Diff for /imach/src/imach.c between versions 1.48 and 1.126

version 1.48, 2002/06/10 13:12:49 version 1.126, 2006/04/28 17:23:28
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.126  2006/04/28 17:23:28  brouard
      (Module): Yes the sum of survivors was wrong since
   This program computes Healthy Life Expectancies from    imach-114 because nhstepm was no more computed in the age
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    loop. Now we define nhstepma in the age loop.
   first survey ("cross") where individuals from different ages are    Version 0.98h
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.125  2006/04/04 15:20:31  lievre
   second wave of interviews ("longitudinal") which measure each change    Errors in calculation of health expectancies. Age was not initialized.
   (if any) in individual health status.  Health expectancies are    Forecasting file added.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.124  2006/03/22 17:13:53  lievre
   Maximum Likelihood of the parameters involved in the model.  The    Parameters are printed with %lf instead of %f (more numbers after the comma).
   simplest model is the multinomial logistic model where pij is the    The log-likelihood is printed in the log file
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.123  2006/03/20 10:52:43  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    * imach.c (Module): <title> changed, corresponds to .htm file
   'age' is age and 'sex' is a covariate. If you want to have a more    name. <head> headers where missing.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    * imach.c (Module): Weights can have a decimal point as for
   you to do it.  More covariates you add, slower the    English (a comma might work with a correct LC_NUMERIC environment,
   convergence.    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   The advantage of this computer programme, compared to a simple    1.
   multinomial logistic model, is clear when the delay between waves is not    Version 0.98g
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.122  2006/03/20 09:45:41  brouard
   account using an interpolation or extrapolation.      (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
   hPijx is the probability to be observed in state i at age x+h    otherwise the weight is truncated).
   conditional to the observed state i at age x. The delay 'h' can be    Modification of warning when the covariates values are not 0 or
   split into an exact number (nh*stepm) of unobserved intermediate    1.
   states. This elementary transition (by month or quarter trimester,    Version 0.98g
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.121  2006/03/16 17:45:01  lievre
   and the contribution of each individual to the likelihood is simply    * imach.c (Module): Comments concerning covariates added
   hPijx.  
     * imach.c (Module): refinements in the computation of lli if
   Also this programme outputs the covariance matrix of the parameters but also    status=-2 in order to have more reliable computation if stepm is
   of the life expectancies. It also computes the prevalence limits.    not 1 month. Version 0.98f
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.120  2006/03/16 15:10:38  lievre
            Institut national d'études démographiques, Paris.    (Module): refinements in the computation of lli if
   This software have been partly granted by Euro-REVES, a concerted action    status=-2 in order to have more reliable computation if stepm is
   from the European Union.    not 1 month. Version 0.98f
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.119  2006/03/15 17:42:26  brouard
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Bug if status = -2, the loglikelihood was
   **********************************************************************/    computed as likelihood omitting the logarithm. Version O.98e
    
 #include <math.h>    Revision 1.118  2006/03/14 18:20:07  brouard
 #include <stdio.h>    (Module): varevsij Comments added explaining the second
 #include <stdlib.h>    table of variances if popbased=1 .
 #include <unistd.h>    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 #define MAXLINE 256    (Module): Version 0.98d
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.117  2006/03/14 17:16:22  brouard
 #define FILENAMELENGTH 80    (Module): varevsij Comments added explaining the second
 /*#define DEBUG*/    table of variances if popbased=1 .
 #define windows    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Function pstamp added
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Version 0.98d
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.116  2006/03/06 10:29:27  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.115  2006/02/27 12:17:45  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): One freematrix added in mlikeli! 0.98c
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.114  2006/02/26 12:57:58  brouard
 #define YEARM 12. /* Number of months per year */    (Module): Some improvements in processing parameter
 #define AGESUP 130    filename with strsep.
 #define AGEBASE 40  
 #ifdef windows    Revision 1.113  2006/02/24 14:20:24  brouard
 #define DIRSEPARATOR '\\'    (Module): Memory leaks checks with valgrind and:
 #else    datafile was not closed, some imatrix were not freed and on matrix
 #define DIRSEPARATOR '/'    allocation too.
