Diff for /imach/src/imach.c between versions 1.83 and 1.125

version 1.83, 2003/06/10 13:39:11 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   *** empty log message ***    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   Revision 1.82  2003/06/05 15:57:20  brouard  
   Add log in  imach.c and  fullversion number is now printed.    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
 */    The log-likelihood is printed in the log file
 /*  
    Interpolated Markov Chain    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
   Short summary of the programme:    name. <head> headers where missing.
     
   This program computes Healthy Life Expectancies from    * imach.c (Module): Weights can have a decimal point as for
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    English (a comma might work with a correct LC_NUMERIC environment,
   first survey ("cross") where individuals from different ages are    otherwise the weight is truncated).
   interviewed on their health status or degree of disability (in the    Modification of warning when the covariates values are not 0 or
   case of a health survey which is our main interest) -2- at least a    1.
   second wave of interviews ("longitudinal") which measure each change    Version 0.98g
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.122  2006/03/20 09:45:41  brouard
   model. More health states you consider, more time is necessary to reach the    (Module): Weights can have a decimal point as for
   Maximum Likelihood of the parameters involved in the model.  The    English (a comma might work with a correct LC_NUMERIC environment,
   simplest model is the multinomial logistic model where pij is the    otherwise the weight is truncated).
   probability to be observed in state j at the second wave    Modification of warning when the covariates values are not 0 or
   conditional to be observed in state i at the first wave. Therefore    1.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Version 0.98g
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.121  2006/03/16 17:45:01  lievre
   where the markup *Covariates have to be included here again* invites    * imach.c (Module): Comments concerning covariates added
   you to do it.  More covariates you add, slower the  
   convergence.    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   The advantage of this computer programme, compared to a simple    not 1 month. Version 0.98f
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.120  2006/03/16 15:10:38  lievre
   intermediate interview, the information is lost, but taken into    (Module): refinements in the computation of lli if
   account using an interpolation or extrapolation.      status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.119  2006/03/15 17:42:26  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    (Module): Bug if status = -2, the loglikelihood was
   states. This elementary transition (by month, quarter,    computed as likelihood omitting the logarithm. Version O.98e
   semester or year) is modelled as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.118  2006/03/14 18:20:07  brouard
   and the contribution of each individual to the likelihood is simply    (Module): varevsij Comments added explaining the second
   hPijx.    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Function pstamp added
   of the life expectancies. It also computes the stable prevalence.     (Module): Version 0.98d
     
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.117  2006/03/14 17:16:22  brouard
            Institut national d'études démographiques, Paris.    (Module): varevsij Comments added explaining the second
   This software have been partly granted by Euro-REVES, a concerted action    table of variances if popbased=1 .
   from the European Union.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Function pstamp added
   software can be distributed freely for non commercial use. Latest version    (Module): Version 0.98d
   can be accessed at http://euroreves.ined.fr/imach .  
     Revision 1.116  2006/03/06 10:29:27  brouard
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    (Module): Variance-covariance wrong links and
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    varian-covariance of ej. is needed (Saito).
     
   **********************************************************************/    Revision 1.115  2006/02/27 12:17:45  brouard
 /*    (Module): One freematrix added in mlikeli! 0.98c
   main  
   read parameterfile    Revision 1.114  2006/02/26 12:57:58  brouard
   read datafile    (Module): Some improvements in processing parameter
   concatwav    filename with strsep.
   if (mle >= 1)  
     mlikeli    Revision 1.113  2006/02/24 14:20:24  brouard
   print results files    (Module): Memory leaks checks with valgrind and:
   if mle==1     datafile was not closed, some imatrix were not freed and on matrix
      computes hessian    allocation too.
   read end of parameter file: agemin, agemax, bage, fage, estepm  
       begin-prev-date,...    Revision 1.112  2006/01/30 09:55:26  brouard
   open gnuplot file    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   open html file  
   stable prevalence    Revision 1.111  2006/01/25 20:38:18  brouard
    for age prevalim()    (Module): Lots of cleaning and bugs added (Gompertz)
   h Pij x    (Module): Comments can be added in data file. Missing date values
   variance of p varprob    can be a simple dot '.'.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    Revision 1.110  2006/01/25 00:51:50  brouard
   Variance-covariance of DFLE    (Module): Lots of cleaning and bugs added (Gompertz)
   prevalence()  
    movingaverage()    Revision 1.109  2006/01/24 19:37:15  brouard
   varevsij()     (Module): Comments (lines starting with a #) are allowed in data.
   if popbased==1 varevsij(,popbased)  
   total life expectancies    Revision 1.108  2006/01/19 18:05:42  lievre
   Variance of stable prevalence    Gnuplot problem appeared...
  end    To be fixed
 */  
     Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
   
      Revision 1.106  2006/01/19 13:24:36  brouard
 #include <math.h>    Some cleaning and links added in html output
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.105  2006/01/05 20:23:19  lievre
 #include <unistd.h>    *** empty log message ***
   
 #define MAXLINE 256    Revision 1.104  2005/09/30 16:11:43  lievre
 #define GNUPLOTPROGRAM "gnuplot"    (Module): sump fixed, loop imx fixed, and simplifications.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    (Module): If the status is missing at the last wave but we know
 #define FILENAMELENGTH 80    that the person is alive, then we can code his/her status as -2
 /*#define DEBUG*/    (instead of missing=-1 in earlier versions) and his/her
 #define windows    contributions to the likelihood is 1 - Prob of dying from last
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    the healthy state at last known wave). Version is 0.98
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.103  2005/09/30 15:54:49  lievre
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): sump fixed, loop imx fixed, and simplifications.
   
 #define NINTERVMAX 8    Revision 1.102  2004/09/15 17:31:30  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Add the possibility to read data file including tab characters.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.101  2004/09/15 10:38:38  brouard
 #define MAXN 20000    Fix on curr_time
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.100  2004/07/12 18:29:06  brouard
 #define AGEBASE 40    Add version for Mac OS X. Just define UNIX in Makefile
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.99  2004/06/05 08:57:40  brouard
 #define ODIRSEPARATOR '/'    *** empty log message ***
 #else  
 #define DIRSEPARATOR '/'    Revision 1.98  2004/05/16 15:05:56  brouard
 #define ODIRSEPARATOR '\\'    New version 0.97 . First attempt to estimate force of mortality
 #endif    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 /* $Id$ */    This is the basic analysis of mortality and should be done before any
 /* $State$ */    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 char version[]="Imach version 0.95a1, June 2003, INED-EUROREVES ";    from other sources like vital statistic data.
 char fullversion[]="$Revision$ $Date$";   
 int erreur; /* Error number */    The same imach parameter file can be used but the option for mle should be -3.
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Agnès, who wrote this part of the code, tried to keep most of the
 int npar=NPARMAX;    former routines in order to include the new code within the former code.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    The output is very simple: only an estimate of the intercept and of
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    the slope with 95% confident intervals.
 int popbased=0;  
     Current limitations:
 int *wav; /* Number of waves for this individuual 0 is possible */    A) Even if you enter covariates, i.e. with the
 int maxwav; /* Maxim number of waves */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int jmin, jmax; /* min, max spacing between 2 waves */    B) There is no computation of Life Expectancy nor Life Table.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.97  2004/02/20 13:25:42  lievre
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Version 0.96d. Population forecasting command line is (temporarily)
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    suppressed.
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  
 double jmean; /* Mean space between 2 waves */    Revision 1.96  2003/07/15 15:38:55  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    rewritten within the same printf. Workaround: many printfs.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog, *ficrespow;    Revision 1.95  2003/07/08 07:54:34  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    * imach.c (Repository):
 FILE *ficresprobmorprev;    (Repository): Using imachwizard code to output a more meaningful covariance
 FILE *fichtm; /* Html File */    matrix (cov(a12,c31) instead of numbers.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.94  2003/06/27 13:00:02  brouard
 FILE  *ficresvij;    Just cleaning
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.93  2003/06/25 16:33:55  brouard
 char fileresvpl[FILENAMELENGTH];    (Module): On windows (cygwin) function asctime_r doesn't
 char title[MAXLINE];    exist so I changed back to asctime which exists.
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    (Module): Version 0.96b
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.92  2003/06/25 16:30:45  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    (Module): On windows (cygwin) function asctime_r doesn't
 char filelog[FILENAMELENGTH]; /* Log file */    exist so I changed back to asctime which exists.
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.91  2003/06/25 15:30:29  brouard
 char popfile[FILENAMELENGTH];    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 #define NR_END 1    concerning matrix of covariance. It has extension -cov.htm.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define NRANSI     mle=-1 a template is output in file "or"mypar.txt with the design
 #define ITMAX 200     of the covariance matrix to be input.
   
 #define TOL 2.0e-4     Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define CGOLD 0.3819660     mle=-1 a template is output in file "or"mypar.txt with the design
 #define ZEPS 1.0e-10     of the covariance matrix to be input.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   
     Revision 1.88  2003/06/23 17:54:56  brouard
 #define GOLD 1.618034     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define GLIMIT 100.0   
 #define TINY 1.0e-20     Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.86  2003/06/17 20:04:08  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Change position of html and gnuplot routines and added
       routine fileappend.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 static double sqrarg;    current date of interview. It may happen when the death was just
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    prior to the death. In this case, dh was negative and likelihood
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 int imx;     interview.
 int stepm;    (Repository): Because some people have very long ID (first column)
 /* Stepm, step in month: minimum step interpolation*/    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 int estepm;    truncation)
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Repository): No more line truncation errors.
   
 int m,nb;    Revision 1.84  2003/06/13 21:44:43  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    * imach.c (Repository): Replace "freqsummary" at a correct
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    place. It differs from routine "prevalence" which may be called
 double **pmmij, ***probs;    many times. Probs is memory consuming and must be used with
 double dateintmean=0;    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 double *weight;  
 int **s; /* Status */    Revision 1.83  2003/06/10 13:39:11  lievre
 double *agedc, **covar, idx;    *** empty log message ***
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.82  2003/06/05 15:57:20  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Add log in  imach.c and  fullversion number is now printed.
 double ftolhess; /* Tolerance for computing hessian */  
   */
 /**************** split *************************/  /*
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )     Interpolated Markov Chain
 {  
   char  *ss;                            /* pointer */    Short summary of the programme:
   int   l1, l2;                         /* length counters */   
     This program computes Healthy Life Expectancies from
   l1 = strlen(path );                   /* length of path */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    first survey ("cross") where individuals from different ages are
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    interviewed on their health status or degree of disability (in the
   if ( ss == NULL ) {                   /* no directory, so use current */    case of a health survey which is our main interest) -2- at least a
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)    second wave of interviews ("longitudinal") which measure each change
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    (if any) in individual health status.  Health expectancies are
     /* get current working directory */    computed from the time spent in each health state according to a
     /*    extern  char* getcwd ( char *buf , int len);*/    model. More health states you consider, more time is necessary to reach the
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Maximum Likelihood of the parameters involved in the model.  The
       return( GLOCK_ERROR_GETCWD );    simplest model is the multinomial logistic model where pij is the
     }    probability to be observed in state j at the second wave
     strcpy( name, path );               /* we've got it */    conditional to be observed in state i at the first wave. Therefore
   } else {                              /* strip direcotry from path */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     ss++;                               /* after this, the filename */    'age' is age and 'sex' is a covariate. If you want to have a more
     l2 = strlen( ss );                  /* length of filename */    complex model than "constant and age", you should modify the program
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    where the markup *Covariates have to be included here again* invites
     strcpy( name, ss );         /* save file name */    you to do it.  More covariates you add, slower the
     strncpy( dirc, path, l1 - l2 );     /* now the directory */    convergence.
     dirc[l1-l2] = 0;                    /* add zero */  
   }    The advantage of this computer programme, compared to a simple
   l1 = strlen( dirc );                  /* length of directory */    multinomial logistic model, is clear when the delay between waves is not
 #ifdef windows    identical for each individual. Also, if a individual missed an
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    intermediate interview, the information is lost, but taken into
 #else    account using an interpolation or extrapolation.  
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    hPijx is the probability to be observed in state i at age x+h
   ss = strrchr( name, '.' );            /* find last / */    conditional to the observed state i at age x. The delay 'h' can be
   ss++;    split into an exact number (nh*stepm) of unobserved intermediate
   strcpy(ext,ss);                       /* save extension */    states. This elementary transition (by month, quarter,
   l1= strlen( name);    semester or year) is modelled as a multinomial logistic.  The hPx
   l2= strlen(ss)+1;    matrix is simply the matrix product of nh*stepm elementary matrices
   strncpy( finame, name, l1-l2);    and the contribution of each individual to the likelihood is simply
   finame[l1-l2]= 0;    hPijx.
   return( 0 );                          /* we're done */  
 }    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence.
    
 /******************************************/    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 void replace(char *s, char*t)    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   int i;    It is copyrighted identically to a GNU software product, ie programme and
   int lg=20;    software can be distributed freely for non commercial use. Latest version
   i=0;    can be accessed at http://euroreves.ined.fr/imach .
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     (s[i] = t[i]);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     if (t[i]== '\\') s[i]='/';   
   }    **********************************************************************/
 }  /*
     main
 int nbocc(char *s, char occ)    read parameterfile
 {    read datafile
   int i,j=0;    concatwav
   int lg=20;    freqsummary
   i=0;    if (mle >= 1)
   lg=strlen(s);      mlikeli
   for(i=0; i<= lg; i++) {    print results files
   if  (s[i] == occ ) j++;    if mle==1
   }       computes hessian
   return j;    read end of parameter file: agemin, agemax, bage, fage, estepm
 }        begin-prev-date,...
     open gnuplot file
 void cutv(char *u,char *v, char*t, char occ)    open html file
 {    period (stable) prevalence
   /* cuts string t into u and v where u is ended by char occ excluding it     for age prevalim()
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    h Pij x
      gives u="abcedf" and v="ghi2j" */    variance of p varprob
   int i,lg,j,p=0;    forecasting if prevfcast==1 prevforecast call prevalence()
   i=0;    health expectancies
   for(j=0; j<=strlen(t)-1; j++) {    Variance-covariance of DFLE
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    prevalence()
   }     movingaverage()
     varevsij()
   lg=strlen(t);    if popbased==1 varevsij(,popbased)
   for(j=0; j<p; j++) {    total life expectancies
     (u[j] = t[j]);    Variance of period (stable) prevalence
   }   end
      u[p]='\0';  */
   
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }   
 }  #include <math.h>
   #include <stdio.h>
 /********************** nrerror ********************/  #include <stdlib.h>
   #include <string.h>
 void nrerror(char error_text[])  #include <unistd.h>
 {  
   fprintf(stderr,"ERREUR ...\n");  #include <limits.h>
   fprintf(stderr,"%s\n",error_text);  #include <sys/types.h>
   exit(EXIT_FAILURE);  #include <sys/stat.h>
 }  #include <errno.h>
 /*********************** vector *******************/  extern int errno;
 double *vector(int nl, int nh)  
 {  /* #include <sys/time.h> */
   double *v;  #include <time.h>
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #include "timeval.h"
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
 /************************ free vector ******************/  #define MAXLINE 256
 void free_vector(double*v, int nl, int nh)  
 {  #define GNUPLOTPROGRAM "gnuplot"
   free((FREE_ARG)(v+nl-NR_END));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   
 /************************ivector *******************************/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 char *cvector(long nl,long nh)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   char *v;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   if (!v) nrerror("allocation failure in cvector");  
   return v-nl+NR_END;  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 /******************free ivector **************************/  #define NCOVMAX 8 /* Maximum number of covariates */
 void free_cvector(char *v, long nl, long nh)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   free((FREE_ARG)(v+nl-NR_END));  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /************************ivector *******************************/  #ifdef UNIX
 int *ivector(long nl,long nh)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   int *v;  #define ODIRSEPARATOR '\\'
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #else
   if (!v) nrerror("allocation failure in ivector");  #define DIRSEPARATOR '\\'
   return v-nl+NR_END;  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
   #endif
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  /* $Id$ */
 {  /* $State$ */
   free((FREE_ARG)(v+nl-NR_END));  
 }  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   char fullversion[]="$Revision$ $Date$";
 /******************* imatrix *******************************/  char strstart[80];
 int **imatrix(long nrl, long nrh, long ncl, long nch)   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {   int nvar;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int **m;   int npar=NPARMAX;
     int nlstate=2; /* Number of live states */
   /* allocate pointers to rows */   int ndeath=1; /* Number of dead states */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   if (!m) nrerror("allocation failure 1 in matrix()");   int popbased=0;
   m += NR_END;   
   m -= nrl;   int *wav; /* Number of waves for this individuual 0 is possible */
     int maxwav; /* Maxim number of waves */
     int jmin, jmax; /* min, max spacing between 2 waves */
   /* allocate rows and set pointers to them */   int ijmin, ijmax; /* Individuals having jmin and jmax */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   int gipmx, gsw; /* Global variables on the number of contributions
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");                      to the likelihood and the sum of weights (done by funcone)*/
   m[nrl] += NR_END;   int mle, weightopt;
   m[nrl] -= ncl;   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
                * wave mi and wave mi+1 is not an exact multiple of stepm. */
   /* return pointer to array of pointers to rows */   double jmean; /* Mean space between 2 waves */
   return m;   double **oldm, **newm, **savm; /* Working pointers to matrices */
 }   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /****************** free_imatrix *************************/  FILE *ficlog, *ficrespow;
 void free_imatrix(m,nrl,nrh,ncl,nch)  int globpr; /* Global variable for printing or not */
       int **m;  double fretone; /* Only one call to likelihood */
       long nch,ncl,nrh,nrl;   long ipmx; /* Number of contributions */
      /* free an int matrix allocated by imatrix() */   double sw; /* Sum of weights */
 {   char filerespow[FILENAMELENGTH];
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   free((FREE_ARG) (m+nrl-NR_END));   FILE *ficresilk;
 }   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /******************* matrix *******************************/  FILE *fichtm, *fichtmcov; /* Html File */
 double **matrix(long nrl, long nrh, long ncl, long nch)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  FILE *ficresstdeij;
   double **m;  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char filerescve[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE  *ficresvij;
   m += NR_END;  char fileresv[FILENAMELENGTH];
   m -= nrl;  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char title[MAXLINE];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m[nrl] += NR_END;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   m[nrl] -= ncl;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   char command[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int  outcmd=0;
   return m;  
   /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1])   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    */  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /*************************free matrix ************************/  char fileregp[FILENAMELENGTH];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char popfile[FILENAMELENGTH];
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 /******************* ma3x *******************************/  extern int gettimeofday();
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  extern long time();
   double ***m;  char strcurr[80], strfor[80];
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char *endptr;
   if (!m) nrerror("allocation failure 1 in matrix()");  long lval;
   m += NR_END;  double dval;
   m -= nrl;  
   #define NR_END 1
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define FREE_ARG char*
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define FTOL 1.0e-10
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define NRANSI
   #define ITMAX 200
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   #define TOL 2.0e-4
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define CGOLD 0.3819660
   m[nrl][ncl] += NR_END;  #define ZEPS 1.0e-10
   m[nrl][ncl] -= nll;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   for (j=ncl+1; j<=nch; j++)   
     m[nrl][j]=m[nrl][j-1]+nlay;  #define GOLD 1.618034
     #define GLIMIT 100.0
   for (i=nrl+1; i<=nrh; i++) {  #define TINY 1.0e-20
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)   static double maxarg1,maxarg2;
       m[i][j]=m[i][j-1]+nlay;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   return m;    
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  #define rint(a) floor(a+0.5)
   */  
 }  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 /*************************free ma3x ************************/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int agegomp= AGEGOMP;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int imx;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int stepm=1;
   free((FREE_ARG)(m+nrl-NR_END));  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /***************** f1dim *************************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 extern int ncom;   
 extern double *pcom,*xicom;  int m,nb;
 extern double (*nrfunc)(double []);   long *num;
    int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 double f1dim(double x)   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {   double **pmmij, ***probs;
   int j;   double *ageexmed,*agecens;
   double f;  double dateintmean=0;
   double *xt;   
    double *weight;
   xt=vector(1,ncom);   int **s; /* Status */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];   double *agedc, **covar, idx;
   f=(*nrfunc)(xt);   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   free_vector(xt,1,ncom);   double *lsurv, *lpop, *tpop;
   return f;   
 }   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   /**************** split *************************/
 {   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   int iter;   {
   double a,b,d,etemp;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   double fu,fv,fw,fx;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double ftemp;    */
   double p,q,r,tol1,tol2,u,v,w,x,xm;     char  *ss;                            /* pointer */
   double e=0.0;     int   l1, l2;                         /* length counters */
    
