=0; j<= lg; j++) {
   double del,t,*pt,*ptt,*xit;      if (j>=(p+1))(v[j-p-1] = t[j]);
   double fp,fptt;    }
   double *xits;  }
   pt=vector(1,n);   
   ptt=vector(1,n);   /********************** nrerror ********************/
   xit=vector(1,n);   
   xits=vector(1,n);   void nrerror(char error_text[])
   *fret=(*func)(p);   {
   for (j=1;j<=n;j++) pt[j]=p[j];     fprintf(stderr,"ERREUR ...\n");
   for (*iter=1;;++(*iter)) {     fprintf(stderr,"%s\n",error_text);
     fp=(*fret);     exit(EXIT_FAILURE);
     ibig=0;   }
     del=0.0;   /*********************** vector *******************/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  double *vector(int nl, int nh)
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  {
     for (i=1;i<=n;i++)     double *v;
       printf(" %d %.12f",i, p[i]);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     fprintf(ficlog," %d %.12f",i, p[i]);    if (!v) nrerror("allocation failure in vector");
     printf("\n");    return v-nl+NR_END;
     fprintf(ficlog,"\n");  }
     for (i=1;i<=n;i++) {   
       for (j=1;j<=n;j++) xit[j]=xi[j][i];   /************************ free vector ******************/
       fptt=(*fret);   void free_vector(double*v, int nl, int nh)
 #ifdef DEBUG  {
       printf("fret=%lf \n",*fret);    free((FREE_ARG)(v+nl-NR_END));
       fprintf(ficlog,"fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /************************ivector *******************************/
       fprintf(ficlog,"%d",i);fflush(ficlog);  int *ivector(long nl,long nh)
       linmin(p,xit,n,fret,func);   {
       if (fabs(fptt-(*fret)) > del) {     int *v;
         del=fabs(fptt-(*fret));     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         ibig=i;     if (!v) nrerror("allocation failure in ivector");
       }     return v-nl+NR_END;
 #ifdef DEBUG  }
       printf("%d %.12e",i,(*fret));  
       fprintf(ficlog,"%d %.12e",i,(*fret));  /******************free ivector **************************/
       for (j=1;j<=n;j++) {  void free_ivector(int *v, long nl, long nh)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  {
         printf(" x(%d)=%.12e",j,xit[j]);    free((FREE_ARG)(v+nl-NR_END));
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++) {  /************************lvector *******************************/
         printf(" p=%.12e",p[j]);  long *lvector(long nl,long nh)
         fprintf(ficlog," p=%.12e",p[j]);  {
       }    long *v;
       printf("\n");    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       fprintf(ficlog,"\n");    if (!v) nrerror("allocation failure in ivector");
 #endif    return v-nl+NR_END;
     }   }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /******************free lvector **************************/
       int k[2],l;  void free_lvector(long *v, long nl, long nh)
       k[0]=1;  {
       k[1]=-1;    free((FREE_ARG)(v+nl-NR_END));
       printf("Max: %.12e",(*func)(p));  }
       fprintf(ficlog,"Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++) {  /******************* imatrix *******************************/
         printf(" %.12e",p[j]);  int **imatrix(long nrl, long nrh, long ncl, long nch)
         fprintf(ficlog," %.12e",p[j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
       }  {
       printf("\n");    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
       fprintf(ficlog,"\n");    int **m;
       for(l=0;l<=1;l++) {   
         for (j=1;j<=n;j++) {    /* allocate pointers to rows */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    if (!m) nrerror("allocation failure 1 in matrix()");
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m += NR_END;
         }    m -= nrl;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));   
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));   
       }    /* allocate rows and set pointers to them */
 #endif    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
       free_vector(xit,1,n);     m[nrl] -= ncl;
       free_vector(xits,1,n);    
       free_vector(ptt,1,n);     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
       free_vector(pt,1,n);    
       return;     /* return pointer to array of pointers to rows */
     }     return m;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");   }
     for (j=1;j<=n;j++) {   
       ptt[j]=2.0*p[j]-pt[j];   /****************** free_imatrix *************************/
       xit[j]=p[j]-pt[j];   void free_imatrix(m,nrl,nrh,ncl,nch)
       pt[j]=p[j];         int **m;
     }         long nch,ncl,nrh,nrl;
     fptt=(*func)(ptt);        /* free an int matrix allocated by imatrix() */
     if (fptt < fp) {   {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);     free((FREE_ARG) (m[nrl]+ncl-NR_END));
       if (t < 0.0) {     free((FREE_ARG) (m+nrl-NR_END));
         linmin(p,xit,n,fret,func);   }
         for (j=1;j<=n;j++) {   
           xi[j][ibig]=xi[j][n];   /******************* matrix *******************************/
           xi[j][n]=xit[j];   double **matrix(long nrl, long nrh, long ncl, long nch)
         }  {
 #ifdef DEBUG    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double **m;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++){    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           printf(" %.12e",xit[j]);    if (!m) nrerror("allocation failure 1 in matrix()");
           fprintf(ficlog," %.12e",xit[j]);    m += NR_END;
         }    m -= nrl;
         printf("\n");  
         fprintf(ficlog,"\n");    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
     }     m[nrl] -= ncl;
   }   
 }     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
 /**** Prevalence limit (stable prevalence)  ****************/    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
      */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /*************************free matrix ************************/
      matrix by transitions matrix until convergence is reached */  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
   int i, ii,j,k;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double min, max, maxmin, maxmax,sumnew=0.;    free((FREE_ARG)(m+nrl-NR_END));
   double **matprod2();  }
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /******************* ma3x *******************************/
   double agefin, delaymax=50 ; /* Max number of years to converge */  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
   for (ii=1;ii<=nlstate+ndeath;ii++)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for (j=1;j<=nlstate+ndeath;j++){    double ***m;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
    cov[1]=1.;    m += NR_END;
      m -= nrl;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     newm=savm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     /* Covariates have to be included here again */    m[nrl] += NR_END;
      cov[2]=agefin;    m[nrl] -= ncl;
     
       for (k=1; k<=cptcovn;k++) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m[nrl][ncl] += NR_END;
       for (k=1; k<=cptcovprod;k++)    m[nrl][ncl] -= nll;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    for (j=ncl+1; j<=nch; j++)
       m[nrl][j]=m[nrl][j-1]+nlay;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/   
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    for (i=nrl+1; i<=nrh; i++) {
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      for (j=ncl+1; j<=nch; j++)
         m[i][j]=m[i][j-1]+nlay;
     savm=oldm;    }
     oldm=newm;    return m;
     maxmax=0.;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for(j=1;j<=nlstate;j++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       min=1.;    */
       max=0.;  }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  /*************************free ma3x ************************/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         prlim[i][j]= newm[i][j]/(1-sumnew);  {
         max=FMAX(max,prlim[i][j]);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         min=FMIN(min,prlim[i][j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       maxmin=max-min;  }
       maxmax=FMAX(maxmax,maxmin);  
     }  /*************** function subdirf ***********/
     if(maxmax < ftolpl){  char *subdirf(char fileres[])
       return prlim;  {
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
 /*************** transition probabilities ***************/     return tmpout;
   }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  /*************** function subdirf2 ***********/
   double s1, s2;  char *subdirf2(char fileres[], char *preop)
   /*double t34;*/  {
   int i,j,j1, nc, ii, jj;   
     /* Caution optionfilefiname is hidden */
     for(i=1; i<= nlstate; i++){    strcpy(tmpout,optionfilefiname);
     for(j=1; j<i;j++){    strcat(tmpout,"/");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcat(tmpout,preop);
         /*s2 += param[i][j][nc]*cov[nc];*/    strcat(tmpout,fileres);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return tmpout;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  }
       }  
       ps[i][j]=s2;  /*************** function subdirf3 ***********/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  char *subdirf3(char fileres[], char *preop, char *preop2)
     }  {
     for(j=i+1; j<=nlstate+ndeath;j++){   
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* Caution optionfilefiname is hidden */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcpy(tmpout,optionfilefiname);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
       ps[i][j]=s2;    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
   }    return tmpout;
     /*ps[3][2]=1;*/  }
   
   for(i=1; i<= nlstate; i++){  /***************** f1dim *************************/
      s1=0;  extern int ncom;
     for(j=1; j<i; j++)  extern double *pcom,*xicom;
       s1+=exp(ps[i][j]);  extern double (*nrfunc)(double []);
     for(j=i+1; j<=nlstate+ndeath; j++)   
       s1+=exp(ps[i][j]);  double f1dim(double x)
     ps[i][i]=1./(s1+1.);  {
     for(j=1; j<i; j++)    int j;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double f;
     for(j=i+1; j<=nlstate+ndeath; j++)    double *xt;
       ps[i][j]= exp(ps[i][j])*ps[i][i];   
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    xt=vector(1,ncom);
   } /* end i */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
     f=(*nrfunc)(xt);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    free_vector(xt,1,ncom);
     for(jj=1; jj<= nlstate+ndeath; jj++){    return f;
       ps[ii][jj]=0;  }
       ps[ii][ii]=1;  
     }  /*****************brent *************************/
   }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
   {
     int iter;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    double a,b,d,etemp;
     for(jj=1; jj<= nlstate+ndeath; jj++){    double fu,fv,fw,fx;
      printf("%lf ",ps[ii][jj]);    double ftemp;
    }    double p,q,r,tol1,tol2,u,v,w,x,xm;
     printf("\n ");    double e=0.0;
     }   
     printf("\n ");printf("%lf ",cov[2]);*/    a=(ax < cx ? ax : cx);
 /*    b=(ax > cx ? ax : cx);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    x=w=v=bx;
   goto end;*/    fw=fv=fx=(*f)(x);
     return ps;    for (iter=1;iter<=ITMAX;iter++) {
 }      xm=0.5*(a+b);
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
 /**************** Product of 2 matrices ******************/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      fprintf(ficlog,".");fflush(ficlog);
 {  #ifdef DEBUG
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   /* in, b, out are matrice of pointers which should have been initialized       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      before: only the contents of out is modified. The function returns  #endif
      a pointer to pointers identical to out */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
   long i, j, k;        *xmin=x;
   for(i=nrl; i<= nrh; i++)        return fx;
     for(k=ncolol; k<=ncoloh; k++)      }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      ftemp=fu;
         out[i][k] +=in[i][j]*b[j][k];      if (fabs(e) > tol1) {
         r=(x-w)*(fx-fv);
   return out;        q=(x-v)*(fx-fw);
 }        p=(x-v)*q-(x-w)*r;
         q=2.0*(q-r);
         if (q > 0.0) p = -p;
 /************* Higher Matrix Product ***************/        q=fabs(q);
         etemp=e;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        e=d;
 {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month           d=CGOLD*(e=(x >= xm ? a-x : b-x));
      duration (i.e. until        else {
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.           d=p/q;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step           u=x+d;
      (typically every 2 years instead of every month which is too big).          if (u-a < tol2 || b-u < tol2)
      Model is determined by parameters x and covariates have to be             d=SIGN(tol1,xm-x);
      included manually here.         }
       } else {
      */        d=CGOLD*(e=(x >= xm ? a-x : b-x));
       }
   int i, j, d, h, k;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
   double **out, cov[NCOVMAX];      fu=(*f)(u);
   double **newm;      if (fu <= fx) {
         if (u >= x) a=x; else b=x;
   /* Hstepm could be zero and should return the unit matrix */        SHFT(v,w,x,u)
   for (i=1;i<=nlstate+ndeath;i++)          SHFT(fv,fw,fx,fu)
     for (j=1;j<=nlstate+ndeath;j++){          } else {
       oldm[i][j]=(i==j ? 1.0 : 0.0);            if (u < x) a=u; else b=u;
       po[i][j][0]=(i==j ? 1.0 : 0.0);            if (fu <= fw || w == x) {
     }              v=w;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */              w=u;
   for(h=1; h <=nhstepm; h++){              fv=fw;
     for(d=1; d <=hstepm; d++){              fw=fu;
       newm=savm;            } else if (fu <= fv || v == x || v == w) {
       /* Covariates have to be included here again */              v=u;
       cov[1]=1.;              fv=fu;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;            }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          }
       for (k=1; k<=cptcovage;k++)    }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    nrerror("Too many iterations in brent");
       for (k=1; k<=cptcovprod;k++)    *xmin=x;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    return fx;
   }
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /****************** mnbrak ***********************/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
                    pmij(pmmij,cov,ncovmodel,x,nlstate));              double (*func)(double))
       savm=oldm;  {
       oldm=newm;    double ulim,u,r,q, dum;
     }    double fu;
     for(i=1; i<=nlstate+ndeath; i++)   
       for(j=1;j<=nlstate+ndeath;j++) {    *fa=(*func)(*ax);
         po[i][j][h]=newm[i][j];    *fb=(*func)(*bx);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    if (*fb > *fa) {
          */      SHFT(dum,*ax,*bx,dum)
       }        SHFT(dum,*fb,*fa,dum)
   } /* end h */        }
   return po;    *cx=(*bx)+GOLD*(*bx-*ax);
 }    *fc=(*func)(*cx);
     while (*fb > *fc) {
       r=(*bx-*ax)*(*fb-*fc);
 /*************** log-likelihood *************/      q=(*bx-*cx)*(*fb-*fa);
 double func( double *x)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
 {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
   int i, ii, j, k, mi, d, kk;      ulim=(*bx)+GLIMIT*(*cx-*bx);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      if ((*bx-u)*(u-*cx) > 0.0) {
   double **out;        fu=(*func)(u);
   double sw; /* Sum of weights */      } else if ((*cx-u)*(u-ulim) > 0.0) {
   double lli; /* Individual log likelihood */        fu=(*func)(u);
   long ipmx;        if (fu < *fc) {
   /*extern weight */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
   /* We are differentiating ll according to initial status */            SHFT(*fb,*fc,fu,(*func)(u))
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/            }
   /*for(i=1;i<imx;i++)       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
     printf(" %d\n",s[4][i]);        u=ulim;
   */        fu=(*func)(u);
   cov[1]=1.;      } else {
         u=(*cx)+GOLD*(*cx-*bx);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        fu=(*func)(u);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      SHFT(*ax,*bx,*cx,u)
     for(mi=1; mi<= wav[i]-1; mi++){        SHFT(*fa,*fb,*fc,fu)
       for (ii=1;ii<=nlstate+ndeath;ii++)        }
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  /*************** linmin ************************/
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  int ncom;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  double *pcom,*xicom;
         }  double (*nrfunc)(double []);
            