 #endif  
     Revision 1.112  2006/01/30 09:55:26  brouard
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 int erreur; /* Error number */  
 int nvar;    Revision 1.111  2006/01/25 20:38:18  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Lots of cleaning and bugs added (Gompertz)
 int npar=NPARMAX;    (Module): Comments can be added in data file. Missing date values
 int nlstate=2; /* Number of live states */    can be a simple dot '.'.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.110  2006/01/25 00:51:50  brouard
 int popbased=0;    (Module): Lots of cleaning and bugs added (Gompertz)
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.109  2006/01/24 19:37:15  brouard
 int maxwav; /* Maxim number of waves */    (Module): Comments (lines starting with a #) are allowed in data.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.108  2006/01/19 18:05:42  lievre
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Gnuplot problem appeared...
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    To be fixed
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.107  2006/01/19 16:20:37  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Test existence of gnuplot in imach path
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.106  2006/01/19 13:24:36  brouard
 FILE *fichtm; /* Html File */    Some cleaning and links added in html output
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.105  2006/01/05 20:23:19  lievre
 FILE  *ficresvij;    *** empty log message ***
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.104  2005/09/30 16:11:43  lievre
 char fileresvpl[FILENAMELENGTH];    (Module): sump fixed, loop imx fixed, and simplifications.
 char title[MAXLINE];    (Module): If the status is missing at the last wave but we know
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    that the person is alive, then we can code his/her status as -2
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.103  2005/09/30 15:54:49  lievre
 char popfile[FILENAMELENGTH];    (Module): sump fixed, loop imx fixed, and simplifications.
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.101  2004/09/15 10:38:38  brouard
 #define FTOL 1.0e-10    Fix on curr_time
   
 #define NRANSI    Revision 1.100  2004/07/12 18:29:06  brouard
 #define ITMAX 200    Add version for Mac OS X. Just define UNIX in Makefile
   
 #define TOL 2.0e-4    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.98  2004/05/16 15:05:56  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 #define GOLD 1.618034    state at each age, but using a Gompertz model: log u =a + b*age .
 #define GLIMIT 100.0    This is the basic analysis of mortality and should be done before any
 #define TINY 1.0e-20    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 static double maxarg1,maxarg2;    from other sources like vital statistic data.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    The same imach parameter file can be used but the option for mle should be -3.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Agnès, who wrote this part of the code, tried to keep most of the
 #define rint(a) floor(a+0.5)    former routines in order to include the new code within the former code.
   
 static double sqrarg;    The output is very simple: only an estimate of the intercept and of
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    the slope with 95% confident intervals.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Current limitations:
 int imx;    A) Even if you enter covariates, i.e. with the
 int stepm;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 /* Stepm, step in month: minimum step interpolation*/    B) There is no computation of Life Expectancy nor Life Table.
   
 int estepm;    Revision 1.97  2004/02/20 13:25:42  lievre
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.96  2003/07/15 15:38:55  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 double **pmmij, ***probs, ***mobaverage;    rewritten within the same printf. Workaround: many printfs.
 double dateintmean=0;  
     Revision 1.95  2003/07/08 07:54:34  brouard
 double *weight;    * imach.c (Repository):
 int **s; /* Status */    (Repository): Using imachwizard code to output a more meaningful covariance
 double *agedc, **covar, idx;    matrix (cov(a12,c31) instead of numbers.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.94  2003/06/27 13:00:02  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Just cleaning
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.93  2003/06/25 16:33:55  brouard
 /**************** split *************************/    (Module): On windows (cygwin) function asctime_r doesn't
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    exist so I changed back to asctime which exists.
 {    (Module): Version 0.96b
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
    l1 = strlen( path );                 /* length of path */    exist so I changed back to asctime which exists.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    Revision 1.91  2003/06/25 15:30:29  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    * imach.c (Repository): Duplicated warning errors corrected.