   a=(ax < cx ? ax : cx);     l1 = strlen(path );                   /* length of path */
   b=(ax > cx ? ax : cx);     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   x=w=v=bx;     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   fw=fv=fx=(*f)(x);     if ( ss == NULL ) {                   /* no directory, so determine current directory */
   for (iter=1;iter<=ITMAX;iter++) {       strcpy( name, path );               /* we got the fullname name because no directory */
     xm=0.5*(a+b);       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      /* get current working directory */
     printf(".");fflush(stdout);      /*    extern  char* getcwd ( char *buf , int len);*/
     fprintf(ficlog,".");fflush(ficlog);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 #ifdef DEBUG        return( GLOCK_ERROR_GETCWD );
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      }
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      /* got dirc from getcwd*/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      printf(" DIRC = %s \n",dirc);
 #endif    } else {                              /* strip direcotry from path */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){       ss++;                               /* after this, the filename */
       *xmin=x;       l2 = strlen( ss );                  /* length of filename */
       return fx;       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     }       strcpy( name, ss );         /* save file name */
     ftemp=fu;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     if (fabs(e) > tol1) {       dirc[l1-l2] = 0;                    /* add zero */
       r=(x-w)*(fx-fv);       printf(" DIRC2 = %s \n",dirc);
       q=(x-v)*(fx-fw);     }
       p=(x-v)*q-(x-w)*r;     /* We add a separator at the end of dirc if not exists */
       q=2.0*(q-r);     l1 = strlen( dirc );                  /* length of directory */
       if (q > 0.0) p = -p;     if( dirc[l1-1] != DIRSEPARATOR ){
       q=fabs(q);       dirc[l1] =  DIRSEPARATOR;
       etemp=e;       dirc[l1+1] = 0;
       e=d;       printf(" DIRC3 = %s \n",dirc);
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     ss = strrchr( name, '.' );            /* find last / */
       else {     if (ss >0){
         d=p/q;       ss++;
         u=x+d;       strcpy(ext,ss);                     /* save extension */
         if (u-a < tol2 || b-u < tol2)       l1= strlen( name);
           d=SIGN(tol1,xm-x);       l2= strlen(ss)+1;
       }       strncpy( finame, name, l1-l2);
     } else {       finame[l1-l2]= 0;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     }
     }   
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     return( 0 );                          /* we're done */
     fu=(*f)(u);   }
     if (fu <= fx) {   
       if (u >= x) a=x; else b=x;   
       SHFT(v,w,x,u)   /******************************************/
         SHFT(fv,fw,fx,fu)   
         } else {   void replace_back_to_slash(char *s, char*t)
           if (u < x) a=u; else b=u;   {
           if (fu <= fw || w == x) {     int i;
             v=w;     int lg=0;
             w=u;     i=0;
             fv=fw;     lg=strlen(t);
             fw=fu;     for(i=0; i<= lg; i++) {
           } else if (fu <= fv || v == x || v == w) {       (s[i] = t[i]);
             v=u;       if (t[i]== '\\') s[i]='/';
             fv=fu;     }
           }   }
         }   
   }   int nbocc(char *s, char occ)
   nrerror("Too many iterations in brent");   {
   *xmin=x;     int i,j=0;
   return fx;     int lg=20;
 }     i=0;
     lg=strlen(s);
 /****************** mnbrak ***********************/    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     }
             double (*func)(double))     return j;
 {   }
   double ulim,u,r,q, dum;  
   double fu;   void cutv(char *u,char *v, char*t, char occ)
    {
   *fa=(*func)(*ax);     /* cuts string t into u and v where u ends before first occurence of char 'occ'
   *fb=(*func)(*bx);        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   if (*fb > *fa) {        gives u="abcedf" and v="ghi2j" */
     SHFT(dum,*ax,*bx,dum)     int i,lg,j,p=0;
       SHFT(dum,*fb,*fa,dum)     i=0;
       }     for(j=0; j<=strlen(t)-1; j++) {
   *cx=(*bx)+GOLD*(*bx-*ax);       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   *fc=(*func)(*cx);     }
   while (*fb > *fc) {   
     r=(*bx-*ax)*(*fb-*fc);     lg=strlen(t);
     q=(*bx-*cx)*(*fb-*fa);     for(j=0; j<p; j++) {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       (u[j] = t[j]);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     }
     ulim=(*bx)+GLIMIT*(*cx-*bx);        u[p]='\0';
     if ((*bx-u)*(u-*cx) > 0.0) {   
       fu=(*func)(u);      for(j=0; j<= lg; j++) {
     } else if ((*cx-u)*(u-ulim) > 0.0) {       if (j>=(p+1))(v[j-p-1] = t[j]);
       fu=(*func)(u);     }
       if (fu < *fc) {   }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))   
           SHFT(*fb,*fc,fu,(*func)(u))   /********************** nrerror ********************/
           }   
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   void nrerror(char error_text[])
       u=ulim;   {
       fu=(*func)(u);     fprintf(stderr,"ERREUR ...\n");
     } else {     fprintf(stderr,"%s\n",error_text);
       u=(*cx)+GOLD*(*cx-*bx);     exit(EXIT_FAILURE);
       fu=(*func)(u);   }
     }   /*********************** vector *******************/
     SHFT(*ax,*bx,*cx,u)   double *vector(int nl, int nh)
       SHFT(*fa,*fb,*fc,fu)   {
       }     double *v;
 }     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
 /*************** linmin ************************/    return v-nl+NR_END;
   }
 int ncom;   
 double *pcom,*xicom;  /************************ free vector ******************/
 double (*nrfunc)(double []);   void free_vector(double*v, int nl, int nh)
    {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))     free((FREE_ARG)(v+nl-NR_END));
 {   }
   double brent(double ax, double bx, double cx,   
                double (*f)(double), double tol, double *xmin);   /************************ivector *******************************/
   double f1dim(double x);   int *ivector(long nl,long nh)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   {
               double *fc, double (*func)(double));     int *v;
   int j;     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double xx,xmin,bx,ax;     if (!v) nrerror("allocation failure in ivector");
   double fx,fb,fa;    return v-nl+NR_END;
    }
   ncom=n;   
   pcom=vector(1,n);   /******************free ivector **************************/
   xicom=vector(1,n);   void free_ivector(int *v, long nl, long nh)
   nrfunc=func;   {
   for (j=1;j<=n;j++) {     free((FREE_ARG)(v+nl-NR_END));
     pcom[j]=p[j];   }
     xicom[j]=xi[j];   
   }   /************************lvector *******************************/
   ax=0.0;   long *lvector(long nl,long nh)
   xx=1.0;   {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     long *v;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 #ifdef DEBUG    if (!v) nrerror("allocation failure in ivector");
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    return v-nl+NR_END;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  
   for (j=1;j<=n;j++) {   /******************free lvector **************************/
     xi[j] *= xmin;   void free_lvector(long *v, long nl, long nh)
     p[j] += xi[j];   {
   }     free((FREE_ARG)(v+nl-NR_END));
   free_vector(xicom,1,n);   }
   free_vector(pcom,1,n);   
 }   /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch)
 /*************** powell ************************/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   {
             double (*func)(double []))     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
 {     int **m;
   void linmin(double p[], double xi[], int n, double *fret,    
               double (*func)(double []));     /* allocate pointers to rows */
   int i,ibig,j;     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
   double del,t,*pt,*ptt,*xit;    if (!m) nrerror("allocation failure 1 in matrix()");
   double fp,fptt;    m += NR_END;
   double *xits;    m -= nrl;
   pt=vector(1,n);    
   ptt=vector(1,n);    
   xit=vector(1,n);     /* allocate rows and set pointers to them */
   xits=vector(1,n);     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   *fret=(*func)(p);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for (j=1;j<=n;j++) pt[j]=p[j];     m[nrl] += NR_END;
   for (*iter=1;;++(*iter)) {     m[nrl] -= ncl;
     fp=(*fret);    
     ibig=0;     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
     del=0.0;    
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    /* return pointer to array of pointers to rows */
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    return m;
     fprintf(ficrespow,"%d %.12f",*iter,*fret);  }
     for (i=1;i<=n;i++) {  
       printf(" %d %.12f",i, p[i]);  /****************** free_imatrix *************************/
       fprintf(ficlog," %d %.12lf",i, p[i]);  void free_imatrix(m,nrl,nrh,ncl,nch)
       fprintf(ficrespow," %.12lf", p[i]);        int **m;
     }        long nch,ncl,nrh,nrl;
     printf("\n");       /* free an int matrix allocated by imatrix() */
     fprintf(ficlog,"\n");  {
     fprintf(ficrespow,"\n");    free((FREE_ARG) (m[nrl]+ncl-NR_END));
     for (i=1;i<=n;i++) {     free((FREE_ARG) (m+nrl-NR_END));
       for (j=1;j<=n;j++) xit[j]=xi[j][i];   }
       fptt=(*fret);   
 #ifdef DEBUG  /******************* matrix *******************************/
       printf("fret=%lf \n",*fret);  double **matrix(long nrl, long nrh, long ncl, long nch)
       fprintf(ficlog,"fret=%lf \n",*fret);  {
 #endif    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       printf("%d",i);fflush(stdout);    double **m;
       fprintf(ficlog,"%d",i);fflush(ficlog);  
       linmin(p,xit,n,fret,func);     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if (fabs(fptt-(*fret)) > del) {     if (!m) nrerror("allocation failure 1 in matrix()");
         del=fabs(fptt-(*fret));     m += NR_END;
         ibig=i;     m -= nrl;
       }   
 #ifdef DEBUG    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       printf("%d %.12e",i,(*fret));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       fprintf(ficlog,"%d %.12e",i,(*fret));    m[nrl] += NR_END;
       for (j=1;j<=n;j++) {    m[nrl] -= ncl;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    return m;
       }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
       for(j=1;j<=n;j++) {     */
         printf(" p=%.12e",p[j]);  }
         fprintf(ficlog," p=%.12e",p[j]);  
       }  /*************************free matrix ************************/
       printf("\n");  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       fprintf(ficlog,"\n");  {
 #endif    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }     free((FREE_ARG)(m+nrl-NR_END));
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  }
 #ifdef DEBUG  
       int k[2],l;  /******************* ma3x *******************************/
       k[0]=1;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       k[1]=-1;  {
       printf("Max: %.12e",(*func)(p));    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       fprintf(ficlog,"Max: %.12e",(*func)(p));    double ***m;
       for (j=1;j<=n;j++) {  
         printf(" %.12e",p[j]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         fprintf(ficlog," %.12e",p[j]);    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
       printf("\n");    m -= nrl;
       fprintf(ficlog,"\n");  
       for(l=0;l<=1;l++) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m[nrl] += NR_END;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl] -= ncl;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 #endif    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++)
       free_vector(xit,1,n);       m[nrl][j]=m[nrl][j-1]+nlay;
       free_vector(xits,1,n);    
       free_vector(ptt,1,n);     for (i=nrl+1; i<=nrh; i++) {
       free_vector(pt,1,n);       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       return;       for (j=ncl+1; j<=nch; j++)
     }         m[i][j]=m[i][j-1]+nlay;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");     }
     for (j=1;j<=n;j++) {     return m;
       ptt[j]=2.0*p[j]-pt[j];     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       xit[j]=p[j]-pt[j];              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       pt[j]=p[j];     */
     }   }
     fptt=(*func)(ptt);   
     if (fptt < fp) {   /*************************free ma3x ************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       if (t < 0.0) {   {
         linmin(p,xit,n,fret,func);     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         for (j=1;j<=n;j++) {     free((FREE_ARG)(m[nrl]+ncl-NR_END));
           xi[j][ibig]=xi[j][n];     free((FREE_ARG)(m+nrl-NR_END));
           xi[j][n]=xit[j];   }
         }  
 #ifdef DEBUG  /*************** function subdirf ***********/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  char *subdirf(char fileres[])
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  {
         for(j=1;j<=n;j++){    /* Caution optionfilefiname is hidden */
           printf(" %.12e",xit[j]);    strcpy(tmpout,optionfilefiname);
           fprintf(ficlog," %.12e",xit[j]);    strcat(tmpout,"/"); /* Add to the right */
         }    strcat(tmpout,fileres);
         printf("\n");    return tmpout;
         fprintf(ficlog,"\n");  }
 #endif  
       }  /*************** function subdirf2 ***********/
     }   char *subdirf2(char fileres[], char *preop)
   }   {
 }    
     /* Caution optionfilefiname is hidden */
 /**** Prevalence limit (stable prevalence)  ****************/    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    strcat(tmpout,preop);
 {    strcat(tmpout,fileres);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    return tmpout;
      matrix by transitions matrix until convergence is reached */  }
   
   int i, ii,j,k;  /*************** function subdirf3 ***********/
   double min, max, maxmin, maxmax,sumnew=0.;  char *subdirf3(char fileres[], char *preop, char *preop2)
   double **matprod2();  {
   double **out, cov[NCOVMAX], **pmij();   
   double **newm;    /* Caution optionfilefiname is hidden */
   double agefin, delaymax=50 ; /* Max number of years to converge */    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   for (ii=1;ii<=nlstate+ndeath;ii++)    strcat(tmpout,preop);
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,preop2);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    strcat(tmpout,fileres);
     }    return tmpout;
   }
    cov[1]=1.;  
    /***************** f1dim *************************/
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  extern int ncom;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  extern double *pcom,*xicom;
     newm=savm;  extern double (*nrfunc)(double []);
     /* Covariates have to be included here again */   
      cov[2]=agefin;  double f1dim(double x)
     {
       for (k=1; k<=cptcovn;k++) {    int j;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double f;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    double *xt;
       }   
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    xt=vector(1,ncom);
       for (k=1; k<=cptcovprod;k++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    f=(*nrfunc)(xt);
     free_vector(xt,1,ncom);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    return f;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
     savm=oldm;  {
     oldm=newm;    int iter;
     maxmax=0.;    double a,b,d,etemp;
     for(j=1;j<=nlstate;j++){    double fu,fv,fw,fx;
       min=1.;    double ftemp;
       max=0.;    double p,q,r,tol1,tol2,u,v,w,x,xm;
       for(i=1; i<=nlstate; i++) {    double e=0.0;
         sumnew=0;   
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    a=(ax < cx ? ax : cx);
         prlim[i][j]= newm[i][j]/(1-sumnew);    b=(ax > cx ? ax : cx);
         max=FMAX(max,prlim[i][j]);    x=w=v=bx;
         min=FMIN(min,prlim[i][j]);    fw=fv=fx=(*f)(x);
       }    for (iter=1;iter<=ITMAX;iter++) {
       maxmin=max-min;      xm=0.5*(a+b);
       maxmax=FMAX(maxmax,maxmin);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
     }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     if(maxmax < ftolpl){      printf(".");fflush(stdout);
       return prlim;      fprintf(ficlog,".");fflush(ficlog);
     }  #ifdef DEBUG
   }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 /*************** transition probabilities ***************/   #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        *xmin=x;
 {        return fx;
   double s1, s2;      }
   /*double t34;*/      ftemp=fu;
   int i,j,j1, nc, ii, jj;      if (fabs(e) > tol1) {
         r=(x-w)*(fx-fv);
     for(i=1; i<= nlstate; i++){        q=(x-v)*(fx-fw);
     for(j=1; j<i;j++){        p=(x-v)*q-(x-w)*r;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        q=2.0*(q-r);
         /*s2 += param[i][j][nc]*cov[nc];*/        if (q > 0.0) p = -p;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        q=fabs(q);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        etemp=e;
       }        e=d;
       ps[i][j]=s2;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/          d=CGOLD*(e=(x >= xm ? a-x : b-x));
     }        else {
     for(j=i+1; j<=nlstate+ndeath;j++){          d=p/q;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          u=x+d;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          if (u-a < tol2 || b-u < tol2)
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/            d=SIGN(tol1,xm-x);
       }        }
       ps[i][j]=s2;      } else {
     }        d=CGOLD*(e=(x >= xm ? a-x : b-x));
   }      }
     /*ps[3][2]=1;*/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
       fu=(*f)(u);
   for(i=1; i<= nlstate; i++){      if (fu <= fx) {
      s1=0;        if (u >= x) a=x; else b=x;
     for(j=1; j<i; j++)        SHFT(v,w,x,u)
       s1+=exp(ps[i][j]);          SHFT(fv,fw,fx,fu)
     for(j=i+1; j<=nlstate+ndeath; j++)          } else {
       s1+=exp(ps[i][j]);            if (u < x) a=u; else b=u;
     ps[i][i]=1./(s1+1.);            if (fu <= fw || w == x) {
     for(j=1; j<i; j++)              v=w;
       ps[i][j]= exp(ps[i][j])*ps[i][i];              w=u;
     for(j=i+1; j<=nlstate+ndeath; j++)              fv=fw;
       ps[i][j]= exp(ps[i][j])*ps[i][i];              fw=fu;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            } else if (fu <= fv || v == x || v == w) {
   } /* end i */              v=u;
               fv=fu;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){            }
     for(jj=1; jj<= nlstate+ndeath; jj++){          }
       ps[ii][jj]=0;    }
       ps[ii][ii]=1;    nrerror("Too many iterations in brent");
     }    *xmin=x;
   }    return fx;
   }
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /****************** mnbrak ***********************/
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
    }              double (*func)(double))
     printf("\n ");  {
     }    double ulim,u,r,q, dum;
     printf("\n ");printf("%lf ",cov[2]);*/    double fu;
 /*   
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    *fa=(*func)(*ax);
   goto end;*/    *fb=(*func)(*bx);
     return ps;    if (*fb > *fa) {
 }      SHFT(dum,*ax,*bx,dum)
         SHFT(dum,*fb,*fa,dum)
 /**************** Product of 2 matrices ******************/        }
     *cx=(*bx)+GOLD*(*bx-*ax);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    *fc=(*func)(*cx);
 {    while (*fb > *fc) {
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      r=(*bx-*ax)*(*fb-*fc);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      q=(*bx-*cx)*(*fb-*fa);
   /* in, b, out are matrice of pointers which should have been initialized       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
      before: only the contents of out is modified. The function returns        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
      a pointer to pointers identical to out */      ulim=(*bx)+GLIMIT*(*cx-*bx);
   long i, j, k;      if ((*bx-u)*(u-*cx) > 0.0) {
   for(i=nrl; i<= nrh; i++)        fu=(*func)(u);
     for(k=ncolol; k<=ncoloh; k++)      } else if ((*cx-u)*(u-ulim) > 0.0) {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        fu=(*func)(u);
         out[i][k] +=in[i][j]*b[j][k];        if (fu < *fc) {
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
   return out;            SHFT(*fb,*fc,fu,(*func)(u))
 }            }
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
         u=ulim;
 /************* Higher Matrix Product ***************/        fu=(*func)(u);
       } else {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        u=(*cx)+GOLD*(*cx-*bx);
 {        fu=(*func)(u);
   /* Computes the transition matrix starting at age 'age' over       }
      'nhstepm*hstepm*stepm' months (i.e. until      SHFT(*ax,*bx,*cx,u)
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying         SHFT(*fa,*fb,*fc,fu)
      nhstepm*hstepm matrices.         }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   }
      (typically every 2 years instead of every month which is too big   
      for the memory).  /*************** linmin ************************/
      Model is determined by parameters x and covariates have to be   
      included manually here.   int ncom;
   double *pcom,*xicom;
      */  double (*nrfunc)(double []);
    
   int i, j, d, h, k;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
   double **out, cov[NCOVMAX];  {
   double **newm;    double brent(double ax, double bx, double cx,
                  double (*f)(double), double tol, double *xmin);
   /* Hstepm could be zero and should return the unit matrix */    double f1dim(double x);
   for (i=1;i<=nlstate+ndeath;i++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
     for (j=1;j<=nlstate+ndeath;j++){                double *fc, double (*func)(double));
       oldm[i][j]=(i==j ? 1.0 : 0.0);    int j;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double xx,xmin,bx,ax;
     }    double fx,fb,fa;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */   
   for(h=1; h <=nhstepm; h++){    ncom=n;
     for(d=1; d <=hstepm; d++){    pcom=vector(1,n);
       newm=savm;    xicom=vector(1,n);
       /* Covariates have to be included here again */    nrfunc=func;
       cov[1]=1.;    for (j=1;j<=n;j++) {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      pcom[j]=p[j];
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      xicom[j]=xi[j];
       for (k=1; k<=cptcovage;k++)    }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    ax=0.0;
       for (k=1; k<=cptcovprod;k++)    xx=1.0;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
   #ifdef DEBUG
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   #endif
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    for (j=1;j<=n;j++) {
       savm=oldm;      xi[j] *= xmin;
       oldm=newm;      p[j] += xi[j];
     }    }
     for(i=1; i<=nlstate+ndeath; i++)    free_vector(xicom,1,n);
       for(j=1;j<=nlstate+ndeath;j++) {    free_vector(pcom,1,n);
         po[i][j][h]=newm[i][j];  }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  char *asc_diff_time(long time_sec, char ascdiff[])
       }  {
   } /* end h */    long sec_left, days, hours, minutes;
   return po;    days = (time_sec) / (60*60*24);
 }    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
 /*************** log-likelihood *************/    minutes = (sec_left) /60;
 double func( double *x)    sec_left = (sec_left) % (60);
 {    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   int i, ii, j, k, mi, d, kk;    return ascdiff;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  }
   double **out;  
   double sw; /* Sum of weights */  /*************** powell ************************/
   double lli; /* Individual log likelihood */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
   int s1, s2;              double (*func)(double []))
   double bbh, survp;  {
   long ipmx;    void linmin(double p[], double xi[], int n, double *fret,
   /*extern weight */                double (*func)(double []));
   /* We are differentiating ll according to initial status */    int i,ibig,j;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double del,t,*pt,*ptt,*xit;
   /*for(i=1;i<imx;i++)     double fp,fptt;
     printf(" %d\n",s[4][i]);    double *xits;
   */    int niterf, itmp;
   cov[1]=1.;  
     pt=vector(1,n);
   for(k=1; k<=nlstate; k++) ll[k]=0.;    ptt=vector(1,n);
     xit=vector(1,n);
   if(mle==1){    xits=vector(1,n);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    *fret=(*func)(p);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    for (j=1;j<=n;j++) pt[j]=p[j];
       for(mi=1; mi<= wav[i]-1; mi++){    for (*iter=1;;++(*iter)) {
         for (ii=1;ii<=nlstate+ndeath;ii++)      fp=(*fret);
           for (j=1;j<=nlstate+ndeath;j++){      ibig=0;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      del=0.0;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      last_time=curr_time;
           }      (void) gettimeofday(&curr_time,&tzp);
         for(d=0; d<dh[mi][i]; d++){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
           newm=savm;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
           for (kk=1; kk<=cptcovage;kk++) {     for (i=1;i<=n;i++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        printf(" %d %.12f",i, p[i]);
           }        fprintf(ficlog," %d %.12lf",i, p[i]);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        fprintf(ficrespow," %.12lf", p[i]);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      }
           savm=oldm;      printf("\n");
           oldm=newm;      fprintf(ficlog,"\n");
         } /* end mult */      fprintf(ficrespow,"\n");fflush(ficrespow);
             if(*iter <=3){
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        tm = *localtime(&curr_time.tv_sec);
         /* But now since version 0.9 we anticipate for bias and large stepm.        strcpy(strcurr,asctime(&tm));
          * If stepm is larger than one month (smallest stepm) and if the exact delay   /*       asctime_r(&tm,strcurr); */
          * (in months) between two waves is not a multiple of stepm, we rounded to         forecast_time=curr_time;
          * the nearest (and in case of equal distance, to the lowest) interval but now        itmp = strlen(strcurr);
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the          strcurr[itmp-1]='\0';
          * probability in order to take into account the bias as a fraction of the way        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          * -stepm/2 to stepm/2 .        for(niterf=10;niterf<=30;niterf+=10){
          * For stepm=1 the results are the same as for previous versions of Imach.          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
          * For stepm > 1 the results are less biased than in previous versions.           tmf = *localtime(&forecast_time.tv_sec);
          */  /*      asctime_r(&tmf,strfor); */
         s1=s[mw[mi][i]][i];          strcpy(strfor,asctime(&tmf));
         s2=s[mw[mi+1][i]][i];          itmp = strlen(strfor);
         bbh=(double)bh[mi][i]/(double)stepm;           if(strfor[itmp-1]=='\n')
         /* bias is positive if real duration          strfor[itmp-1]='\0';
          * is higher than the multiple of stepm and negative otherwise.          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
          */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        }
         if( s2 > nlstate){       }
           /* i.e. if s2 is a death state and if the date of death is known then the contribution      for (i=1;i<=n;i++) {
              to the likelihood is the probability to die between last step unit time and current         for (j=1;j<=n;j++) xit[j]=xi[j][i];
              step unit time, which is also the differences between probability to die before dh         fptt=(*fret);
              and probability to die before dh-stepm .   #ifdef DEBUG
              In version up to 0.92 likelihood was computed        printf("fret=%lf \n",*fret);
         as if date of death was unknown. Death was treated as any other        fprintf(ficlog,"fret=%lf \n",*fret);
         health state: the date of the interview describes the actual state  #endif
         and not the date of a change in health state. The former idea was        printf("%d",i);fflush(stdout);
         to consider that at each interview the state was recorded        fprintf(ficlog,"%d",i);fflush(ficlog);
         (healthy, disable or death) and IMaCh was corrected; but when we        linmin(p,xit,n,fret,func);
         introduced the exact date of death then we should have modified        if (fabs(fptt-(*fret)) > del) {
         the contribution of an exact death to the likelihood. This new          del=fabs(fptt-(*fret));
         contribution is smaller and very dependent of the step unit          ibig=i;
         stepm. It is no more the probability to die between last interview        }
         and month of death but the probability to survive from last  #ifdef DEBUG
         interview up to one month before death multiplied by the        printf("%d %.12e",i,(*fret));
         probability to die within a month. Thanks to Chris        fprintf(ficlog,"%d %.12e",i,(*fret));
         Jackson for correcting this bug.  Former versions increased        for (j=1;j<=n;j++) {
         mortality artificially. The bad side is that we add another loop          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         which slows down the processing. The difference can be up to 10%          printf(" x(%d)=%.12e",j,xit[j]);
         lower mortality.          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
           */        }
           lli=log(out[s1][s2] - savm[s1][s2]);        for(j=1;j<=n;j++) {
         }else{          printf(" p=%.12e",p[j]);
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          fprintf(ficlog," p=%.12e",p[j]);
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */        }
         }         printf("\n");
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        fprintf(ficlog,"\n");
         /*if(lli ==000.0)*/  #endif
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */      }
         ipmx +=1;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         sw += weight[i];  #ifdef DEBUG
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        int k[2],l;
       } /* end of wave */        k[0]=1;
     } /* end of individual */        k[1]=-1;
   }  else if(mle==2){        printf("Max: %.12e",(*func)(p));
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for (j=1;j<=n;j++) {
       for(mi=1; mi<= wav[i]-1; mi++){          printf(" %.12e",p[j]);
         for (ii=1;ii<=nlstate+ndeath;ii++)          fprintf(ficlog," %.12e",p[j]);
           for (j=1;j<=nlstate+ndeath;j++){        }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        printf("\n");
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficlog,"\n");
           }        for(l=0;l<=1;l++) {
         for(d=0; d<=dh[mi][i]; d++){          for (j=1;j<=n;j++) {
           newm=savm;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           for (kk=1; kk<=cptcovage;kk++) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          }
           }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        }
           savm=oldm;  #endif
           oldm=newm;  
         } /* end mult */  
               free_vector(xit,1,n);
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        free_vector(xits,1,n);
         /* But now since version 0.9 we anticipate for bias and large stepm.        free_vector(ptt,1,n);
          * If stepm is larger than one month (smallest stepm) and if the exact delay         free_vector(pt,1,n);
          * (in months) between two waves is not a multiple of stepm, we rounded to         return;
          * the nearest (and in case of equal distance, to the lowest) interval but now      }
          * we keep into memory the bias bh[mi][i] and also the previous matrix product      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the      for (j=1;j<=n;j++) {
          * probability in order to take into account the bias as a fraction of the way        ptt[j]=2.0*p[j]-pt[j];
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies        xit[j]=p[j]-pt[j];
          * -stepm/2 to stepm/2 .        pt[j]=p[j];
          * For stepm=1 the results are the same as for previous versions of Imach.      }
          * For stepm > 1 the results are less biased than in previous versions.       fptt=(*func)(ptt);
          */      if (fptt < fp) {
         s1=s[mw[mi][i]][i];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
         s2=s[mw[mi+1][i]][i];        if (t < 0.0) {
         bbh=(double)bh[mi][i]/(double)stepm;           linmin(p,xit,n,fret,func);
         /* bias is positive if real duration          for (j=1;j<=n;j++) {
          * is higher than the multiple of stepm and negative otherwise.            xi[j][ibig]=xi[j][n];
          */            xi[j][n]=xit[j];
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          }
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  #ifdef DEBUG
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         /*if(lli ==000.0)*/          for(j=1;j<=n;j++){
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */            printf(" %.12e",xit[j]);
         ipmx +=1;            fprintf(ficlog," %.12e",xit[j]);
         sw += weight[i];          }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          printf("\n");
       } /* end of wave */          fprintf(ficlog,"\n");
     } /* end of individual */  #endif
   }  else if(mle==3){  /* exponential inter-extrapolation */        }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      }
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    }
       for(mi=1; mi<= wav[i]-1; mi++){  }
         for (ii=1;ii<=nlstate+ndeath;ii++)  
           for (j=1;j<=nlstate+ndeath;j++){  /**** Prevalence limit (stable or period prevalence)  ****************/
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           }  {
         for(d=0; d<dh[mi][i]; d++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
           newm=savm;       matrix by transitions matrix until convergence is reached */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
           for (kk=1; kk<=cptcovage;kk++) {    int i, ii,j,k;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double min, max, maxmin, maxmax,sumnew=0.;
           }    double **matprod2();
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double **out, cov[NCOVMAX], **pmij();
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double **newm;
           savm=oldm;    double agefin, delaymax=50 ; /* Max number of years to converge */
           oldm=newm;  
         } /* end mult */    for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         /* But now since version 0.9 we anticipate for bias and large stepm.      }
          * If stepm is larger than one month (smallest stepm) and if the exact delay   
          * (in months) between two waves is not a multiple of stepm, we rounded to      cov[1]=1.;
          * the nearest (and in case of equal distance, to the lowest) interval but now   
          * we keep into memory the bias bh[mi][i] and also the previous matrix product   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
          * probability in order to take into account the bias as a fraction of the way      newm=savm;
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies      /* Covariates have to be included here again */
          * -stepm/2 to stepm/2 .       cov[2]=agefin;
          * For stepm=1 the results are the same as for previous versions of Imach.   
          * For stepm > 1 the results are less biased than in previous versions.         for (k=1; k<=cptcovn;k++) {
          */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         s1=s[mw[mi][i]][i];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         s2=s[mw[mi+1][i]][i];        }
         bbh=(double)bh[mi][i]/(double)stepm;         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         /* bias is positive if real duration        for (k=1; k<=cptcovprod;k++)
          * is higher than the multiple of stepm and negative otherwise.          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          */  
         /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         /*if(lli ==000.0)*/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */  
         ipmx +=1;      savm=oldm;
         sw += weight[i];      oldm=newm;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      maxmax=0.;
       } /* end of wave */      for(j=1;j<=nlstate;j++){
     } /* end of individual */        min=1.;
   }else{  /* ml=4 no inter-extrapolation */        max=0.;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for(i=1; i<=nlstate; i++) {
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          sumnew=0;
       for(mi=1; mi<= wav[i]-1; mi++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         for (ii=1;ii<=nlstate+ndeath;ii++)          prlim[i][j]= newm[i][j]/(1-sumnew);
           for (j=1;j<=nlstate+ndeath;j++){          max=FMAX(max,prlim[i][j]);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          min=FMIN(min,prlim[i][j]);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        }
           }        maxmin=max-min;
         for(d=0; d<dh[mi][i]; d++){        maxmax=FMAX(maxmax,maxmin);
           newm=savm;      }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      if(maxmax < ftolpl){
           for (kk=1; kk<=cptcovage;kk++) {        return prlim;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
           }    }
           }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************** transition probabilities ***************/
           savm=oldm;  
           oldm=newm;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         } /* end mult */  {
           double s1, s2;
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */    /*double t34;*/
         ipmx +=1;    int i,j,j1, nc, ii, jj;
         sw += weight[i];  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for(i=1; i<= nlstate; i++){
       } /* end of wave */        for(j=1; j<i;j++){
     } /* end of individual */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   } /* End of if */            /*s2 += param[i][j][nc]*cov[nc];*/
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          }
   return -l;          ps[i][j]=s2;
 }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         }
         for(j=i+1; j<=nlstate+ndeath;j++){
 /*********** Maximum Likelihood Estimation ***************/          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 {          }
   int i,j, iter;          ps[i][j]=s2;
   double **xi;        }
   double fret;      }
   char filerespow[FILENAMELENGTH];      /*ps[3][2]=1;*/
   xi=matrix(1,npar,1,npar);     
   for (i=1;i<=npar;i++)      for(i=1; i<= nlstate; i++){
     for (j=1;j<=npar;j++)        s1=0;
       xi[i][j]=(i==j ? 1.0 : 0.0);        for(j=1; j<i; j++)
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          s1+=exp(ps[i][j]);
   strcpy(filerespow,"pow");         for(j=i+1; j<=nlstate+ndeath; j++)
   strcat(filerespow,fileres);          s1+=exp(ps[i][j]);
   if((ficrespow=fopen(filerespow,"w"))==NULL) {        ps[i][i]=1./(s1+1.);
     printf("Problem with resultfile: %s\n", filerespow);        for(j=1; j<i; j++)
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   }        for(j=i+1; j<=nlstate+ndeath; j++)
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=1;i<=nlstate;i++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     for(j=1;j<=nlstate+ndeath;j++)      } /* end i */
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);     
   fprintf(ficrespow,"\n");      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   powell(p,xi,npar,ftol,&iter,&fret,func);        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
   fclose(ficrespow);          ps[ii][ii]=1;
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        }
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));     
   