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  {
         savm=oldm;    double brent(double ax, double bx, double cx,
         oldm=newm;                 double (*f)(double), double tol, double *xmin);
             double f1dim(double x);
             void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       } /* end mult */                double *fc, double (*func)(double));
           int j;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    double xx,xmin,bx,ax;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    double fx,fb,fa;
       ipmx +=1;   
       sw += weight[i];    ncom=n;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    pcom=vector(1,n);
     } /* end of wave */    xicom=vector(1,n);
   } /* end of individual */    nrfunc=func;
     for (j=1;j<=n;j++) {
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      pcom[j]=p[j];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      xicom[j]=xi[j];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    }
   return -l;    ax=0.0;
 }    xx=1.0;
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
 /*********** Maximum Likelihood Estimation ***************/  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 {  #endif
   int i,j, iter;    for (j=1;j<=n;j++) {
   double **xi,*delti;      xi[j] *= xmin;
   double fret;      p[j] += xi[j];
   xi=matrix(1,npar,1,npar);    }
   for (i=1;i<=npar;i++)    free_vector(xicom,1,n);
     for (j=1;j<=npar;j++)    free_vector(pcom,1,n);
       xi[i][j]=(i==j ? 1.0 : 0.0);  }
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  char *asc_diff_time(long time_sec, char ascdiff[])
   {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    long sec_left, days, hours, minutes;
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    days = (time_sec) / (60*60*24);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
 }    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 /**** Computes Hessian and covariance matrix ***/    sec_left = (sec_left) % (60);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 {    return ascdiff;
   double  **a,**y,*x,pd;  }
   double **hess;  
   int i, j,jk;  /*************** powell ************************/
   int *indx;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
               double (*func)(double []))
   double hessii(double p[], double delta, int theta, double delti[]);  {
   double hessij(double p[], double delti[], int i, int j);    void linmin(double p[], double xi[], int n, double *fret,
   void lubksb(double **a, int npar, int *indx, double b[]) ;                double (*func)(double []));
   void ludcmp(double **a, int npar, int *indx, double *d) ;    int i,ibig,j;
     double del,t,*pt,*ptt,*xit;
   hess=matrix(1,npar,1,npar);    double fp,fptt;
     double *xits;
   printf("\nCalculation of the hessian matrix. Wait...\n");    int niterf, itmp;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){    pt=vector(1,n);
     printf("%d",i);fflush(stdout);    ptt=vector(1,n);
     fprintf(ficlog,"%d",i);fflush(ficlog);    xit=vector(1,n);
     hess[i][i]=hessii(p,ftolhess,i,delti);    xits=vector(1,n);
     /*printf(" %f ",p[i]);*/    *fret=(*func)(p);
     /*printf(" %lf ",hess[i][i]);*/    for (j=1;j<=n;j++) pt[j]=p[j];
   }    for (*iter=1;;++(*iter)) {
         fp=(*fret);
   for (i=1;i<=npar;i++) {      ibig=0;
     for (j=1;j<=npar;j++)  {      del=0.0;
       if (j>i) {       last_time=curr_time;
         printf(".%d%d",i,j);fflush(stdout);      (void) gettimeofday(&curr_time,&tzp);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         hess[i][j]=hessij(p,delti,i,j);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
         hess[j][i]=hess[i][j];      /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         /*printf(" %lf ",hess[i][j]);*/     for (i=1;i<=n;i++) {
       }        printf(" %d %.12f",i, p[i]);
     }        fprintf(ficlog," %d %.12lf",i, p[i]);
   }        fprintf(ficrespow," %.12lf", p[i]);
   printf("\n");      }
   fprintf(ficlog,"\n");      printf("\n");
       fprintf(ficlog,"\n");
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      fprintf(ficrespow,"\n");fflush(ficrespow);
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      if(*iter <=3){
           tm = *localtime(&curr_time.tv_sec);
   a=matrix(1,npar,1,npar);        strcpy(strcurr,asctime(&tm));
   y=matrix(1,npar,1,npar);  /*       asctime_r(&tm,strcurr); */
   x=vector(1,npar);        forecast_time=curr_time;
   indx=ivector(1,npar);        itmp = strlen(strcurr);
   for (i=1;i<=npar;i++)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          strcurr[itmp-1]='\0';
   ludcmp(a,npar,indx,&pd);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (j=1;j<=npar;j++) {        for(niterf=10;niterf<=30;niterf+=10){
     for (i=1;i<=npar;i++) x[i]=0;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     x[j]=1;          tmf = *localtime(&forecast_time.tv_sec);
     lubksb(a,npar,indx,x);  /*      asctime_r(&tmf,strfor); */
     for (i=1;i<=npar;i++){           strcpy(strfor,asctime(&tmf));
       matcov[i][j]=x[i];          itmp = strlen(strfor);
     }          if(strfor[itmp-1]=='\n')
   }          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   printf("\n#Hessian matrix#\n");          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   fprintf(ficlog,"\n#Hessian matrix#\n");        }
   for (i=1;i<=npar;i++) {       }
     for (j=1;j<=npar;j++) {       for (i=1;i<=n;i++) {
       printf("%.3e ",hess[i][j]);        for (j=1;j<=n;j++) xit[j]=xi[j][i];
       fprintf(ficlog,"%.3e ",hess[i][j]);        fptt=(*fret);
     }  #ifdef DEBUG
     printf("\n");        printf("fret=%lf \n",*fret);
     fprintf(ficlog,"\n");        fprintf(ficlog,"fret=%lf \n",*fret);
   }  #endif
         printf("%d",i);fflush(stdout);
   /* Recompute Inverse */        fprintf(ficlog,"%d",i);fflush(ficlog);
   for (i=1;i<=npar;i++)        linmin(p,xit,n,fret,func);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        if (fabs(fptt-(*fret)) > del) {
   ludcmp(a,npar,indx,&pd);          del=fabs(fptt-(*fret));
           ibig=i;
   /*  printf("\n#Hessian matrix recomputed#\n");        }
   #ifdef DEBUG
   for (j=1;j<=npar;j++) {        printf("%d %.12e",i,(*fret));
     for (i=1;i<=npar;i++) x[i]=0;        fprintf(ficlog,"%d %.12e",i,(*fret));
     x[j]=1;        for (j=1;j<=n;j++) {
     lubksb(a,npar,indx,x);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for (i=1;i<=npar;i++){           printf(" x(%d)=%.12e",j,xit[j]);
       y[i][j]=x[i];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       printf("%.3e ",y[i][j]);        }
       fprintf(ficlog,"%.3e ",y[i][j]);        for(j=1;j<=n;j++) {
     }          printf(" p=%.12e",p[j]);
     printf("\n");          fprintf(ficlog," p=%.12e",p[j]);
     fprintf(ficlog,"\n");        }
   }        printf("\n");
   */        fprintf(ficlog,"\n");
   #endif
   free_matrix(a,1,npar,1,npar);      }
   free_matrix(y,1,npar,1,npar);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   free_vector(x,1,npar);  #ifdef DEBUG
   free_ivector(indx,1,npar);        int k[2],l;
   free_matrix(hess,1,npar,1,npar);        k[0]=1;
         k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
 /*************** hessian matrix ****************/          printf(" %.12e",p[j]);
 double hessii( double x[], double delta, int theta, double delti[])          fprintf(ficlog," %.12e",p[j]);
 {        }
   int i;        printf("\n");
   int l=1, lmax=20;        fprintf(ficlog,"\n");
   double k1,k2;        for(l=0;l<=1;l++) {
   double p2[NPARMAX+1];          for (j=1;j<=n;j++) {
   double res;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double fx;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int k=0,kmax=10;          }
   double l1;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   fx=func(x);        }
   for (i=1;i<=npar;i++) p2[i]=x[i];  #endif
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  
     delts=delt;        free_vector(xit,1,n);
     for(k=1 ; k <kmax; k=k+1){        free_vector(xits,1,n);
       delt = delta*(l1*k);        free_vector(ptt,1,n);
       p2[theta]=x[theta] +delt;        free_vector(pt,1,n);
       k1=func(p2)-fx;        return;
       p2[theta]=x[theta]-delt;      }
       k2=func(p2)-fx;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
       /*res= (k1-2.0*fx+k2)/delt/delt; */      for (j=1;j<=n;j++) {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        ptt[j]=2.0*p[j]-pt[j];
               xit[j]=p[j]-pt[j];
 #ifdef DEBUG        pt[j]=p[j];
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      }
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      fptt=(*func)(ptt);
 #endif      if (fptt < fp) {
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        if (t < 0.0) {
         k=kmax;          linmin(p,xit,n,fret,func);
       }          for (j=1;j<=n;j++) {
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            xi[j][ibig]=xi[j][n];
         k=kmax; l=lmax*10.;            xi[j][n]=xit[j];
       }          }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){   #ifdef DEBUG
         delts=delt;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          for(j=1;j<=n;j++){
   }            printf(" %.12e",xit[j]);
   delti[theta]=delts;            fprintf(ficlog," %.12e",xit[j]);
   return res;           }
             printf("\n");
 }          fprintf(ficlog,"\n");
   #endif
 double hessij( double x[], double delti[], int thetai,int thetaj)        }
 {      }
   int i;    }
   int l=1, l1, lmax=20;  }
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];  /**** Prevalence limit (stable or period prevalence)  ****************/
   int k;  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   fx=func(x);  {
   for (k=1; k<=2; k++) {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for (i=1;i<=npar;i++) p2[i]=x[i];       matrix by transitions matrix until convergence is reached */
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int i, ii,j,k;
     k1=func(p2)-fx;    double min, max, maxmin, maxmax,sumnew=0.;
       double **matprod2();
     p2[thetai]=x[thetai]+delti[thetai]/k;    double **out, cov[NCOVMAX], **pmij();
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double **newm;
     k2=func(p2)-fx;    double agefin, delaymax=50 ; /* Max number of years to converge */
     
     p2[thetai]=x[thetai]-delti[thetai]/k;    for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (j=1;j<=nlstate+ndeath;j++){
     k3=func(p2)-fx;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;     cov[1]=1.;
     k4=func(p2)-fx;   
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 #ifdef DEBUG    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      newm=savm;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      /* Covariates have to be included here again */
 #endif       cov[2]=agefin;
   }   
   return res;        for (k=1; k<=cptcovn;k++) {
 }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 /************** Inverse of matrix **************/        }
 void ludcmp(double **a, int n, int *indx, double *d)         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {         for (k=1; k<=cptcovprod;k++)
   int i,imax,j,k;           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double big,dum,sum,temp;   
   double *vv;         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
          /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   vv=vector(1,n);         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   *d=1.0;       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   for (i=1;i<=n;i++) {   
     big=0.0;       savm=oldm;
     for (j=1;j<=n;j++)       oldm=newm;
       if ((temp=fabs(a[i][j])) > big) big=temp;       maxmax=0.;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");       for(j=1;j<=nlstate;j++){
     vv[i]=1.0/big;         min=1.;
   }         max=0.;
   for (j=1;j<=n;j++) {         for(i=1; i<=nlstate; i++) {
     for (i=1;i<j;i++) {           sumnew=0;
       sum=a[i][j];           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           prlim[i][j]= newm[i][j]/(1-sumnew);
       a[i][j]=sum;           max=FMAX(max,prlim[i][j]);
     }           min=FMIN(min,prlim[i][j]);
     big=0.0;         }
     for (i=j;i<=n;i++) {         maxmin=max-min;
       sum=a[i][j];         maxmax=FMAX(maxmax,maxmin);
       for (k=1;k<j;k++)       }
         sum -= a[i][k]*a[k][j];       if(maxmax < ftolpl){
       a[i][j]=sum;         return prlim;
       if ( (dum=vv[i]*fabs(sum)) >= big) {       }
         big=dum;     }
         imax=i;   }
       }   
     }   /*************** transition probabilities ***************/
     if (j != imax) {   
       for (k=1;k<=n;k++) {   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         dum=a[imax][k];   {
         a[imax][k]=a[j][k];     double s1, s2;
         a[j][k]=dum;     /*double t34;*/
       }     int i,j,j1, nc, ii, jj;
       *d = -(*d);   
       vv[imax]=vv[j];       for(i=1; i<= nlstate; i++){
     }         for(j=1; j<i;j++){
     indx[j]=imax;           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     if (a[j][j] == 0.0) a[j][j]=TINY;             /*s2 += param[i][j][nc]*cov[nc];*/
     if (j != n) {             s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       dum=1.0/(a[j][j]);   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           }
     }           ps[i][j]=s2;
   }   /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   free_vector(vv,1,n);  /* Doesn't work */        }
 ;        for(j=i+1; j<=nlstate+ndeath;j++){
 }           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 void lubksb(double **a, int n, int *indx, double b[])   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 {           }
   int i,ii=0,ip,j;           ps[i][j]=s2;
   double sum;         }
        }
   for (i=1;i<=n;i++) {       /*ps[3][2]=1;*/
     ip=indx[i];      
     sum=b[ip];       for(i=1; i<= nlstate; i++){
     b[ip]=b[i];         s1=0;
     if (ii)         for(j=1; j<i; j++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           s1+=exp(ps[i][j]);
     else if (sum) ii=i;         for(j=i+1; j<=nlstate+ndeath; j++)
     b[i]=sum;           s1+=exp(ps[i][j]);
   }         ps[i][i]=1./(s1+1.);
   for (i=n;i>=1;i--) {         for(j=1; j<i; j++)
     sum=b[i];           ps[i][j]= exp(ps[i][j])*ps[i][i];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];         for(j=i+1; j<=nlstate+ndeath; j++)
     b[i]=sum/a[i][i];           ps[i][j]= exp(ps[i][j])*ps[i][i];
   }         /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 }       } /* end i */
      
 /************ Frequencies ********************/      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        for(jj=1; jj<= nlstate+ndeath; jj++){
 {  /* Some frequencies */          ps[ii][jj]=0;
             ps[ii][ii]=1;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        }
   int first;      }
   double ***freq; /* Frequencies */     
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   FILE *ficresp;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   char fileresp[FILENAMELENGTH];  /*         printf("ddd %lf ",ps[ii][jj]); */
     /*       } */
   pp=vector(1,nlstate);  /*       printf("\n "); */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*        } */
   strcpy(fileresp,"p");  /*        printf("\n ");printf("%lf ",cov[2]); */
   strcat(fileresp,fileres);         /*
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);        goto end;*/
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      return ps;
     exit(0);  }
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /**************** Product of 2 matrices ******************/
   j1=0;  
     double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   first=1;    /* in, b, out are matrice of pointers which should have been initialized
        before: only the contents of out is modified. The function returns
   for(k1=1; k1<=j;k1++){       a pointer to pointers identical to out */
     for(i1=1; i1<=ncodemax[k1];i1++){    long i, j, k;
       j1++;    for(i=nrl; i<= nrh; i++)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      for(k=ncolol; k<=ncoloh; k++)
         scanf("%d", i);*/        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       for (i=-1; i<=nlstate+ndeath; i++)            out[i][k] +=in[i][j]*b[j][k];
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)    return out;
             freq[i][jk][m]=0;  }
         
       dateintsum=0;  
       k2cpt=0;  /************* Higher Matrix Product ***************/
       for (i=1; i<=imx; i++) {  
         bool=1;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         if  (cptcovn>0) {  {
           for (z1=1; z1<=cptcoveff; z1++)     /* Computes the transition matrix starting at age 'age' over
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        'nhstepm*hstepm*stepm' months (i.e. until
               bool=0;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
         }       nhstepm*hstepm matrices.
         if (bool==1) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
           for(m=firstpass; m<=lastpass; m++){       (typically every 2 years instead of every month which is too big
             k2=anint[m][i]+(mint[m][i]/12.);       for the memory).
             if ((k2>=dateprev1) && (k2<=dateprev2)) {       Model is determined by parameters x and covariates have to be
               if(agev[m][i]==0) agev[m][i]=agemax+1;       included manually here.
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {       */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    int i, j, d, h, k;
               }    double **out, cov[NCOVMAX];
                   double **newm;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;    /* Hstepm could be zero and should return the unit matrix */
                 k2cpt++;    for (i=1;i<=nlstate+ndeath;i++)
               }      for (j=1;j<=nlstate+ndeath;j++){
             }        oldm[i][j]=(i==j ? 1.0 : 0.0);
           }        po[i][j][0]=(i==j ? 1.0 : 0.0);
         }      }
       }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
            for(h=1; h <=nhstepm; h++){
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(d=1; d <=hstepm; d++){
         newm=savm;
       if  (cptcovn>0) {        /* Covariates have to be included here again */
         fprintf(ficresp, "\n#********** Variable ");         cov[1]=1.;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         fprintf(ficresp, "**********\n#");        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }        for (k=1; k<=cptcovage;k++)
       for(i=1; i<=nlstate;i++)           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for (k=1; k<=cptcovprod;k++)
       fprintf(ficresp, "\n");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         if(i==(int)agemax+3){        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           fprintf(ficlog,"Total");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         }else{        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
           if(first==1){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             first=0;        savm=oldm;
             printf("See log file for details...\n");        oldm=newm;
           }      }
           fprintf(ficlog,"Age %d", i);      for(i=1; i<=nlstate+ndeath; i++)
         }        for(j=1;j<=nlstate+ndeath;j++) {
         for(jk=1; jk <=nlstate ; jk++){          po[i][j][h]=newm[i][j];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             pp[jk] += freq[jk][m][i];            */
         }        }
         for(jk=1; jk <=nlstate ; jk++){    } /* end h */
           for(m=-1, pos=0; m <=0 ; m++)    return po;
             pos += freq[jk][m][i];  }
           if(pp[jk]>=1.e-10){  
             if(first==1){  
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*************** log-likelihood *************/
             }  double func( double *x)
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  {
           }else{    int i, ii, j, k, mi, d, kk;
             if(first==1)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double **out;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double sw; /* Sum of weights */
           }    double lli; /* Individual log likelihood */
         }    int s1, s2;
     double bbh, survp;
         for(jk=1; jk <=nlstate ; jk++){    long ipmx;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    /*extern weight */
             pp[jk] += freq[jk][m][i];    /* We are differentiating ll according to initial status */
         }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++)
         for(jk=1,pos=0; jk <=nlstate ; jk++)      printf(" %d\n",s[4][i]);
           pos += pp[jk];    */
         for(jk=1; jk <=nlstate ; jk++){    cov[1]=1.;
           if(pos>=1.e-5){  
             if(first==1)    for(k=1; k<=nlstate; k++) ll[k]=0.;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    if(mle==1){
           }else{      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if(first==1)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for(mi=1; mi<= wav[i]-1; mi++){
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          for (ii=1;ii<=nlstate+ndeath;ii++)
           }            for (j=1;j<=nlstate+ndeath;j++){
           if( i <= (int) agemax){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(pos>=1.e-5){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            }
               probs[i][jk][j1]= pp[jk]/pos;          for(d=0; d<dh[mi][i]; d++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             else            for (kk=1; kk<=cptcovage;kk++) {
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                  1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=-1; jk <=nlstate+ndeath; jk++)            savm=oldm;
           for(m=-1; m <=nlstate+ndeath; m++)            oldm=newm;
             if(freq[jk][m][i] !=0 ) {          } /* end mult */
             if(first==1)       
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          /* But now since version 0.9 we anticipate for bias at large stepm.
             }           * If stepm is larger than one month (smallest stepm) and if the exact delay
         if(i <= (int) agemax)           * (in months) between two waves is not a multiple of stepm, we rounded to
           fprintf(ficresp,"\n");           * the nearest (and in case of equal distance, to the lowest) interval but now
         if(first==1)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           printf("Others in log...\n");           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         fprintf(ficlog,"\n");           * probability in order to take into account the bias as a fraction of the way
       }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     }           * -stepm/2 to stepm/2 .
   }           * For stepm=1 the results are the same as for previous versions of Imach.
   dateintmean=dateintsum/k2cpt;            * For stepm > 1 the results are less biased than in previous versions.
             */
   fclose(ficresp);          s1=s[mw[mi][i]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s2=s[mw[mi+1][i]][i];
   free_vector(pp,1,nlstate);          bbh=(double)bh[mi][i]/(double)stepm;
             /* bias bh is positive if real duration
   /* End of Freq */           * is higher than the multiple of stepm and negative otherwise.
 }           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 /************ Prevalence ********************/          if( s2 > nlstate){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            /* i.e. if s2 is a death state and if the date of death is known
 {  /* Some frequencies */               then the contribution to the likelihood is the probability to
                 die between last step unit time and current  step unit time,
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;               which is also equal to probability to die before dh
   double ***freq; /* Frequencies */               minus probability to die before dh-stepm .
   double *pp;               In version up to 0.92 likelihood was computed
   double pos, k2;          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
   pp=vector(1,nlstate);          and not the date of a change in health state. The former idea was
             to consider that at each interview the state was recorded
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          (healthy, disable or death) and IMaCh was corrected; but when we
   j1=0;          introduced the exact date of death then we should have modified
             the contribution of an exact death to the likelihood. This new
   j=cptcoveff;          contribution is smaller and very dependent of the step unit
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          stepm. It is no more the probability to die between last interview
             and month of death but the probability to survive from last
   for(k1=1; k1<=j;k1++){          interview up to one month before death multiplied by the
     for(i1=1; i1<=ncodemax[k1];i1++){          probability to die within a month. Thanks to Chris
       j1++;          Jackson for correcting this bug.  Former versions increased
                 mortality artificially. The bad side is that we add another loop
       for (i=-1; i<=nlstate+ndeath; i++)            which slows down the processing. The difference can be up to 10%
         for (jk=-1; jk<=nlstate+ndeath; jk++)            lower mortality.
           for(m=agemin; m <= agemax+3; m++)            */
             freq[i][jk][m]=0;            lli=log(out[s1][s2] - savm[s1][s2]);
        
       for (i=1; i<=imx; i++) {  
         bool=1;          } else if  (s2==-2) {
         if  (cptcovn>0) {            for (j=1,survp=0. ; j<=nlstate; j++)
           for (z1=1; z1<=cptcoveff; z1++)               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])             /*survp += out[s1][j]; */
               bool=0;            lli= log(survp);
         }           }
         if (bool==1) {          
           for(m=firstpass; m<=lastpass; m++){          else if  (s2==-4) {
             k2=anint[m][i]+(mint[m][i]/12.);            for (j=3,survp=0. ; j<=nlstate; j++)  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
               if(agev[m][i]==0) agev[m][i]=agemax+1;            lli= log(survp);
               if(agev[m][i]==1) agev[m][i]=agemax+2;          }
               if (m<lastpass) {  
                 if (calagedate>0)           else if  (s2==-5) {
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            for (j=1,survp=0. ; j<=2; j++)  
                 else              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            lli= log(survp);
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];           }
               }         
             }          else{
           }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       }          }
       for(i=(int)agemin; i <= (int)agemax+3; i++){           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         for(jk=1; jk <=nlstate ; jk++){          /*if(lli ==000.0)*/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             pp[jk] += freq[jk][m][i];           ipmx +=1;
         }          sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=-1, pos=0; m <=0 ; m++)        } /* end of wave */
             pos += freq[jk][m][i];      } /* end of individual */
         }    }  else if(mle==2){
               for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(mi=1; mi<= wav[i]-1; mi++){
             pp[jk] += freq[jk][m][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
                       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                     }
         for(jk=1; jk <=nlstate ; jk++){              for(d=0; d<=dh[mi][i]; d++){
           if( i <= (int) agemax){            newm=savm;
             if(pos>=1.e-5){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               probs[i][jk][j1]= pp[jk]/pos;            for (kk=1; kk<=cptcovage;kk++) {
             }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
         }/* end jk */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }/* end i */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     } /* end i1 */            savm=oldm;
   } /* end k1 */            oldm=newm;
           } /* end mult */
          