 #if     defined(__bsd__)                /* get current working directory */    (Repository): Elapsed time after each iteration is now output. It
       extern char       *getwd( );    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
       if ( getwd( dirc ) == NULL ) {    concerning matrix of covariance. It has extension -cov.htm.
 #else  
       extern char       *getcwd( );    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    mle=-1 a template is output in file "or"mypar.txt with the design
 #endif    of the covariance matrix to be input.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.89  2003/06/24 12:30:52  brouard
       strcpy( name, path );             /* we've got it */    (Module): Some bugs corrected for windows. Also, when
    } else {                             /* strip direcotry from path */    mle=-1 a template is output in file "or"mypar.txt with the design
       s++;                              /* after this, the filename */    of the covariance matrix to be input.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.88  2003/06/23 17:54:56  brouard
       strcpy( name, s );                /* save file name */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.87  2003/06/18 12:26:01  brouard
    }    Version 0.96
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.86  2003/06/17 20:04:08  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Module): Change position of html and gnuplot routines and added
 #else    routine fileappend.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.85  2003/06/17 13:12:43  brouard
    s = strrchr( name, '.' );            /* find last / */    * imach.c (Repository): Check when date of death was earlier that
    s++;    current date of interview. It may happen when the death was just
    strcpy(ext,s);                       /* save extension */    prior to the death. In this case, dh was negative and likelihood
    l1= strlen( name);    was wrong (infinity). We still send an "Error" but patch by
    l2= strlen( s)+1;    assuming that the date of death was just one stepm after the
    strncpy( finame, name, l1-l2);    interview.
    finame[l1-l2]= 0;    (Repository): Because some people have very long ID (first column)
    return( 0 );                         /* we're done */    we changed int to long in num[] and we added a new lvector for
 }    memory allocation. But we also truncated to 8 characters (left
     truncation)
     (Repository): No more line truncation errors.
 /******************************************/  
     Revision 1.84  2003/06/13 21:44:43  brouard
 void replace(char *s, char*t)    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   int i;    many times. Probs is memory consuming and must be used with
   int lg=20;    parcimony.
   i=0;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.83  2003/06/10 13:39:11  lievre
     (s[i] = t[i]);    *** empty log message ***
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.82  2003/06/05 15:57:20  brouard
 }    Add log in  imach.c and  fullversion number is now printed.
   
 int nbocc(char *s, char occ)  */
 {  /*
   int i,j=0;     Interpolated Markov Chain
   int lg=20;  
   i=0;    Short summary of the programme:
   lg=strlen(s);    
   for(i=0; i<= lg; i++) {    This program computes Healthy Life Expectancies from
   if  (s[i] == occ ) j++;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   }    first survey ("cross") where individuals from different ages are
   return j;    interviewed on their health status or degree of disability (in the
 }    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 void cutv(char *u,char *v, char*t, char occ)    (if any) in individual health status.  Health expectancies are
 {    computed from the time spent in each health state according to a
   int i,lg,j,p=0;    model. More health states you consider, more time is necessary to reach the
   i=0;    Maximum Likelihood of the parameters involved in the model.  The
   for(j=0; j<=strlen(t)-1; j++) {    simplest model is the multinomial logistic model where pij is the
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    probability to be observed in state j at the second wave
   }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   lg=strlen(t);    'age' is age and 'sex' is a covariate. If you want to have a more
   for(j=0; j<p; j++) {    complex model than "constant and age", you should modify the program
     (u[j] = t[j]);    where the markup *Covariates have to be included here again* invites
   }    you to do it.  More covariates you add, slower the
      u[p]='\0';    convergence.