 }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 /**** Computes Hessian and covariance matrix ***/  /*         printf("ddd %lf ",ps[ii][jj]); */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /*       } */
 {  /*       printf("\n "); */
   double  **a,**y,*x,pd;  /*        } */
   double **hess;  /*        printf("\n ");printf("%lf ",cov[2]); */
   int i, j,jk;         /*
   int *indx;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
   double hessii(double p[], double delta, int theta, double delti[]);      return ps;
   double hessij(double p[], double delti[], int i, int j);  }
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /**************** Product of 2 matrices ******************/
   
   hess=matrix(1,npar,1,npar);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for (i=1;i<=npar;i++){    /* in, b, out are matrice of pointers which should have been initialized
     printf("%d",i);fflush(stdout);       before: only the contents of out is modified. The function returns
     fprintf(ficlog,"%d",i);fflush(ficlog);       a pointer to pointers identical to out */
     hess[i][i]=hessii(p,ftolhess,i,delti);    long i, j, k;
     /*printf(" %f ",p[i]);*/    for(i=nrl; i<= nrh; i++)
     /*printf(" %lf ",hess[i][i]);*/      for(k=ncolol; k<=ncoloh; k++)
   }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
             out[i][k] +=in[i][j]*b[j][k];
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {    return out;
       if (j>i) {   }
         printf(".%d%d",i,j);fflush(stdout);  
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  
         hess[i][j]=hessij(p,delti,i,j);  /************* Higher Matrix Product ***************/
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       }  {
     }    /* Computes the transition matrix starting at age 'age' over
   }       'nhstepm*hstepm*stepm' months (i.e. until
   printf("\n");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
   fprintf(ficlog,"\n");       nhstepm*hstepm matrices.
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");       (typically every 2 years instead of every month which is too big
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");       for the memory).
          Model is determined by parameters x and covariates have to be
   a=matrix(1,npar,1,npar);       included manually here.
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);       */
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)    int i, j, d, h, k;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    double **out, cov[NCOVMAX];
   ludcmp(a,npar,indx,&pd);    double **newm;
   
   for (j=1;j<=npar;j++) {    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=npar;i++) x[i]=0;    for (i=1;i<=nlstate+ndeath;i++)
     x[j]=1;      for (j=1;j<=nlstate+ndeath;j++){
     lubksb(a,npar,indx,x);        oldm[i][j]=(i==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++){         po[i][j][0]=(i==j ? 1.0 : 0.0);
       matcov[i][j]=x[i];      }
     }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
   printf("\n#Hessian matrix#\n");        newm=savm;
   fprintf(ficlog,"\n#Hessian matrix#\n");        /* Covariates have to be included here again */
   for (i=1;i<=npar;i++) {         cov[1]=1.;
     for (j=1;j<=npar;j++) {         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       printf("%.3e ",hess[i][j]);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       fprintf(ficlog,"%.3e ",hess[i][j]);        for (k=1; k<=cptcovage;k++)
     }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     printf("\n");        for (k=1; k<=cptcovprod;k++)
     fprintf(ficlog,"\n");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
   
   /* Recompute Inverse */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   for (i=1;i<=npar;i++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
   ludcmp(a,npar,indx,&pd);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
   /*  printf("\n#Hessian matrix recomputed#\n");        oldm=newm;
       }
   for (j=1;j<=npar;j++) {      for(i=1; i<=nlstate+ndeath; i++)
     for (i=1;i<=npar;i++) x[i]=0;        for(j=1;j<=nlstate+ndeath;j++) {
     x[j]=1;          po[i][j][h]=newm[i][j];
     lubksb(a,npar,indx,x);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     for (i=1;i<=npar;i++){            */
       y[i][j]=x[i];        }
       printf("%.3e ",y[i][j]);    } /* end h */
       fprintf(ficlog,"%.3e ",y[i][j]);    return po;
     }  }
     printf("\n");  
     fprintf(ficlog,"\n");  
   }  /*************** log-likelihood *************/
   */  double func( double *x)
   {
   free_matrix(a,1,npar,1,npar);    int i, ii, j, k, mi, d, kk;
   free_matrix(y,1,npar,1,npar);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   free_vector(x,1,npar);    double **out;
   free_ivector(indx,1,npar);    double sw; /* Sum of weights */
   free_matrix(hess,1,npar,1,npar);    double lli; /* Individual log likelihood */
     int s1, s2;
     double bbh, survp;
 }    long ipmx;
     /*extern weight */
 /*************** hessian matrix ****************/    /* We are differentiating ll according to initial status */
 double hessii( double x[], double delta, int theta, double delti[])    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 {    /*for(i=1;i<imx;i++)
   int i;      printf(" %d\n",s[4][i]);
   int l=1, lmax=20;    */
   double k1,k2;    cov[1]=1.;
   double p2[NPARMAX+1];  
   double res;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;    if(mle==1){
   int k=0,kmax=10;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double l1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   fx=func(x);          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (i=1;i<=npar;i++) p2[i]=x[i];            for (j=1;j<=nlstate+ndeath;j++){
   for(l=0 ; l <=lmax; l++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     l1=pow(10,l);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     delts=delt;            }
     for(k=1 ; k <kmax; k=k+1){          for(d=0; d<dh[mi][i]; d++){
       delt = delta*(l1*k);            newm=savm;
       p2[theta]=x[theta] +delt;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       k1=func(p2)-fx;            for (kk=1; kk<=cptcovage;kk++) {
       p2[theta]=x[theta]-delt;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       k2=func(p2)-fx;            }
       /*res= (k1-2.0*fx+k2)/delt/delt; */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   savm=oldm;
 #ifdef DEBUG            oldm=newm;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          } /* end mult */
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);       
 #endif          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          /* But now since version 0.9 we anticipate for bias at large stepm.
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){           * If stepm is larger than one month (smallest stepm) and if the exact delay
         k=kmax;           * (in months) between two waves is not a multiple of stepm, we rounded to
       }           * the nearest (and in case of equal distance, to the lowest) interval but now
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         k=kmax; l=lmax*10.;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       }           * probability in order to take into account the bias as a fraction of the way
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         delts=delt;           * -stepm/2 to stepm/2 .
       }           * For stepm=1 the results are the same as for previous versions of Imach.
     }           * For stepm > 1 the results are less biased than in previous versions.
   }           */
   delti[theta]=delts;          s1=s[mw[mi][i]][i];
   return res;           s2=s[mw[mi+1][i]][i];
             bbh=(double)bh[mi][i]/(double)stepm;
 }          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
 double hessij( double x[], double delti[], int thetai,int thetaj)           */
 {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   int i;          if( s2 > nlstate){
   int l=1, l1, lmax=20;            /* i.e. if s2 is a death state and if the date of death is known
   double k1,k2,k3,k4,res,fx;               then the contribution to the likelihood is the probability to
   double p2[NPARMAX+1];               die between last step unit time and current  step unit time,
   int k;               which is also equal to probability to die before dh
                minus probability to die before dh-stepm .
   fx=func(x);               In version up to 0.92 likelihood was computed
   for (k=1; k<=2; k++) {          as if date of death was unknown. Death was treated as any other
     for (i=1;i<=npar;i++) p2[i]=x[i];          health state: the date of the interview describes the actual state
     p2[thetai]=x[thetai]+delti[thetai]/k;          and not the date of a change in health state. The former idea was
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          to consider that at each interview the state was recorded
     k1=func(p2)-fx;          (healthy, disable or death) and IMaCh was corrected; but when we
             introduced the exact date of death then we should have modified
     p2[thetai]=x[thetai]+delti[thetai]/k;          the contribution of an exact death to the likelihood. This new
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          contribution is smaller and very dependent of the step unit
     k2=func(p2)-fx;          stepm. It is no more the probability to die between last interview
             and month of death but the probability to survive from last
     p2[thetai]=x[thetai]-delti[thetai]/k;          interview up to one month before death multiplied by the
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          probability to die within a month. Thanks to Chris
     k3=func(p2)-fx;          Jackson for correcting this bug.  Former versions increased
             mortality artificially. The bad side is that we add another loop
     p2[thetai]=x[thetai]-delti[thetai]/k;          which slows down the processing. The difference can be up to 10%
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          lower mortality.
     k4=func(p2)-fx;            */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            lli=log(out[s1][s2] - savm[s1][s2]);
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          } else if  (s2==-2) {
 #endif            for (j=1,survp=0. ; j<=nlstate; j++)
   }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   return res;            /*survp += out[s1][j]; */
 }            lli= log(survp);
           }
 /************** Inverse of matrix **************/         
 void ludcmp(double **a, int n, int *indx, double *d)           else if  (s2==-4) {
 {             for (j=3,survp=0. ; j<=nlstate; j++)  
   int i,imax,j,k;               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double big,dum,sum,temp;             lli= log(survp);
   double *vv;           }
    
   vv=vector(1,n);           else if  (s2==-5) {
   *d=1.0;             for (j=1,survp=0. ; j<=2; j++)  
   for (i=1;i<=n;i++) {               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     big=0.0;             lli= log(survp);
     for (j=1;j<=n;j++)           }
       if ((temp=fabs(a[i][j])) > big) big=temp;          
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           else{
     vv[i]=1.0/big;             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   for (j=1;j<=n;j++) {           }
     for (i=1;i<j;i++) {           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       sum=a[i][j];           /*if(lli ==000.0)*/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       a[i][j]=sum;           ipmx +=1;
     }           sw += weight[i];
     big=0.0;           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=j;i<=n;i++) {         } /* end of wave */
       sum=a[i][j];       } /* end of individual */
       for (k=1;k<j;k++)     }  else if(mle==2){
         sum -= a[i][k]*a[k][j];       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       a[i][j]=sum;         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if ( (dum=vv[i]*fabs(sum)) >= big) {         for(mi=1; mi<= wav[i]-1; mi++){
         big=dum;           for (ii=1;ii<=nlstate+ndeath;ii++)
         imax=i;             for (j=1;j<=nlstate+ndeath;j++){
       }               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (j != imax) {             }
       for (k=1;k<=n;k++) {           for(d=0; d<=dh[mi][i]; d++){
         dum=a[imax][k];             newm=savm;
         a[imax][k]=a[j][k];             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         a[j][k]=dum;             for (kk=1; kk<=cptcovage;kk++) {
       }               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       *d = -(*d);             }
       vv[imax]=vv[j];             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     indx[j]=imax;             savm=oldm;
     if (a[j][j] == 0.0) a[j][j]=TINY;             oldm=newm;
     if (j != n) {           } /* end mult */
       dum=1.0/(a[j][j]);        
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           s1=s[mw[mi][i]][i];
     }           s2=s[mw[mi+1][i]][i];
   }           bbh=(double)bh[mi][i]/(double)stepm;
   free_vector(vv,1,n);  /* Doesn't work */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 ;          ipmx +=1;
 }           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void lubksb(double **a, int n, int *indx, double b[])         } /* end of wave */
 {       } /* end of individual */
   int i,ii=0,ip,j;     }  else if(mle==3){  /* exponential inter-extrapolation */
   double sum;       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=1;i<=n;i++) {         for(mi=1; mi<= wav[i]-1; mi++){
     ip=indx[i];           for (ii=1;ii<=nlstate+ndeath;ii++)
     sum=b[ip];             for (j=1;j<=nlstate+ndeath;j++){
     b[ip]=b[i];               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (ii)               savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];             }
     else if (sum) ii=i;           for(d=0; d<dh[mi][i]; d++){
     b[i]=sum;             newm=savm;
   }             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (i=n;i>=1;i--) {             for (kk=1; kk<=cptcovage;kk++) {
     sum=b[i];               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];             }
     b[i]=sum/a[i][i];             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }             savm=oldm;
             oldm=newm;
 /************ Frequencies ********************/          } /* end mult */
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)       
 {  /* Some frequencies */          s1=s[mw[mi][i]][i];
             s2=s[mw[mi+1][i]][i];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          bbh=(double)bh[mi][i]/(double)stepm;
   int first;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double ***freq; /* Frequencies */          ipmx +=1;
   double *pp, **prop;          sw += weight[i];
   double pos,posprop, k2, dateintsum=0,k2cpt=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   FILE *ficresp;        } /* end of wave */
   char fileresp[FILENAMELENGTH];      } /* end of individual */
       }else if (mle==4){  /* ml=4 no inter-extrapolation */
   pp=vector(1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   prop=matrix(1,nlstate,iagemin,iagemax+3);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   strcpy(fileresp,"p");        for(mi=1; mi<= wav[i]-1; mi++){
   strcat(fileresp,fileres);          for (ii=1;ii<=nlstate+ndeath;ii++)
   if((ficresp=fopen(fileresp,"w"))==NULL) {            for (j=1;j<=nlstate+ndeath;j++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     exit(0);            }
   }          for(d=0; d<dh[mi][i]; d++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);            newm=savm;
   j1=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               for (kk=1; kk<=cptcovage;kk++) {
   j=cptcoveff;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            }
          
   first=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(k1=1; k1<=j;k1++){            savm=oldm;
     for(i1=1; i1<=ncodemax[k1];i1++){            oldm=newm;
       j1++;          } /* end mult */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);       
         scanf("%d", i);*/          s1=s[mw[mi][i]][i];
       for (i=-1; i<=nlstate+ndeath; i++)            s2=s[mw[mi+1][i]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            if( s2 > nlstate){
           for(m=iagemin; m <= iagemax+3; m++)            lli=log(out[s1][s2] - savm[s1][s2]);
             freq[i][jk][m]=0;          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for (i=1; i<=nlstate; i++)            }
       for(m=iagemin; m <= iagemax+3; m++)          ipmx +=1;
         prop[i][m]=0;          sw += weight[i];
                 ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       dateintsum=0;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       k2cpt=0;        } /* end of wave */
       for (i=1; i<=imx; i++) {      } /* end of individual */
         bool=1;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         if  (cptcovn>0) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for (z1=1; z1<=cptcoveff; z1++)         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])         for(mi=1; mi<= wav[i]-1; mi++){
               bool=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         if (bool==1){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=firstpass; m<=lastpass; m++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             k2=anint[m][i]+(mint[m][i]/12.);            }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          for(d=0; d<dh[mi][i]; d++){
               if(agev[m][i]==0) agev[m][i]=iagemax+1;            newm=savm;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];            for (kk=1; kk<=cptcovage;kk++) {
               if (m<lastpass) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            }
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];         
               }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {            savm=oldm;
                 dateintsum=dateintsum+k2;            oldm=newm;
                 k2cpt++;          } /* end mult */
               }       
             }          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
         }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          ipmx +=1;
                  sw += weight[i];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       if  (cptcovn>0) {        } /* end of wave */
         fprintf(ficresp, "\n#********** Variable ");       } /* end of individual */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    } /* End of if */
         fprintf(ficresp, "**********\n#");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(i=1; i<=nlstate;i++)     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    return -l;
       fprintf(ficresp, "\n");  }
         