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s1=s[mw[mi][i]][i];
   free_vector(pp,1,nlstate);          s2=s[mw[mi+1][i]][i];
             bbh=(double)bh[mi][i]/(double)stepm;
 }  /* End of Freq */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
 /************* Waves Concatenation ***************/          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        } /* end of wave */
 {      } /* end of individual */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    }  else if(mle==3){  /* exponential inter-extrapolation */
      Death is a valid wave (if date is known).      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        for(mi=1; mi<= wav[i]-1; mi++){
      and mw[mi+1][i]. dh depends on stepm.          for (ii=1;ii<=nlstate+ndeath;ii++)
      */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, mi, m;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            }
      double sum=0., jmean=0.;*/          for(d=0; d<dh[mi][i]; d++){
   int first;            newm=savm;
   int j, k=0,jk, ju, jl;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double sum=0.;            for (kk=1; kk<=cptcovage;kk++) {
   first=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   jmin=1e+5;            }
   jmax=-1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   jmean=0.;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=imx; i++){            savm=oldm;
     mi=0;            oldm=newm;
     m=firstpass;          } /* end mult */
     while(s[m][i] <= nlstate){       
       if(s[m][i]>=1)          s1=s[mw[mi][i]][i];
         mw[++mi][i]=m;          s2=s[mw[mi+1][i]][i];
       if(m >=lastpass)          bbh=(double)bh[mi][i]/(double)stepm;
         break;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       else          ipmx +=1;
         m++;          sw += weight[i];
     }/* end while */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (s[m][i] > nlstate){        } /* end of wave */
       mi++;     /* Death is another wave */      } /* end of individual */
       /* if(mi==0)  never been interviewed correctly before death */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
          /* Only death is a correct wave */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       mw[mi][i]=m;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     wav[i]=mi;            for (j=1;j<=nlstate+ndeath;j++){
     if(mi==0){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(first==0){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);            }
         first=1;          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
       if(first==1){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     } /* end mi==0 */            }
   }         
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=imx; i++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(mi=1; mi<wav[i];mi++){            savm=oldm;
       if (stepm <=0)            oldm=newm;
         dh[mi][i]=1;          } /* end mult */
       else{       
         if (s[mw[mi+1][i]][i] > nlstate) {          s1=s[mw[mi][i]][i];
           if (agedc[i] < 2*AGESUP) {          s2=s[mw[mi+1][i]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);           if( s2 > nlstate){
           if(j==0) j=1;  /* Survives at least one month after exam */            lli=log(out[s1][s2] - savm[s1][s2]);
           k=k+1;          }else{
           if (j >= jmax) jmax=j;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           if (j <= jmin) jmin=j;          }
           sum=sum+j;          ipmx +=1;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         else{        } /* end of wave */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      } /* end of individual */
           k=k+1;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           if (j >= jmax) jmax=j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           else if (j <= jmin)jmin=j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        for(mi=1; mi<= wav[i]-1; mi++){
           sum=sum+j;          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         jk= j/stepm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         jl= j -jk*stepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         ju= j -(jk+1)*stepm;            }
         if(jl <= -ju)          for(d=0; d<dh[mi][i]; d++){
           dh[mi][i]=jk;            newm=savm;
         else            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           dh[mi][i]=jk+1;            for (kk=1; kk<=cptcovage;kk++) {
         if(dh[mi][i]==0)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           dh[mi][i]=1; /* At least one step */            }
       }         
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   jmean=sum/k;            savm=oldm;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            oldm=newm;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          } /* end mult */
  }       
           s1=s[mw[mi][i]][i];
 /*********** Tricode ****************************/          s2=s[mw[mi+1][i]][i];
 void tricode(int *Tvar, int **nbcode, int imx)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 {          ipmx +=1;
   int Ndum[20],ij=1, k, j, i;          sw += weight[i];
   int cptcode=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   cptcoveff=0;           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
          } /* end of wave */
   for (k=0; k<19; k++) Ndum[k]=0;      } /* end of individual */
   for (k=1; k<=7; k++) ncodemax[k]=0;    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for (i=1; i<=imx; i++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       ij=(int)(covar[Tvar[j]][i]);    return -l;
       Ndum[ij]++;   }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;   /*************** log-likelihood *************/
     }  double funcone( double *x)
   {
     for (i=0; i<=cptcode; i++) {    /* Same as likeli but slower because of a lot of printf and if */
       if(Ndum[i]!=0) ncodemax[j]++;    int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     ij=1;     double **out;
     double lli; /* Individual log likelihood */
     double llt;
     for (i=1; i<=ncodemax[j]; i++) {    int s1, s2;
       for (k=0; k<=19; k++) {    double bbh, survp;
         if (Ndum[k] != 0) {    /*extern weight */
           nbcode[Tvar[j]][ij]=k;     /* We are differentiating ll according to initial status */
               /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           ij++;    /*for(i=1;i<imx;i++)
         }      printf(" %d\n",s[4][i]);
         if (ij > ncodemax[j]) break;     */
       }      cov[1]=1.;
     }   
   }      for(k=1; k<=nlstate; k++) ll[k]=0.;
   
  for (k=0; k<19; k++) Ndum[k]=0;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  for (i=1; i<=ncovmodel-2; i++) {      for(mi=1; mi<= wav[i]-1; mi++){
    ij=Tvar[i];        for (ii=1;ii<=nlstate+ndeath;ii++)
    Ndum[ij]++;           for (j=1;j<=nlstate+ndeath;j++){
  }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
  ij=1;          }
  for (i=1; i<=10; i++) {        for(d=0; d<dh[mi][i]; d++){
    if((Ndum[i]!=0) && (i<=ncovcol)){          newm=savm;
      Tvaraff[ij]=i;           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      ij++;          for (kk=1; kk<=cptcovage;kk++) {
    }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  }          }
            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  cptcoveff=ij-1;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }          savm=oldm;
           oldm=newm;
 /*********** Health Expectancies ****************/        } /* end mult */
        
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
 {        bbh=(double)bh[mi][i]/(double)stepm;
   /* Health expectancies */        /* bias is positive if real duration
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;         * is higher than the multiple of stepm and negative otherwise.
   double age, agelim, hf;         */
   double ***p3mat,***varhe;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   double **dnewm,**doldm;          lli=log(out[s1][s2] - savm[s1][s2]);
   double *xp;        } else if  (s2==-2) {
   double **gp, **gm;          for (j=1,survp=0. ; j<=nlstate; j++)
   double ***gradg, ***trgradg;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int theta;          lli= log(survp);
         }else if (mle==1){
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   xp=vector(1,npar);        } else if(mle==2){
   dnewm=matrix(1,nlstate*2,1,npar);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   doldm=matrix(1,nlstate*2,1,nlstate*2);        } else if(mle==3){  /* exponential inter-extrapolation */
             lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   fprintf(ficreseij,"# Health expectancies\n");        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   fprintf(ficreseij,"# Age");          lli=log(out[s1][s2]); /* Original formula */
   for(i=1; i<=nlstate;i++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     for(j=1; j<=nlstate;j++)          lli=log(out[s1][s2]); /* Original formula */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        } /* End of if */
   fprintf(ficreseij,"\n");        ipmx +=1;
         sw += weight[i];
   if(estepm < stepm){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf ("Problem %d lower than %d\n",estepm, stepm);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   }        if(globpr){
   else  hstepm=estepm;             fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   /* We compute the life expectancy from trapezoids spaced every estepm months   %11.6f %11.6f %11.6f ", \
    * This is mainly to measure the difference between two models: for example                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
    * if stepm=24 months pijx are given only every 2 years and by summing them                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
    * we are calculating an estimate of the Life Expectancy assuming a linear           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
    * progression inbetween and thus overestimating or underestimating according            llt +=ll[k]*gipmx/gsw;
    * to the curvature of the survival function. If, for the same date, we             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          }
    * to compare the new estimate of Life expectancy with the same linear           fprintf(ficresilk," %10.6f\n", -llt);
    * hypothesis. A more precise result, taking into account a more precise        }
    * curvature will be obtained if estepm is as small as stepm. */      } /* end of wave */
     } /* end of individual */
   /* For example we decided to compute the life expectancy with the smallest unit */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      nhstepm is the number of hstepm from age to agelim     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      nstepm is the number of stepm from age to agelin.     if(globpr==0){ /* First time we count the contributions and weights */
      Look at hpijx to understand the reason of that which relies in memory size      gipmx=ipmx;
      and note for a fixed period like estepm months */      gsw=sw;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    }
      survival function given by stepm (the optimization length). Unfortunately it    return -l;
      means that if the survival funtion is printed only each two years of age and if  }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same   
      results. So we changed our mind and took the option of the best precision.  
   */  /*************** function likelione ***********/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
   agelim=AGESUP;    /* This routine should help understanding what is done with
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       the selection of individuals/waves and
     /* nhstepm age range expressed in number of stepm */       to check the exact contribution to the likelihood.
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        Plotting could be done.
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      */
     /* if (stepm >= YEARM) hstepm=1;*/    int k;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(*globpri !=0){ /* Just counts and sums, no printings */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      strcpy(fileresilk,"ilk");
     gp=matrix(0,nhstepm,1,nlstate*2);      strcat(fileresilk,fileres);
     gm=matrix(0,nhstepm,1,nlstate*2);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
        fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for(k=1; k<=nlstate; k++)
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     /* Computing Variances of health expectancies */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){     *fretone=(*funcone)(p);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    if(*globpri !=0){
       }      fclose(ficresilk);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         fflush(fichtm);
       cptj=0;    }
       for(j=1; j<= nlstate; j++){    return;
         for(i=1; i<=nlstate; i++){  }
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  /*********** Maximum Likelihood Estimation ***************/
           }  
         }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       }  {
          int i,j, iter;
          double **xi;
       for(i=1; i<=npar; i++)     double fret;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double fretone; /* Only one call to likelihood */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /*  char filerespow[FILENAMELENGTH];*/
           xi=matrix(1,npar,1,npar);
       cptj=0;    for (i=1;i<=npar;i++)
       for(j=1; j<= nlstate; j++){      for (j=1;j<=npar;j++)
         for(i=1;i<=nlstate;i++){        xi[i][j]=(i==j ? 1.0 : 0.0);
           cptj=cptj+1;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    strcpy(filerespow,"pow");
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    strcat(filerespow,fileres);
           }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", filerespow);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(j=1; j<= nlstate*2; j++)    }
         for(h=0; h<=nhstepm-1; h++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for (i=1;i<=nlstate;i++)
         }      for(j=1;j<=nlstate+ndeath;j++)
      }         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
        fprintf(ficrespow,"\n");
 /* End theta */  
     powell(p,xi,npar,ftol,&iter,&fret,func);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  
     free_matrix(xi,1,npar,1,npar);
      for(h=0; h<=nhstepm-1; h++)    fclose(ficrespow);
       for(j=1; j<=nlstate*2;j++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         for(theta=1; theta <=npar; theta++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           trgradg[h][j][theta]=gradg[h][theta][j];    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
        
   }
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)  /**** Computes Hessian and covariance matrix ***/
         varhe[i][j][(int)age] =0.;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
      printf("%d|",(int)age);fflush(stdout);    double  **a,**y,*x,pd;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    double **hess;
      for(h=0;h<=nhstepm-1;h++){    int i, j,jk;
       for(k=0;k<=nhstepm-1;k++){    int *indx;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         for(i=1;i<=nlstate*2;i++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           for(j=1;j<=nlstate*2;j++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    void ludcmp(double **a, int npar, int *indx, double *d) ;
       }    double gompertz(double p[]);
     }    hess=matrix(1,npar,1,npar);
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
       for(j=1; j<=nlstate;j++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    for (i=1;i<=npar;i++){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      printf("%d",i);fflush(stdout);
                 fprintf(ficlog,"%d",i);fflush(ficlog);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         }     
       /*  printf(" %f ",p[i]);
     fprintf(ficreseij,"%3.0f",age );          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     cptj=0;    }
     for(i=1; i<=nlstate;i++)   
       for(j=1; j<=nlstate;j++){    for (i=1;i<=npar;i++) {
         cptj++;      for (j=1;j<=npar;j++)  {
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        if (j>i) {
       }          printf(".%d%d",i,j);fflush(stdout);
     fprintf(ficreseij,"\n");          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
              hess[i][j]=hessij(p,delti,i,j,func,npar);
     free_matrix(gm,0,nhstepm,1,nlstate*2);         
     free_matrix(gp,0,nhstepm,1,nlstate*2);          hess[j][i]=hess[i][j];    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          /*printf(" %lf ",hess[i][j]);*/
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
   }    }
   printf("\n");    printf("\n");
   fprintf(ficlog,"\n");    fprintf(ficlog,"\n");
   
   free_vector(xp,1,npar);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_matrix(dnewm,1,nlstate*2,1,npar);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);   
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    a=matrix(1,npar,1,npar);
 }    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
 /************ Variance ******************/    indx=ivector(1,npar);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)    for (i=1;i<=npar;i++)
 {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   /* Variance of health expectancies */    ludcmp(a,npar,indx,&pd);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   /* double **newm;*/    for (j=1;j<=npar;j++) {
   double **dnewm,**doldm;      for (i=1;i<=npar;i++) x[i]=0;
   double **dnewmp,**doldmp;      x[j]=1;
   int i, j, nhstepm, hstepm, h, nstepm ;      lubksb(a,npar,indx,x);
   int k, cptcode;      for (i=1;i<=npar;i++){
   double *xp;        matcov[i][j]=x[i];
   double **gp, **gm;  /* for var eij */      }
   double ***gradg, ***trgradg; /*for var eij */    }
   double **gradgp, **trgradgp; /* for var p point j */  
   double *gpp, *gmp; /* for var p point j */    printf("\n#Hessian matrix#\n");
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    fprintf(ficlog,"\n#Hessian matrix#\n");
   double ***p3mat;    for (i=1;i<=npar;i++) {
   double age,agelim, hf;      for (j=1;j<=npar;j++) {
   double ***mobaverage;        printf("%.3e ",hess[i][j]);
   int theta;        fprintf(ficlog,"%.3e ",hess[i][j]);
   char digit[4];      }
   char digitp[16];      printf("\n");
       fprintf(ficlog,"\n");
   char fileresprobmorprev[FILENAMELENGTH];    }
   