   
    for(j=0; j<= lg; j++) {    The advantage of this computer programme, compared to a simple
     if (j>=(p+1))(v[j-p-1] = t[j]);    multinomial logistic model, is clear when the delay between waves is not
   }    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /********************** nrerror ********************/  
     hPijx is the probability to be observed in state i at age x+h
 void nrerror(char error_text[])    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   fprintf(stderr,"ERREUR ...\n");    states. This elementary transition (by month, quarter,
   fprintf(stderr,"%s\n",error_text);    semester or year) is modelled as a multinomial logistic.  The hPx
   exit(1);    matrix is simply the matrix product of nh*stepm elementary matrices
 }    and the contribution of each individual to the likelihood is simply
 /*********************** vector *******************/    hPijx.
 double *vector(int nl, int nh)  
 {    Also this programme outputs the covariance matrix of the parameters but also
   double *v;    of the life expectancies. It also computes the period (stable) prevalence. 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    
   if (!v) nrerror("allocation failure in vector");    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   return v-nl+NR_END;             Institut national d'études démographiques, Paris.
 }    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 /************************ free vector ******************/    It is copyrighted identically to a GNU software product, ie programme and
 void free_vector(double*v, int nl, int nh)    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   free((FREE_ARG)(v+nl-NR_END));  
 }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /************************ivector *******************************/    
 int *ivector(long nl,long nh)    **********************************************************************/
 {  /*
   int *v;    main
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    read parameterfile
   if (!v) nrerror("allocation failure in ivector");    read datafile
   return v-nl+NR_END;    concatwav
 }    freqsummary
     if (mle >= 1)
 /******************free ivector **************************/      mlikeli
 void free_ivector(int *v, long nl, long nh)    print results files
 {    if mle==1 
   free((FREE_ARG)(v+nl-NR_END));       computes hessian
 }    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 /******************* imatrix *******************************/    open gnuplot file
 int **imatrix(long nrl, long nrh, long ncl, long nch)    open html file
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    period (stable) prevalence
 {     for age prevalim()
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    h Pij x
   int **m;    variance of p varprob
      forecasting if prevfcast==1 prevforecast call prevalence()
   /* allocate pointers to rows */    health expectancies
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Variance-covariance of DFLE
   if (!m) nrerror("allocation failure 1 in matrix()");    prevalence()
   m += NR_END;     movingaverage()
   m -= nrl;    varevsij() 
      if popbased==1 varevsij(,popbased)
      total life expectancies
   /* allocate rows and set pointers to them */    Variance of period (stable) prevalence
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   end
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   
    #include <math.h>
   /* return pointer to array of pointers to rows */  #include <stdio.h>
   return m;  #include <stdlib.h>
 }  #include <string.h>
   #include <unistd.h>
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  #include <limits.h>
       int **m;  #include <sys/types.h>
       long nch,ncl,nrh,nrl;  #include <sys/stat.h>
      /* free an int matrix allocated by imatrix() */  #include <errno.h>
 {  extern int errno;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  /* #include <sys/time.h> */
 }  #include <time.h>
   #include "timeval.h"
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  /* #include <libintl.h> */
 {  /* #define _(String) gettext (String) */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  #define MAXLINE 256
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define GNUPLOTPROGRAM "gnuplot"
   if (!m) nrerror("allocation failure 1 in matrix()");  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   m += NR_END;  #define FILENAMELENGTH 132
   m -= nrl;  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   m[nrl] -= ncl;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NINTERVMAX 8
   return m;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 /*************************free matrix ************************/  #define MAXN 20000
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define AGEBASE 40
   free((FREE_ARG)(m+nrl-NR_END));  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 }  #ifdef UNIX
   #define DIRSEPARATOR '/'
 /******************* ma3x *******************************/  #define CHARSEPARATOR "/"
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define ODIRSEPARATOR '\\'
 {  #else
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define DIRSEPARATOR '\\'