       for(i=iagemin; i <= iagemax+3; i++){  /*************** log-likelihood *************/
         if(i==iagemax+3){  double funcone( double *x)
           fprintf(ficlog,"Total");  {
         }else{    /* Same as likeli but slower because of a lot of printf and if */
           if(first==1){    int i, ii, j, k, mi, d, kk;
             first=0;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             printf("See log file for details...\n");    double **out;
           }    double lli; /* Individual log likelihood */
           fprintf(ficlog,"Age %d", i);    double llt;
         }    int s1, s2;
         for(jk=1; jk <=nlstate ; jk++){    double bbh, survp;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /*extern weight */
             pp[jk] += freq[jk][m][i];     /* We are differentiating ll according to initial status */
         }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for(jk=1; jk <=nlstate ; jk++){    /*for(i=1;i<imx;i++)
           for(m=-1, pos=0; m <=0 ; m++)      printf(" %d\n",s[4][i]);
             pos += freq[jk][m][i];    */
           if(pp[jk]>=1.e-10){    cov[1]=1.;
             if(first==1){  
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
             }  
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }else{      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             if(first==1)      for(mi=1; mi<= wav[i]-1; mi++){
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for (ii=1;ii<=nlstate+ndeath;ii++)
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          for (j=1;j<=nlstate+ndeath;j++){
           }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
         for(jk=1; jk <=nlstate ; jk++){        for(d=0; d<dh[mi][i]; d++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          newm=savm;
             pp[jk] += freq[jk][m][i];          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }                 for (kk=1; kk<=cptcovage;kk++) {
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           pos += pp[jk];          }
           posprop += prop[jk][i];          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){          savm=oldm;
           if(pos>=1.e-5){          oldm=newm;
             if(first==1)        } /* end mult */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);       
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        s1=s[mw[mi][i]][i];
           }else{        s2=s[mw[mi+1][i]][i];
             if(first==1)        bbh=(double)bh[mi][i]/(double)stepm;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        /* bias is positive if real duration
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);         * is higher than the multiple of stepm and negative otherwise.
           }         */
           if( i <= iagemax){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
             if(pos>=1.e-5){          lli=log(out[s1][s2] - savm[s1][s2]);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);        } else if  (s2==-2) {
               probs[i][jk][j1]= pp[jk]/pos;          for (j=1,survp=0. ; j<=nlstate; j++)
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             }          lli= log(survp);
             else        }else if (mle==1){
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           }        } else if(mle==2){
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                 } else if(mle==3){  /* exponential inter-extrapolation */
         for(jk=-1; jk <=nlstate+ndeath; jk++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           for(m=-1; m <=nlstate+ndeath; m++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
             if(freq[jk][m][i] !=0 ) {          lli=log(out[s1][s2]); /* Original formula */
             if(first==1)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          lli=log(out[s1][s2]); /* Original formula */
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        } /* End of if */
             }        ipmx +=1;
         if(i <= iagemax)        sw += weight[i];
           fprintf(ficresp,"\n");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if(first==1)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           printf("Others in log...\n");        if(globpr){
         fprintf(ficlog,"\n");          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       }   %11.6f %11.6f %11.6f ", \
     }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   dateintmean=dateintsum/k2cpt;           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
              llt +=ll[k]*gipmx/gsw;
   fclose(ficresp);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);          }
   free_vector(pp,1,nlstate);          fprintf(ficresilk," %10.6f\n", -llt);
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);        }
   /* End of Freq */      } /* end of wave */
 }    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 /************ Prevalence ********************/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 {      if(globpr==0){ /* First time we count the contributions and weights */
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people      gipmx=ipmx;
      in each health status at the date of interview (if between dateprev1 and dateprev2).      gsw=sw;
      We still use firstpass and lastpass as another selection.    }
   */    return -l;
    }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  
   double *pp, **prop;  /*************** function likelione ***********/
   double pos,posprop;   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   double  y2; /* in fractional years */  {
   int iagemin, iagemax;    /* This routine should help understanding what is done with
        the selection of individuals/waves and
   iagemin= (int) agemin;       to check the exact contribution to the likelihood.
   iagemax= (int) agemax;       Plotting could be done.
   /*pp=vector(1,nlstate);*/     */
   prop=matrix(1,nlstate,iagemin,iagemax+3);     int k;
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/  
   j1=0;    if(*globpri !=0){ /* Just counts and sums, no printings */
         strcpy(fileresilk,"ilk");
   j=cptcoveff;      strcat(fileresilk,fileres);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           printf("Problem with resultfile: %s\n", fileresilk);
   for(k1=1; k1<=j;k1++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for(i1=1; i1<=ncodemax[k1];i1++){      }
       j1++;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
             fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       for (i=1; i<=nlstate; i++)        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         for(m=iagemin; m <= iagemax+3; m++)      for(k=1; k<=nlstate; k++)
           prop[i][m]=0.0;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
            fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       for (i=1; i<=imx; i++) { /* Each individual */    }
         bool=1;  
         if  (cptcovn>0) {    *fretone=(*funcone)(p);
           for (z1=1; z1<=cptcoveff; z1++)     if(*globpri !=0){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       fclose(ficresilk);
               bool=0;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         }       fflush(fichtm);
         if (bool==1) {     }
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/    return;
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */  }
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */  
               if(agev[m][i]==0) agev[m][i]=iagemax+1;  
               if(agev[m][i]==1) agev[m][i]=iagemax+2;  /*********** Maximum Likelihood Estimation ***************/
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);   
               if (s[m][i]>0 && s[m][i]<=nlstate) {   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/  {
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];    int i,j, iter;
                 prop[s[m][i]][iagemax+3] += weight[i];     double **xi;
               }     double fret;
             }    double fretone; /* Only one call to likelihood */
           } /* end selection of waves */    /*  char filerespow[FILENAMELENGTH];*/
         }    xi=matrix(1,npar,1,npar);
       }    for (i=1;i<=npar;i++)
       for(i=iagemin; i <= iagemax+3; i++){        for (j=1;j<=npar;j++)
                 xi[i][j]=(i==j ? 1.0 : 0.0);
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {     printf("Powell\n");  fprintf(ficlog,"Powell\n");
           posprop += prop[jk][i];     strcpy(filerespow,"pow");
         }     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
         for(jk=1; jk <=nlstate ; jk++){           printf("Problem with resultfile: %s\n", filerespow);
           if( i <=  iagemax){       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
             if(posprop>=1.e-5){     }
               probs[i][jk][j1]= prop[jk][i]/posprop;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
             }     for (i=1;i<=nlstate;i++)
           }       for(j=1;j<=nlstate+ndeath;j++)
         }/* end jk */         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       }/* end i */     fprintf(ficrespow,"\n");
     } /* end i1 */  
   } /* end k1 */    powell(p,xi,npar,ftol,&iter,&fret,func);
     
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    free_matrix(xi,1,npar,1,npar);
   /*free_vector(pp,1,nlstate);*/    fclose(ficrespow);
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 }  /* End of prevalence */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 /************* Waves Concatenation ***************/  
   }
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {  /**** Computes Hessian and covariance matrix ***/
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      Death is a valid wave (if date is known).  {
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double  **a,**y,*x,pd;
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]    double **hess;
      and mw[mi+1][i]. dh depends on stepm.    int i, j,jk;
      */    int *indx;
   
   int i, mi, m;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      double sum=0., jmean=0.;*/    void lubksb(double **a, int npar, int *indx, double b[]) ;
   int first;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   int j, k=0,jk, ju, jl;    double gompertz(double p[]);
   double sum=0.;    hess=matrix(1,npar,1,npar);
   first=0;  
   jmin=1e+5;    printf("\nCalculation of the hessian matrix. Wait...\n");
   jmax=-1;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   jmean=0.;    for (i=1;i<=npar;i++){
   for(i=1; i<=imx; i++){      printf("%d",i);fflush(stdout);
     mi=0;      fprintf(ficlog,"%d",i);fflush(ficlog);
     m=firstpass;     
     while(s[m][i] <= nlstate){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       if(s[m][i]>=1)     
         mw[++mi][i]=m;      /*  printf(" %f ",p[i]);
       if(m >=lastpass)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         break;    }
       else   
         m++;    for (i=1;i<=npar;i++) {
     }/* end while */      for (j=1;j<=npar;j++)  {
     if (s[m][i] > nlstate){        if (j>i) {
       mi++;     /* Death is another wave */          printf(".%d%d",i,j);fflush(stdout);
       /* if(mi==0)  never been interviewed correctly before death */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
          /* Only death is a correct wave */          hess[i][j]=hessij(p,delti,i,j,func,npar);
       mw[mi][i]=m;         
     }          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
     wav[i]=mi;        }
     if(mi==0){      }
       if(first==0){    }
         printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);    printf("\n");
         first=1;    fprintf(ficlog,"\n");
       }  
       if(first==1){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       }   
     } /* end mi==0 */    a=matrix(1,npar,1,npar);
   } /* End individuals */    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
   for(i=1; i<=imx; i++){    indx=ivector(1,npar);
     for(mi=1; mi<wav[i];mi++){    for (i=1;i<=npar;i++)
       if (stepm <=0)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         dh[mi][i]=1;    ludcmp(a,npar,indx,&pd);
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */    for (j=1;j<=npar;j++) {
           if (agedc[i] < 2*AGESUP) {      for (i=1;i<=npar;i++) x[i]=0;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       x[j]=1;
           if(j==0) j=1;  /* Survives at least one month after exam */      lubksb(a,npar,indx,x);
           k=k+1;      for (i=1;i<=npar;i++){
           if (j >= jmax) jmax=j;        matcov[i][j]=x[i];
           if (j <= jmin) jmin=j;      }
           sum=sum+j;    }
           /*if (j<0) printf("j=%d num=%d \n",j,i);*/  
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/    printf("\n#Hessian matrix#\n");
           if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    fprintf(ficlog,"\n#Hessian matrix#\n");
           }    for (i=1;i<=npar;i++) {
         }      for (j=1;j<=npar;j++) {
         else{        printf("%.3e ",hess[i][j]);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        fprintf(ficlog,"%.3e ",hess[i][j]);
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/      }
           k=k+1;      printf("\n");
           if (j >= jmax) jmax=j;      fprintf(ficlog,"\n");
           else if (j <= jmin)jmin=j;    }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/    /* Recompute Inverse */
           if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    for (i=1;i<=npar;i++)
           sum=sum+j;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         }    ludcmp(a,npar,indx,&pd);
         jk= j/stepm;  
         jl= j -jk*stepm;    /*  printf("\n#Hessian matrix recomputed#\n");
         ju= j -(jk+1)*stepm;  
         if(mle <=1){     for (j=1;j<=npar;j++) {
           if(jl==0){      for (i=1;i<=npar;i++) x[i]=0;
             dh[mi][i]=jk;      x[j]=1;
             bh[mi][i]=0;      lubksb(a,npar,indx,x);
           }else{ /* We want a negative bias in order to only have interpolation ie      for (i=1;i<=npar;i++){
                   * at the price of an extra matrix product in likelihood */        y[i][j]=x[i];
             dh[mi][i]=jk+1;        printf("%.3e ",y[i][j]);
             bh[mi][i]=ju;        fprintf(ficlog,"%.3e ",y[i][j]);
           }      }
         }else{      printf("\n");
           if(jl <= -ju){      fprintf(ficlog,"\n");
             dh[mi][i]=jk;    }
             bh[mi][i]=jl;       /* bias is positive if real duration    */
                                  * is higher than the multiple of stepm and negative otherwise.  
                                  */    free_matrix(a,1,npar,1,npar);
           }    free_matrix(y,1,npar,1,npar);
           else{    free_vector(x,1,npar);
             dh[mi][i]=jk+1;    free_ivector(indx,1,npar);
             bh[mi][i]=ju;    free_matrix(hess,1,npar,1,npar);
           }  
           if(dh[mi][i]==0){  
             dh[mi][i]=1; /* At least one step */  }
             bh[mi][i]=ju; /* At least one step */  
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/  /*************** hessian matrix ****************/
           }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         }  {
       } /* end if mle */    int i;
     } /* end wave */    int l=1, lmax=20;
   }    double k1,k2;
   jmean=sum/k;    double p2[NPARMAX+1];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    double res;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
  }    double fx;
     int k=0,kmax=10;
 /*********** Tricode ****************************/    double l1;
 void tricode(int *Tvar, int **nbcode, int imx)  
 {    fx=func(x);
       for (i=1;i<=npar;i++) p2[i]=x[i];
   int Ndum[20],ij=1, k, j, i, maxncov=19;    for(l=0 ; l <=lmax; l++){
   int cptcode=0;      l1=pow(10,l);
   cptcoveff=0;       delts=delt;
        for(k=1 ; k <kmax; k=k+1){
   for (k=0; k<maxncov; k++) Ndum[k]=0;        delt = delta*(l1*k);
   for (k=1; k<=7; k++) ncodemax[k]=0;        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        p2[theta]=x[theta]-delt;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum         k2=func(p2)-fx;
                                modality*/         /*res= (k1-2.0*fx+k2)/delt/delt; */
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       Ndum[ij]++; /*store the modality */       
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  #ifdef DEBUG
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                                        Tvar[j]. If V=sex and male is 0 and         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                                        female is 1, then  cptcode=1.*/  #endif
     }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for (i=0; i<=cptcode; i++) {          k=kmax;
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */        }
     }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
     ij=1;         }
     for (i=1; i<=ncodemax[j]; i++) {        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
       for (k=0; k<= maxncov; k++) {          delts=delt;
         if (Ndum[k] != 0) {        }
           nbcode[Tvar[j]][ij]=k;       }
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */    }
               delti[theta]=delts;
           ij++;    return res;
         }   
         if (ij > ncodemax[j]) break;   }
       }    
     }   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   }    {
     int i;
  for (k=0; k< maxncov; k++) Ndum[k]=0;    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
  for (i=1; i<=ncovmodel-2; i++) {     double p2[NPARMAX+1];
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/    int k;
    ij=Tvar[i];  
    Ndum[ij]++;    fx=func(x);
  }    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
  ij=1;      p2[thetai]=x[thetai]+delti[thetai]/k;
  for (i=1; i<= maxncov; i++) {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
    if((Ndum[i]!=0) && (i<=ncovcol)){      k1=func(p2)-fx;
      Tvaraff[ij]=i; /*For printing */   
      ij++;      p2[thetai]=x[thetai]+delti[thetai]/k;
    }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
  }      k2=func(p2)-fx;
     
  cptcoveff=ij-1; /*Number of simple covariates*/      p2[thetai]=x[thetai]-delti[thetai]/k;
 }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
 /*********** Health Expectancies ****************/   
       p2[thetai]=x[thetai]-delti[thetai]/k;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
 {      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   /* Health expectancies */  #ifdef DEBUG
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double age, agelim, hf;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double ***p3mat,***varhe;  #endif
   double **dnewm,**doldm;    }
   double *xp;    return res;
   double **gp, **gm;  }
   double ***gradg, ***trgradg;  
   int theta;  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d)
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);  {
   xp=vector(1,npar);    int i,imax,j,k;
   dnewm=matrix(1,nlstate*nlstate,1,npar);    double big,dum,sum,temp;
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);    double *vv;
      
   fprintf(ficreseij,"# Health expectancies\n");    vv=vector(1,n);
   fprintf(ficreseij,"# Age");    *d=1.0;
   for(i=1; i<=nlstate;i++)    for (i=1;i<=n;i++) {
     for(j=1; j<=nlstate;j++)      big=0.0;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      for (j=1;j<=n;j++)
   fprintf(ficreseij,"\n");        if ((temp=fabs(a[i][j])) > big) big=temp;
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
   if(estepm < stepm){      vv[i]=1.0/big;
     printf ("Problem %d lower than %d\n",estepm, stepm);    }
   }    for (j=1;j<=n;j++) {
   else  hstepm=estepm;         for (i=1;i<j;i++) {
   /* We compute the life expectancy from trapezoids spaced every estepm months        sum=a[i][j];
    * This is mainly to measure the difference between two models: for example        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
    * if stepm=24 months pijx are given only every 2 years and by summing them        a[i][j]=sum;
    * we are calculating an estimate of the Life Expectancy assuming a linear       }
    * progression in between and thus overestimating or underestimating according      big=0.0;
    * to the curvature of the survival function. If, for the same date, we       for (i=j;i<=n;i++) {
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        sum=a[i][j];
    * to compare the new estimate of Life expectancy with the same linear         for (k=1;k<j;k++)
    * hypothesis. A more precise result, taking into account a more precise          sum -= a[i][k]*a[k][j];
    * curvature will be obtained if estepm is as small as stepm. */        a[i][j]=sum;
         if ( (dum=vv[i]*fabs(sum)) >= big) {
   /* For example we decided to compute the life expectancy with the smallest unit */          big=dum;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.           imax=i;
      nhstepm is the number of hstepm from age to agelim         }
      nstepm is the number of stepm from age to agelin.       }
      Look at hpijx to understand the reason of that which relies in memory size      if (j != imax) {
      and note for a fixed period like estepm months */        for (k=1;k<=n;k++) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          dum=a[imax][k];
      survival function given by stepm (the optimization length). Unfortunately it          a[imax][k]=a[j][k];
      means that if the survival funtion is printed only each two years of age and if          a[j][k]=dum;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same         }
      results. So we changed our mind and took the option of the best precision.        *d = -(*d);
   */        vv[imax]=vv[j];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       }
       indx[j]=imax;
   agelim=AGESUP;      if (a[j][j] == 0.0) a[j][j]=TINY;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      if (j != n) {
     /* nhstepm age range expressed in number of stepm */        dum=1.0/(a[j][j]);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);         for (i=j+1;i<=n;i++) a[i][j] *= dum;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */       }
     /* if (stepm >= YEARM) hstepm=1;*/    }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    free_vector(vv,1,n);  /* Doesn't work */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  ;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);  }
     gp=matrix(0,nhstepm,1,nlstate*nlstate);  
     gm=matrix(0,nhstepm,1,nlstate*nlstate);  void lubksb(double **a, int n, int *indx, double b[])
   {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    int i,ii=0,ip,j;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    double sum;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);     
      for (i=1;i<=n;i++) {
       ip=indx[i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      sum=b[ip];
       b[ip]=b[i];
     /* Computing Variances of health expectancies */      if (ii)
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
      for(theta=1; theta <=npar; theta++){      else if (sum) ii=i;
       for(i=1; i<=npar; i++){       b[i]=sum;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    }
       }    for (i=n;i>=1;i--) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        sum=b[i];
         for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
       cptj=0;      b[i]=sum/a[i][i];
       for(j=1; j<= nlstate; j++){    }
         for(i=1; i<=nlstate; i++){  }
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  void pstamp(FILE *fichier)
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  {
           }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         }  }
       }  
        /************ Frequencies ********************/
        void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       for(i=1; i<=npar; i++)   {  /* Some frequencies */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           int first;
       cptj=0;    double ***freq; /* Frequencies */
       for(j=1; j<= nlstate; j++){    double *pp, **prop;
         for(i=1;i<=nlstate;i++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           cptj=cptj+1;    char fileresp[FILENAMELENGTH];
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){   
     pp=vector(1,nlstate);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    prop=matrix(1,nlstate,iagemin,iagemax+3);
           }    strcpy(fileresp,"p");
         }    strcat(fileresp,fileres);
       }    if((ficresp=fopen(fileresp,"w"))==NULL) {
       for(j=1; j<= nlstate*nlstate; j++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
         for(h=0; h<=nhstepm-1; h++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      exit(0);
         }    }
      }     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
        j1=0;
 /* End theta */   
     j=cptcoveff;
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
      for(h=0; h<=nhstepm-1; h++)    first=1;
       for(j=1; j<=nlstate*nlstate;j++)  
         for(theta=1; theta <=npar; theta++)    for(k1=1; k1<=j;k1++){
           trgradg[h][j][theta]=gradg[h][theta][j];      for(i1=1; i1<=ncodemax[k1];i1++){
              j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
      for(i=1;i<=nlstate*nlstate;i++)          scanf("%d", i);*/
       for(j=1;j<=nlstate*nlstate;j++)        for (i=-5; i<=nlstate+ndeath; i++)  
         varhe[i][j][(int)age] =0.;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
      printf("%d|",(int)age);fflush(stdout);              freq[i][jk][m]=0;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);  
      for(h=0;h<=nhstepm-1;h++){      for (i=1; i<=nlstate; i++)  
       for(k=0;k<=nhstepm-1;k++){        for(m=iagemin; m <= iagemax+3; m++)
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);          prop[i][m]=0;
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);       
         for(i=1;i<=nlstate*nlstate;i++)        dateintsum=0;
           for(j=1;j<=nlstate*nlstate;j++)        k2cpt=0;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        for (i=1; i<=imx; i++) {
       }          bool=1;
     }          if  (cptcovn>0) {
     /* Computing expectancies */            for (z1=1; z1<=cptcoveff; z1++)
     for(i=1; i<=nlstate;i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
       for(j=1; j<=nlstate;j++)                bool=0;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          if (bool==1){
                       for(m=firstpass; m<=lastpass; m++){
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficreseij,"%3.0f",age );                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     cptj=0;                if (m<lastpass) {
     for(i=1; i<=nlstate;i++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       for(j=1; j<=nlstate;j++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         cptj++;                }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );               
       }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     fprintf(ficreseij,"\n");                  dateintsum=dateintsum+k2;
                      k2cpt++;
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);                }
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);                /*}*/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);            }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);          }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
   }         
   printf("\n");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   fprintf(ficlog,"\n");        pstamp(ficresp);
         if  (cptcovn>0) {
   free_vector(xp,1,npar);          fprintf(ficresp, "\n#********** Variable ");
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);          fprintf(ficresp, "**********\n#");
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);        }
 }        for(i=1; i<=nlstate;i++)
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 /************ Variance ******************/        fprintf(ficresp, "\n");
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)       
 {        for(i=iagemin; i <= iagemax+3; i++){
   /* Variance of health expectancies */          if(i==iagemax+3){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            fprintf(ficlog,"Total");
   /* double **newm;*/          }else{
   double **dnewm,**doldm;            if(first==1){
   double **dnewmp,**doldmp;              first=0;
   int i, j, nhstepm, hstepm, h, nstepm ;              printf("See log file for details...\n");
   int k, cptcode;            }
   double *xp;            fprintf(ficlog,"Age %d", i);
   double **gp, **gm;  /* for var eij */          }
   double ***gradg, ***trgradg; /*for var eij */          for(jk=1; jk <=nlstate ; jk++){
   double **gradgp, **trgradgp; /* for var p point j */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   double *gpp, *gmp; /* for var p point j */              pp[jk] += freq[jk][m][i];
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */          }
   double ***p3mat;          for(jk=1; jk <=nlstate ; jk++){
   double age,agelim, hf;            for(m=-1, pos=0; m <=0 ; m++)
   double ***mobaverage;              pos += freq[jk][m][i];
   int theta;            if(pp[jk]>=1.e-10){
   char digit[4];              if(first==1){
   char digitp[25];              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
   char fileresprobmorprev[FILENAMELENGTH];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
   if(popbased==1){              if(first==1)
     if(mobilav!=0)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       strcpy(digitp,"-populbased-mobilav-");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     else strcpy(digitp,"-populbased-nomobil-");            }
   }          }
   else   
     strcpy(digitp,"-stablbased-");          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   if (mobilav!=0) {              pp[jk] += freq[jk][m][i];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }      
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);            pos += pp[jk];
       printf(" Error in movingaverage mobilav=%d\n",mobilav);            posprop += prop[jk][i];
     }          }
   }          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
   strcpy(fileresprobmorprev,"prmorprev");               if(first==1)
   sprintf(digit,"%-d",ij);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */            }else{
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */              if(first==1)
   strcat(fileresprobmorprev,fileres);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     printf("Problem with resultfile: %s\n", fileresprobmorprev);            }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);            if( i <= iagemax){
   }              if(pos>=1.e-5){
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);              }
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){              else
     fprintf(ficresprobmorprev," p.%-d SE",j);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     for(i=1; i<=nlstate;i++)            }
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          }
   }           
   fprintf(ficresprobmorprev,"\n");          for(jk=-1; jk <=nlstate+ndeath; jk++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            for(m=-1; m <=nlstate+ndeath; m++)
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);              if(freq[jk][m][i] !=0 ) {
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);              if(first==1)
     exit(0);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   else{              }
     fprintf(ficgp,"\n# Routine varevsij");          if(i <= iagemax)
   }            fprintf(ficresp,"\n");
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          if(first==1)
     printf("Problem with html file: %s\n", optionfilehtm);            printf("Others in log...\n");
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          fprintf(ficlog,"\n");
     exit(0);        }
   }      }
   else{    }
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    dateintmean=dateintsum/k2cpt;
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);   
   }    fclose(ficresp);
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   fprintf(ficresvij,"# Age");    /* End of Freq */
   for(i=1; i<=nlstate;i++)  }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  /************ Prevalence ********************/
   fprintf(ficresvij,"\n");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
   xp=vector(1,npar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   dnewm=matrix(1,nlstate,1,npar);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   doldm=matrix(1,nlstate,1,nlstate);       We still use firstpass and lastpass as another selection.
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    */
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    double ***freq; /* Frequencies */
   gpp=vector(nlstate+1,nlstate+ndeath);    double *pp, **prop;
   gmp=vector(nlstate+1,nlstate+ndeath);    double pos,posprop;
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    double  y2; /* in fractional years */
       int iagemin, iagemax;
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
   else  hstepm=estepm;       /*pp=vector(1,nlstate);*/
   /* For example we decided to compute the life expectancy with the smallest unit */    prop=matrix(1,nlstate,iagemin,iagemax+3);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      nhstepm is the number of hstepm from age to agelim     j1=0;
      nstepm is the number of stepm from age to agelin.    
      Look at hpijx to understand the reason of that which relies in memory size    j=cptcoveff;
      and note for a fixed period like k years */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the   
      survival function given by stepm (the optimization length). Unfortunately it    for(k1=1; k1<=j;k1++){
      means that if the survival funtion is printed every two years of age and if      for(i1=1; i1<=ncodemax[k1];i1++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same         j1++;
      results. So we changed our mind and took the option of the best precision.       
   */        for (i=1; i<=nlstate; i++)  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */           for(m=iagemin; m <= iagemax+3; m++)
   agelim = AGESUP;            prop[i][m]=0.0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         for (i=1; i<=imx; i++) { /* Each individual */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          bool=1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if  (cptcovn>0) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            for (z1=1; z1<=cptcoveff; z1++)
     gp=matrix(0,nhstepm,1,nlstate);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
     gm=matrix(0,nhstepm,1,nlstate);                bool=0;
           }
           if (bool==1) {
     for(theta=1; theta <=npar; theta++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
                 if (s[m][i]>0 && s[m][i]<=nlstate) {
       if (popbased==1) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         if(mobilav ==0){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           for(i=1; i<=nlstate;i++)                  prop[s[m][i]][iagemax+3] += weight[i];
             prlim[i][i]=probs[(int)age][i][ij];                }
         }else{ /* mobilav */               }
           for(i=1; i<=nlstate;i++)            } /* end selection of waves */
             prlim[i][i]=mobaverage[(int)age][i][ij];          }
         }        }
       }        for(i=iagemin; i <= iagemax+3; i++){  
            