   if(popbased==1)    /* Recompute Inverse */
     strcpy(digitp,"-populbased-");    for (i=1;i<=npar;i++)
   else      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     strcpy(digitp,"-stablbased-");    ludcmp(a,npar,indx,&pd);
   if(mobilav!=0)  
     strcat(digitp,"mobilav-");    /*  printf("\n#Hessian matrix recomputed#\n");
   else  
     strcat(digitp,"nomobil-");    for (j=1;j<=npar;j++) {
   if (mobilav!=0) {      for (i=1;i<=npar;i++) x[i]=0;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      x[j]=1;
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      lubksb(a,npar,indx,x);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      for (i=1;i<=npar;i++){
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        y[i][j]=x[i];
     }        printf("%.3e ",y[i][j]);
   }        fprintf(ficlog,"%.3e ",y[i][j]);
       }
   strcpy(fileresprobmorprev,"prmorprev");       printf("\n");
   sprintf(digit,"%-d",ij);      fprintf(ficlog,"\n");
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    }
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    */
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */  
   strcat(fileresprobmorprev,fileres);    free_matrix(a,1,npar,1,npar);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    free_matrix(y,1,npar,1,npar);
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    free_vector(x,1,npar);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    free_ivector(indx,1,npar);
   }    free_matrix(hess,1,npar,1,npar);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");  }
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  /*************** hessian matrix ****************/
     fprintf(ficresprobmorprev," p.%-d SE",j);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     for(i=1; i<=nlstate;i++)  {
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    int i;
   }      int l=1, lmax=20;
   fprintf(ficresprobmorprev,"\n");    double k1,k2;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    double p2[NPARMAX+1];
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    double res;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     exit(0);    double fx;
   }    int k=0,kmax=10;
   else{    double l1;
     fprintf(ficgp,"\n# Routine varevsij");  
   }    fx=func(x);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    for (i=1;i<=npar;i++) p2[i]=x[i];
     printf("Problem with html file: %s\n", optionfilehtm);    for(l=0 ; l <=lmax; l++){
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      l1=pow(10,l);
     exit(0);      delts=delt;
   }      for(k=1 ; k <kmax; k=k+1){
   else{        delt = delta*(l1*k);
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");        p2[theta]=x[theta] +delt;
     fprintf(fichtm,"\n<br>%s (à revoir) <br>\n",digitp);        k1=func(p2)-fx;
   }        p2[theta]=x[theta]-delt;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   fprintf(ficresvij,"# Age");       
   for(i=1; i<=nlstate;i++)  #ifdef DEBUG
     for(j=1; j<=nlstate;j++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   fprintf(ficresvij,"\n");  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   xp=vector(1,npar);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   dnewm=matrix(1,nlstate,1,npar);          k=kmax;
   doldm=matrix(1,nlstate,1,nlstate);        }
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          k=kmax; l=lmax*10.;
         }
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
   gpp=vector(nlstate+1,nlstate+ndeath);          delts=delt;
   gmp=vector(nlstate+1,nlstate+ndeath);        }
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      }
       }
   if(estepm < stepm){    delti[theta]=delts;
     printf ("Problem %d lower than %d\n",estepm, stepm);    return res;
   }   
   else  hstepm=estepm;     }
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
      nhstepm is the number of hstepm from age to agelim   {
      nstepm is the number of stepm from age to agelin.     int i;
      Look at hpijx to understand the reason of that which relies in memory size    int l=1, l1, lmax=20;
      and note for a fixed period like k years */    double k1,k2,k3,k4,res,fx;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double p2[NPARMAX+1];
      survival function given by stepm (the optimization length). Unfortunately it    int k;
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     fx=func(x);
      results. So we changed our mind and took the option of the best precision.    for (k=1; k<=2; k++) {
   */      for (i=1;i<=npar;i++) p2[i]=x[i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       p2[thetai]=x[thetai]+delti[thetai]/k;
   agelim = AGESUP;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      k1=func(p2)-fx;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      p2[thetai]=x[thetai]+delti[thetai]/k;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      k2=func(p2)-fx;
     gp=matrix(0,nhstepm,1,nlstate);   
     gm=matrix(0,nhstepm,1,nlstate);      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
     for(theta=1; theta <=npar; theta++){   
       for(i=1; i<=npar; i++){ /* Computes gradient */      p2[thetai]=x[thetai]-delti[thetai]/k;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k4=func(p2)-fx;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       if (popbased==1) {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         if(mobilav ==0){  #endif
           for(i=1; i<=nlstate;i++)    }
             prlim[i][i]=probs[(int)age][i][ij];    return res;
         }else{ /* mobilav */   }
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=mobaverage[(int)age][i][ij];  /************** Inverse of matrix **************/
         }  void ludcmp(double **a, int n, int *indx, double *d)
       }  {
       int i,imax,j,k;
       for(j=1; j<= nlstate; j++){    double big,dum,sum,temp;
         for(h=0; h<=nhstepm; h++){    double *vv;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)   
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    vv=vector(1,n);
         }    *d=1.0;
       }    for (i=1;i<=n;i++) {
       /* This for computing forces of mortality (h=1)as a weighted average */      big=0.0;
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){      for (j=1;j<=n;j++)
         for(i=1; i<= nlstate; i++)        if ((temp=fabs(a[i][j])) > big) big=temp;
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
       }          vv[i]=1.0/big;
       /* end force of mortality */    }
     for (j=1;j<=n;j++) {
       for(i=1; i<=npar; i++) /* Computes gradient */      for (i=1;i<j;i++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        sum=a[i][j];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        a[i][j]=sum;
        }
       if (popbased==1) {      big=0.0;
         if(mobilav ==0){      for (i=j;i<=n;i++) {
           for(i=1; i<=nlstate;i++)        sum=a[i][j];
             prlim[i][i]=probs[(int)age][i][ij];        for (k=1;k<j;k++)
         }else{ /* mobilav */           sum -= a[i][k]*a[k][j];
           for(i=1; i<=nlstate;i++)        a[i][j]=sum;
             prlim[i][i]=mobaverage[(int)age][i][ij];        if ( (dum=vv[i]*fabs(sum)) >= big) {
         }          big=dum;
       }          imax=i;
         }
       for(j=1; j<= nlstate; j++){      }
         for(h=0; h<=nhstepm; h++){      if (j != imax) {
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        for (k=1;k<=n;k++) {
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          dum=a[imax][k];
         }          a[imax][k]=a[j][k];
       }          a[j][k]=dum;
       /* This for computing force of mortality (h=1)as a weighted average */        }
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){        *d = -(*d);
         for(i=1; i<= nlstate; i++)        vv[imax]=vv[j];
           gmp[j] += prlim[i][i]*p3mat[i][j][1];      }
       }          indx[j]=imax;
       /* end force of mortality */      if (a[j][j] == 0.0) a[j][j]=TINY;
       if (j != n) {
       for(j=1; j<= nlstate; j++) /* vareij */        dum=1.0/(a[j][j]);
         for(h=0; h<=nhstepm; h++){        for (i=j+1;i<=n;i++) a[i][j] *= dum;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      }
         }    }
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    free_vector(vv,1,n);  /* Doesn't work */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];  ;
       }  }
   
     } /* End theta */  void lubksb(double **a, int n, int *indx, double b[])
   {
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    int i,ii=0,ip,j;
     double sum;
     for(h=0; h<=nhstepm; h++) /* veij */   
       for(j=1; j<=nlstate;j++)    for (i=1;i<=n;i++) {
         for(theta=1; theta <=npar; theta++)      ip=indx[i];
           trgradg[h][j][theta]=gradg[h][theta][j];      sum=b[ip];
       b[ip]=b[i];
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */      if (ii)
       for(theta=1; theta <=npar; theta++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
         trgradgp[j][theta]=gradgp[theta][j];      else if (sum) ii=i;
       b[i]=sum;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    }
     for(i=1;i<=nlstate;i++)    for (i=n;i>=1;i--) {
       for(j=1;j<=nlstate;j++)      sum=b[i];
         vareij[i][j][(int)age] =0.;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
       b[i]=sum/a[i][i];
     for(h=0;h<=nhstepm;h++){    }
       for(k=0;k<=nhstepm;k++){  }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  void pstamp(FILE *fichier)
         for(i=1;i<=nlstate;i++)  {
           for(j=1;j<=nlstate;j++)    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  }
       }  
     }  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     /* pptj */  {  /* Some frequencies */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);   
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    int first;
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    double ***freq; /* Frequencies */
         varppt[j][i]=doldmp[j][i];    double *pp, **prop;
     /* end ppptj */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      char fileresp[FILENAMELENGTH];
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);   
      pp=vector(1,nlstate);
     if (popbased==1) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
       if(mobilav ==0){    strcpy(fileresp,"p");
         for(i=1; i<=nlstate;i++)    strcat(fileresp,fileres);
           prlim[i][i]=probs[(int)age][i][ij];    if((ficresp=fopen(fileresp,"w"))==NULL) {
       }else{ /* mobilav */       printf("Problem with prevalence resultfile: %s\n", fileresp);
         for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           prlim[i][i]=mobaverage[(int)age][i][ij];      exit(0);
       }    }
     }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         j1=0;
     /* This for computing force of mortality (h=1)as a weighted average */   
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    j=cptcoveff;
       for(i=1; i<= nlstate; i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         gmp[j] += prlim[i][i]*p3mat[i][j][1];   
     }        first=1;
     /* end force of mortality */  
     for(k1=1; k1<=j;k1++){
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      for(i1=1; i1<=ncodemax[k1];i1++){
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        j1++;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for(i=1; i<=nlstate;i++){          scanf("%d", i);*/
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        for (i=-5; i<=nlstate+ndeath; i++)  
       }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     }             for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficresprobmorprev,"\n");              freq[i][jk][m]=0;
   
     fprintf(ficresvij,"%.0f ",age );      for (i=1; i<=nlstate; i++)  
     for(i=1; i<=nlstate;i++)        for(m=iagemin; m <= iagemax+3; m++)
       for(j=1; j<=nlstate;j++){          prop[i][m]=0;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);       
       }        dateintsum=0;
     fprintf(ficresvij,"\n");        k2cpt=0;
     free_matrix(gp,0,nhstepm,1,nlstate);        for (i=1; i<=imx; i++) {
     free_matrix(gm,0,nhstepm,1,nlstate);          bool=1;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          if  (cptcovn>0) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            for (z1=1; z1<=cptcoveff; z1++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
   } /* End age */                bool=0;
   free_vector(gpp,nlstate+1,nlstate+ndeath);          }
   free_vector(gmp,nlstate+1,nlstate+ndeath);          if (bool==1){
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);            for(m=firstpass; m<=lastpass; m++){
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/              k2=anint[m][i]+(mint[m][i]/12.);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);                if (m<lastpass) {
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);                }
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);               
 */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);                  dateintsum=dateintsum+k2;
                   k2cpt++;
   free_vector(xp,1,npar);                }
   free_matrix(doldm,1,nlstate,1,nlstate);                /*}*/
   free_matrix(dnewm,1,nlstate,1,npar);            }
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          }
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);        }
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);         
   free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   fclose(ficresprobmorprev);        pstamp(ficresp);
   fclose(ficgp);        if  (cptcovn>0) {
   fclose(fichtm);          fprintf(ficresp, "\n#********** Variable ");
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }          fprintf(ficresp, "**********\n#");
         }
 /************ Variance of prevlim ******************/        for(i=1; i<=nlstate;i++)
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 {        fprintf(ficresp, "\n");
   /* Variance of prevalence limit */       
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        for(i=iagemin; i <= iagemax+3; i++){
   double **newm;          if(i==iagemax+3){
   double **dnewm,**doldm;            fprintf(ficlog,"Total");
   int i, j, nhstepm, hstepm;          }else{
   int k, cptcode;            if(first==1){
   double *xp;              first=0;
   double *gp, *gm;              printf("See log file for details...\n");
   double **gradg, **trgradg;            }
   double age,agelim;            fprintf(ficlog,"Age %d", i);
   int theta;          }
              for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   fprintf(ficresvpl,"# Age");              pp[jk] += freq[jk][m][i];
   for(i=1; i<=nlstate;i++)          }
       fprintf(ficresvpl," %1d-%1d",i,i);          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresvpl,"\n");            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
   xp=vector(1,npar);            if(pp[jk]>=1.e-10){
   dnewm=matrix(1,nlstate,1,npar);              if(first==1){
   doldm=matrix(1,nlstate,1,nlstate);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                 }
   hstepm=1*YEARM; /* Every year of age */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */             }else{
   agelim = AGESUP;              if(first==1)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     if (stepm >= YEARM) hstepm=1;            }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          }
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     gm=vector(1,nlstate);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
     for(theta=1; theta <=npar; theta++){          }      
       for(i=1; i<=npar; i++){ /* Computes gradient */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            pos += pp[jk];
       }            posprop += prop[jk][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
       for(i=1;i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
         gp[i] = prlim[i][i];            if(pos>=1.e-5){
                   if(first==1)
       for(i=1; i<=npar; i++) /* Computes gradient */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }else{
       for(i=1;i<=nlstate;i++)              if(first==1)
         gm[i] = prlim[i][i];                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for(i=1;i<=nlstate;i++)            }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            if( i <= iagemax){
     } /* End theta */              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     trgradg =matrix(1,nlstate,1,npar);                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     for(j=1; j<=nlstate;j++)              }
       for(theta=1; theta <=npar; theta++)              else
         trgradg[j][theta]=gradg[theta][j];                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
     for(i=1;i<=nlstate;i++)          }
       varpl[i][(int)age] =0.;         
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            for(m=-1; m <=nlstate+ndeath; m++)
     for(i=1;i<=nlstate;i++)              if(freq[jk][m][i] !=0 ) {
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     fprintf(ficresvpl,"%.0f ",age );                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(i=1; i<=nlstate;i++)              }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          if(i <= iagemax)
     fprintf(ficresvpl,"\n");            fprintf(ficresp,"\n");
     free_vector(gp,1,nlstate);          if(first==1)
     free_vector(gm,1,nlstate);            printf("Others in log...\n");
     free_matrix(gradg,1,npar,1,nlstate);          fprintf(ficlog,"\n");
     free_matrix(trgradg,1,nlstate,1,npar);        }
   } /* End age */      }
     }
   free_vector(xp,1,npar);    dateintmean=dateintsum/k2cpt;
   free_matrix(doldm,1,nlstate,1,npar);   
   free_matrix(dnewm,1,nlstate,1,nlstate);    fclose(ficresp);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 }    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 /************ Variance of one-step probabilities  ******************/    /* End of Freq */
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  }
 {  
   int i, j=0,  i1, k1, l1, t, tj;  /************ Prevalence ********************/
   int k2, l2, j1,  z1;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   int k=0,l, cptcode;  {  
   int first=1, first1;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   double **dnewm,**doldm;       We still use firstpass and lastpass as another selection.
   double *xp;    */
   double *gp, *gm;   
   double **gradg, **trgradg;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   double **mu;    double ***freq; /* Frequencies */
   double age,agelim, cov[NCOVMAX];    double *pp, **prop;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    double pos,posprop;
   int theta;    double  y2; /* in fractional years */
   char fileresprob[FILENAMELENGTH];    int iagemin, iagemax;
   char fileresprobcov[FILENAMELENGTH];  
   char fileresprobcor[FILENAMELENGTH];    iagemin= (int) agemin;
     iagemax= (int) agemax;
   double ***varpij;    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3);
   strcpy(fileresprob,"prob");     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   strcat(fileresprob,fileres);    j1=0;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {   
     printf("Problem with resultfile: %s\n", fileresprob);    j=cptcoveff;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   }   
   strcpy(fileresprobcov,"probcov");     for(k1=1; k1<=j;k1++){
   strcat(fileresprobcov,fileres);      for(i1=1; i1<=ncodemax[k1];i1++){
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        j1++;
     printf("Problem with resultfile: %s\n", fileresprobcov);       
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        for (i=1; i<=nlstate; i++)  
   }          for(m=iagemin; m <= iagemax+3; m++)
   strcpy(fileresprobcor,"probcor");             prop[i][m]=0.0;
   strcat(fileresprobcor,fileres);       
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        for (i=1; i<=imx; i++) { /* Each individual */
     printf("Problem with resultfile: %s\n", fileresprobcor);          bool=1;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);          if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++)
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                bool=0;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          }
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          if (bool==1) {
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                 if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(ficresprob,"# Age");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
   fprintf(ficresprobcov,"# Age");                if (s[m][i]>0 && s[m][i]<=nlstate) {
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   fprintf(ficresprobcov,"# Age");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i];
                 }
   for(i=1; i<=nlstate;i++)              }
     for(j=1; j<=(nlstate+ndeath);j++){            } /* end selection of waves */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          }
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        }
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        for(i=iagemin; i <= iagemax+3; i++){  
     }           
   fprintf(ficresprob,"\n");          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
   fprintf(ficresprobcov,"\n");            posprop += prop[jk][i];
   fprintf(ficresprobcor,"\n");          }
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          for(jk=1; jk <=nlstate ; jk++){    
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));            if( i <=  iagemax){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);              if(posprop>=1.e-5){
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);                probs[i][jk][j1]= prop[jk][i]/posprop;
   first=1;              }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          }/* end jk */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        }/* end i */
     exit(0);      } /* end i1 */
   }    } /* end k1 */
   else{   
     fprintf(ficgp,"\n# Routine varprob");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   }    /*free_vector(pp,1,nlstate);*/
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     printf("Problem with html file: %s\n", optionfilehtm);  }  /* End of prevalence */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  
     exit(0);  /************* Waves Concatenation ***************/
   }  
   else{  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");  {
     fprintf(fichtm,"\n");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");       and mw[mi+1][i]. dh depends on stepm.
        */
   }  
     int i, mi, m;
      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   cov[1]=1;       double sum=0., jmean=0.;*/
   tj=cptcoveff;    int first;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    int j, k=0,jk, ju, jl;
   j1=0;    double sum=0.;
   for(t=1; t<=tj;t++){    first=0;
     for(i1=1; i1<=ncodemax[t];i1++){     jmin=1e+5;
       j1++;    jmax=-1;
           jmean=0.;
       if  (cptcovn>0) {    for(i=1; i<=imx; i++){
         fprintf(ficresprob, "\n#********** Variable ");       mi=0;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      m=firstpass;
         fprintf(ficresprob, "**********\n#");      while(s[m][i] <= nlstate){
         fprintf(ficresprobcov, "\n#********** Variable ");         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          mw[++mi][i]=m;
         fprintf(ficresprobcov, "**********\n#");        if(m >=lastpass)
                   break;
         fprintf(ficgp, "\n#********** Variable ");         else
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          m++;
         fprintf(ficgp, "**********\n#");      }/* end while */
               if (s[m][i] > nlstate){
                 mi++;     /* Death is another wave */
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");         /* if(mi==0)  never been interviewed correctly before death */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           /* Only death is a correct wave */
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        mw[mi][i]=m;
               }
         fprintf(ficresprobcor, "\n#********** Variable ");      
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      wav[i]=mi;
         fprintf(ficgp, "**********\n#");          if(mi==0){
       }        nbwarn++;
               if(first==0){
       for (age=bage; age<=fage; age ++){           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         cov[2]=age;          first=1;
         for (k=1; k<=cptcovn;k++) {        }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        if(first==1){
         }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        }
         for (k=1; k<=cptcovprod;k++)      } /* end mi==0 */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    } /* End individuals */
           