   double ***m;  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #endif
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /* $Id$ */
   m -= nrl;  /* $State$ */
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char version[]="Imach version 0.98h, April 2006, INED-EUROREVES-Institut de longevite ";
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char fullversion[]="$Revision$ $Date$"; 
   m[nrl] += NR_END;  char strstart[80];
   m[nrl] -= ncl;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int npar=NPARMAX;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int nlstate=2; /* Number of live states */
   m[nrl][ncl] += NR_END;  int ndeath=1; /* Number of dead states */
   m[nrl][ncl] -= nll;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   for (j=ncl+1; j<=nch; j++)  int popbased=0;
     m[nrl][j]=m[nrl][j-1]+nlay;  
    int *wav; /* Number of waves for this individuual 0 is possible */
   for (i=nrl+1; i<=nrh; i++) {  int maxwav; /* Maxim number of waves */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int jmin, jmax; /* min, max spacing between 2 waves */
     for (j=ncl+1; j<=nch; j++)  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
       m[i][j]=m[i][j-1]+nlay;  int gipmx, gsw; /* Global variables on the number of contributions 
   }                     to the likelihood and the sum of weights (done by funcone)*/
   return m;  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /*************************free ma3x ************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  double **oldm, **newm, **savm; /* Working pointers to matrices */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   free((FREE_ARG)(m+nrl-NR_END));  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 /***************** f1dim *************************/  double fretone; /* Only one call to likelihood */
 extern int ncom;  long ipmx; /* Number of contributions */
 extern double *pcom,*xicom;  double sw; /* Sum of weights */
 extern double (*nrfunc)(double []);  char filerespow[FILENAMELENGTH];
    char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 double f1dim(double x)  FILE *ficresilk;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   int j;  FILE *ficresprobmorprev;
   double f;  FILE *fichtm, *fichtmcov; /* Html File */
   double *xt;  FILE *ficreseij;
    char filerese[FILENAMELENGTH];
   xt=vector(1,ncom);  FILE *ficresstdeij;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char fileresstde[FILENAMELENGTH];
   f=(*nrfunc)(xt);  FILE *ficrescveij;
   free_vector(xt,1,ncom);  char filerescve[FILENAMELENGTH];
   return f;  FILE  *ficresvij;
 }  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 /*****************brent *************************/  char fileresvpl[FILENAMELENGTH];
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   int iter;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   double a,b,d,etemp;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double fu,fv,fw,fx;  char command[FILENAMELENGTH];
   double ftemp;  int  outcmd=0;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    
   a=(ax < cx ? ax : cx);  char filelog[FILENAMELENGTH]; /* Log file */
   b=(ax > cx ? ax : cx);  char filerest[FILENAMELENGTH];
   x=w=v=bx;  char fileregp[FILENAMELENGTH];
   fw=fv=fx=(*f)(x);  char popfile[FILENAMELENGTH];
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     printf(".");fflush(stdout);  struct timezone tzp;
 #ifdef DEBUG  extern int gettimeofday();
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  long time_value;
 #endif  extern long time();
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char strcurr[80], strfor[80];
       *xmin=x;  
       return fx;  char *endptr;
     }  long lval;
     ftemp=fu;  double dval;
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  #define NR_END 1
       q=(x-v)*(fx-fw);  #define FREE_ARG char*
       p=(x-v)*q-(x-w)*r;  #define FTOL 1.0e-10
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  #define NRANSI 
       q=fabs(q);  #define ITMAX 200 
       etemp=e;  
       e=d;  #define TOL 2.0e-4 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define CGOLD 0.3819660 
       else {  #define ZEPS 1.0e-10 
         d=p/q;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  #define GOLD 1.618034 
           d=SIGN(tol1,xm-x);  #define GLIMIT 100.0 
       }  #define TINY 1.0e-20 
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  static double maxarg1,maxarg2;
     }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     fu=(*f)(u);    
     if (fu <= fx) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       if (u >= x) a=x; else b=x;  #define rint(a) floor(a+0.5)
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  static double sqrarg;
         } else {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
           if (u < x) a=u; else b=u;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
           if (fu <= fw || w == x) {  int agegomp= AGEGOMP;
             v=w;  
             w=u;  int imx; 
             fv=fw;  int stepm=1;
             fw=fu;  /* Stepm, step in month: minimum step interpolation*/
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  int estepm;