       for(j=1; j<= nlstate; j++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
         for(h=0; h<=nhstepm; h++){            posprop += prop[jk][i];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }          for(jk=1; jk <=nlstate ; jk++){    
       }            if( i <=  iagemax){
       /* This for computing probability of death (h=1 means              if(posprop>=1.e-5){
          computed over hstepm matrices product = hstepm*stepm months)                 probs[i][jk][j1]= prop[jk][i]/posprop;
          as a weighted average of prlim.              }
       */            }
       for(j=nlstate+1;j<=nlstate+ndeath;j++){          }/* end jk */
         for(i=1,gpp[j]=0.; i<= nlstate; i++)        }/* end i */
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      } /* end i1 */
       }        } /* end k1 */
       /* end probability of death */   
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */    /*free_vector(pp,1,nlstate);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    }  /* End of prevalence */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
    /************* Waves Concatenation ***************/
       if (popbased==1) {  
         if(mobilav ==0){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           for(i=1; i<=nlstate;i++)  {
             prlim[i][i]=probs[(int)age][i][ij];    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         }else{ /* mobilav */        Death is a valid wave (if date is known).
           for(i=1; i<=nlstate;i++)       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             prlim[i][i]=mobaverage[(int)age][i][ij];       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         }       and mw[mi+1][i]. dh depends on stepm.
       }       */
   
       for(j=1; j<= nlstate; j++){    int i, mi, m;
         for(h=0; h<=nhstepm; h++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)       double sum=0., jmean=0.;*/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    int first;
         }    int j, k=0,jk, ju, jl;
       }    double sum=0.;
       /* This for computing probability of death (h=1 means    first=0;
          computed over hstepm matrices product = hstepm*stepm months)     jmin=1e+5;
          as a weighted average of prlim.    jmax=-1;
       */    jmean=0.;
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    for(i=1; i<=imx; i++){
         for(i=1,gmp[j]=0.; i<= nlstate; i++)      mi=0;
          gmp[j] += prlim[i][i]*p3mat[i][j][1];      m=firstpass;
       }          while(s[m][i] <= nlstate){
       /* end probability of death */        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
       for(j=1; j<= nlstate; j++) /* vareij */        if(m >=lastpass)
         for(h=0; h<=nhstepm; h++){          break;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        else
         }          m++;
       }/* end while */
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      if (s[m][i] > nlstate){
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];        mi++;     /* Death is another wave */
       }        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
     } /* End theta */        mw[mi][i]=m;
       }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  
       wav[i]=mi;
     for(h=0; h<=nhstepm; h++) /* veij */      if(mi==0){
       for(j=1; j<=nlstate;j++)        nbwarn++;
         for(theta=1; theta <=npar; theta++)        if(first==0){
           trgradg[h][j][theta]=gradg[h][theta][j];          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        }
       for(theta=1; theta <=npar; theta++)        if(first==1){
         trgradgp[j][theta]=gradgp[theta][j];          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           }
       } /* end mi==0 */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    } /* End individuals */
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    for(i=1; i<=imx; i++){
         vareij[i][j][(int)age] =0.;      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
     for(h=0;h<=nhstepm;h++){          dh[mi][i]=1;
       for(k=0;k<=nhstepm;k++){        else{
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            if (agedc[i] < 2*AGESUP) {
         for(i=1;i<=nlstate;i++)              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
           for(j=1;j<=nlstate;j++)              if(j==0) j=1;  /* Survives at least one month after exam */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;              else if(j<0){
       }                nberr++;
     }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   j=1; /* Temporary Dangerous patch */
     /* pptj */                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)              }
       for(i=nlstate+1;i<=nlstate+ndeath;i++)              k=k+1;
         varppt[j][i]=doldmp[j][i];              if (j >= jmax){
     /* end ppptj */                jmax=j;
     /*  x centered again */                ijmax=i;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);                }
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);              if (j <= jmin){
                  jmin=j;
     if (popbased==1) {                ijmin=i;
       if(mobilav ==0){              }
         for(i=1; i<=nlstate;i++)              sum=sum+j;
           prlim[i][i]=probs[(int)age][i][ij];              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       }else{ /* mobilav */               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         for(i=1; i<=nlstate;i++)            }
           prlim[i][i]=mobaverage[(int)age][i][ij];          }
       }          else{
     }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     /* This for computing probability of death (h=1 means  
        computed over hstepm (estepm) matrices product = hstepm*stepm months)             k=k+1;
        as a weighted average of prlim.            if (j >= jmax) {
     */              jmax=j;
     for(j=nlstate+1;j<=nlstate+ndeath;j++){              ijmax=i;
       for(i=1,gmp[j]=0.;i<= nlstate; i++)             }
         gmp[j] += prlim[i][i]*p3mat[i][j][1];             else if (j <= jmin){
     }                  jmin=j;
     /* end probability of death */              ijmin=i;
             }
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));            if(j<0){
       for(i=1; i<=nlstate;i++){              nberr++;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }             }
     fprintf(ficresprobmorprev,"\n");            sum=sum+j;
           }
     fprintf(ficresvij,"%.0f ",age );          jk= j/stepm;
     for(i=1; i<=nlstate;i++)          jl= j -jk*stepm;
       for(j=1; j<=nlstate;j++){          ju= j -(jk+1)*stepm;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       }            if(jl==0){
     fprintf(ficresvij,"\n");              dh[mi][i]=jk;
     free_matrix(gp,0,nhstepm,1,nlstate);              bh[mi][i]=0;
     free_matrix(gm,0,nhstepm,1,nlstate);            }else{ /* We want a negative bias in order to only have interpolation ie
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);                    * at the price of an extra matrix product in likelihood */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              dh[mi][i]=jk+1;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              bh[mi][i]=ju;
   } /* End age */            }
   free_vector(gpp,nlstate+1,nlstate+ndeath);          }else{
   free_vector(gmp,nlstate+1,nlstate+ndeath);            if(jl <= -ju){
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);              dh[mi][i]=jk;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/              bh[mi][i]=jl;       /* bias is positive if real duration
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");                                   * is higher than the multiple of stepm and negative otherwise.
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */                                   */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");            }
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */            else{
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */              dh[mi][i]=jk+1;
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */              bh[mi][i]=ju;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);            }
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);            if(dh[mi][i]==0){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);              dh[mi][i]=1; /* At least one step */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);              bh[mi][i]=ju; /* At least one step */
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);            }
 */          } /* end if mle */
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);        }
       } /* end wave */
   free_vector(xp,1,npar);    }
   free_matrix(doldm,1,nlstate,1,nlstate);    jmean=sum/k;
   free_matrix(dnewm,1,nlstate,1,npar);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);   }
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*********** Tricode ****************************/
   fclose(ficresprobmorprev);  void tricode(int *Tvar, int **nbcode, int imx)
   fclose(ficgp);  {
   fclose(fichtm);   
 }      int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
 /************ Variance of prevlim ******************/    cptcoveff=0;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)   
 {    for (k=0; k<maxncov; k++) Ndum[k]=0;
   /* Variance of prevalence limit */    for (k=1; k<=7; k++) ncodemax[k]=0;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/  
   double **newm;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   double **dnewm,**doldm;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
   int i, j, nhstepm, hstepm;                                 modality*/
   int k, cptcode;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   double *xp;        Ndum[ij]++; /*store the modality */
   double *gp, *gm;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   double **gradg, **trgradg;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
   double age,agelim;                                         Tvar[j]. If V=sex and male is 0 and
   int theta;                                         female is 1, then  cptcode=1.*/
          }
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");  
   fprintf(ficresvpl,"# Age");      for (i=0; i<=cptcode; i++) {
   for(i=1; i<=nlstate;i++)        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       fprintf(ficresvpl," %1d-%1d",i,i);      }
   fprintf(ficresvpl,"\n");  
       ij=1;
   xp=vector(1,npar);      for (i=1; i<=ncodemax[j]; i++) {
   dnewm=matrix(1,nlstate,1,npar);        for (k=0; k<= maxncov; k++) {
   doldm=matrix(1,nlstate,1,nlstate);          if (Ndum[k] != 0) {
               nbcode[Tvar[j]][ij]=k;
   hstepm=1*YEARM; /* Every year of age */            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            
   agelim = AGESUP;            ij++;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */           if (ij > ncodemax[j]) break;
     if (stepm >= YEARM) hstepm=1;        }  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
     gradg=matrix(1,npar,1,nlstate);    }  
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
     for(theta=1; theta <=npar; theta++){   for (i=1; i<=ncovmodel-2; i++) {
       for(i=1; i<=npar; i++){ /* Computes gradient */     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);     ij=Tvar[i];
       }     Ndum[ij]++;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);   }
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];   ij=1;
        for (i=1; i<= maxncov; i++) {
       for(i=1; i<=npar; i++) /* Computes gradient */     if((Ndum[i]!=0) && (i<=ncovcol)){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       Tvaraff[ij]=i; /*For printing */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       ij++;
       for(i=1;i<=nlstate;i++)     }
         gm[i] = prlim[i][i];   }
    
       for(i=1;i<=nlstate;i++)   cptcoveff=ij-1; /*Number of simple covariates*/
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  }
     } /* End theta */  
   /*********** Health Expectancies ****************/
     trgradg =matrix(1,nlstate,1,npar);  
   void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)  {
         trgradg[j][theta]=gradg[theta][j];    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     for(i=1;i<=nlstate;i++)    double age, agelim, hf;
       varpl[i][(int)age] =0.;    double ***p3mat;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double eip;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)    pstamp(ficreseij);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     fprintf(ficresvpl,"%.0f ",age );    for(i=1; i<=nlstate;i++){
     for(i=1; i<=nlstate;i++)      for(j=1; j<=nlstate;j++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        fprintf(ficreseij," e%1d%1d ",i,j);
     fprintf(ficresvpl,"\n");      }
     free_vector(gp,1,nlstate);      fprintf(ficreseij," e%1d. ",i);
     free_vector(gm,1,nlstate);    }
     free_matrix(gradg,1,npar,1,nlstate);    fprintf(ficreseij,"\n");
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */   
     if(estepm < stepm){
   free_vector(xp,1,npar);      printf ("Problem %d lower than %d\n",estepm, stepm);
   free_matrix(doldm,1,nlstate,1,npar);    }
   free_matrix(dnewm,1,nlstate,1,nlstate);    else  hstepm=estepm;  
     /* We compute the life expectancy from trapezoids spaced every estepm months
 }     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
 /************ Variance of one-step probabilities  ******************/     * we are calculating an estimate of the Life Expectancy assuming a linear
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)     * progression in between and thus overestimating or underestimating according
 {     * to the curvature of the survival function. If, for the same date, we
   int i, j=0,  i1, k1, l1, t, tj;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   int k2, l2, j1,  z1;     * to compare the new estimate of Life expectancy with the same linear
   int k=0,l, cptcode;     * hypothesis. A more precise result, taking into account a more precise
   int first=1, first1;     * curvature will be obtained if estepm is as small as stepm. */
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;  
   double **dnewm,**doldm;    /* For example we decided to compute the life expectancy with the smallest unit */
   double *xp;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   double *gp, *gm;       nhstepm is the number of hstepm from age to agelim
   double **gradg, **trgradg;       nstepm is the number of stepm from age to agelin.
   double **mu;       Look at hpijx to understand the reason of that which relies in memory size
   double age,agelim, cov[NCOVMAX];       and note for a fixed period like estepm months */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   int theta;       survival function given by stepm (the optimization length). Unfortunately it
   char fileresprob[FILENAMELENGTH];       means that if the survival funtion is printed only each two years of age and if
   char fileresprobcov[FILENAMELENGTH];       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   char fileresprobcor[FILENAMELENGTH];       results. So we changed our mind and took the option of the best precision.
     */
   double ***varpij;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   
   strcpy(fileresprob,"prob");     agelim=AGESUP;
   strcat(fileresprob,fileres);    /* If stepm=6 months */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     printf("Problem with resultfile: %s\n", fileresprob);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);     
   }  /* nhstepm age range expressed in number of stepm */
   strcpy(fileresprobcov,"probcov");     nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   strcat(fileresprobcov,fileres);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    /* if (stepm >= YEARM) hstepm=1;*/
     printf("Problem with resultfile: %s\n", fileresprobcov);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }  
   strcpy(fileresprobcor,"probcor");     for (age=bage; age<=fage; age ++){
   strcat(fileresprobcor,fileres);  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcor);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);     
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);     
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      printf("%d|",(int)age);fflush(stdout);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);     
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      /* Computing expectancies */
         for(i=1; i<=nlstate;i++)
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        for(j=1; j<=nlstate;j++)
   fprintf(ficresprob,"# Age");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   fprintf(ficresprobcov,"# Age");           
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   fprintf(ficresprobcov,"# Age");  
           }
      
   for(i=1; i<=nlstate;i++)      fprintf(ficreseij,"%3.0f",age );
     for(j=1; j<=(nlstate+ndeath);j++){      for(i=1; i<=nlstate;i++){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        eip=0;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        for(j=1; j<=nlstate;j++){
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          eip +=eij[i][j][(int)age];
     }            fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
  /* fprintf(ficresprob,"\n");        }
   fprintf(ficresprobcov,"\n");        fprintf(ficreseij,"%9.4f", eip );
   fprintf(ficresprobcor,"\n");      }
  */      fprintf(ficreseij,"\n");
  xp=vector(1,npar);     
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    printf("\n");
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    fprintf(ficlog,"\n");
   first=1;   
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     exit(0);  
   }  {
   else{    /* Covariances of health expectancies eij and of total life expectancies according
     fprintf(ficgp,"\n# Routine varprob");     to initial status i, ei. .
   }    */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     printf("Problem with html file: %s\n", optionfilehtm);    double age, agelim, hf;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    double ***p3matp, ***p3matm, ***varhe;
     exit(0);    double **dnewm,**doldm;
   }    double *xp, *xm;
   else{    double **gp, **gm;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    double ***gradg, ***trgradg;
     fprintf(fichtm,"\n");    int theta;
   
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    double eip, vip;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
   }    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
   cov[1]=1;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   tj=cptcoveff;   
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    pstamp(ficresstdeij);
   j1=0;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   for(t=1; t<=tj;t++){    fprintf(ficresstdeij,"# Age");
     for(i1=1; i1<=ncodemax[t];i1++){     for(i=1; i<=nlstate;i++){
       j1++;      for(j=1; j<=nlstate;j++)
       if  (cptcovn>0) {        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         fprintf(ficresprob, "\n#********** Variable ");       fprintf(ficresstdeij," e%1d. ",i);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
         fprintf(ficresprob, "**********\n#\n");    fprintf(ficresstdeij,"\n");
         fprintf(ficresprobcov, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    pstamp(ficrescveij);
         fprintf(ficresprobcov, "**********\n#\n");    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
             fprintf(ficrescveij,"# Age");
         fprintf(ficgp, "\n#********** Variable ");     for(i=1; i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(j=1; j<=nlstate;j++){
         fprintf(ficgp, "**********\n#\n");        cptj= (j-1)*nlstate+i;
                 for(i2=1; i2<=nlstate;i2++)
                   for(j2=1; j2<=nlstate;j2++){
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");             cptj2= (j2-1)*nlstate+i2;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            if(cptj2 <= cptj)
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
                   }
         fprintf(ficresprobcor, "\n#********** Variable ");          }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficrescveij,"\n");
         fprintf(ficresprobcor, "**********\n#");       
       }    if(estepm < stepm){
             printf ("Problem %d lower than %d\n",estepm, stepm);
       for (age=bage; age<=fage; age ++){     }
         cov[2]=age;    else  hstepm=estepm;  
         for (k=1; k<=cptcovn;k++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];     * This is mainly to measure the difference between two models: for example
         }     * if stepm=24 months pijx are given only every 2 years and by summing them
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];     * we are calculating an estimate of the Life Expectancy assuming a linear
         for (k=1; k<=cptcovprod;k++)     * progression in between and thus overestimating or underestimating according
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];     * to the curvature of the survival function. If, for the same date, we
              * estimate the model with stepm=1 month, we can keep estepm to 24 months
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));     * to compare the new estimate of Life expectancy with the same linear
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);     * hypothesis. A more precise result, taking into account a more precise
         gp=vector(1,(nlstate)*(nlstate+ndeath));     * curvature will be obtained if estepm is as small as stepm. */
         gm=vector(1,(nlstate)*(nlstate+ndeath));  
         /* For example we decided to compute the life expectancy with the smallest unit */
         for(theta=1; theta <=npar; theta++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
           for(i=1; i<=npar; i++)       nhstepm is the number of hstepm from age to agelim
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);       nstepm is the number of stepm from age to agelin.
                  Look at hpijx to understand the reason of that which relies in memory size
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       and note for a fixed period like estepm months */
               /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           k=0;       survival function given by stepm (the optimization length). Unfortunately it
           for(i=1; i<= (nlstate); i++){       means that if the survival funtion is printed only each two years of age and if
             for(j=1; j<=(nlstate+ndeath);j++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same
               k=k+1;       results. So we changed our mind and took the option of the best precision.
               gp[k]=pmmij[i][j];    */
             }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
           }  
               /* If stepm=6 months */
           for(i=1; i<=npar; i++)    /* nhstepm age range expressed in number of stepm */
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    agelim=AGESUP;
         nstepm=(int) rint((agelim-bage)*YEARM/stepm);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
           k=0;    /* if (stepm >= YEARM) hstepm=1;*/
           for(i=1; i<=(nlstate); i++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             for(j=1; j<=(nlstate+ndeath);j++){   
               k=k+1;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               gm[k]=pmmij[i][j];    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
          gp=matrix(0,nhstepm,1,nlstate*nlstate);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)     gm=matrix(0,nhstepm,1,nlstate*nlstate);
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];    
         }    for (age=bage; age<=fage; age ++){
   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           for(theta=1; theta <=npar; theta++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
             trgradg[j][theta]=gradg[theta][j];   
               hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      /* Computing  Variances of health expectancies */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));         decrease memory allocation */
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for(theta=1; theta <=npar; theta++){
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(i=1; i<=npar; i++){
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         pmij(pmmij,cov,ncovmodel,x,nlstate);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
                 }
         k=0;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         for(i=1; i<=(nlstate); i++){        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
           for(j=1; j<=(nlstate+ndeath);j++){   
             k=k+1;        for(j=1; j<= nlstate; j++){
             mu[k][(int) age]=pmmij[i][j];          for(i=1; i<=nlstate; i++){
           }            for(h=0; h<=nhstepm-1; h++){
         }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)            }
             varpij[i][j][(int)age] = doldm[i][j];          }
         }
         /*printf("\n%d ",(int)age);       
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(ij=1; ij<= nlstate*nlstate; ij++)
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(h=0; h<=nhstepm-1; h++){
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }*/          }
       }/* End theta */
         fprintf(ficresprob,"\n%d ",(int)age);     
         fprintf(ficresprobcov,"\n%d ",(int)age);     
         fprintf(ficresprobcor,"\n%d ",(int)age);      for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          for(theta=1; theta <=npar; theta++)
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            trgradg[h][j][theta]=gradg[h][theta][j];
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){     
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);       for(ij=1;ij<=nlstate*nlstate;ij++)
         }        for(ji=1;ji<=nlstate*nlstate;ji++)
         i=0;          varhe[ij][ji][(int)age] =0.;
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){        printf("%d|",(int)age);fflush(stdout);
             i=i++;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);       for(h=0;h<=nhstepm-1;h++){
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        for(k=0;k<=nhstepm-1;k++){
             for (j=1; j<=i;j++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          for(ij=1;ij<=nlstate*nlstate;ij++)
             }            for(ji=1;ji<=nlstate*nlstate;ji++)
           }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }/* end of loop for state */        }
       } /* end of loop for age */      }
   
       /* Confidence intervalle of pij  */      /* Computing expectancies */
       /*      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         fprintf(ficgp,"\nset noparametric;unset label");      for(i=1; i<=nlstate;i++)
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        for(j=1; j<=nlstate;j++)
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);           
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  
       */          }
   