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    for(i=1; i<=imx; i++){
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      for(mi=1; mi<wav[i];mi++){
         gp=vector(1,(nlstate)*(nlstate+ndeath));        if (stepm <=0)
         gm=vector(1,(nlstate)*(nlstate+ndeath));          dh[mi][i]=1;
             else{
         for(theta=1; theta <=npar; theta++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           for(i=1; i<=npar; i++)            if (agedc[i] < 2*AGESUP) {
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
                         if(j==0) j=1;  /* Survives at least one month after exam */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              else if(j<0){
                           nberr++;
           k=0;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           for(i=1; i<= (nlstate); i++){                j=1; /* Temporary Dangerous patch */
             for(j=1; j<=(nlstate+ndeath);j++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               k=k+1;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               gp[k]=pmmij[i][j];                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             }              }
           }              k=k+1;
                         if (j >= jmax){
           for(i=1; i<=npar; i++)                jmax=j;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);                ijmax=i;
                   }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              if (j <= jmin){
           k=0;                jmin=j;
           for(i=1; i<=(nlstate); i++){                ijmin=i;
             for(j=1; j<=(nlstate+ndeath);j++){              }
               k=k+1;              sum=sum+j;
               gm[k]=pmmij[i][j];              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
             }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           }            }
                }
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)           else{
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            k=k+1;
           for(theta=1; theta <=npar; theta++)            if (j >= jmax) {
             trgradg[j][theta]=gradg[theta][j];              jmax=j;
                       ijmax=i;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);             }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            else if (j <= jmin){
                       jmin=j;
         pmij(pmmij,cov,ncovmodel,x,nlstate);              ijmin=i;
                     }
         k=0;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         for(i=1; i<=(nlstate); i++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           for(j=1; j<=(nlstate+ndeath);j++){            if(j<0){
             k=k+1;              nberr++;
             mu[k][(int) age]=pmmij[i][j];              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }            }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            sum=sum+j;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          }
             varpij[i][j][(int)age] = doldm[i][j];          jk= j/stepm;
           jl= j -jk*stepm;
         /*printf("\n%d ",(int)age);          ju= j -(jk+1)*stepm;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            if(jl==0){
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              dh[mi][i]=jk;
      }*/              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
         fprintf(ficresprob,"\n%d ",(int)age);                    * at the price of an extra matrix product in likelihood */
         fprintf(ficresprobcov,"\n%d ",(int)age);              dh[mi][i]=jk+1;
         fprintf(ficresprobcor,"\n%d ",(int)age);              bh[mi][i]=ju;
             }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          }else{
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            if(jl <= -ju){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              dh[mi][i]=jk;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);              bh[mi][i]=jl;       /* bias is positive if real duration
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);                                   * is higher than the multiple of stepm and negative otherwise.
         }                                   */
         i=0;            }
         for (k=1; k<=(nlstate);k++){            else{
           for (l=1; l<=(nlstate+ndeath);l++){               dh[mi][i]=jk+1;
             i=i++;              bh[mi][i]=ju;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            if(dh[mi][i]==0){
             for (j=1; j<=i;j++){              dh[mi][i]=1; /* At least one step */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              bh[mi][i]=ju; /* At least one step */
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }            }
           }          } /* end if mle */
         }/* end of loop for state */        }
       } /* end of loop for age */      } /* end wave */
     }
       /* Confidence intervalle of pij  */    jmean=sum/k;
       /*    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       fprintf(ficgp,"\nset noparametric;unset label");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");   }
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  /*********** Tricode ****************************/
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  void tricode(int *Tvar, int **nbcode, int imx)
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  {
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);   
       */    int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    cptcoveff=0;
       first1=1;   
       for (k2=1; k2<=(nlstate);k2++){    for (k=0; k<maxncov; k++) Ndum[k]=0;
         for (l2=1; l2<=(nlstate+ndeath);l2++){     for (k=1; k<=7; k++) ncodemax[k]=0;
           if(l2==k2) continue;  
           j=(k2-1)*(nlstate+ndeath)+l2;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           for (k1=1; k1<=(nlstate);k1++){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
             for (l1=1; l1<=(nlstate+ndeath);l1++){                                  modality*/
               if(l1==k1) continue;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
               i=(k1-1)*(nlstate+ndeath)+l1;        Ndum[ij]++; /*store the modality */
               if(i<=j) continue;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
               for (age=bage; age<=fage; age ++){         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
                 if ((int)age %5==0){                                         Tvar[j]. If V=sex and male is 0 and
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;                                         female is 1, then  cptcode=1.*/
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;      for (i=0; i<=cptcode; i++) {
                   mu2=mu[j][(int) age]/stepm*YEARM;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
                   c12=cv12/sqrt(v1*v2);      }
                   /* Computing eigen value of matrix of covariance */  
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      ij=1;
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      for (i=1; i<=ncodemax[j]; i++) {
                   /* Eigen vectors */        for (k=0; k<= maxncov; k++) {
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          if (Ndum[k] != 0) {
                   /*v21=sqrt(1.-v11*v11); *//* error */            nbcode[Tvar[j]][ij]=k;
                   v21=(lc1-v1)/cv12*v11;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                   v12=-v21;           
                   v22=v11;            ij++;
                   tnalp=v21/v11;          }
                   if(first1==1){          if (ij > ncodemax[j]) break;
                     first1=0;        }  
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      }
                   }    }  
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  
                   /*printf(fignu*/   for (k=0; k< maxncov; k++) Ndum[k]=0;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */   for (i=1; i<=ncovmodel-2; i++) {
                   if(first==1){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
                     first=0;     ij=Tvar[i];
                     fprintf(ficgp,"\nset parametric;unset label");     Ndum[ij]++;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);   }
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);   ij=1;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);   for (i=1; i<= maxncov; i++) {
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);     if((Ndum[i]!=0) && (i<=ncovcol)){
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);       Tvaraff[ij]=i; /*For printing */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);       ij++;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);     }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\   }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\   
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));   cptcoveff=ij-1; /*Number of simple covariates*/
                   }else{  }
                     first=0;  
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);  /*********** Health Expectancies ****************/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  {
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    /* Health expectancies, no variances */
                   }/* if first */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
                 } /* age mod 5 */    double age, agelim, hf;
               } /* end loop age */    double ***p3mat;
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);    double eip;
               first=1;  
             } /*l12 */    pstamp(ficreseij);
           } /* k12 */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
         } /*l1 */    fprintf(ficreseij,"# Age");
       }/* k1 */    for(i=1; i<=nlstate;i++){
     } /* loop covariates */      for(j=1; j<=nlstate;j++){
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        fprintf(ficreseij," e%1d%1d ",i,j);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      fprintf(ficreseij," e%1d. ",i);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fprintf(ficreseij,"\n");
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }   
   free_vector(xp,1,npar);    if(estepm < stepm){
   fclose(ficresprob);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fclose(ficresprobcov);    }
   fclose(ficresprobcor);    else  hstepm=estepm;  
   fclose(ficgp);    /* We compute the life expectancy from trapezoids spaced every estepm months
   fclose(fichtm);     * This is mainly to measure the difference between two models: for example
 }     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear
      * progression in between and thus overestimating or underestimating according
 /******************* Printing html file ***********/     * to the curvature of the survival function. If, for the same date, we
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   int lastpass, int stepm, int weightopt, char model[],\     * to compare the new estimate of Life expectancy with the same linear
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\     * hypothesis. A more precise result, taking into account a more precise
                   int popforecast, int estepm ,\     * curvature will be obtained if estepm is as small as stepm. */
                   double jprev1, double mprev1,double anprev1, \  
                   double jprev2, double mprev2,double anprev2){    /* For example we decided to compute the life expectancy with the smallest unit */
   int jj1, k1, i1, cpt;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   /*char optionfilehtm[FILENAMELENGTH];*/       nhstepm is the number of hstepm from age to agelim
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {       nstepm is the number of stepm from age to agelin.
     printf("Problem with %s \n",optionfilehtm), exit(0);       Look at hpijx to understand the reason of that which relies in memory size
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n       means that if the survival funtion is printed only each two years of age and if
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n       you sum them up and add 1 year (area under the trapezoids) you won't get the same
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n       results. So we changed our mind and took the option of the best precision.
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    */
  - Life expectancies by age and initial health status (estepm=%2d months):     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    agelim=AGESUP;
     /* If stepm=6 months */
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
  m=cptcoveff;     
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm);
  jj1=0;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
  for(k1=1; k1<=m;k1++){    /* if (stepm >= YEARM) hstepm=1;*/
    for(i1=1; i1<=ncodemax[k1];i1++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      jj1++;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    for (age=bage; age<=fage; age ++){
        for (cpt=1; cpt<=cptcoveff;cpt++)   
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
      }     
      /* Pij */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>     
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);           printf("%d|",(int)age);fflush(stdout);
      /* Quasi-incidences */      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>     
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);   
        /* Stable prevalence in each health state */      /* Computing expectancies */
        for(cpt=1; cpt<nlstate;cpt++){      for(i=1; i<=nlstate;i++)
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        for(j=1; j<=nlstate;j++)
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
        }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
      for(cpt=1; cpt<=nlstate;cpt++) {           
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }          }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and     
 health expectancies in states (1) and (2): e%s%d.png<br>      fprintf(ficreseij,"%3.0f",age );
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      for(i=1; i<=nlstate;i++){
    } /* end i1 */        eip=0;
  }/* End k1 */        for(j=1; j<=nlstate;j++){
  fprintf(fichtm,"</ul>");          eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n        fprintf(ficreseij,"%9.4f", eip );
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n      }
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      fprintf(ficreseij,"\n");
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n     
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    }
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    printf("\n");
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    fprintf(ficlog,"\n");
    
  if(popforecast==1) fprintf(fichtm,"\n  }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
         <br>",fileres,fileres,fileres,fileres);  
  else   {
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    /* Covariances of health expectancies eij and of total life expectancies according
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");     to initial status i, ei. .
     */
  m=cptcoveff;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
  jj1=0;    double **dnewm,**doldm;
  for(k1=1; k1<=m;k1++){    double *xp, *xm;
    for(i1=1; i1<=ncodemax[k1];i1++){    double **gp, **gm;
      jj1++;    double ***gradg, ***trgradg;
      if (cptcovn > 0) {    int theta;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)     double eip, vip;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      }    xp=vector(1,npar);
      for(cpt=1; cpt<=nlstate;cpt++) {    xm=vector(1,npar);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    dnewm=matrix(1,nlstate*nlstate,1,npar);
 interval) in state (%d): v%s%d%d.png <br>    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     
      }    pstamp(ficresstdeij);
    } /* end i1 */    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
  }/* End k1 */    fprintf(ficresstdeij,"# Age");
  fprintf(fichtm,"</ul>");    for(i=1; i<=nlstate;i++){
 fclose(fichtm);      for(j=1; j<=nlstate;j++)
 }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
 /******************* Gnuplot file **************/    }
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    fprintf(ficresstdeij,"\n");
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    pstamp(ficrescveij);
   int ng;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    fprintf(ficrescveij,"# Age");
     printf("Problem with file %s",optionfilegnuplot);    for(i=1; i<=nlstate;i++)
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);      for(j=1; j<=nlstate;j++){
   }        cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
   /*#ifdef windows */          for(j2=1; j2<=nlstate;j2++){
     fprintf(ficgp,"cd \"%s\" \n",pathc);            cptj2= (j2-1)*nlstate+i2;
     /*#endif */            if(cptj2 <= cptj)
 m=pow(2,cptcoveff);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
             }
  /* 1eme*/      }
   for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficrescveij,"\n");
    for (k1=1; k1<= m ; k1 ++) {   
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    if(estepm < stepm){
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
      for (i=1; i<= nlstate ; i ++) {    else  hstepm=estepm;  
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* We compute the life expectancy from trapezoids spaced every estepm months
        else fprintf(ficgp," \%%*lf (\%%*lf)");     * This is mainly to measure the difference between two models: for example
      }     * if stepm=24 months pijx are given only every 2 years and by summing them
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);     * we are calculating an estimate of the Life Expectancy assuming a linear
      for (i=1; i<= nlstate ; i ++) {     * progression in between and thus overestimating or underestimating according
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     * to the curvature of the survival function. If, for the same date, we
        else fprintf(ficgp," \%%*lf (\%%*lf)");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      }      * to compare the new estimate of Life expectancy with the same linear
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      * hypothesis. A more precise result, taking into account a more precise
      for (i=1; i<= nlstate ; i ++) {     * curvature will be obtained if estepm is as small as stepm. */
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
        else fprintf(ficgp," \%%*lf (\%%*lf)");    /* For example we decided to compute the life expectancy with the smallest unit */
      }      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));       nhstepm is the number of hstepm from age to agelim
    }       nstepm is the number of stepm from age to agelin.
   }       Look at hpijx to understand the reason of that which relies in memory size
   /*2 eme*/       and note for a fixed period like estepm months */
       /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   for (k1=1; k1<= m ; k1 ++) {        survival function given by stepm (the optimization length). Unfortunately it
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);       means that if the survival funtion is printed only each two years of age and if
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
            results. So we changed our mind and took the option of the best precision.
     for (i=1; i<= nlstate+1 ; i ++) {    */
       k=2*i;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    /* If stepm=6 months */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* nhstepm age range expressed in number of stepm */
         else fprintf(ficgp," \%%*lf (\%%*lf)");    agelim=AGESUP;
       }       nstepm=(int) rint((agelim-bage)*YEARM/stepm);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for (j=1; j<= nlstate+1 ; j ++) {   
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficgp,"\" t\"\" w l 0,");    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       for (j=1; j<= nlstate+1 ; j ++) {    gm=matrix(0,nhstepm,1,nlstate*nlstate);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    for (age=bage; age<=fage; age ++){
       }     
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       else fprintf(ficgp,"\" t\"\" w l 0,");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     }   
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     
   /*3eme*/      /* Computing  Variances of health expectancies */
         /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   for (k1=1; k1<= m ; k1 ++) {          decrease memory allocation */
     for (cpt=1; cpt<= nlstate ; cpt ++) {      for(theta=1; theta <=npar; theta++){
       k=2+nlstate*(2*cpt-2);        for(i=1; i<=npar; i++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        }
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for(j=1; j<= nlstate; j++){
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          for(i=1; i<=nlstate; i++){
                     for(h=0; h<=nhstepm-1; h++){
       */              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       for (i=1; i< nlstate ; i ++) {              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            }
                   }
       }         }
     }       
   }        for(ij=1; ij<= nlstate*nlstate; ij++)
             for(h=0; h<=nhstepm-1; h++){
   /* CV preval stat */            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   for (k1=1; k1<= m ; k1 ++) {           }
     for (cpt=1; cpt<nlstate ; cpt ++) {      }/* End theta */
       k=3;     
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      for(h=0; h<=nhstepm-1; h++)
               for(j=1; j<=nlstate*nlstate;j++)
       for (i=1; i< nlstate ; i ++)          for(theta=1; theta <=npar; theta++)
         fprintf(ficgp,"+$%d",k+i+1);            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);     
         
       l=3+(nlstate+ndeath)*cpt;       for(ij=1;ij<=nlstate*nlstate;ij++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        for(ji=1;ji<=nlstate*nlstate;ji++)
       for (i=1; i< nlstate ; i ++) {          varhe[ij][ji][(int)age] =0.;
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);       printf("%d|",(int)age);fflush(stdout);
       }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          for(h=0;h<=nhstepm-1;h++){
     }         for(k=0;k<=nhstepm-1;k++){
   }            matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
             matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   /* proba elementaires */          for(ij=1;ij<=nlstate*nlstate;ij++)
   for(i=1,jk=1; i <=nlstate; i++){            for(ji=1;ji<=nlstate*nlstate;ji++)
     for(k=1; k <=(nlstate+ndeath); k++){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       if (k != i) {        }
         for(j=1; j <=ncovmodel; j++){      }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;       /* Computing expectancies */
           fprintf(ficgp,"\n");      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         }      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++)
     }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
    }            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
            
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);           }
        if (ng==2)  
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      fprintf(ficresstdeij,"%3.0f",age );
        else      for(i=1; i<=nlstate;i++){
          fprintf(ficgp,"\nset title \"Probability\"\n");        eip=0.;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        vip=0.;
        i=1;        for(j=1; j<=nlstate;j++){
        for(k2=1; k2<=nlstate; k2++) {          eip += eij[i][j][(int)age];
          k3=i;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
          for(k=1; k<=(nlstate+ndeath); k++) {            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
            if (k != k2){          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
              if(ng==2)        }
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
              else      }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      fprintf(ficresstdeij,"\n");
              ij=1;  
              for(j=3; j <=ncovmodel; j++) {      fprintf(ficrescveij,"%3.0f",age );
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      for(i=1; i<=nlstate;i++)
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(j=1; j<=nlstate;j++){
                  ij++;          cptj= (j-1)*nlstate+i;
                }          for(i2=1; i2<=nlstate;i2++)
                else            for(j2=1; j2<=nlstate;j2++){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              cptj2= (j2-1)*nlstate+i2;
              }              if(cptj2 <= cptj)
              fprintf(ficgp,")/(1");                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                          }
              for(k1=1; k1 <=nlstate; k1++){           }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      fprintf(ficrescveij,"\n");
                ij=1;     
                for(j=3; j <=ncovmodel; j++){    }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                    ij++;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                  }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                  else    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                }    printf("\n");
                fprintf(ficgp,")");    fprintf(ficlog,"\n");
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    free_vector(xm,1,npar);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    free_vector(xp,1,npar);
              i=i+ncovmodel;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
            }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
          } /* end k */    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
        } /* end k2 */  }
      } /* end jk */  
    } /* end ng */  /************ Variance ******************/
    fclose(ficgp);   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 }  /* end gnuplot */  {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 /*************** Moving average **************/    /* double **newm;*/
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
   int i, cpt, cptcod;    int i, j, nhstepm, hstepm, h, nstepm ;
   int mobilavrange, mob;    int k, cptcode;
   double age;    double *xp;
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){    double **gp, **gm;  /* for var eij */
     if(mobilav==1) mobilavrange=5; /* default */    double ***gradg, ***trgradg; /*for var eij */
     else mobilavrange=mobilav;    double **gradgp, **trgradgp; /* for var p point j */
     for (age=bage; age<=fage; age++)    double *gpp, *gmp; /* for var p point j */
       for (i=1; i<=nlstate;i++)    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    double ***p3mat;
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];    double age,agelim, hf;
     /* We keep the original values on the extreme ages bage, fage and for     double ***mobaverage;
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2    int theta;
        we use a 5 terms etc. until the borders are no more concerned.     char digit[4];
     */     char digitp[25];
     for (mob=3;mob <=mobilavrange;mob=mob+2){  
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){    char fileresprobmorprev[FILENAMELENGTH];
         for (i=1; i<=nlstate;i++){  
           for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    if(popbased==1){
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];      if(mobilav!=0)
               for (cpt=1;cpt<=(mob-1)/2;cpt++){        strcpy(digitp,"-populbased-mobilav-");
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];      else strcpy(digitp,"-populbased-nomobil-");
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];    }
               }    else
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;      strcpy(digitp,"-stablbased-");
           }  
         }    if (mobilav!=0) {
       }/* end age */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }/* end mob */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   }else return -1;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   return 0;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 }/* End movingaverage */      }
     }
   