             fv=fu;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
           }  
         }  int m,nb;
   }  long *num;
   nrerror("Too many iterations in brent");  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   *xmin=x;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   return fx;  double **pmmij, ***probs;
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /****************** mnbrak ***********************/  
   double *weight;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int **s; /* Status */
             double (*func)(double))  double *agedc, **covar, idx;
 {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double ulim,u,r,q, dum;  double *lsurv, *lpop, *tpop;
   double fu;  
    double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   *fa=(*func)(*ax);  double ftolhess; /* Tolerance for computing hessian */
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  /**************** split *************************/
     SHFT(dum,*ax,*bx,dum)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       SHFT(dum,*fb,*fa,dum)  {
       }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   *cx=(*bx)+GOLD*(*bx-*ax);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   *fc=(*func)(*cx);    */ 
   while (*fb > *fc) {    char  *ss;                            /* pointer */
     r=(*bx-*ax)*(*fb-*fc);    int   l1, l2;                         /* length counters */
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    l1 = strlen(path );                   /* length of path */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ulim=(*bx)+GLIMIT*(*cx-*bx);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ((*bx-u)*(u-*cx) > 0.0) {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       fu=(*func)(u);      strcpy( name, path );               /* we got the fullname name because no directory */
     } else if ((*cx-u)*(u-ulim) > 0.0) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       fu=(*func)(u);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       if (fu < *fc) {      /* get current working directory */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      /*    extern  char* getcwd ( char *buf , int len);*/
           SHFT(*fb,*fc,fu,(*func)(u))      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
           }        return( GLOCK_ERROR_GETCWD );
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      }
       u=ulim;      /* got dirc from getcwd*/
       fu=(*func)(u);      printf(" DIRC = %s \n",dirc);
     } else {    } else {                              /* strip direcotry from path */
       u=(*cx)+GOLD*(*cx-*bx);      ss++;                               /* after this, the filename */
       fu=(*func)(u);      l2 = strlen( ss );                  /* length of filename */
     }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     SHFT(*ax,*bx,*cx,u)      strcpy( name, ss );         /* save file name */
       SHFT(*fa,*fb,*fc,fu)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       }      dirc[l1-l2] = 0;                    /* add zero */
 }      printf(" DIRC2 = %s \n",dirc);
     }
 /*************** linmin ************************/    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
 int ncom;    if( dirc[l1-1] != DIRSEPARATOR ){
 double *pcom,*xicom;      dirc[l1] =  DIRSEPARATOR;
 double (*nrfunc)(double []);      dirc[l1+1] = 0; 
        printf(" DIRC3 = %s \n",dirc);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    }
 {    ss = strrchr( name, '.' );            /* find last / */
   double brent(double ax, double bx, double cx,    if (ss >0){
                double (*f)(double), double tol, double *xmin);      ss++;
   double f1dim(double x);      strcpy(ext,ss);                     /* save extension */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      l1= strlen( name);
               double *fc, double (*func)(double));      l2= strlen(ss)+1;
   int j;      strncpy( finame, name, l1-l2);
   double xx,xmin,bx,ax;      finame[l1-l2]= 0;
   double fx,fb,fa;    }
    
   ncom=n;    return( 0 );                          /* we're done */
   pcom=vector(1,n);  }
   xicom=vector(1,n);  
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /******************************************/
     pcom[j]=p[j];  
     xicom[j]=xi[j];  void replace_back_to_slash(char *s, char*t)
   }  {
   ax=0.0;    int i;
   xx=1.0;    int lg=0;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    i=0;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    lg=strlen(t);
 #ifdef DEBUG    for(i=0; i<= lg; i++) {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      (s[i] = t[i]);
 #endif      if (t[i]== '\\') s[i]='/';
   for (j=1;j<=n;j++) {    }
     xi[j] *= xmin;  }
     p[j] += xi[j];  
   }  int nbocc(char *s, char occ)
   free_vector(xicom,1,n);  {
   free_vector(pcom,1,n);    int i,j=0;
 }    int lg=20;
     i=0;
 /*************** powell ************************/    lg=strlen(s);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    for(i=0; i<= lg; i++) {
             double (*func)(double []))    if  (s[i] == occ ) j++;
 {    }
   void linmin(double p[], double xi[], int n, double *fret,    return j;