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      fprintf(ficresstdeij,"%3.0f",age );
       first1=1;      for(i=1; i<=nlstate;i++){
       for (k2=1; k2<=(nlstate);k2++){        eip=0.;
         for (l2=1; l2<=(nlstate+ndeath);l2++){         vip=0.;
           if(l2==k2) continue;        for(j=1; j<=nlstate;j++){
           j=(k2-1)*(nlstate+ndeath)+l2;          eip += eij[i][j][(int)age];
           for (k1=1; k1<=(nlstate);k1++){          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             for (l1=1; l1<=(nlstate+ndeath);l1++){             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
               if(l1==k1) continue;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
               i=(k1-1)*(nlstate+ndeath)+l1;        }
               if(i<=j) continue;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
               for (age=bage; age<=fage; age ++){       }
                 if ((int)age %5==0){      fprintf(ficresstdeij,"\n");
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      fprintf(ficrescveij,"%3.0f",age );
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      for(i=1; i<=nlstate;i++)
                   mu1=mu[i][(int) age]/stepm*YEARM ;        for(j=1; j<=nlstate;j++){
                   mu2=mu[j][(int) age]/stepm*YEARM;          cptj= (j-1)*nlstate+i;
                   c12=cv12/sqrt(v1*v2);          for(i2=1; i2<=nlstate;i2++)
                   /* Computing eigen value of matrix of covariance */            for(j2=1; j2<=nlstate;j2++){
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;              cptj2= (j2-1)*nlstate+i2;
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;              if(cptj2 <= cptj)
                   /* Eigen vectors */                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            }
                   /*v21=sqrt(1.-v11*v11); *//* error */        }
                   v21=(lc1-v1)/cv12*v11;      fprintf(ficrescveij,"\n");
                   v12=-v21;     
                   v22=v11;    }
                   tnalp=v21/v11;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                   if(first1==1){    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                     first1=0;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                   }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   /*printf(fignu*/    printf("\n");
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    fprintf(ficlog,"\n");
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */  
                   if(first==1){    free_vector(xm,1,npar);
                     first=0;    free_vector(xp,1,npar);
                     fprintf(ficgp,"\nset parametric;unset label");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);  }
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);  
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);  /************ Variance ******************/
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  {
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    /* Variance of health expectancies */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    /* double **newm;*/
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    double **dnewm,**doldm;
                   }else{    double **dnewmp,**doldmp;
                     first=0;    int i, j, nhstepm, hstepm, h, nstepm ;
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);    int k, cptcode;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    double *xp;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    double **gp, **gm;  /* for var eij */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    double ***gradg, ***trgradg; /*for var eij */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    double **gradgp, **trgradgp; /* for var p point j */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    double *gpp, *gmp; /* for var p point j */
                   }/* if first */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                 } /* age mod 5 */    double ***p3mat;
               } /* end loop age */    double age,agelim, hf;
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);    double ***mobaverage;
               first=1;    int theta;
             } /*l12 */    char digit[4];
           } /* k12 */    char digitp[25];
         } /*l1 */  
       }/* k1 */    char fileresprobmorprev[FILENAMELENGTH];
     } /* loop covariates */  
   }    if(popbased==1){
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      if(mobilav!=0)
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        strcpy(digitp,"-populbased-mobilav-");
   free_vector(xp,1,npar);      else strcpy(digitp,"-populbased-nomobil-");
   fclose(ficresprob);    }
   fclose(ficresprobcov);    else
   fclose(ficresprobcor);      strcpy(digitp,"-stablbased-");
   fclose(ficgp);  
   fclose(fichtm);    if (mobilav!=0) {
 }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 /******************* Printing html file ***********/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      }
                   int lastpass, int stepm, int weightopt, char model[],\    }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\    strcpy(fileresprobmorprev,"prmorprev");
                   double jprev1, double mprev1,double anprev1, \    sprintf(digit,"%-d",ij);
                   double jprev2, double mprev2,double anprev2){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   int jj1, k1, i1, cpt;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   /*char optionfilehtm[FILENAMELENGTH];*/    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    strcat(fileresprobmorprev,fileres);
     printf("Problem with %s \n",optionfilehtm), exit(0);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n   
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    pstamp(ficresprobmorprev);
  - Life expectancies by age and initial health status (estepm=%2d months):     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
  m=cptcoveff;    }  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
  jj1=0;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
  for(k1=1; k1<=m;k1++){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
    for(i1=1; i1<=ncodemax[k1];i1++){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      jj1++;  /*   } */
      if (cptcovn > 0) {    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    pstamp(ficresvij);
        for (cpt=1; cpt<=cptcoveff;cpt++)     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    if(popbased==1)
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
      }    else
      /* Pij */      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>    fprintf(ficresvij,"# Age");
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);         for(i=1; i<=nlstate;i++)
      /* Quasi-incidences */      for(j=1; j<=nlstate;j++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     fprintf(ficresvij,"\n");
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){    xp=vector(1,npar);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    dnewm=matrix(1,nlstate,1,npar);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    doldm=matrix(1,nlstate,1,nlstate);
        }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      for(cpt=1; cpt<=nlstate;cpt++) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      }    gpp=vector(nlstate+1,nlstate+ndeath);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    gmp=vector(nlstate+1,nlstate+ndeath);
 health expectancies in states (1) and (2): e%s%d.png<br>    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);   
    } /* end i1 */    if(estepm < stepm){
  }/* End k1 */      printf ("Problem %d lower than %d\n",estepm, stepm);
  fprintf(fichtm,"</ul>");    }
     else  hstepm=estepm;  
     /* For example we decided to compute the life expectancy with the smallest unit */
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n       nhstepm is the number of hstepm from age to agelim
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n       nstepm is the number of stepm from age to agelin.
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n       Look at hpijx to understand the reason of that which relies in memory size
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n       and note for a fixed period like k years */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n       survival function given by stepm (the optimization length). Unfortunately it
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same
 /*  if(popforecast==1) fprintf(fichtm,"\n */       results. So we changed our mind and took the option of the best precision.
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    */
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
 /*      <br>",fileres,fileres,fileres,fileres); */    agelim = AGESUP;
 /*  else  */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  m=cptcoveff;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
  jj1=0;  
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){      for(theta=1; theta <=npar; theta++){
      jj1++;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
      if (cptcovn > 0) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        }
        for (cpt=1; cpt<=cptcoveff;cpt++)         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }        if (popbased==1) {
      for(cpt=1; cpt<=nlstate;cpt++) {          if(mobilav ==0){
        fprintf(fichtm,"<br>- Observed and period prevalence (with confident            for(i=1; i<=nlstate;i++)
 interval) in state (%d): v%s%d%d.png <br>              prlim[i][i]=probs[(int)age][i][ij];
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }else{ /* mobilav */
      }            for(i=1; i<=nlstate;i++)
    } /* end i1 */              prlim[i][i]=mobaverage[(int)age][i][ij];
  }/* End k1 */          }
  fprintf(fichtm,"</ul>");        }
 fclose(fichtm);   
 }        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
 /******************* Gnuplot file **************/            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        }
   int ng;        /* This for computing probability of death (h=1 means
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {           computed over hstepm matrices product = hstepm*stepm months)
     printf("Problem with file %s",optionfilegnuplot);           as a weighted average of prlim.
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   /*#ifdef windows */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     fprintf(ficgp,"cd \"%s\" \n",pathc);        }    
     /*#endif */        /* end probability of death */
 m=pow(2,cptcoveff);  
           for(i=1; i<=npar; i++) /* Computes gradient x - delta */
  /* 1eme*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   for (cpt=1; cpt<= nlstate ; cpt ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    for (k1=1; k1<= m ; k1 ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);   
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        if (popbased==1) {
           if(mobilav ==0){
      for (i=1; i<= nlstate ; i ++) {            for(i=1; i<=nlstate;i++)
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              prlim[i][i]=probs[(int)age][i][ij];
        else fprintf(ficgp," \%%*lf (\%%*lf)");          }else{ /* mobilav */
      }            for(i=1; i<=nlstate;i++)
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);              prlim[i][i]=mobaverage[(int)age][i][ij];
      for (i=1; i<= nlstate ; i ++) {          }
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }         for(j=1; j<= nlstate; j++){
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1);           for(h=0; h<=nhstepm; h++){
      for (i=1; i<= nlstate ; i ++) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
        else fprintf(ficgp," \%%*lf (\%%*lf)");          }
      }          }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        /* This for computing probability of death (h=1 means
    }           computed over hstepm matrices product = hstepm*stepm months)
   }           as a weighted average of prlim.
   /*2 eme*/        */
           for(j=nlstate+1;j<=nlstate+ndeath;j++){
   for (k1=1; k1<= m ; k1 ++) {           for(i=1,gmp[j]=0.; i<= nlstate; i++)
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        }    
             /* end probability of death */
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;        for(j=1; j<= nlstate; j++) /* vareij */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          for(h=0; h<=nhstepm; h++){
       for (j=1; j<= nlstate+1 ; j ++) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
       }           for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {      } /* End theta */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       }     
       fprintf(ficgp,"\" t\"\" w l 0,");      for(h=0; h<=nhstepm; h++) /* veij */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<=nlstate;j++)
       for (j=1; j<= nlstate+1 ; j ++) {          for(theta=1; theta <=npar; theta++)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            trgradg[h][j][theta]=gradg[h][theta][j];
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
       }         for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for(theta=1; theta <=npar; theta++)
       else fprintf(ficgp,"\" t\"\" w l 0,");          trgradgp[j][theta]=gradgp[theta][j];
     }   
   }  
         hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /*3eme*/      for(i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate;j++)
   for (k1=1; k1<= m ; k1 ++) {           vareij[i][j][(int)age] =0.;
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);      for(h=0;h<=nhstepm;h++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(k=0;k<=nhstepm;k++){
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          for(i=1;i<=nlstate;i++)
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            for(j=1;j<=nlstate;j++)
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        }
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      }
            
       */      /* pptj */
       for (i=1; i< nlstate ; i ++) {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
               for(j=nlstate+1;j<=nlstate+ndeath;j++)
       }         for(i=nlstate+1;i<=nlstate+ndeath;i++)
     }          varppt[j][i]=doldmp[j][i];
   }      /* end ppptj */
         /*  x centered again */
   /* CV preval stable (period) */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   for (k1=1; k1<= m ; k1 ++) {       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     for (cpt=1; cpt<=nlstate ; cpt ++) {   
       k=3;      if (popbased==1) {
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        if(mobilav ==0){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][ij];
       for (i=1; i< nlstate ; i ++)        }else{ /* mobilav */
         fprintf(ficgp,"+$%d",k+i+1);          for(i=1; i<=nlstate;i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            prlim[i][i]=mobaverage[(int)age][i][ij];
               }
       l=3+(nlstate+ndeath)*cpt;      }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);               
       for (i=1; i< nlstate ; i ++) {      /* This for computing probability of death (h=1 means
         l=3+(nlstate+ndeath)*cpt;         computed over hstepm (estepm) matrices product = hstepm*stepm months)
         fprintf(ficgp,"+$%d",l+i+1);         as a weighted average of prlim.
       }      */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);         for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }         for(i=1,gmp[j]=0.;i<= nlstate; i++)
   }            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   /* proba elementaires */      /* end probability of death */
   for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       if (k != i) {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         for(j=1; j <=ncovmodel; j++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        for(i=1; i<=nlstate;i++){
           jk++;           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           fprintf(ficgp,"\n");        }
         }      }
       }      fprintf(ficresprobmorprev,"\n");
     }  
    }      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        for(j=1; j<=nlstate;j++){
      for(jk=1; jk <=m; jk++) {          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);         }
        if (ng==2)      fprintf(ficresvij,"\n");
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      free_matrix(gp,0,nhstepm,1,nlstate);
        else      free_matrix(gm,0,nhstepm,1,nlstate);
          fprintf(ficgp,"\nset title \"Probability\"\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        i=1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        for(k2=1; k2<=nlstate; k2++) {    } /* End age */
          k3=i;    free_vector(gpp,nlstate+1,nlstate+ndeath);
          for(k=1; k<=(nlstate+ndeath); k++) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
            if (k != k2){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
              if(ng==2)    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
              else    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
              ij=1;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
              for(j=3; j <=ncovmodel; j++) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                  ij++;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
                }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
                else    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
              }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
              fprintf(ficgp,")/(1");  */
                /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
              for(k1=1; k1 <=nlstate; k1++){       fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
                ij=1;    free_vector(xp,1,npar);
                for(j=3; j <=ncovmodel; j++){    free_matrix(doldm,1,nlstate,1,nlstate);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_matrix(dnewm,1,nlstate,1,npar);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                    ij++;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                  }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                  else    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    fclose(ficresprobmorprev);
                }    fflush(ficgp);
                fprintf(ficgp,")");    fflush(fichtm);
              }  }  /* end varevsij */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  /************ Variance of prevlim ******************/
              i=i+ncovmodel;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
            }  {
          } /* end k */    /* Variance of prevalence limit */
        } /* end k2 */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
      } /* end jk */    double **newm;
    } /* end ng */    double **dnewm,**doldm;
    fclose(ficgp);     int i, j, nhstepm, hstepm;
 }  /* end gnuplot */    int k, cptcode;
     double *xp;
     double *gp, *gm;
 /*************** Moving average **************/    double **gradg, **trgradg;
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){    double age,agelim;
     int theta;
   int i, cpt, cptcod;   
   int modcovmax =1;    pstamp(ficresvpl);
   int mobilavrange, mob;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   double age;    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose         fprintf(ficresvpl," %1d-%1d",i,i);
                            a covariate has 2 modalities */    fprintf(ficresvpl,"\n");
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */  
     xp=vector(1,npar);
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){    dnewm=matrix(1,nlstate,1,npar);
     if(mobilav==1) mobilavrange=5; /* default */    doldm=matrix(1,nlstate,1,nlstate);
     else mobilavrange=mobilav;   
     for (age=bage; age<=fage; age++)    hstepm=1*YEARM; /* Every year of age */
       for (i=1; i<=nlstate;i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
         for (cptcod=1;cptcod<=modcovmax;cptcod++)    agelim = AGESUP;
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     /* We keep the original values on the extreme ages bage, fage and for       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2      if (stepm >= YEARM) hstepm=1;
        we use a 5 terms etc. until the borders are no more concerned.       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     */       gradg=matrix(1,npar,1,nlstate);
     for (mob=3;mob <=mobilavrange;mob=mob+2){      gp=vector(1,nlstate);
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){      gm=vector(1,nlstate);
         for (i=1; i<=nlstate;i++){  
           for (cptcod=1;cptcod<=modcovmax;cptcod++){      for(theta=1; theta <=npar; theta++){
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];        for(i=1; i<=npar; i++){ /* Computes gradient */
               for (cpt=1;cpt<=(mob-1)/2;cpt++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];        }
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               }        for(i=1;i<=nlstate;i++)
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;          gp[i] = prlim[i][i];
           }     
         }        for(i=1; i<=npar; i++) /* Computes gradient */
       }/* end age */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     }/* end mob */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }else return -1;        for(i=1;i<=nlstate;i++)
   return 0;          gm[i] = prlim[i][i];
 }/* End movingaverage */  
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 /************** Forecasting ******************/      } /* End theta */
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  
   /* proj1, year, month, day of starting projection       trgradg =matrix(1,nlstate,1,npar);
      agemin, agemax range of age  
      dateprev1 dateprev2 range of dates during which prevalence is computed      for(j=1; j<=nlstate;j++)
      anproj2 year of en of projection (same day and month as proj1).        for(theta=1; theta <=npar; theta++)
   */          trgradg[j][theta]=gradg[theta][j];
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;  
   int *popage;      for(i=1;i<=nlstate;i++)
   double agec; /* generic age */        varpl[i][(int)age] =0.;
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   double *popeffectif,*popcount;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   double ***p3mat;      for(i=1;i<=nlstate;i++)
   double ***mobaverage;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   char fileresf[FILENAMELENGTH];  
       fprintf(ficresvpl,"%.0f ",age );
   agelim=AGESUP;      for(i=1; i<=nlstate;i++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
   strcpy(fileresf,"f");       free_vector(gp,1,nlstate);
   strcat(fileresf,fileres);      free_vector(gm,1,nlstate);
   if((ficresf=fopen(fileresf,"w"))==NULL) {      free_matrix(gradg,1,npar,1,nlstate);
     printf("Problem with forecast resultfile: %s\n", fileresf);      free_matrix(trgradg,1,nlstate,1,npar);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    } /* End age */
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);    free_vector(xp,1,npar);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
   }
   if (mobilav!=0) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /************ Variance of one-step probabilities  ******************/
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  {
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    int i, j=0,  i1, k1, l1, t, tj;
     }    int k2, l2, j1,  z1;
   }    int k=0,l, cptcode;
     int first=1, first1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   if (stepm<=12) stepsize=1;    double **dnewm,**doldm;
   if(estepm < stepm){    double *xp;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double *gp, *gm;
   }    double **gradg, **trgradg;
   else  hstepm=estepm;       double **mu;
     double age,agelim, cov[NCOVMAX];
   hstepm=hstepm/stepm;     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and    int theta;
                                fractional in yp1 */    char fileresprob[FILENAMELENGTH];
   anprojmean=yp;    char fileresprobcov[FILENAMELENGTH];
   yp2=modf((yp1*12),&yp);    char fileresprobcor[FILENAMELENGTH];
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);    double ***varpij;
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;    strcpy(fileresprob,"prob");
   if(mprojmean==0) jprojmean=1;    strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   i1=cptcoveff;      printf("Problem with resultfile: %s\n", fileresprob);
   if (cptcovn < 1){i1=1;}      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       }
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);     strcpy(fileresprobcov,"probcov");
       strcat(fileresprobcov,fileres);
   fprintf(ficresf,"#****** Routine prevforecast **\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
 /*            if (h==(int)(YEARM*yearp)){ */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    strcpy(fileresprobcor,"probcor");
       k=k+1;    strcat(fileresprobcor,fileres);
       fprintf(ficresf,"\n#******");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       for(j=1;j<=cptcoveff;j++) {      printf("Problem with resultfile: %s\n", fileresprobcor);
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       }    }
       fprintf(ficresf,"******\n");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       for(j=1; j<=nlstate+ndeath;j++){     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         for(i=1; i<=nlstate;i++)                  fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           fprintf(ficresf," p%d%d",i,j);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(ficresf," p.%d",j);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       }    pstamp(ficresprob);
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         fprintf(ficresf,"\n");    fprintf(ficresprob,"# Age");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);       pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         for (agec=fage; agec>=(ageminpar-1); agec--){     fprintf(ficresprobcov,"# Age");
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);     pstamp(ficresprobcor);
           nhstepm = nhstepm/hstepm;     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobcor,"# Age");
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);    
             for(i=1; i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){      for(j=1; j<=(nlstate+ndeath);j++){
             if (h*hstepm/YEARM*stepm ==yearp) {        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
               fprintf(ficresf,"\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
               for(j=1;j<=cptcoveff;j++)         fprintf(ficresprobcor," p%1d-%1d ",i,j);
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }  
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);   /* fprintf(ficresprob,"\n");
             }     fprintf(ficresprobcov,"\n");
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficresprobcor,"\n");
               ppij=0.;   */
               for(i=1; i<=nlstate;i++) {   xp=vector(1,npar);
                 if (mobilav==1)     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                 else {    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                 }    first=1;
                 if (h*hstepm/YEARM*stepm== yearp) {    fprintf(ficgp,"\n# Routine varprob");
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                 }    fprintf(fichtm,"\n");
               } /* end i */  
               if (h*hstepm/YEARM*stepm==yearp) {    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
                 fprintf(ficresf," %.3f", ppij);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
               }    file %s<br>\n",optionfilehtmcov);
             }/* end j */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
           } /* end h */  and drawn. It helps understanding how is the covariance between two incidences.\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         } /* end agec */    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       } /* end yearp */  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     } /* end cptcod */  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   } /* end  cptcov */  standard deviations wide on each axis. <br>\
           Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   fclose(ficresf);  
 }    cov[1]=1;
     tj=cptcoveff;
 /************** Forecasting *****not tested NB*************/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    j1=0;
       for(t=1; t<=tj;t++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      for(i1=1; i1<=ncodemax[t];i1++){
   int *popage;        j1++;
   double calagedatem, agelim, kk1, kk2;        if  (cptcovn>0) {
   double *popeffectif,*popcount;          fprintf(ficresprob, "\n#********** Variable ");
   double ***p3mat,***tabpop,***tabpopprev;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double ***mobaverage;          fprintf(ficresprob, "**********\n#\n");
   char filerespop[FILENAMELENGTH];          fprintf(ficresprobcov, "\n#********** Variable ");
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresprobcov, "**********\n#\n");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         
   agelim=AGESUP;          fprintf(ficgp, "\n#********** Variable ");
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             fprintf(ficgp, "**********\n#\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);         
            
             fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
   strcpy(filerespop,"pop");           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcat(filerespop,fileres);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {         
     printf("Problem with forecast resultfile: %s\n", filerespop);          fprintf(ficresprobcor, "\n#********** Variable ");    
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcor, "**********\n#");    
   printf("Computing forecasting: result on file '%s' \n", filerespop);        }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);       
         for (age=bage; age<=fage; age ++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
   if (mobilav!=0) {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          for (k=1; k<=cptcovprod;k++)
       printf(" Error in movingaverage mobilav=%d\n",mobilav);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }         
   }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          gp=vector(1,(nlstate)*(nlstate+ndeath));
   if (stepm<=12) stepsize=1;          gm=vector(1,(nlstate)*(nlstate+ndeath));
        
   agelim=AGESUP;          for(theta=1; theta <=npar; theta++){
               for(i=1; i<=npar; i++)
   hstepm=1;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   hstepm=hstepm/stepm;            
               pmij(pmmij,cov,ncovmodel,xp,nlstate);
   if (popforecast==1) {           
     if((ficpop=fopen(popfile,"r"))==NULL) {            k=0;
       printf("Problem with population file : %s\n",popfile);exit(0);            for(i=1; i<= (nlstate); i++){
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);              for(j=1; j<=(nlstate+ndeath);j++){
     }                 k=k+1;
     popage=ivector(0,AGESUP);                gp[k]=pmmij[i][j];
     popeffectif=vector(0,AGESUP);              }
     popcount=vector(0,AGESUP);            }
                