 /************** Forecasting ******************/    strcpy(fileresprobmorprev,"prmorprev");
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    sprintf(digit,"%-d",ij);
       /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   int *popage;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    strcat(fileresprobmorprev,fileres);
   double *popeffectif,*popcount;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   double ***p3mat;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   char fileresf[FILENAMELENGTH];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
  agelim=AGESUP;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;   
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    pstamp(ficresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   strcpy(fileresf,"f");     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   strcat(fileresf,fileres);      fprintf(ficresprobmorprev," p.%-d SE",j);
   if((ficresf=fopen(fileresf,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with forecast resultfile: %s\n", fileresf);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    }  
   }    fprintf(ficresprobmorprev,"\n");
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fprintf(ficgp,"\n# Routine varevsij");
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
   if (mobilav!=0) {    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    pstamp(ficresvij);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    if(popbased==1)
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     }    else
   }      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for(i=1; i<=nlstate;i++)
   if (stepm<=12) stepsize=1;      for(j=1; j<=nlstate;j++)
           fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   agelim=AGESUP;    fprintf(ficresvij,"\n");
     
   hstepm=1;    xp=vector(1,npar);
   hstepm=hstepm/stepm;     dnewm=matrix(1,nlstate,1,npar);
   yp1=modf(dateintmean,&yp);    doldm=matrix(1,nlstate,1,nlstate);
   anprojmean=yp;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   yp2=modf((yp1*12),&yp);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   jprojmean=yp;    gpp=vector(nlstate+1,nlstate+ndeath);
   if(jprojmean==0) jprojmean=1;    gmp=vector(nlstate+1,nlstate+ndeath);
   if(mprojmean==0) jprojmean=1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);     if(estepm < stepm){
         printf ("Problem %d lower than %d\n",estepm, stepm);
   for(cptcov=1;cptcov<=i2;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    else  hstepm=estepm;  
       k=k+1;    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficresf,"\n#******");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
       for(j=1;j<=cptcoveff;j++) {       nhstepm is the number of hstepm from age to agelim
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       nstepm is the number of stepm from age to agelin.
       }       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficresf,"******\n");       and note for a fixed period like k years */
       fprintf(ficresf,"# StartingAge FinalAge");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);       survival function given by stepm (the optimization length). Unfortunately it
              means that if the survival funtion is printed every two years of age and if
              you sum them up and add 1 year (area under the trapezoids) you won't get the same
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        results. So we changed our mind and took the option of the best precision.
         fprintf(ficresf,"\n");    */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);       hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     agelim = AGESUP;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
           nhstepm = nhstepm/hstepm;       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                 p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           oldm=oldms;savm=savms;      gp=matrix(0,nhstepm,1,nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        gm=matrix(0,nhstepm,1,nlstate);
           
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {      for(theta=1; theta <=npar; theta++){
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
             }           xp[i] = x[i] + (i==theta ?delti[theta]:0);
             for(j=1; j<=nlstate+ndeath;j++) {        }
               kk1=0.;kk2=0;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               for(i=1; i<=nlstate;i++) {                      prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 if (mobilav==1)   
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        if (popbased==1) {
                 else {          if(mobilav ==0){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            for(i=1; i<=nlstate;i++)
                 }              prlim[i][i]=probs[(int)age][i][ij];
                           }else{ /* mobilav */
               }            for(i=1; i<=nlstate;i++)
               if (h==(int)(calagedate+12*cpt)){              prlim[i][i]=mobaverage[(int)age][i][ij];
                 fprintf(ficresf," %.3f", kk1);          }
                                 }
               }   
             }        for(j=1; j<= nlstate; j++){
           }          for(h=0; h<=nhstepm; h++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       }          }
     }        }
   }        /* This for computing probability of death (h=1 means
                   computed over hstepm matrices product = hstepm*stepm months)
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           as a weighted average of prlim.
         */
   fclose(ficresf);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
 /************** Forecasting ******************/            gpp[j] += prlim[i][i]*p3mat[i][j][1];
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        }    
           /* end probability of death */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double *popeffectif,*popcount;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   double ***p3mat,***tabpop,***tabpopprev;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   char filerespop[FILENAMELENGTH];   
         if (popbased==1) {
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if(mobilav ==0){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1; i<=nlstate;i++)
   agelim=AGESUP;              prlim[i][i]=probs[(int)age][i][ij];
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          }else{ /* mobilav */
               for(i=1; i<=nlstate;i++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              prlim[i][i]=mobaverage[(int)age][i][ij];
             }
           }
   strcpy(filerespop,"pop");   
   strcat(filerespop,fileres);        for(j=1; j<= nlstate; j++){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          for(h=0; h<=nhstepm; h++){
     printf("Problem with forecast resultfile: %s\n", filerespop);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   }          }
   printf("Computing forecasting: result on file '%s' \n", filerespop);        }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;           as a weighted average of prlim.
         */
   if (mobilav!=0) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        }    
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        /* end probability of death */
     }  
   }        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   if (stepm<=12) stepsize=1;          }
     
   agelim=AGESUP;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   hstepm=1;        }
   hstepm=hstepm/stepm;   
         } /* End theta */
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       printf("Problem with population file : %s\n",popfile);exit(0);  
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);      for(h=0; h<=nhstepm; h++) /* veij */
     }         for(j=1; j<=nlstate;j++)
     popage=ivector(0,AGESUP);          for(theta=1; theta <=npar; theta++)
     popeffectif=vector(0,AGESUP);            trgradg[h][j][theta]=gradg[h][theta][j];
     popcount=vector(0,AGESUP);  
           for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     i=1;           for(theta=1; theta <=npar; theta++)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          trgradgp[j][theta]=gradgp[theta][j];
       
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
   for(cptcov=1;cptcov<=i2;cptcov++){          vareij[i][j][(int)age] =0.;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;      for(h=0;h<=nhstepm;h++){
       fprintf(ficrespop,"\n#******");        for(k=0;k<=nhstepm;k++){
       for(j=1;j<=cptcoveff;j++) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       }          for(i=1;i<=nlstate;i++)
       fprintf(ficrespop,"******\n");            for(j=1;j<=nlstate;j++)
       fprintf(ficrespop,"# Age");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        }
       if (popforecast==1)  fprintf(ficrespop," [Population]");      }
          
       for (cpt=0; cpt<=0;cpt++) {       /* pptj */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
               matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       for(j=nlstate+1;j<=nlstate+ndeath;j++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           nhstepm = nhstepm/hstepm;           varppt[j][i]=doldmp[j][i];
                 /* end ppptj */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*  x centered again */
           oldm=oldms;savm=savms;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
            
           for (h=0; h<=nhstepm; h++){      if (popbased==1) {
             if (h==(int) (calagedate+YEARM*cpt)) {        if(mobilav ==0){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          for(i=1; i<=nlstate;i++)
             }             prlim[i][i]=probs[(int)age][i][ij];
             for(j=1; j<=nlstate+ndeath;j++) {        }else{ /* mobilav */
               kk1=0.;kk2=0;          for(i=1; i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                          prlim[i][i]=mobaverage[(int)age][i][ij];
                 if (mobilav==1)         }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      }
                 else {               
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      /* This for computing probability of death (h=1 means
                 }         computed over hstepm (estepm) matrices product = hstepm*stepm months)
               }         as a weighted average of prlim.
               if (h==(int)(calagedate+12*cpt)){      */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   /*fprintf(ficrespop," %.3f", kk1);        for(i=1,gmp[j]=0.;i<= nlstate; i++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          gmp[j] += prlim[i][i]*p3mat[i][j][1];
               }      }    
             }      /* end probability of death */
             for(i=1; i<=nlstate;i++){  
               kk1=0.;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                 for(j=1; j<=nlstate;j++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                 }        for(i=1; i<=nlstate;i++){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
             }        }
       }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)       fprintf(ficresprobmorprev,"\n");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }      fprintf(ficresvij,"%.0f ",age );
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++){
       }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
   /******/      fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {       free_matrix(gm,0,nhstepm,1,nlstate);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           nhstepm = nhstepm/hstepm;     } /* End age */
               free_vector(gpp,nlstate+1,nlstate+ndeath);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_vector(gmp,nlstate+1,nlstate+ndeath);
           oldm=oldms;savm=savms;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           for (h=0; h<=nhstepm; h++){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
             if (h==(int) (calagedate+YEARM*cpt)) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
             }   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
             for(j=1; j<=nlstate+ndeath;j++) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
               kk1=0.;kk2=0;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
               for(i=1; i<=nlstate;i++) {                  fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
               }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
             }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  */
         }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    }   
   }    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,nlstate);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if (popforecast==1) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_ivector(popage,0,AGESUP);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_vector(popeffectif,0,AGESUP);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_vector(popcount,0,AGESUP);    fclose(ficresprobmorprev);
   }    fflush(ficgp);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fflush(fichtm);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }  /* end varevsij */
   fclose(ficrespop);  
 }  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 /***********************************************/  {
 /**************** Main Program *****************/    /* Variance of prevalence limit */
 /***********************************************/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
 int main(int argc, char *argv[])    double **dnewm,**doldm;
 {    int i, j, nhstepm, hstepm;
     int k, cptcode;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    double *xp;
   double agedeb, agefin,hf;    double *gp, *gm;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    double **gradg, **trgradg;
     double age,agelim;
   double fret;    int theta;
   double **xi,tmp,delta;   
     pstamp(ficresvpl);
   double dum; /* Dummy variable */    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   double ***p3mat;    fprintf(ficresvpl,"# Age");
   double ***mobaverage;    for(i=1; i<=nlstate;i++)
   int *indx;        fprintf(ficresvpl," %1d-%1d",i,i);
   char line[MAXLINE], linepar[MAXLINE];    fprintf(ficresvpl,"\n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];  
   int firstobs=1, lastobs=10;    xp=vector(1,npar);
   int sdeb, sfin; /* Status at beginning and end */    dnewm=matrix(1,nlstate,1,npar);
   int c,  h , cpt,l;    doldm=matrix(1,nlstate,1,nlstate);
   int ju,jl, mi;   
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    hstepm=1*YEARM; /* Every year of age */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
   int mobilav=0,popforecast=0;    agelim = AGESUP;
   int hstepm, nhstepm;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       if (stepm >= YEARM) hstepm=1;
   double bage, fage, age, agelim, agebase;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   double ftolpl=FTOL;      gradg=matrix(1,npar,1,nlstate);
   double **prlim;      gp=vector(1,nlstate);
   double *severity;      gm=vector(1,nlstate);
   double ***param; /* Matrix of parameters */  
   double  *p;      for(theta=1; theta <=npar; theta++){
   double **matcov; /* Matrix of covariance */        for(i=1; i<=npar; i++){ /* Computes gradient */
   double ***delti3; /* Scale */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double *delti; /* Scale */        }
   double ***eij, ***vareij;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double **varpl; /* Variances of prevalence limits by age */        for(i=1;i<=nlstate;i++)
   double *epj, vepp;          gp[i] = prlim[i][i];
   double kk1, kk2;     
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        for(i=1; i<=npar; i++) /* Computes gradient */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
   char z[1]="c", occ;        for(i=1;i<=nlstate;i++)
 #include <sys/time.h>          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 #include <time.h>      } /* End theta */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
        trgradg =matrix(1,nlstate,1,npar);
   /* long total_usecs;  
   struct timeval start_time, end_time;      for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          trgradg[j][theta]=gradg[theta][j];
   getcwd(pathcd, size);  
       for(i=1;i<=nlstate;i++)
   printf("\n%s",version);        varpl[i][(int)age] =0.;
   if(argc <=1){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     printf("\nEnter the parameter file name: ");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     scanf("%s",pathtot);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   else{  
     strcpy(pathtot,argv[1]);      fprintf(ficresvpl,"%.0f ",age );
   }      for(i=1; i<=nlstate;i++)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   /*cygwin_split_path(pathtot,path,optionfile);      fprintf(ficresvpl,"\n");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      free_vector(gp,1,nlstate);
   /* cutv(path,optionfile,pathtot,'\\');*/      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      free_matrix(trgradg,1,nlstate,1,npar);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    } /* End age */
   chdir(path);  
   replace(pathc,path);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
 /*-------- arguments in the command line --------*/    free_matrix(dnewm,1,nlstate,1,nlstate);
   
   /* Log file */  }
   strcat(filelog, optionfilefiname);  
   strcat(filelog,".log");    /* */  /************ Variance of one-step probabilities  ******************/
   if((ficlog=fopen(filelog,"w"))==NULL)    {  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     printf("Problem with logfile %s\n",filelog);  {
     goto end;    int i, j=0,  i1, k1, l1, t, tj;
   }    int k2, l2, j1,  z1;
   fprintf(ficlog,"Log filename:%s\n",filelog);    int k=0,l, cptcode;
   fprintf(ficlog,"\n%s",version);    int first=1, first1;
   fprintf(ficlog,"\nEnter the parameter file name: ");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double **dnewm,**doldm;
   fflush(ficlog);    double *xp;
     double *gp, *gm;
   /* */    double **gradg, **trgradg;
   strcpy(fileres,"r");    double **mu;
   strcat(fileres, optionfilefiname);    double age,agelim, cov[NCOVMAX];
   strcat(fileres,".txt");    /* Other files have txt extension */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
   /*---------arguments file --------*/    char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    char fileresprobcor[FILENAMELENGTH];
     printf("Problem with optionfile %s\n",optionfile);  
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    double ***varpij;
     goto end;  
   }    strcpy(fileresprob,"prob");
     strcat(fileresprob,fileres);
   strcpy(filereso,"o");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   strcat(filereso,fileres);      printf("Problem with resultfile: %s\n", fileresprob);
   if((ficparo=fopen(filereso,"w"))==NULL) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     printf("Problem with Output resultfile: %s\n", filereso);    }
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    strcpy(fileresprobcov,"probcov");
     goto end;    strcat(fileresprobcov,fileres);
   }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
   /* Reads comments: lines beginning with '#' */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    strcpy(fileresprobcor,"probcor");
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobcor,fileres);
     puts(line);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     fputs(line,ficparo);      printf("Problem with resultfile: %s\n", fileresprobcor);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   ungetc(c,ficpar);    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 while((c=getc(ficpar))=='#' && c!= EOF){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     ungetc(c,ficpar);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fgets(line, MAXLINE, ficpar);    pstamp(ficresprob);
     puts(line);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fputs(line,ficparo);    fprintf(ficresprob,"# Age");
   }    pstamp(ficresprobcov);
   ungetc(c,ficpar);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       fprintf(ficresprobcov,"# Age");
        pstamp(ficresprobcor);
   covar=matrix(0,NCOVMAX,1,n);     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   cptcovn=0;     fprintf(ficresprobcor,"# Age");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
   