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  void cutv(char *u,char *v, char*t, char occ)
   double fp,fptt;  {
   double *xits;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   pt=vector(1,n);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   ptt=vector(1,n);       gives u="abcedf" and v="ghi2j" */
   xit=vector(1,n);    int i,lg,j,p=0;
   xits=vector(1,n);    i=0;
   *fret=(*func)(p);    for(j=0; j<=strlen(t)-1; j++) {
   for (j=1;j<=n;j++) pt[j]=p[j];      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   for (*iter=1;;++(*iter)) {    }
     fp=(*fret);  
     ibig=0;    lg=strlen(t);
     del=0.0;    for(j=0; j<p; j++) {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      (u[j] = t[j]);
     for (i=1;i<=n;i++)    }
       printf(" %d %.12f",i, p[i]);       u[p]='\0';
     printf("\n");  
     for (i=1;i<=n;i++) {     for(j=0; j<= lg; j++) {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      if (j>=(p+1))(v[j-p-1] = t[j]);
       fptt=(*fret);    }
 #ifdef DEBUG  }
       printf("fret=%lf \n",*fret);  
 #endif  /********************** nrerror ********************/
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  void nrerror(char error_text[])
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    fprintf(stderr,"ERREUR ...\n");
         ibig=i;    fprintf(stderr,"%s\n",error_text);
       }    exit(EXIT_FAILURE);
 #ifdef DEBUG  }
       printf("%d %.12e",i,(*fret));  /*********************** vector *******************/
       for (j=1;j<=n;j++) {  double *vector(int nl, int nh)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  {
         printf(" x(%d)=%.12e",j,xit[j]);    double *v;
       }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       for(j=1;j<=n;j++)    if (!v) nrerror("allocation failure in vector");
         printf(" p=%.12e",p[j]);    return v-nl+NR_END;
       printf("\n");  }
 #endif  
     }  /************************ free vector ******************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  void free_vector(double*v, int nl, int nh)
 #ifdef DEBUG  {
       int k[2],l;    free((FREE_ARG)(v+nl-NR_END));
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /************************ivector *******************************/
       for (j=1;j<=n;j++)  int *ivector(long nl,long nh)
         printf(" %.12e",p[j]);  {
       printf("\n");    int *v;
       for(l=0;l<=1;l++) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in ivector");
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    return v-nl+NR_END;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /******************free ivector **************************/
       }  void free_ivector(int *v, long nl, long nh)
 #endif  {
     free((FREE_ARG)(v+nl-NR_END));
   }
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /************************lvector *******************************/
       free_vector(ptt,1,n);  long *lvector(long nl,long nh)
       free_vector(pt,1,n);  {
       return;    long *v;
     }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    if (!v) nrerror("allocation failure in ivector");
     for (j=1;j<=n;j++) {    return v-nl+NR_END;
       ptt[j]=2.0*p[j]-pt[j];  }
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /******************free lvector **************************/
     }  void free_lvector(long *v, long nl, long nh)
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    free((FREE_ARG)(v+nl-NR_END));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  }
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /******************* imatrix *******************************/
         for (j=1;j<=n;j++) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
           xi[j][ibig]=xi[j][n];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
           xi[j][n]=xit[j];  { 
         }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 #ifdef DEBUG    int **m; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    
         for(j=1;j<=n;j++)    /* allocate pointers to rows */ 
           printf(" %.12e",xit[j]);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()"); 
 #endif    m += NR_END; 
       }    m -= nrl; 
     }    
   }    
 }    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 /**** Prevalence limit ****************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl] -= ncl; 
 {    
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      matrix by transitions matrix until convergence is reached */    
     /* return pointer to array of pointers to rows */ 
   int i, ii,j,k;    return m; 
   double min, max, maxmin, maxmax,sumnew=0.;  } 
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  /****************** free_imatrix *************************/
   double **newm;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double agefin, delaymax=50 ; /* Max number of years to converge */        int **m;
         long nch,ncl,nrh,nrl; 
   for (ii=1;ii<=nlstate+ndeath;ii++)       /* free an int matrix allocated by imatrix() */ 
     for (j=1;j<=nlstate+ndeath;j++){  { 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
    cov[1]=1.;  
    /******************* matrix *******************************/