     i=1;               for(i=1; i<=npar; i++)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         
     imx=i;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            k=0;
   }            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){                k=k+1;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                gm[k]=pmmij[i][j];
       k=k+1;              }
       fprintf(ficrespop,"\n#******");            }
       for(j=1;j<=cptcoveff;j++) {       
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
       }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       fprintf(ficrespop,"******\n");          }
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");            for(theta=1; theta <=npar; theta++)
                     trgradg[j][theta]=gradg[theta][j];
       for (cpt=0; cpt<=0;cpt++) {          
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);             matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
                   matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           nhstepm = nhstepm/hstepm;           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;          pmij(pmmij,cov,ncovmodel,x,nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           
                   k=0;
           for (h=0; h<=nhstepm; h++){          for(i=1; i<=(nlstate); i++){
             if (h==(int) (calagedatem+YEARM*cpt)) {            for(j=1; j<=(nlstate+ndeath);j++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              k=k+1;
             }               mu[k][(int) age]=pmmij[i][j];
             for(j=1; j<=nlstate+ndeath;j++) {            }
               kk1=0.;kk2=0;          }
               for(i=1; i<=nlstate;i++) {                        for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                 if (mobilav==1)             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              varpij[i][j][(int)age] = doldm[i][j];
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          /*printf("\n%d ",(int)age);
                 }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               if (h==(int)(calagedatem+12*cpt)){            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            }*/
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          fprintf(ficresprob,"\n%d ",(int)age);
               }          fprintf(ficresprobcov,"\n%d ",(int)age);
             }          fprintf(ficresprobcor,"\n%d ",(int)age);
             for(i=1; i<=nlstate;i++){  
               kk1=0.;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                 for(j=1; j<=nlstate;j++){            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                 }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
             }          }
           i=0;
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)           for (k=1; k<=(nlstate);k++){
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            for (l=1; l<=(nlstate+ndeath);l++){
           }              i=i++;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       }              for (j=1; j<=i;j++){
                  fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   /******/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {             }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);             }/* end of loop for state */
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){         } /* end of loop for age */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   
           nhstepm = nhstepm/hstepm;         /* Confidence intervalle of pij  */
                   /*
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp,"\nset noparametric;unset label");
           oldm=oldms;savm=savms;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           for (h=0; h<=nhstepm; h++){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
             if (h==(int) (calagedatem+YEARM*cpt)) {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
             }           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
             for(j=1; j<=nlstate+ndeath;j++) {        */
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                      /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            first1=1;
               }        for (k2=1; k2<=(nlstate);k2++){
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                  for (l2=1; l2<=(nlstate+ndeath);l2++){
             }            if(l2==k2) continue;
           }            j=(k2-1)*(nlstate+ndeath)+l2;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (k1=1; k1<=(nlstate);k1++){
         }              for (l1=1; l1<=(nlstate+ndeath);l1++){
       }                if(l1==k1) continue;
    }                 i=(k1-1)*(nlstate+ndeath)+l1;
   }                if(i<=j) continue;
                  for (age=bage; age<=fage; age ++){
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   if (popforecast==1) {                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     free_ivector(popage,0,AGESUP);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     free_vector(popeffectif,0,AGESUP);                    mu1=mu[i][(int) age]/stepm*YEARM ;
     free_vector(popcount,0,AGESUP);                    mu2=mu[j][(int) age]/stepm*YEARM;
   }                    c12=cv12/sqrt(v1*v2);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    /* Computing eigen value of matrix of covariance */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   fclose(ficrespop);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 }                    /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 /***********************************************/                    /*v21=sqrt(1.-v11*v11); *//* error */
 /**************** Main Program *****************/                    v21=(lc1-v1)/cv12*v11;
 /***********************************************/                    v12=-v21;
                     v22=v11;
 int main(int argc, char *argv[])                    tnalp=v21/v11;
 {                    if(first1==1){
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);                      first1=0;
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   double agedeb, agefin,hf;                    }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
   double fret;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   double **xi,tmp,delta;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
   double dum; /* Dummy variable */                      first=0;
   double ***p3mat;                      fprintf(ficgp,"\nset parametric;unset label");
   double ***mobaverage;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   int *indx;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   char line[MAXLINE], linepar[MAXLINE];                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   int firstobs=1, lastobs=10;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   int sdeb, sfin; /* Status at beginning and end */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   int c,  h , cpt,l;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   int ju,jl, mi;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   int mobilav=0,popforecast=0;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   int hstepm, nhstepm;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
   double bage, fage, age, agelim, agebase;                      first=0;
   double ftolpl=FTOL;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   double **prlim;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   double *severity;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   double ***param; /* Matrix of parameters */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   double  *p;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   double **matcov; /* Matrix of covariance */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   double ***delti3; /* Scale */                    }/* if first */
   double *delti; /* Scale */                  } /* age mod 5 */
   double ***eij, ***vareij;                } /* end loop age */
   double **varpl; /* Variances of prevalence limits by age */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double *epj, vepp;                first=1;
   double kk1, kk2;              } /*l12 */
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;            } /* k12 */
           } /*l1 */
   char *alph[]={"a","a","b","c","d","e"}, str[4];        }/* k1 */
       } /* loop covariates */
     }
   char z[1]="c", occ;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 #include <sys/time.h>    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 #include <time.h>    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
      free_vector(xp,1,npar);
   /* long total_usecs;    fclose(ficresprob);
      struct timeval start_time, end_time;    fclose(ficresprobcov);
       fclose(ficresprobcor);
      gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fflush(ficgp);
   getcwd(pathcd, size);    fflush(fichtmcov);
   }
   printf("\n%s\n%s",version,fullversion);  
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");  /******************* Printing html file ***********/
     scanf("%s",pathtot);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   }                    int lastpass, int stepm, int weightopt, char model[],\
   else{                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     strcpy(pathtot,argv[1]);                    int popforecast, int estepm ,\
   }                    double jprev1, double mprev1,double anprev1, \
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                    double jprev2, double mprev2,double anprev2){
   /*cygwin_split_path(pathtot,path,optionfile);    int jj1, k1, i1, cpt;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  </ul>");
   printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   chdir(path);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   replace(pathc,path);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
   /*-------- arguments in the command line --------*/   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   /* Log file */     fprintf(fichtm,"\
   strcat(filelog, optionfilefiname);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   strcat(filelog,".log");    /* */             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   if((ficlog=fopen(filelog,"w"))==NULL)    {     fprintf(fichtm,"\
     printf("Problem with logfile %s\n",filelog);   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
     goto end;     <a href=\"%s\">%s</a> <br>\n",
   }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   fprintf(ficlog,"Log filename:%s\n",filelog);     fprintf(fichtm,"\
   fprintf(ficlog,"\n%s",version);   - Population projections by age and states: \
   fprintf(ficlog,"\nEnter the parameter file name: ");     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   fflush(ficlog);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
   /* */   m=cptcoveff;
   strcpy(fileres,"r");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */   jj1=0;
    for(k1=1; k1<=m;k1++){
   /*---------arguments file --------*/     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       if (cptcovn > 0) {
     printf("Problem with optionfile %s\n",optionfile);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);         for (cpt=1; cpt<=cptcoveff;cpt++)
     goto end;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   strcpy(filereso,"o");       /* Pij */
   strcat(filereso,fileres);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   if((ficparo=fopen(filereso,"w"))==NULL) {  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
     printf("Problem with Output resultfile: %s\n", filereso);       /* Quasi-incidences */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     goto end;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
          /* Period (stable) prevalence in each health state */
   /* Reads comments: lines beginning with '#' */         for(cpt=1; cpt<nlstate;cpt++){
   while((c=getc(ficpar))=='#' && c!= EOF){           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
     ungetc(c,ficpar);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     fgets(line, MAXLINE, ficpar);         }
     puts(line);       for(cpt=1; cpt<=nlstate;cpt++) {
     fputs(line,ficparo);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   ungetc(c,ficpar);       }
      } /* end i1 */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);   }/* End k1 */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);   fprintf(fichtm,"</ul>");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   fprintf(fichtm,"\
     fgets(line, MAXLINE, ficpar);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     puts(line);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     fputs(line,ficparo);  
   }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   ungetc(c,ficpar);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
      fprintf(fichtm,"\
       - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   covar=matrix(0,NCOVMAX,1,n);            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;   fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */   fprintf(fichtm,"\
      - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   /* Read guess parameters */     <a href=\"%s\">%s</a> <br>\n</li>",
   /* Reads comments: lines beginning with '#' */             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   while((c=getc(ficpar))=='#' && c!= EOF){   fprintf(fichtm,"\
     ungetc(c,ficpar);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     fgets(line, MAXLINE, ficpar);     <a href=\"%s\">%s</a> <br>\n</li>",
     puts(line);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
     fputs(line,ficparo);   fprintf(fichtm,"\
   }   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   ungetc(c,ficpar);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
      fprintf(fichtm,"\
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
   for(i=1; i <=nlstate; i++)           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     for(j=1; j <=nlstate+ndeath-1; j++){   fprintf(fichtm,"\
       fscanf(ficpar,"%1d%1d",&i1,&j1);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       fprintf(ficparo,"%1d%1d",i1,j1);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       if(mle==1)  
         printf("%1d%1d",i,j);  /*  if(popforecast==1) fprintf(fichtm,"\n */
       fprintf(ficlog,"%1d%1d",i,j);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       for(k=1; k<=ncovmodel;k++){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         fscanf(ficpar," %lf",&param[i][j][k]);  /*      <br>",fileres,fileres,fileres,fileres); */
         if(mle==1){  /*  else  */
           printf(" %lf",param[i][j][k]);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           fprintf(ficlog," %lf",param[i][j][k]);   fflush(fichtm);
         }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         else  
           fprintf(ficlog," %lf",param[i][j][k]);   m=cptcoveff;
         fprintf(ficparo," %lf",param[i][j][k]);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       }  
       fscanf(ficpar,"\n");   jj1=0;
       if(mle==1)   for(k1=1; k1<=m;k1++){
         printf("\n");     for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficlog,"\n");       jj1++;
       fprintf(ficparo,"\n");       if (cptcovn > 0) {
     }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
            for (cpt=1; cpt<=cptcoveff;cpt++)
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   p=param[1][1];       }
          for(cpt=1; cpt<=nlstate;cpt++) {
   /* Reads comments: lines beginning with '#' */         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   while((c=getc(ficpar))=='#' && c!= EOF){  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     ungetc(c,ficpar);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     fgets(line, MAXLINE, ficpar);       }
     puts(line);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     fputs(line,ficparo);  health expectancies in states (1) and (2): %s%d.png<br>\
   }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   ungetc(c,ficpar);     } /* end i1 */
    }/* End k1 */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   fprintf(fichtm,"</ul>");
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */   fflush(fichtm);
   for(i=1; i <=nlstate; i++){  }
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);  /******************* Gnuplot file **************/
       printf("%1d%1d",i,j);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){    char dirfileres[132],optfileres[132];
         fscanf(ficpar,"%le",&delti3[i][j][k]);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         printf(" %le",delti3[i][j][k]);    int ng;
         fprintf(ficparo," %le",delti3[i][j][k]);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       }  /*     printf("Problem with file %s",optionfilegnuplot); */
       fscanf(ficpar,"\n");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       printf("\n");  /*   } */
       fprintf(ficparo,"\n");  
     }    /*#ifdef windows */
   }    fprintf(ficgp,"cd \"%s\" \n",pathc);
   delti=delti3[1][1];      /*#endif */
     m=pow(2,cptcoveff);
   
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */    strcpy(dirfileres,optionfilefiname);
       strcpy(optfileres,"vpl");
   /* Reads comments: lines beginning with '#' */   /* 1eme*/
   while((c=getc(ficpar))=='#' && c!= EOF){    for (cpt=1; cpt<= nlstate ; cpt ++) {
     ungetc(c,ficpar);     for (k1=1; k1<= m ; k1 ++) {
     fgets(line, MAXLINE, ficpar);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     puts(line);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     fputs(line,ficparo);       fprintf(ficgp,"set xlabel \"Age\" \n\
   }  set ylabel \"Probability\" \n\
   ungetc(c,ficpar);  set ter png small\n\
     set size 0.65,0.65\n\
   matcov=matrix(1,npar,1,npar);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);       for (i=1; i<= nlstate ; i ++) {
     if(mle==1)         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       printf("%s",str);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fprintf(ficlog,"%s",str);       }
     fprintf(ficparo,"%s",str);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     for(j=1; j <=i; j++){       for (i=1; i<= nlstate ; i ++) {
       fscanf(ficpar," %le",&matcov[i][j]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       if(mle==1){         else fprintf(ficgp," \%%*lf (\%%*lf)");
         printf(" %.5le",matcov[i][j]);       }
         fprintf(ficlog," %.5le",matcov[i][j]);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       }       for (i=1; i<= nlstate ; i ++) {
       else         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficlog," %.5le",matcov[i][j]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficparo," %.5le",matcov[i][j]);       }  
     }       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     fscanf(ficpar,"\n");     }
     if(mle==1)    }
       printf("\n");    /*2 eme*/
     fprintf(ficlog,"\n");   
     fprintf(ficparo,"\n");    for (k1=1; k1<= m ; k1 ++) {
   }      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   for(i=1; i <=npar; i++)      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     for(j=i+1;j<=npar;j++)     
       matcov[i][j]=matcov[j][i];      for (i=1; i<= nlstate+1 ; i ++) {
            k=2*i;
   if(mle==1)        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     printf("\n");        for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(ficlog,"\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }  
   /*-------- Rewriting paramater file ----------*/        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   strcpy(rfileres,"r");    /* "Rparameterfile */        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   strcat(rfileres,".");    /* */        for (j=1; j<= nlstate+1 ; j ++) {
   strcat(rfileres,optionfilext);    /* Other files have txt extension */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   if((ficres =fopen(rfileres,"w"))==NULL) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Problem writing new parameter file: %s\n", fileres);goto end;        }  
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;        fprintf(ficgp,"\" t\"\" w l 0,");
   }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   fprintf(ficres,"#%s\n",version);        for (j=1; j<= nlstate+1 ; j ++) {
               if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   /*-------- data file ----------*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
   if((fic=fopen(datafile,"r"))==NULL)    {        }  
     printf("Problem with datafile: %s\n", datafile);goto end;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        else fprintf(ficgp,"\" t\"\" w l 0,");
   }      }
     }
   n= lastobs;   
   severity = vector(1,maxwav);    /*3eme*/
   outcome=imatrix(1,maxwav+1,1,n);   
   num=ivector(1,n);    for (k1=1; k1<= m ; k1 ++) {
   moisnais=vector(1,n);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   annais=vector(1,n);        /*       k=2+nlstate*(2*cpt-2); */
   moisdc=vector(1,n);        k=2+(nlstate+1)*(cpt-1);
   andc=vector(1,n);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   agedc=vector(1,n);        fprintf(ficgp,"set ter png small\n\
   cod=ivector(1,n);  set size 0.65,0.65\n\
   weight=vector(1,n);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   mint=matrix(1,maxwav,1,n);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   anint=matrix(1,maxwav,1,n);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   s=imatrix(1,maxwav+1,1,n);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   tab=ivector(1,NCOVMAX);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   ncodemax=ivector(1,8);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
          
   i=1;        */
   while (fgets(line, MAXLINE, fic) != NULL)    {        for (i=1; i< nlstate ; i ++) {
     if ((i >= firstobs) && (i <=lastobs)) {          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
                   /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
       for (j=maxwav;j>=1;j--){         
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);         }
         strcpy(line,stra);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      }
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
       }   
             /* CV preval stable (period) */
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    for (k1=1; k1<= m ; k1 ++) {
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  unset log y\n\
       for (j=ncovcol;j>=1;j--){  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);       
       }         for (i=1; i< nlstate ; i ++)
       num[i]=atol(stra);          fprintf(ficgp,"+$%d",k+i+1);
                 fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){       
         printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
       i=i+1;        for (i=1; i< nlstate ; i ++) {
     }          l=3+(nlstate+ndeath)*cpt;
   }          fprintf(ficgp,"+$%d",l+i+1);
   /* printf("ii=%d", ij);        }
      scanf("%d",i);*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   imx=i-1; /* Number of individuals */      }
     }  
   /* for (i=1; i<=imx; i++){   
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    /* proba elementaires */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    for(i=1,jk=1; i <=nlstate; i++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      for(k=1; k <=(nlstate+ndeath); k++){
     }*/        if (k != i) {
    /*  for (i=1; i<=imx; i++){          for(j=1; j <=ncovmodel; j++){
      if (s[4][i]==9)  s[4][i]=-1;             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            jk++;
               fprintf(ficgp,"\n");
  for (i=1; i<=imx; i++)          }
          }
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;      }
      else weight[i]=1;*/     }
   
   /* Calculation of the number of parameter from char model*/     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */       for(jk=1; jk <=m; jk++) {
   Tprod=ivector(1,15);          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
   Tvaraff=ivector(1,15);          if (ng==2)
   Tvard=imatrix(1,15,1,2);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   Tage=ivector(1,15);               else
               fprintf(ficgp,"\nset title \"Probability\"\n");
   if (strlen(model) >1){ /* If there is at least 1 covariate */         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     j=0, j1=0, k1=1, k2=1;         i=1;
     j=nbocc(model,'+'); /* j=Number of '+' */         for(k2=1; k2<=nlstate; k2++) {
     j1=nbocc(model,'*'); /* j1=Number of '*' */           k3=i;
     cptcovn=j+1;            for(k=1; k<=(nlstate+ndeath); k++) {
     cptcovprod=j1; /*Number of products */             if (k != k2){
                    if(ng==2)
     strcpy(modelsav,model);                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){               else
       printf("Error. Non available option model=%s ",model);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       fprintf(ficlog,"Error. Non available option model=%s ",model);               ij=1;
       goto end;               for(j=3; j <=ncovmodel; j++) {
     }                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                        fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     /* This loop fills the array Tvar from the string 'model'.*/                   ij++;
                  }
     for(i=(j+1); i>=1;i--){                 else
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */               }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/               fprintf(ficgp,")/(1");
       /*scanf("%d",i);*/               
       if (strchr(strb,'*')) {  /* Model includes a product */               for(k1=1; k1 <=nlstate; k1++){  
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
         if (strcmp(strc,"age")==0) { /* Vn*age */                 ij=1;
           cptcovprod--;                 for(j=3; j <=ncovmodel; j++){
           cutv(strb,stre,strd,'V');                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           cptcovage++;                     ij++;
             Tage[cptcovage]=i;                   }
             /*printf("stre=%s ", stre);*/                   else
         }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */                 }
           cptcovprod--;                 fprintf(ficgp,")");
           cutv(strb,stre,strc,'V');               }
           Tvar[i]=atoi(stre);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
           cptcovage++;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
           Tage[cptcovage]=i;               i=i+ncovmodel;
         }             }
         else {  /* Age is not in the model */           } /* end k */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/         } /* end k2 */
           Tvar[i]=ncovcol+k1;       } /* end jk */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */     } /* end ng */
           Tprod[k1]=i;     fflush(ficgp);
           Tvard[k1][1]=atoi(strc); /* m*/  }  /* end gnuplot */
           Tvard[k1][2]=atoi(stre); /* n */  
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];   /*************** Moving average **************/
           for (k=1; k<=lastobs;k++)   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;    int i, cpt, cptcod;
           k2=k2+2;    int modcovmax =1;
         }    int mobilavrange, mob;
       }    double age;
       else { /* no more sum */  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
        /*  scanf("%d",i);*/                             a covariate has 2 modalities */
       cutv(strd,strc,strb,'V');    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       Tvar[i]=atoi(strc);  
       }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       strcpy(modelsav,stra);        if(mobilav==1) mobilavrange=5; /* default */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      else mobilavrange=mobilav;
         scanf("%d",i);*/      for (age=bage; age<=fage; age++)
     } /* end of loop + */        for (i=1; i<=nlstate;i++)
   } /* end model */          for (cptcod=1;cptcod<=modcovmax;cptcod++)
               mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.      /* We keep the original values on the extreme ages bage, fage and for
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned.
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      */
   printf("cptcovprod=%d ", cptcovprod);      for (mob=3;mob <=mobilavrange;mob=mob+2){
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
   scanf("%d ",i);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   fclose(fic);*/              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
     /*  if(mle==1){*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   if (weightopt != 1) { /* Maximisation without weights*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     for(i=1;i<=n;i++) weight[i]=1.0;                }
   }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     /*-calculation of age at interview from date of interview and age at death -*/            }
   agev=matrix(1,maxwav,1,imx);          }
         }/* end age */
   for (i=1; i<=imx; i++) {      }/* end mob */
     for(m=2; (m<= maxwav); m++) {    }else return -1;
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){    return 0;
         anint[m][i]=9999;  }/* End movingaverage */
         s[m][i]=-1;  
       }  
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){  /************** Forecasting ******************/
         printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    /* proj1, year, month, day of starting projection
         s[m][i]=-1;       agemin, agemax range of age
       }       dateprev1 dateprev2 range of dates during which prevalence is computed
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){       anproj2 year of en of projection (same day and month as proj1).
         printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     */
         fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
         s[m][i]=-1;    int *popage;
       }    double agec; /* generic age */
     }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   }    double *popeffectif,*popcount;
     double ***p3mat;
   for (i=1; i<=imx; i++)  {    double ***mobaverage;
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    char fileresf[FILENAMELENGTH];
     for(m=firstpass; (m<= lastpass); m++){  
       if(s[m][i] >0){    agelim=AGESUP;
         if (s[m][i] >= nlstate+1) {    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           if(agedc[i]>0)   
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    strcpy(fileresf,"f");
               agev[m][i]=agedc[i];    strcat(fileresf,fileres);
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    if((ficresf=fopen(fileresf,"w"))==NULL) {
             else {      printf("Problem with forecast resultfile: %s\n", fileresf);
               if ((int)andc[i]!=9999){      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
                 printf("Warning negative age at death: %d line:%d\n",num[i],i);    }
                 fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    printf("Computing forecasting: result on file '%s' \n", fileresf);
                 agev[m][i]=-1;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
               }  
             }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
         }  
         else if(s[m][i] !=9){ /* Standard case, age in fractional    if (mobilav!=0) {
                                  years but with the precision of a      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                                  month */      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             agev[m][i]=1;      }
           else if(agev[m][i] <agemin){     }
             agemin=agev[m][i];  
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    stepsize=(int) (stepm+YEARM-1)/YEARM;
           }    if (stepm<=12) stepsize=1;
           else if(agev[m][i] >agemax){    if(estepm < stepm){
             agemax=agev[m][i];      printf ("Problem %d lower than %d\n",estepm, stepm);
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    }
           }    else  hstepm=estepm;  
           /*agev[m][i]=anint[m][i]-annais[i];*/  
           /*     agev[m][i] = age[i]+2*m;*/    hstepm=hstepm/stepm;
         }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
         else { /* =9 */                                 fractional in yp1 */
           agev[m][i]=1;    anprojmean=yp;
           s[m][i]=-1;    yp2=modf((yp1*12),&yp);
         }    mprojmean=yp;
       }    yp1=modf((yp2*30.5),&yp);
       else /*= 0 Unknown */    jprojmean=yp;
         agev[m][i]=1;    if(jprojmean==0) jprojmean=1;
     }    if(mprojmean==0) jprojmean=1;
       