   ncovmodel=2+cptcovn;    for(i=1; i<=nlstate;i++)
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      for(j=1; j<=(nlstate+ndeath);j++){
           fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   /* Read guess parameters */        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   /* Reads comments: lines beginning with '#' */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){      }  
     ungetc(c,ficpar);   /* fprintf(ficresprob,"\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobcov,"\n");
     puts(line);    fprintf(ficresprobcor,"\n");
     fputs(line,ficparo);   */
   }   xp=vector(1,npar);
   ungetc(c,ficpar);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     for(i=1; i <=nlstate; i++)    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     for(j=1; j <=nlstate+ndeath-1; j++){    first=1;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficgp,"\n# Routine varprob");
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       if(mle==1)    fprintf(fichtm,"\n");
         printf("%1d%1d",i,j);  
       fprintf(ficlog,"%1d%1d",i,j);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       for(k=1; k<=ncovmodel;k++){    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         fscanf(ficpar," %lf",&param[i][j][k]);    file %s<br>\n",optionfilehtmcov);
         if(mle==1){    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
           printf(" %lf",param[i][j][k]);  and drawn. It helps understanding how is the covariance between two incidences.\
           fprintf(ficlog," %lf",param[i][j][k]);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         else  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
           fprintf(ficlog," %lf",param[i][j][k]);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         fprintf(ficparo," %lf",param[i][j][k]);  standard deviations wide on each axis. <br>\
       }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       fscanf(ficpar,"\n");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       if(mle==1)  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         printf("\n");  
       fprintf(ficlog,"\n");    cov[1]=1;
       fprintf(ficparo,"\n");    tj=cptcoveff;
     }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       j1=0;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){
   p=param[1][1];        j1++;
           if  (cptcovn>0) {
   /* Reads comments: lines beginning with '#' */          fprintf(ficresprob, "\n#********** Variable ");
   while((c=getc(ficpar))=='#' && c!= EOF){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ungetc(c,ficpar);          fprintf(ficresprob, "**********\n#\n");
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprobcov, "\n#********** Variable ");
     puts(line);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fputs(line,ficparo);          fprintf(ficresprobcov, "**********\n#\n");
   }         
   ungetc(c,ficpar);          fprintf(ficgp, "\n#********** Variable ");
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          fprintf(ficgp, "**********\n#\n");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */         
   for(i=1; i <=nlstate; i++){         
     for(j=1; j <=nlstate+ndeath-1; j++){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("%1d%1d",i,j);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficparo,"%1d%1d",i1,j1);         
       for(k=1; k<=ncovmodel;k++){          fprintf(ficresprobcor, "\n#********** Variable ");    
         fscanf(ficpar,"%le",&delti3[i][j][k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         printf(" %le",delti3[i][j][k]);          fprintf(ficresprobcor, "**********\n#");    
         fprintf(ficparo," %le",delti3[i][j][k]);        }
       }       
       fscanf(ficpar,"\n");        for (age=bage; age<=fage; age ++){
       printf("\n");          cov[2]=age;
       fprintf(ficparo,"\n");          for (k=1; k<=cptcovn;k++) {
     }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   }          }
   delti=delti3[1][1];          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             for (k=1; k<=cptcovprod;k++)
   /* Reads comments: lines beginning with '#' */            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   while((c=getc(ficpar))=='#' && c!= EOF){         
     ungetc(c,ficpar);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     fgets(line, MAXLINE, ficpar);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     puts(line);          gp=vector(1,(nlstate)*(nlstate+ndeath));
     fputs(line,ficparo);          gm=vector(1,(nlstate)*(nlstate+ndeath));
   }     
   ungetc(c,ficpar);          for(theta=1; theta <=npar; theta++){
               for(i=1; i<=npar; i++)
   matcov=matrix(1,npar,1,npar);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   for(i=1; i <=npar; i++){           
     fscanf(ficpar,"%s",&str);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     if(mle==1)           
       printf("%s",str);            k=0;
     fprintf(ficlog,"%s",str);            for(i=1; i<= (nlstate); i++){
     fprintf(ficparo,"%s",str);              for(j=1; j<=(nlstate+ndeath);j++){
     for(j=1; j <=i; j++){                k=k+1;
       fscanf(ficpar," %le",&matcov[i][j]);                gp[k]=pmmij[i][j];
       if(mle==1){              }
         printf(" %.5le",matcov[i][j]);            }
         fprintf(ficlog," %.5le",matcov[i][j]);           
       }            for(i=1; i<=npar; i++)
       else              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         fprintf(ficlog," %.5le",matcov[i][j]);     
       fprintf(ficparo," %.5le",matcov[i][j]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     }            k=0;
     fscanf(ficpar,"\n");            for(i=1; i<=(nlstate); i++){
     if(mle==1)              for(j=1; j<=(nlstate+ndeath);j++){
       printf("\n");                k=k+1;
     fprintf(ficlog,"\n");                gm[k]=pmmij[i][j];
     fprintf(ficparo,"\n");              }
   }            }
   for(i=1; i <=npar; i++)       
     for(j=i+1;j<=npar;j++)            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
       matcov[i][j]=matcov[j][i];              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
              }
   if(mle==1)  
     printf("\n");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   fprintf(ficlog,"\n");            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
          
     /*-------- Rewriting paramater file ----------*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
      strcpy(rfileres,"r");    /* "Rparameterfile */          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
      strcat(rfileres,".");    /* */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     if((ficres =fopen(rfileres,"w"))==NULL) {          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          pmij(pmmij,cov,ncovmodel,x,nlstate);
     }         
     fprintf(ficres,"#%s\n",version);          k=0;
               for(i=1; i<=(nlstate); i++){
     /*-------- data file ----------*/            for(j=1; j<=(nlstate+ndeath);j++){
     if((fic=fopen(datafile,"r"))==NULL)    {              k=k+1;
       printf("Problem with datafile: %s\n", datafile);goto end;              mu[k][(int) age]=pmmij[i][j];
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;            }
     }          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     n= lastobs;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     severity = vector(1,maxwav);              varpij[i][j][(int)age] = doldm[i][j];
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);          /*printf("\n%d ",(int)age);
     moisnais=vector(1,n);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     annais=vector(1,n);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     moisdc=vector(1,n);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     andc=vector(1,n);            }*/
     agedc=vector(1,n);  
     cod=ivector(1,n);          fprintf(ficresprob,"\n%d ",(int)age);
     weight=vector(1,n);          fprintf(ficresprobcov,"\n%d ",(int)age);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          fprintf(ficresprobcor,"\n%d ",(int)age);
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     s=imatrix(1,maxwav+1,1,n);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     adl=imatrix(1,maxwav+1,1,n);              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     tab=ivector(1,NCOVMAX);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     ncodemax=ivector(1,8);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
     i=1;          i=0;
     while (fgets(line, MAXLINE, fic) != NULL)    {          for (k=1; k<=(nlstate);k++){
       if ((i >= firstobs) && (i <=lastobs)) {            for (l=1; l<=(nlstate+ndeath);l++){
                       i=i++;
         for (j=maxwav;j>=1;j--){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           strcpy(line,stra);              for (j=1; j<=i;j++){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         }              }
                     }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          }/* end of loop for state */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        } /* end of loop for age */
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        /* Confidence intervalle of pij  */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        /*
           fprintf(ficgp,"\nset noparametric;unset label");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         for (j=ncovcol;j>=1;j--){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         }           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         num[i]=atol(stra);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                   fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         i=i+1;        first1=1;
       }        for (k2=1; k2<=(nlstate);k2++){
     }           for (l2=1; l2<=(nlstate+ndeath);l2++){
     /* printf("ii=%d", ij);            if(l2==k2) continue;
        scanf("%d",i);*/            j=(k2-1)*(nlstate+ndeath)+l2;
   imx=i-1; /* Number of individuals */            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){
   /* for (i=1; i<=imx; i++){                if(l1==k1) continue;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                i=(k1-1)*(nlstate+ndeath)+l1;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                if(i<=j) continue;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                for (age=bage; age<=fage; age ++){
     }*/                  if ((int)age %5==0){
    /*  for (i=1; i<=imx; i++){                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
      if (s[4][i]==9)  s[4][i]=-1;                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                       mu1=mu[i][(int) age]/stepm*YEARM ;
                      mu2=mu[j][(int) age]/stepm*YEARM;
   /* Calculation of the number of parameter from char model*/                    c12=cv12/sqrt(v1*v2);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                    /* Computing eigen value of matrix of covariance */
   Tprod=ivector(1,15);                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   Tvaraff=ivector(1,15);                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   Tvard=imatrix(1,15,1,2);                    /* Eigen vectors */
   Tage=ivector(1,15);                          v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                        /*v21=sqrt(1.-v11*v11); *//* error */
   if (strlen(model) >1){                    v21=(lc1-v1)/cv12*v11;
     j=0, j1=0, k1=1, k2=1;                    v12=-v21;
     j=nbocc(model,'+');                    v22=v11;
     j1=nbocc(model,'*');                    tnalp=v21/v11;
     cptcovn=j+1;                    if(first1==1){
     cptcovprod=j1;                      first1=0;
                           printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     strcpy(modelsav,model);                     }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       printf("Error. Non available option model=%s ",model);                    /*printf(fignu*/
       fprintf(ficlog,"Error. Non available option model=%s ",model);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       goto end;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     }                    if(first==1){
                           first=0;
     for(i=(j+1); i>=1;i--){                      fprintf(ficgp,"\nset parametric;unset label");
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       /*scanf("%d",i);*/   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       if (strchr(strb,'*')) {  /* Model includes a product */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         if (strcmp(strc,"age")==0) { /* Vn*age */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           cptcovprod--;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           cutv(strb,stre,strd,'V');                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           cptcovage++;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
             Tage[cptcovage]=i;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             /*printf("stre=%s ", stre);*/                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         else if (strcmp(strd,"age")==0) { /* or age*Vn */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           cptcovprod--;                    }else{
           cutv(strb,stre,strc,'V');                      first=0;
           Tvar[i]=atoi(stre);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
           cptcovage++;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           Tage[cptcovage]=i;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         else {  /* Age is not in the model */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           Tvar[i]=ncovcol+k1;                    }/* if first */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */                  } /* age mod 5 */
           Tprod[k1]=i;                } /* end loop age */
           Tvard[k1][1]=atoi(strc); /* m*/                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           Tvard[k1][2]=atoi(stre); /* n */                first=1;
           Tvar[cptcovn+k2]=Tvard[k1][1];              } /*l12 */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];             } /* k12 */
           for (k=1; k<=lastobs;k++)           } /*l1 */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        }/* k1 */
           k1++;      } /* loop covariates */
           k2=k2+2;    }
         }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       else { /* no more sum */    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
        /*  scanf("%d",i);*/    free_vector(xp,1,npar);
       cutv(strd,strc,strb,'V');    fclose(ficresprob);
       Tvar[i]=atoi(strc);    fclose(ficresprobcov);
       }    fclose(ficresprobcor);
       strcpy(modelsav,stra);      fflush(ficgp);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fflush(fichtmcov);
         scanf("%d",i);*/  }
     } /* end of loop + */  
   } /* end model */  
     /******************* Printing html file ***********/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   printf("cptcovprod=%d ", cptcovprod);                    int lastpass, int stepm, int weightopt, char model[],\
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   scanf("%d ",i);*/                    int popforecast, int estepm ,\
     fclose(fic);                    double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     /*  if(mle==1){*/    int jj1, k1, i1, cpt;
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     /*-calculation of age at interview from date of interview and age at death -*/  </ul>");
     agev=matrix(1,maxwav,1,imx);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     for (i=1; i<=imx; i++) {             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       for(m=2; (m<= maxwav); m++) {     fprintf(fichtm,"\
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
          anint[m][i]=9999;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
          s[m][i]=-1;     fprintf(fichtm,"\
        }   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       }     fprintf(fichtm,"\
     }   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
     for (i=1; i<=imx; i++)  {             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);     fprintf(fichtm,"\
       for(m=1; (m<= maxwav); m++){   - Population projections by age and states: \
         if(s[m][i] >0){     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];   m=cptcoveff;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
            else {  
               if (andc[i]!=9999){   jj1=0;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);   for(k1=1; k1<=m;k1++){
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);     for(i1=1; i1<=ncodemax[k1];i1++){
               agev[m][i]=-1;       jj1++;
               }       if (cptcovn > 0) {
             }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           }         for (cpt=1; cpt<=cptcoveff;cpt++)
           else if(s[m][i] !=9){ /* Should no more exist */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
             if(mint[m][i]==99 || anint[m][i]==9999)       }
               agev[m][i]=1;       /* Pij */
             else if(agev[m][i] <agemin){        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
               agemin=agev[m][i];  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/       /* Quasi-incidences */
             }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
             else if(agev[m][i] >agemax){   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
               agemax=agev[m][i];  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/         /* Period (stable) prevalence in each health state */
             }         for(cpt=1; cpt<nlstate;cpt++){
             /*agev[m][i]=anint[m][i]-annais[i];*/           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
             /*   agev[m][i] = age[i]+2*m;*/  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           }         }
           else { /* =9 */       for(cpt=1; cpt<=nlstate;cpt++) {
             agev[m][i]=1;          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
             s[m][i]=-1;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
           }       }
         }     } /* end i1 */
         else /*= 0 Unknown */   }/* End k1 */
           agev[m][i]=1;   fprintf(fichtm,"</ul>");
       }  
       
     }   fprintf(fichtm,"\
     for (i=1; i<=imx; i++)  {  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       for(m=1; (m<= maxwav); m++){   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
           goto end;   fprintf(fichtm,"\
         }   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     }  
    fprintf(fichtm,"\
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
     free_vector(severity,1,maxwav);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     free_imatrix(outcome,1,maxwav+1,1,n);     <a href=\"%s\">%s</a> <br>\n</li>",
     free_vector(moisnais,1,n);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     free_vector(annais,1,n);   fprintf(fichtm,"\
     /* free_matrix(mint,1,maxwav,1,n);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
        free_matrix(anint,1,maxwav,1,n);*/     <a href=\"%s\">%s</a> <br>\n</li>",
     free_vector(moisdc,1,n);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
     free_vector(andc,1,n);   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
               estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     wav=ivector(1,imx);   fprintf(fichtm,"\
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
     mw=imatrix(1,lastpass-firstpass+1,1,imx);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       fprintf(fichtm,"\
     /* Concatenates waves */   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
       Tcode=ivector(1,100);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       ncodemax[1]=1;  /*      <br>",fileres,fileres,fileres,fileres); */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  /*  else  */
         /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    codtab=imatrix(1,100,1,10);   fflush(fichtm);
    h=0;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
    m=pow(2,cptcoveff);  
     m=cptcoveff;
    for(k=1;k<=cptcoveff; k++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){   jj1=0;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   for(k1=1; k1<=m;k1++){
            h++;     for(i1=1; i1<=ncodemax[k1];i1++){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;       jj1++;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/       if (cptcovn > 0) {
          }          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        }         for (cpt=1; cpt<=cptcoveff;cpt++)
      }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    }          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        }
       codtab[1][2]=1;codtab[2][2]=2; */       for(cpt=1; cpt<=nlstate;cpt++) {
    /* for(i=1; i <=m ;i++){          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       for(k=1; k <=cptcovn; k++){  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       }       }
       printf("\n");       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       }  health expectancies in states (1) and (2): %s%d.png<br>\
       scanf("%d",i);*/  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
          } /* end i1 */
    /* Calculates basic frequencies. Computes observed prevalence at single age   }/* End k1 */
        and prints on file fileres'p'. */   fprintf(fichtm,"</ul>");
    fflush(fichtm);
       }
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /******************* Gnuplot file **************/
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char dirfileres[132],optfileres[132];
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
          int ng;
     /* For Powell, parameters are in a vector p[] starting at p[1]  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  /*     printf("Problem with file %s",optionfilegnuplot); */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
     if(mle==1){  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    /*#ifdef windows */
     }    fprintf(ficgp,"cd \"%s\" \n",pathc);
           /*#endif */
     /*--------- results files --------------*/    m=pow(2,cptcoveff);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
       strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    jk=1;   /* 1eme*/
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    for (cpt=1; cpt<= nlstate ; cpt ++) {
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     for (k1=1; k1<= m ; k1 ++) {
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
    for(i=1,jk=1; i <=nlstate; i++){       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
      for(k=1; k <=(nlstate+ndeath); k++){       fprintf(ficgp,"set xlabel \"Age\" \n\
        if (k != i)   set ylabel \"Probability\" \n\
          {  set ter png small\n\
            printf("%d%d ",i,k);  set size 0.65,0.65\n\
            fprintf(ficlog,"%d%d ",i,k);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){       for (i=1; i<= nlstate ; i ++) {
              printf("%f ",p[jk]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
              fprintf(ficlog,"%f ",p[jk]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
              fprintf(ficres,"%f ",p[jk]);       }
              jk++;        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
            }       for (i=1; i<= nlstate ; i ++) {
            printf("\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
            fprintf(ficlog,"\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
            fprintf(ficres,"\n");       }
          }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
      }       for (i=1; i<= nlstate ; i ++) {
    }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
    if(mle==1){         else fprintf(ficgp," \%%*lf (\%%*lf)");
      /* Computing hessian and covariance matrix */       }  
      ftolhess=ftol; /* Usually correct */       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      hesscov(matcov, p, npar, delti, ftolhess, func);     }
    }    }
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    /*2 eme*/
    printf("# Scales (for hessian or gradient estimation)\n");   
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    for (k1=1; k1<= m ; k1 ++) {
    for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
      for(j=1; j <=nlstate+ndeath; j++){      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
        if (j!=i) {     
          fprintf(ficres,"%1d%1d",i,j);      for (i=1; i<= nlstate+1 ; i ++) {
          printf("%1d%1d",i,j);        k=2*i;
          fprintf(ficlog,"%1d%1d",i,j);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          for(k=1; k<=ncovmodel;k++){        for (j=1; j<= nlstate+1 ; j ++) {
            printf(" %.5e",delti[jk]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            fprintf(ficlog," %.5e",delti[jk]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
            fprintf(ficres," %.5e",delti[jk]);        }  
            jk++;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
          }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
          printf("\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          fprintf(ficlog,"\n");        for (j=1; j<= nlstate+1 ; j ++) {
          fprintf(ficres,"\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
        }          else fprintf(ficgp," \%%*lf (\%%*lf)");
      }        }  
    }        fprintf(ficgp,"\" t\"\" w l 0,");
            fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
    k=1;        for (j=1; j<= nlstate+1 ; j ++) {
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
    if(mle==1)          else fprintf(ficgp," \%%*lf (\%%*lf)");
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        }  
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
    for(i=1;i<=npar;i++){        else fprintf(ficgp,"\" t\"\" w l 0,");
      /*  if (k>nlstate) k=1;      }
          i1=(i-1)/(ncovmodel*nlstate)+1;     }
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   
          printf("%s%d%d",alph[k],i1,tab[i]);*/    /*3eme*/
      fprintf(ficres,"%3d",i);   
      if(mle==1)    for (k1=1; k1<= m ; k1 ++) {
        printf("%3d",i);      for (cpt=1; cpt<= nlstate ; cpt ++) {
      fprintf(ficlog,"%3d",i);        /*       k=2+nlstate*(2*cpt-2); */
      for(j=1; j<=i;j++){        k=2+(nlstate+1)*(cpt-1);
        fprintf(ficres," %.5e",matcov[i][j]);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
        if(mle==1)        fprintf(ficgp,"set ter png small\n\
          printf(" %.5e",matcov[i][j]);  set size 0.65,0.65\n\
        fprintf(ficlog," %.5e",matcov[i][j]);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
      }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
      fprintf(ficres,"\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
      if(mle==1)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
        printf("\n");          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
      fprintf(ficlog,"\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
      k++;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
    }         
            */
    while((c=getc(ficpar))=='#' && c!= EOF){        for (i=1; i< nlstate ; i ++) {
      ungetc(c,ficpar);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
      fgets(line, MAXLINE, ficpar);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
      puts(line);         
      fputs(line,ficparo);        }
    }        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
    ungetc(c,ficpar);      }
    estepm=0;    }
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   
    if (estepm==0 || estepm < stepm) estepm=stepm;    /* CV preval stable (period) */
    if (fage <= 2) {    for (k1=1; k1<= m ; k1 ++) {
      bage = ageminpar;      for (cpt=1; cpt<=nlstate ; cpt ++) {
      fage = agemaxpar;        k=3;
    }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
            fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  set ter png small\nset size 0.65,0.65\n\
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  unset log y\n\
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
           
    while((c=getc(ficpar))=='#' && c!= EOF){        for (i=1; i< nlstate ; i ++)
      ungetc(c,ficpar);          fprintf(ficgp,"+$%d",k+i+1);
      fgets(line, MAXLINE, ficpar);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
      puts(line);       
      fputs(line,ficparo);        l=3+(nlstate+ndeath)*cpt;
    }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
    ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++) {
             l=3+(nlstate+ndeath)*cpt;
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);          fprintf(ficgp,"+$%d",l+i+1);
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,&mobilav);        }
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,&mobilav);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
          }
    while((c=getc(ficpar))=='#' && c!= EOF){    }  
      ungetc(c,ficpar);   
      fgets(line, MAXLINE, ficpar);    /* proba elementaires */
      puts(line);    for(i=1,jk=1; i <=nlstate; i++){
      fputs(line,ficparo);      for(k=1; k <=(nlstate+ndeath); k++){
    }        if (k != i) {
    ungetc(c,ficpar);          for(j=1; j <=ncovmodel; j++){
              fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            fprintf(ficgp,"\n");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          }
         }
   fscanf(ficpar,"pop_based=%d\n",&popbased);      }
   fprintf(ficparo,"pop_based=%d\n",popbased);        }
   fprintf(ficres,"pop_based=%d\n",popbased);     
        for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   while((c=getc(ficpar))=='#' && c!= EOF){       for(jk=1; jk <=m; jk++) {
     ungetc(c,ficpar);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
     fgets(line, MAXLINE, ficpar);         if (ng==2)
     puts(line);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     fputs(line,ficparo);         else
   }           fprintf(ficgp,"\nset title \"Probability\"\n");
   ungetc(c,ficpar);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);         for(k2=1; k2<=nlstate; k2++) {
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);           k3=i;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);           for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
 while((c=getc(ficpar))=='#' && c!= EOF){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     ungetc(c,ficpar);               else
     fgets(line, MAXLINE, ficpar);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     puts(line);               ij=1;
     fputs(line,ficparo);               for(j=3; j <=ncovmodel; j++) {
   }                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   ungetc(c,ficpar);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                 }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                 else
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);               fprintf(ficgp,")/(1");
 /*------------ gnuplot -------------*/               
  strcpy(optionfilegnuplot,optionfilefiname);               for(k1=1; k1 <=nlstate; k1++){  
  strcat(optionfilegnuplot,".gp");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
  if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                 ij=1;
    printf("Problem with file %s",optionfilegnuplot);                 for(j=3; j <=ncovmodel; j++){
  }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
  else{                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
    fprintf(ficgp,"\n# %s\n", version);                      ij++;
    fprintf(ficgp,"# %s\n", optionfilegnuplot);                    }
    fprintf(ficgp,"set missing 'NaNq'\n");                   else
 }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  fclose(ficgp);                 }
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                 fprintf(ficgp,")");
 /*--------- index.htm --------*/               }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   strcpy(optionfilehtm,optionfile);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   strcat(optionfilehtm,".htm");               i=i+ncovmodel;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {             }
     printf("Problem with %s \n",optionfilehtm), exit(0);           } /* end k */
   }         } /* end k2 */
        } /* end jk */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n     } /* end ng */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n     fflush(ficgp);
 \n  }  /* end gnuplot */
 Total number of observations=%d <br>\n  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  
 <hr  size=\"2\" color=\"#EC5E5E\">  /*************** Moving average **************/
  <ul><li><h4>Parameter files</h4>\n  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    int i, cpt, cptcod;
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    int modcovmax =1;
   fclose(fichtm);    int mobilavrange, mob;
     double age;
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  
      modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
 /*------------ free_vector  -------------*/                             a covariate has 2 modalities */
  chdir(path);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
    
  free_ivector(wav,1,imx);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      if(mobilav==1) mobilavrange=5; /* default */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         else mobilavrange=mobilav;
  free_ivector(num,1,n);      for (age=bage; age<=fage; age++)
  free_vector(agedc,1,n);        for (i=1; i<=nlstate;i++)
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          for (cptcod=1;cptcod<=modcovmax;cptcod++)
  fclose(ficparo);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
  fclose(ficres);      /* We keep the original values on the extreme ages bage, fage and for
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned.
   /*--------------- Prevalence limit  (stable prevalence) --------------*/      */
         for (mob=3;mob <=mobilavrange;mob=mob+2){
   strcpy(filerespl,"pl");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   strcat(filerespl,fileres);          for (i=1; i<=nlstate;i++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);                }
   fprintf(ficrespl,"#Stable prevalence \n");              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   fprintf(ficrespl,"#Age ");            }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          }
   fprintf(ficrespl,"\n");        }/* end age */
         }/* end mob */
   prlim=matrix(1,nlstate,1,nlstate);    }else return -1;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    return 0;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }/* End movingaverage */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  /************** Forecasting ******************/
   k=0;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   agebase=ageminpar;    /* proj1, year, month, day of starting projection
   agelim=agemaxpar;       agemin, agemax range of age
   ftolpl=1.e-10;       dateprev1 dateprev2 range of dates during which prevalence is computed
   i1=cptcoveff;       anproj2 year of en of projection (same day and month as proj1).
   if (cptcovn < 1){i1=1;}    */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   for(cptcov=1;cptcov<=i1;cptcov++){    int *popage;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double agec; /* generic age */
         k=k+1;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    double *popeffectif,*popcount;
         fprintf(ficrespl,"\n#******");    double ***p3mat;
         printf("\n#******");    double ***mobaverage;
         fprintf(ficlog,"\n#******");    char fileresf[FILENAMELENGTH];
         for(j=1;j<=cptcoveff;j++) {  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    agelim=AGESUP;
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
         }    strcpy(fileresf,"f");
         fprintf(ficrespl,"******\n");    strcat(fileresf,fileres);
         printf("******\n");    if((ficresf=fopen(fileresf,"w"))==NULL) {
         fprintf(ficlog,"******\n");      printf("Problem with forecast resultfile: %s\n", fileresf);
               fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         for (age=agebase; age<=agelim; age++){    }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    printf("Computing forecasting: result on file '%s' \n", fileresf);
           fprintf(ficrespl,"%.0f",age );    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           fprintf(ficrespl,"\n");  
         }    if (mobilav!=0) {
       }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   fclose(ficrespl);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /*------------- h Pij x at various ages ------------*/      }
       }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    stepsize=(int) (stepm+YEARM-1)/YEARM;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    if (stepm<=12) stepsize=1;
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
   printf("Computing pij: result on file '%s' \n", filerespij);    }
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    else  hstepm=estepm;  
     
   stepsize=(int) (stepm+YEARM-1)/YEARM;    hstepm=hstepm/stepm;
   /*if (stepm<=24) stepsize=2;*/    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
   agelim=AGESUP;    anprojmean=yp;
   hstepm=stepsize*YEARM; /* Every year of age */    yp2=modf((yp1*12),&yp);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
   /* hstepm=1;   aff par mois*/    jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
   k=0;    if(mprojmean==0) jprojmean=1;
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    i1=cptcoveff;
       k=k+1;    if (cptcovn < 1){i1=1;}
         fprintf(ficrespij,"\n#****** ");   
         for(j=1;j<=cptcoveff;j++)     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
         fprintf(ficrespij,"******\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  /*            if (h==(int)(YEARM*yearp)){ */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
           /*      nhstepm=nhstepm*YEARM; aff par mois*/        fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficresf,"******\n");
           fprintf(ficrespij,"# Age");        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
           for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate+ndeath;j++){
             for(j=1; j<=nlstate+ndeath;j++)          for(i=1; i<=nlstate;i++)              
               fprintf(ficrespij," %1d-%1d",i,j);            fprintf(ficresf," p%d%d",i,j);
           fprintf(ficrespij,"\n");          fprintf(ficresf," p.%d",j);
            for (h=0; h<=nhstepm; h++){        }
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
             for(i=1; i<=nlstate;i++)          fprintf(ficresf,"\n");
               for(j=1; j<=nlstate+ndeath;j++)          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");          for (agec=fage; agec>=(ageminpar-1); agec--){
              }            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            nhstepm = nhstepm/hstepm;
           fprintf(ficrespij,"\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }            oldm=oldms;savm=savms;
     }            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   }         
             for (h=0; h<=nhstepm; h++){
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);              if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
   fclose(ficrespij);                for(j=1;j<=cptcoveff;j++)
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   /*---------- Forecasting ------------------*/              }
   if((stepm == 1) && (strcmp(model,".")==0)){              for(j=1; j<=nlstate+ndeath;j++) {
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                ppij=0.;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                for(i=1; i<=nlstate;i++) {
   }                   if (mobilav==1)
   else{                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     erreur=108;                  else {
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                  }
   }                  if (h*hstepm/YEARM*stepm== yearp) {
                       fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
   /*---------- Health expectancies and variances ------------*/                } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
   strcpy(filerest,"t");                  fprintf(ficresf," %.3f", ppij);
   strcat(filerest,fileres);                }
   if((ficrest=fopen(filerest,"w"))==NULL) {              }/* end j */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            } /* end h */
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }          } /* end agec */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);         } /* end yearp */
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);       } /* end cptcod */
     } /* end  cptcov */
          
   strcpy(filerese,"e");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {    fclose(ficresf);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  }
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }  /************** Forecasting *****not tested NB*************/
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);   
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   strcpy(fileresv,"v");    int *popage;
   strcat(fileresv,fileres);    double calagedatem, agelim, kk1, kk2;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    double *popeffectif,*popcount;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double ***p3mat,***tabpop,***tabpopprev;
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    double ***mobaverage;
   }    char filerespop[FILENAMELENGTH];
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   calagedate=-1;    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    agelim=AGESUP;
   if (mobilav!=0) {    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);   
       printf(" Error in movingaverage mobilav=%d\n",mobilav);   
     }    strcpy(filerespop,"pop");
   }    strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
   k=0;      printf("Problem with forecast resultfile: %s\n", filerespop);
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;     printf("Computing forecasting: result on file '%s' \n", filerespop);
       fprintf(ficrest,"\n#****** ");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
       for(j=1;j<=cptcoveff;j++)   
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       fprintf(ficrest,"******\n");  
     if (mobilav!=0) {
       fprintf(ficreseij,"\n#****** ");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(j=1;j<=cptcoveff;j++)       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficreseij,"******\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
       fprintf(ficresvij,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)   
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    stepsize=(int) (stepm+YEARM-1)/YEARM;
       fprintf(ficresvij,"******\n");    if (stepm<=12) stepsize=1;
    
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    agelim=AGESUP;
       oldm=oldms;savm=savms;   
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      hstepm=1;
      hstepm=hstepm/stepm;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   
       oldm=oldms;savm=savms;    if (popforecast==1) {
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);      if((ficpop=fopen(popfile,"r"))==NULL) {
       if(popbased==1){        printf("Problem with population file : %s\n",popfile);exit(0);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
        }      }
       popage=ivector(0,AGESUP);
        popeffectif=vector(0,AGESUP);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      popcount=vector(0,AGESUP);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);     
       fprintf(ficrest,"\n");      i=1;  
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       epj=vector(1,nlstate+1);     
       for(age=bage; age <=fage ;age++){      imx=i;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
         if (popbased==1) {    }
           if(mobilav ==0){  
             for(i=1; i<=nlstate;i++)    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
               prlim[i][i]=probs[(int)age][i][k];     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           }else{ /* mobilav */         k=k+1;
             for(i=1; i<=nlstate;i++)        fprintf(ficrespop,"\n#******");
               prlim[i][i]=mobaverage[(int)age][i][k];        for(j=1;j<=cptcoveff;j++) {
           }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }        }
                 fprintf(ficrespop,"******\n");
         fprintf(ficrest," %4.0f",age);        fprintf(ficrespop,"# Age");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        if (popforecast==1)  fprintf(ficrespop," [Population]");
             epj[j] += prlim[i][i]*eij[i][j][(int)age];       
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        for (cpt=0; cpt<=0;cpt++) {
           }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
           epj[nlstate+1] +=epj[j];         
         }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
         for(i=1, vepp=0.;i <=nlstate;i++)            nhstepm = nhstepm/hstepm;
           for(j=1;j <=nlstate;j++)           
             vepp += vareij[i][j][(int)age];            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            oldm=oldms;savm=savms;
         for(j=1;j <=nlstate;j++){            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));         
         }            for (h=0; h<=nhstepm; h++){
         fprintf(ficrest,"\n");              if (h==(int) (calagedatem+YEARM*cpt)) {
       }                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     }              }
   }              for(j=1; j<=nlstate+ndeath;j++) {
 free_matrix(mint,1,maxwav,1,n);                kk1=0.;kk2=0;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                for(i=1; i<=nlstate;i++) {              
     free_vector(weight,1,n);                  if (mobilav==1)
   fclose(ficreseij);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   fclose(ficresvij);                  else {
   fclose(ficrest);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   fclose(ficpar);                  }
   free_vector(epj,1,nlstate+1);                }
                   if (h==(int)(calagedatem+12*cpt)){
   /*------- Variance of stable prevalence------*/                     tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
   strcpy(fileresvpl,"vpl");                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   strcat(fileresvpl,fileres);                }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              }
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);              for(i=1; i<=nlstate;i++){
     exit(0);                kk1=0.;
   }                  for(j=1; j<=nlstate;j++){
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
                   }
   k=0;                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   for(cptcov=1;cptcov<=i1;cptcov++){              }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
       fprintf(ficresvpl,"\n#****** ");                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
       for(j=1;j<=cptcoveff;j++)             }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresvpl,"******\n");          }
               }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);   
       oldm=oldms;savm=savms;    /******/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
  }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   fclose(ficresvpl);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
   /*---------- End : free ----------------*/           
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               oldm=oldms;savm=savms;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            for (h=0; h<=nhstepm; h++){
                 if (h==(int) (calagedatem+YEARM*cpt)) {
                   fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);              for(j=1; j<=nlstate+ndeath;j++) {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                kk1=0.;kk2=0;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                for(i=1; i<=nlstate;i++) {              
                    kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   free_matrix(matcov,1,npar,1,npar);                }
   free_vector(delti,1,npar);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   free_matrix(agev,1,maxwav,1,imx);              }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            }
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
   fprintf(fichtm,"\n</body>");        }
   fclose(fichtm);     }
   fclose(ficgp);    }
      
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if(erreur >0){  
     printf("End of Imach with error or warning %d\n",erreur);    if (popforecast==1) {
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);      free_ivector(popage,0,AGESUP);
   }else{      free_vector(popeffectif,0,AGESUP);
    printf("End of Imach\n");      free_vector(popcount,0,AGESUP);
    fprintf(ficlog,"End of Imach\n");    }
   }    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printf("See log file on %s\n",filelog);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficlog);    fclose(ficrespop);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  } /* End of popforecast */
     
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  int fileappend(FILE *fichier, char *optionfich)
   /*printf("Total time was %d uSec.\n", total_usecs);*/  {
   /*------ End -----------*/    if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
  end:      return (0);
 #ifdef windows    }
   /* chdir(pathcd);*/    fflush(fichier);
 #endif     return (1);
  /*system("wgnuplot graph.plt");*/  }
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  /**************** function prwizard **********************/
  strcpy(plotcmd,GNUPLOTPROGRAM);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
  strcat(plotcmd," ");  {
  strcat(plotcmd,optionfilegnuplot);  
  printf("Starting: %s\n",plotcmd);fflush(stdout);    /* Wizard to print covariance matrix template */
  system(plotcmd);  
     char ca[32], cb[32], cc[32];
  /*#ifdef windows*/    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   while (z[0] != 'q') {    int numlinepar;
     /* chdir(path); */  
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     scanf("%s",z);    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     if (z[0] == 'c') system("./imach");    for(i=1; i <=nlstate; i++){
     else if (z[0] == 'e') system(optionfilehtm);      jj=0;
     else if (z[0] == 'g') system(plotcmd);      for(j=1; j <=nlstate+ndeath; j++){
     else if (z[0] == 'q') exit(0);        if(j==i) continue;
   }        jj++;
   /*#endif */        /*ca[0]= k+'a'-1;ca[1]='\0';*/
 }        printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
    
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   {
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++)
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
        
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
        
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++)
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++)
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n ");
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
     fprintf(ficgp, "set ter png small\n set log y\n");
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   }
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE];
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
      
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
      
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
    
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
    
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
      
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
      
       fflush(ficlog);
      
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10);
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
        
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year;
         mint[j][i]= (double)month;
         strcpy(line,stra);
       } /* ENd Waves */
      
       cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year;
       moisdc[i]=(double) month;
       strcpy(line,stra);
      
       cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month);
       strcpy(line,stra);
      
       cutv(stra, strb,line,' ');
       errno=0;
       dval=strtod(strb,&endptr);
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval;
       strcpy(line,stra);
      
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10);
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }
       lstra=strlen(stra);
      
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1;
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
    
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15);
     Tvaraff=ivector(1,15);
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1;
       cptcovprod=j1; /*Number of products */
      
       strcpy(modelsav,model);
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
      
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2];
             for (k=1; k<=lastobs;k++)
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
    
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
      
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
        
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           }
         }
       }
     }
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
      
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version);
       fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.54  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>