   }    i1=cptcoveff;
   for (i=1; i<=imx; i++)  {    if (cptcovn < 1){i1=1;}
     for(m=firstpass; (m<=lastpass); m++){   
       if (s[m][i] > (nlstate+ndeath)) {    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         fprintf(ficresf,"#****** Routine prevforecast **\n");
         goto end;  
       }  /*            if (h==(int)(YEARM*yearp)){ */
     }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   }      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   /*for (i=1; i<=imx; i++){        fprintf(ficresf,"\n#******");
   for (m=firstpass; (m<lastpass); m++){        for(j=1;j<=cptcoveff;j++) {
      printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 }        }
         fprintf(ficresf,"******\n");
 }*/        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          for(i=1; i<=nlstate;i++)              
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
   free_vector(severity,1,maxwav);        }
   free_imatrix(outcome,1,maxwav+1,1,n);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
   free_vector(moisnais,1,n);          fprintf(ficresf,"\n");
   free_vector(annais,1,n);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   /* free_matrix(mint,1,maxwav,1,n);  
      free_matrix(anint,1,maxwav,1,n);*/          for (agec=fage; agec>=(ageminpar-1); agec--){
   free_vector(moisdc,1,n);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   free_vector(andc,1,n);            nhstepm = nhstepm/hstepm;
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                oldm=oldms;savm=savms;
   wav=ivector(1,imx);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   dh=imatrix(1,lastpass-firstpass+1,1,imx);         
   bh=imatrix(1,lastpass-firstpass+1,1,imx);            for (h=0; h<=nhstepm; h++){
   mw=imatrix(1,lastpass-firstpass+1,1,imx);              if (h*hstepm/YEARM*stepm ==yearp) {
                    fprintf(ficresf,"\n");
   /* Concatenates waves */                for(j=1;j<=cptcoveff;j++)
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */              }
               for(j=1; j<=nlstate+ndeath;j++) {
   Tcode=ivector(1,100);                ppij=0.;
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                 for(i=1; i<=nlstate;i++) {
   ncodemax[1]=1;                  if (mobilav==1)
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                         else {
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                                  the estimations*/                  }
   h=0;                  if (h*hstepm/YEARM*stepm== yearp) {
   m=pow(2,cptcoveff);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                    }
   for(k=1;k<=cptcoveff; k++){                } /* end i */
     for(i=1; i <=(m/pow(2,k));i++){                if (h*hstepm/YEARM*stepm==yearp) {
       for(j=1; j <= ncodemax[k]; j++){                  fprintf(ficresf," %.3f", ppij);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                }
           h++;              }/* end j */
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            } /* end h */
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }           } /* end agec */
       }        } /* end yearp */
     }      } /* end cptcod */
   }     } /* end  cptcov */
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          
      codtab[1][2]=1;codtab[2][2]=2; */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* for(i=1; i <=m ;i++){   
      for(k=1; k <=cptcovn; k++){    fclose(ficresf);
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  }
      }  
      printf("\n");  /************** Forecasting *****not tested NB*************/
      }  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
      scanf("%d",i);*/   
         int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   /* Calculates basic frequencies. Computes observed prevalence at single age    int *popage;
      and prints on file fileres'p'. */    double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***p3mat,***tabpop,***tabpopprev;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***mobaverage;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char filerespop[FILENAMELENGTH];
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        agelim=AGESUP;
   /* For Powell, parameters are in a vector p[] starting at p[1]    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */   
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
   if(mle>=1){ /* Could be 1 or 2 */   
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    strcpy(filerespop,"pop");
   }    strcat(filerespop,fileres);
         if((ficrespop=fopen(filerespop,"w"))==NULL) {
   /*--------- results files --------------*/      printf("Problem with forecast resultfile: %s\n", filerespop);
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
   jk=1;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
   for(i=1,jk=1; i <=nlstate; i++){    if (mobilav!=0) {
     for(k=1; k <=(nlstate+ndeath); k++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (k != i)       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf("%d%d ",i,k);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficlog,"%d%d ",i,k);      }
           fprintf(ficres,"%1d%1d ",i,k);    }
           for(j=1; j <=ncovmodel; j++){  
             printf("%f ",p[jk]);    stepsize=(int) (stepm+YEARM-1)/YEARM;
             fprintf(ficlog,"%f ",p[jk]);    if (stepm<=12) stepsize=1;
             fprintf(ficres,"%f ",p[jk]);   
             jk++;     agelim=AGESUP;
           }   
           printf("\n");    hstepm=1;
           fprintf(ficlog,"\n");    hstepm=hstepm/stepm;
           fprintf(ficres,"\n");   
         }    if (popforecast==1) {
     }      if((ficpop=fopen(popfile,"r"))==NULL) {
   }        printf("Problem with population file : %s\n",popfile);exit(0);
   if(mle==1){        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     /* Computing hessian and covariance matrix */      }
     ftolhess=ftol; /* Usually correct */      popage=ivector(0,AGESUP);
     hesscov(matcov, p, npar, delti, ftolhess, func);      popeffectif=vector(0,AGESUP);
   }      popcount=vector(0,AGESUP);
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");     
   printf("# Scales (for hessian or gradient estimation)\n");      i=1;  
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   for(i=1,jk=1; i <=nlstate; i++){     
     for(j=1; j <=nlstate+ndeath; j++){      imx=i;
       if (j!=i) {      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
         fprintf(ficres,"%1d%1d",i,j);    }
         printf("%1d%1d",i,j);  
         fprintf(ficlog,"%1d%1d",i,j);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
         for(k=1; k<=ncovmodel;k++){     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           printf(" %.5e",delti[jk]);        k=k+1;
           fprintf(ficlog," %.5e",delti[jk]);        fprintf(ficrespop,"\n#******");
           fprintf(ficres," %.5e",delti[jk]);        for(j=1;j<=cptcoveff;j++) {
           jk++;          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }        }
         printf("\n");        fprintf(ficrespop,"******\n");
         fprintf(ficlog,"\n");        fprintf(ficrespop,"# Age");
         fprintf(ficres,"\n");        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
       }        if (popforecast==1)  fprintf(ficrespop," [Population]");
     }       
   }        for (cpt=0; cpt<=0;cpt++) {
              fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         
   if(mle==1)          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            nhstepm = nhstepm/hstepm;
   for(i=1,k=1;i<=npar;i++){           
     /*  if (k>nlstate) k=1;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         i1=(i-1)/(ncovmodel*nlstate)+1;             oldm=oldms;savm=savms;
         fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         printf("%s%d%d",alph[k],i1,tab[i]);         
     */            for (h=0; h<=nhstepm; h++){
     fprintf(ficres,"%3d",i);              if (h==(int) (calagedatem+YEARM*cpt)) {
     if(mle==1)                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       printf("%3d",i);              }
     fprintf(ficlog,"%3d",i);              for(j=1; j<=nlstate+ndeath;j++) {
     for(j=1; j<=i;j++){                kk1=0.;kk2=0;
       fprintf(ficres," %.5e",matcov[i][j]);                for(i=1; i<=nlstate;i++) {              
       if(mle==1)                  if (mobilav==1)
         printf(" %.5e",matcov[i][j]);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
       fprintf(ficlog," %.5e",matcov[i][j]);                  else {
     }                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     fprintf(ficres,"\n");                  }
     if(mle==1)                }
       printf("\n");                if (h==(int)(calagedatem+12*cpt)){
     fprintf(ficlog,"\n");                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     k++;                    /*fprintf(ficrespop," %.3f", kk1);
   }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                    }
   while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);              for(i=1; i<=nlstate;i++){
     fgets(line, MAXLINE, ficpar);                kk1=0.;
     puts(line);                  for(j=1; j<=nlstate;j++){
     fputs(line,ficparo);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
   }                  }
   ungetc(c,ficpar);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   estepm=0;  
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
   if (estepm==0 || estepm < stepm) estepm=stepm;                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   if (fage <= 2) {            }
     bage = ageminpar;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fage = agemaxpar;          }
   }        }
       
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    /******/
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
              fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   while((c=getc(ficpar))=='#' && c!= EOF){          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
     ungetc(c,ficpar);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
     fgets(line, MAXLINE, ficpar);            nhstepm = nhstepm/hstepm;
     puts(line);           
     fputs(line,ficparo);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }            oldm=oldms;savm=savms;
   ungetc(c,ficpar);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
               for (h=0; h<=nhstepm; h++){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);              if (h==(int) (calagedatem+YEARM*cpt)) {
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);              }
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);              for(j=1; j<=nlstate+ndeath;j++) {
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                kk1=0.;kk2=0;
                    for(i=1; i<=nlstate;i++) {              
   while((c=getc(ficpar))=='#' && c!= EOF){                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     ungetc(c,ficpar);                }
     fgets(line, MAXLINE, ficpar);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     puts(line);              }
     fputs(line,ficparo);            }
   }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   ungetc(c,ficpar);          }
          }
      }
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;    }
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;   
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fscanf(ficpar,"pop_based=%d\n",&popbased);  
   fprintf(ficparo,"pop_based=%d\n",popbased);       if (popforecast==1) {
   fprintf(ficres,"pop_based=%d\n",popbased);         free_ivector(popage,0,AGESUP);
         free_vector(popeffectif,0,AGESUP);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_vector(popcount,0,AGESUP);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     puts(line);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fputs(line,ficparo);    fclose(ficrespop);
   }  } /* End of popforecast */
   ungetc(c,ficpar);  
   int fileappend(FILE *fichier, char *optionfich)
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);  {
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    if((fichier=fopen(optionfich,"a"))==NULL) {
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      printf("Problem with file: %s\n", optionfich);
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      return (0);
   /* day and month of proj2 are not used but only year anproj2.*/    }
     fflush(fichier);
   while((c=getc(ficpar))=='#' && c!= EOF){    return (1);
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  
     fputs(line,ficparo);  /**************** function prwizard **********************/
   }  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   ungetc(c,ficpar);  {
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    /* Wizard to print covariance matrix template */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    int numlinepar;
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   /*------------ gnuplot -------------*/    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   strcpy(optionfilegnuplot,optionfilefiname);    for(i=1; i <=nlstate; i++){
   strcat(optionfilegnuplot,".gp");      jj=0;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      for(j=1; j <=nlstate+ndeath; j++){
     printf("Problem with file %s",optionfilegnuplot);        if(j==i) continue;
   }        jj++;
   else{        /*ca[0]= k+'a'-1;ca[1]='\0';*/
     fprintf(ficgp,"\n# %s\n", version);         printf("%1d%1d",i,j);
     fprintf(ficgp,"# %s\n", optionfilegnuplot);         fprintf(ficparo,"%1d%1d",i,j);
     fprintf(ficgp,"set missing 'NaNq'\n");        for(k=1; k<=ncovmodel;k++){
   }          /*        printf(" %lf",param[i][j][k]); */
   fclose(ficgp);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          printf(" 0.");
   /*--------- index.htm --------*/          fprintf(ficparo," 0.");
         }
   strcpy(optionfilehtm,optionfile);        printf("\n");
   strcat(optionfilehtm,".htm");        fprintf(ficparo,"\n");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      }
     printf("Problem with %s \n",optionfilehtm), exit(0);    }
   }    printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    for(i=1; i <=nlstate; i++){
 \n      jj=0;
 Total number of observations=%d <br>\n      for(j=1; j <=nlstate+ndeath; j++){
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n        if(j==i) continue;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        jj++;
 <hr  size=\"2\" color=\"#EC5E5E\">        fprintf(ficparo,"%1d%1d",i,j);
  <ul><li><h4>Parameter files</h4>\n        printf("%1d%1d",i,j);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        fflush(stdout);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n        for(k=1; k<=ncovmodel;k++){
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);          /*      printf(" %le",delti3[i][j][k]); */
    fclose(fichtm);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          fprintf(ficparo," 0.");
          }
   /*------------ free_vector  -------------*/        numlinepar++;
   chdir(path);        printf("\n");
          fprintf(ficparo,"\n");
   free_ivector(wav,1,imx);      }
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    }
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);    printf("# Covariance matrix\n");
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     /* # 121 Var(a12)\n\ */
   free_ivector(num,1,n);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   free_vector(agedc,1,n);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /*free_matrix(covar,0,NCOVMAX,1,n);*/  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /*free_matrix(covar,1,NCOVMAX,1,n);*/  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   fclose(ficparo);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   fclose(ficres);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
   /*--------------- Prevalence limit  (stable prevalence) --------------*/    fprintf(ficparo,"# Covariance matrix\n");
       /* # 121 Var(a12)\n\ */
   strcpy(filerespl,"pl");    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   strcat(filerespl,fileres);    /* #   ...\n\ */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;   
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    for(itimes=1;itimes<=2;itimes++){
   }      jj=0;
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);      for(i=1; i <=nlstate; i++){
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);        for(j=1; j <=nlstate+ndeath; j++){
   fprintf(ficrespl,"#Stable prevalence \n");          if(j==i) continue;
   fprintf(ficrespl,"#Age ");          for(k=1; k<=ncovmodel;k++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            jj++;
   fprintf(ficrespl,"\n");            ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
   prlim=matrix(1,nlstate,1,nlstate);              printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
   agebase=ageminpar;            }else{
   agelim=agemaxpar;              printf("%1d%1d%d",i,j,k);
   ftolpl=1.e-10;              fprintf(ficparo,"%1d%1d%d",i,j,k);
   i1=cptcoveff;              /*  printf(" %.5le",matcov[i][j]); */
   if (cptcovn < 1){i1=1;}            }
             ll=0;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){            for(li=1;li <=nlstate; li++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              for(lj=1;lj <=nlstate+ndeath; lj++){
       k=k+1;                if(lj==li) continue;
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                for(lk=1;lk<=ncovmodel;lk++){
       fprintf(ficrespl,"\n#******");                  ll++;
       printf("\n#******");                  if(ll<=jj){
       fprintf(ficlog,"\n#******");                    cb[0]= lk +'a'-1;cb[1]='\0';
       for(j=1;j<=cptcoveff;j++) {                    if(ll<jj){
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      if(itimes==1){
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       }                      }else{
       fprintf(ficrespl,"******\n");                        printf(" 0.");
       printf("******\n");                        fprintf(ficparo," 0.");
       fprintf(ficlog,"******\n");                      }
                             }else{
       for (age=agebase; age<=agelim; age++){                      if(itimes==1){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                        printf(" Var(%s%1d%1d)",ca,i,j);
         fprintf(ficrespl,"%.0f ",age );                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
         for(j=1;j<=cptcoveff;j++)                      }else{
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                        printf(" 0.");
         for(i=1; i<=nlstate;i++)                        fprintf(ficparo," 0.");
           fprintf(ficrespl," %.5f", prlim[i][i]);                      }
         fprintf(ficrespl,"\n");                    }
       }                  }
     }                } /* end lk */
   }              } /* end lj */
   fclose(ficrespl);            } /* end li */
             printf("\n");
   /*------------- h Pij x at various ages ------------*/            fprintf(ficparo,"\n");
               numlinepar++;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          } /* end k*/
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        } /*end j */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      } /* end i */
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    } /* end itimes */
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);  } /* end of prwizard */
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);  /******************* Gompertz Likelihood ******************************/
     double gompertz(double x[])
   stepsize=(int) (stepm+YEARM-1)/YEARM;  {
   /*if (stepm<=24) stepsize=2;*/    double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */    for (i=0;i<=imx-1 ; i++) {
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       sump=sump+weight[i];
       /*    sump=sump+1;*/
   /* hstepm=1;   aff par mois*/      num=num+1;
     }
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");   
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* for (i=0; i<=imx; i++)
       k=k+1;       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
       fprintf(ficrespij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)     for (i=1;i<=imx ; i++)
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      {
       fprintf(ficrespij,"******\n");        if (cens[i] == 1 && wav[i]>1)
                   A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */       
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         if (cens[i] == 0 && wav[i]>1)
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         /*        nhstepm=nhstepm*YEARM; aff par mois*/       
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (wav[i] > 1 ) { /* ??? */
         oldm=oldms;savm=savms;          L=L+A*weight[i];
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");        }
         for(i=1; i<=nlstate;i++)      }
           for(j=1; j<=nlstate+ndeath;j++)  
             fprintf(ficrespij," %1d-%1d",i,j);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
         fprintf(ficrespij,"\n");   
         for (h=0; h<=nhstepm; h++){    return -2*L*num/sump;
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  }
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)  /******************* Printing html file ***********/
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
           fprintf(ficrespij,"\n");                    int lastpass, int stepm, int weightopt, char model[],\
         }                    int imx,  double p[],double **matcov,double agemortsup){
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i,k;
         fprintf(ficrespij,"\n");  
       }    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     }    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   }    for (i=1;i<=2;i++)
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   fclose(ficrespij);  
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
   /*---------- Forecasting ------------------*/   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/  
   if(prevfcast==1){   for (k=agegomp;k<(agemortsup-2);k++)
     /*    if(stepm ==1){*/     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);  
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/   
 /*      }  */    fflush(fichtm);
 /*      else{ */  }
 /*        erreur=108; */  
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */  /******************* Gnuplot file **************/
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 /*      } */  
   }    char dirfileres[132],optfileres[132];
       int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*---------- Health expectancies and variances ------------*/  
   
   strcpy(filerest,"t");    /*#ifdef windows */
   strcat(filerest,fileres);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   if((ficrest=fopen(filerest,"w"))==NULL) {      /*#endif */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;  
   }    strcpy(dirfileres,optionfilefiname);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);     strcpy(optfileres,"vpl");
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);     fprintf(ficgp,"set out \"graphmort.png\"\n ");
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
     fprintf(ficgp, "set ter png small\n set log y\n");
   strcpy(filerese,"e");    fprintf(ficgp, "set size 0.65,0.65\n");
   strcat(filerese,fileres);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  }
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);  
   
   strcpy(fileresv,"v");  /***********************************************/
   strcat(fileresv,fileres);  /**************** Main Program *****************/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  /***********************************************/
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  int main(int argc, char *argv[])
   }  {
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */    int jj, ll, li, lj, lk, imk;
   prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    int numlinepar=0; /* Current linenumber of parameter file */
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\    int itimes;
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);    int NDIM=2;
   */  
     char ca[32], cb[32], cc[32];
   if (mobilav!=0) {    char dummy[]="                         ";
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*  FILE *fichtm; *//* Html File */
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    /* FILE *ficgp;*/ /*Gnuplot File */
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    struct stat info;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    double agedeb, agefin,hf;
     }    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   }  
     double fret;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){    double **xi,tmp,delta;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;     double dum; /* Dummy variable */
       fprintf(ficrest,"\n#****** ");    double ***p3mat;
       for(j=1;j<=cptcoveff;j++)     double ***mobaverage;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int *indx;
       fprintf(ficrest,"******\n");    char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
       fprintf(ficreseij,"\n#****** ");    char pathr[MAXLINE], pathimach[MAXLINE];
       for(j=1;j<=cptcoveff;j++)     char **bp, *tok, *val; /* pathtot */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int firstobs=1, lastobs=10;
       fprintf(ficreseij,"******\n");    int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
       fprintf(ficresvij,"\n#****** ");    int ju,jl, mi;
       for(j=1;j<=cptcoveff;j++)     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
       fprintf(ficresvij,"******\n");    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    int hstepm, nhstepm;
       oldm=oldms;savm=savms;    int agemortsup;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      float  sumlpop=0.;
      double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
       oldm=oldms;savm=savms;  
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);    double bage, fage, age, agelim, agebase;
       if(popbased==1){    double ftolpl=FTOL;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);    double **prlim;
       }    double *severity;
     double ***param; /* Matrix of parameters */
      double  *p;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    double **matcov; /* Matrix of covariance */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    double ***delti3; /* Scale */
       fprintf(ficrest,"\n");    double *delti; /* Scale */
     double ***eij, ***vareij;
       epj=vector(1,nlstate+1);    double **varpl; /* Variances of prevalence limits by age */
       for(age=bage; age <=fage ;age++){    double *epj, vepp;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    double kk1, kk2;
         if (popbased==1) {    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
           if(mobilav ==0){    double **ximort;
             for(i=1; i<=nlstate;i++)    char *alph[]={"a","a","b","c","d","e"}, str[4];
               prlim[i][i]=probs[(int)age][i][k];    int *dcwave;
           }else{ /* mobilav */   
             for(i=1; i<=nlstate;i++)    char z[1]="c", occ;
               prlim[i][i]=mobaverage[(int)age][i][k];  
           }    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
         }    char  *strt, strtend[80];
             char *stratrunc;
         fprintf(ficrest," %4.0f",age);    int lstra;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    long total_usecs;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];   
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  /*   setlocale (LC_ALL, ""); */
           }  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
           epj[nlstate+1] +=epj[j];  /*   textdomain (PACKAGE); */
         }  /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
             vepp += vareij[i][j][(int)age];    (void) gettimeofday(&start_time,&tzp);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    curr_time=start_time;
         for(j=1;j <=nlstate;j++){    tm = *localtime(&start_time.tv_sec);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    tmg = *gmtime(&start_time.tv_sec);
         }    strcpy(strstart,asctime(&tm));
         fprintf(ficrest,"\n");  
       }  /*  printf("Localtime (at start)=%s",strstart); */
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*  tp.tv_sec = tp.tv_sec +86400; */
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*  tm = *localtime(&start_time.tv_sec); */
       free_vector(epj,1,nlstate+1);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
     }  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   }  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   free_vector(weight,1,n);  /*   tp.tv_sec = mktime(&tmg); */
   free_imatrix(Tvard,1,15,1,2);  /*   strt=asctime(&tmg); */
   free_imatrix(s,1,maxwav+1,1,n);  /*   printf("Time(after) =%s",strstart);  */
   free_matrix(anint,1,maxwav,1,n);   /*  (void) time (&time_value);
   free_matrix(mint,1,maxwav,1,n);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   free_ivector(cod,1,n);  *  tm = *localtime(&time_value);
   free_ivector(tab,1,NCOVMAX);  *  strstart=asctime(&tm);
   fclose(ficreseij);  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
   fclose(ficresvij);  */
   fclose(ficrest);  
   fclose(ficpar);    nberr=0; /* Number of errors and warnings */
       nbwarn=0;
   /*------- Variance of stable prevalence------*/       getcwd(pathcd, size);
   
   strcpy(fileresvpl,"vpl");    printf("\n%s\n%s",version,fullversion);
   strcat(fileresvpl,fileres);    if(argc <=1){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      printf("\nEnter the parameter file name: ");
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);      fgets(pathr,FILENAMELENGTH,stdin);
     exit(0);      i=strlen(pathr);
   }      if(pathr[i-1]=='\n')
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);        pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){        printf("Pathr |%s|\n",pathr);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
       k=k+1;        printf("val= |%s| pathr=%s\n",val,pathr);
       fprintf(ficresvpl,"\n#****** ");        strcpy (pathtot, val);
       for(j=1;j<=cptcoveff;j++)         if(pathr[0] == '\0') break; /* Dirty */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       fprintf(ficresvpl,"******\n");    }
           else{
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      strcpy(pathtot,argv[1]);
       oldm=oldms;savm=savms;    }
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    /*cygwin_split_path(pathtot,path,optionfile);
     }      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   }    /* cutv(path,optionfile,pathtot,'\\');*/
   
   fclose(ficresvpl);    /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
   /*---------- End : free ----------------*/    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);   /*   strcpy(pathimach,argv[0]); */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
       printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   free_matrix(covar,0,NCOVMAX,1,n);    chdir(path); /* Can be a relative path */
   free_matrix(matcov,1,npar,1,npar);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   /*free_vector(delti,1,npar);*/      printf("Current directory %s!\n",pathcd);
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     strcpy(command,"mkdir ");
   free_matrix(agev,1,maxwav,1,imx);    strcat(command,optionfilefiname);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    if((outcmd=system(command)) != 0){
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   free_ivector(ncodemax,1,8);  /*     exit(1); */
   free_ivector(Tvar,1,15);    }
   free_ivector(Tprod,1,15);  /*   if((imk=mkdir(optionfilefiname))<0){ */
   free_ivector(Tvaraff,1,15);  /*     perror("mkdir"); */
   free_ivector(Tage,1,15);  /*   } */
   free_ivector(Tcode,1,100);  
     /*-------- arguments in the command line --------*/
   /*  fclose(fichtm);*/  
   /*  fclose(ficgp);*/ /* ALready done */    /* Log file */
       strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
   if(erreur >0){    if((ficlog=fopen(filelog,"w"))==NULL)    {
     printf("End of Imach with error or warning %d\n",erreur);      printf("Problem with logfile %s\n",filelog);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);      goto end;
   }else{    }
    printf("End of Imach\n");    fprintf(ficlog,"Log filename:%s\n",filelog);
    fprintf(ficlog,"End of Imach\n");    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   }    fprintf(ficlog,"\nEnter the parameter file name: \n");
   printf("See log file on %s\n",filelog);    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
   fclose(ficlog);   path=%s \n\
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   optionfile=%s\n\
      optionfilext=%s\n\
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/    printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
   end:    fflush(ficlog);
 #ifdef windows  /*   (void) gettimeofday(&curr_time,&tzp); */
   /* chdir(pathcd);*/  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
 #endif   
  /*system("wgnuplot graph.plt");*/    /* */
  /*system("../gp37mgw/wgnuplot graph.plt");*/    strcpy(fileres,"r");
  /*system("cd ../gp37mgw");*/    strcat(fileres, optionfilefiname);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    strcat(fileres,".txt");    /* Other files have txt extension */
   strcpy(plotcmd,GNUPLOTPROGRAM);  
   strcat(plotcmd," ");    /*---------arguments file --------*/
   strcat(plotcmd,optionfilegnuplot);  
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   system(plotcmd);      printf("Problem with optionfile %s\n",optionfile);
   printf(" Wait...");      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
  /*#ifdef windows*/      goto end;
   while (z[0] != 'q') {    }
     /* chdir(path); */  
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");    strcpy(filereso,"o");
     else if (z[0] == 'e') system(optionfilehtm);    strcat(filereso,fileres);
     else if (z[0] == 'g') system(plotcmd);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
     else if (z[0] == 'q') exit(0);      printf("Problem with Output resultfile: %s\n", filereso);
   }      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   /*#endif */      fflush(ficlog);
 }      goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
      
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
      
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
    
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
    
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
      
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
      
       fflush(ficlog);
      
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10);
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
        
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year;
         mint[j][i]= (double)month;
         strcpy(line,stra);
       } /* ENd Waves */
      
       cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year;
       moisdc[i]=(double) month;
       strcpy(line,stra);
      
       cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month);
       strcpy(line,stra);
      
       cutv(stra, strb,line,' ');
       errno=0;
       dval=strtod(strb,&endptr);
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval;
       strcpy(line,stra);
      
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10);
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }
       lstra=strlen(stra);
      
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1;
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
    
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15);
     Tvaraff=ivector(1,15);
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1;
       cptcovprod=j1; /*Number of products */
      
       strcpy(modelsav,model);
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
      
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2];
             for (k=1; k<=lastobs;k++)
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
    
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
      
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
        
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           }
         }
       }
     }
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
      
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version);
       fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.83  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>