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double **matrix(long nrl, long nrh, long ncl, long nch)
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  {
     newm=savm;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     /* Covariates have to be included here again */    double **m;
      cov[2]=agefin;  
      m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (k=1; k<=cptcovn;k++) {    if (!m) nrerror("allocation failure 1 in matrix()");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m += NR_END;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    m -= nrl;
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for (k=1; k<=cptcovprod;k++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m[nrl] += NR_END;
     m[nrl] -= ncl;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    return m;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      */
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  /*************************free matrix ************************/
     for(j=1;j<=nlstate;j++){  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       min=1.;  {
       max=0.;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for(i=1; i<=nlstate; i++) {    free((FREE_ARG)(m+nrl-NR_END));
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  /******************* ma3x *******************************/
         max=FMAX(max,prlim[i][j]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         min=FMIN(min,prlim[i][j]);  {
       }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       maxmin=max-min;    double ***m;
       maxmax=FMAX(maxmax,maxmin);  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if(maxmax < ftolpl){    if (!m) nrerror("allocation failure 1 in matrix()");
       return prlim;    m += NR_END;
     }    m -= nrl;
   }  
 }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /*************** transition probabilities ***************/    m[nrl] += NR_END;
     m[nrl] -= ncl;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double s1, s2;  
   /*double t34;*/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   int i,j,j1, nc, ii, jj;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
     for(i=1; i<= nlstate; i++){    m[nrl][ncl] -= nll;
     for(j=1; j<i;j++){    for (j=ncl+1; j<=nch; j++) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      m[nrl][j]=m[nrl][j-1]+nlay;
         /*s2 += param[i][j][nc]*cov[nc];*/    
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (i=nrl+1; i<=nrh; i++) {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       }      for (j=ncl+1; j<=nch; j++) 
       ps[i][j]=s2;        m[i][j]=m[i][j-1]+nlay;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    }
     }    return m; 
     for(j=i+1; j<=nlstate+ndeath;j++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  }
       }  
       ps[i][j]=s2;  /*************************free ma3x ************************/
     }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   }  {
     /*ps[3][2]=1;*/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for(i=1; i<= nlstate; i++){    free((FREE_ARG)(m+nrl-NR_END));
      s1=0;  }
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  /*************** function subdirf ***********/
     for(j=i+1; j<=nlstate+ndeath; j++)  char *subdirf(char fileres[])
       s1+=exp(ps[i][j]);  {
     ps[i][i]=1./(s1+1.);    /* Caution optionfilefiname is hidden */
     for(j=1; j<i; j++)    strcpy(tmpout,optionfilefiname);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcat(tmpout,"/"); /* Add to the right */
     for(j=i+1; j<=nlstate+ndeath; j++)    strcat(tmpout,fileres);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    return tmpout;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  }
   } /* end i */  
   /*************** function subdirf2 ***********/
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  char *subdirf2(char fileres[], char *preop)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
       ps[ii][jj]=0;    
       ps[ii][ii]=1;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
     strcat(tmpout,preop);
     strcat(tmpout,fileres);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    return tmpout;
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
      printf("%lf ",ps[ii][jj]);  
    }  /*************** function subdirf3 ***********/
     printf("\n ");  char *subdirf3(char fileres[], char *preop, char *preop2)
     }  {
     printf("\n ");printf("%lf ",cov[2]);*/    
 /*    /* Caution optionfilefiname is hidden */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    strcpy(tmpout,optionfilefiname);
   goto end;*/    strcat(tmpout,"/");
     return ps;    strcat(tmpout,preop);
 }    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
 /**************** Product of 2 matrices ******************/    return tmpout;
   }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  /***************** f1dim *************************/
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  extern int ncom; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  extern double *pcom,*xicom;
   /* in, b, out are matrice of pointers which should have been initialized  extern double (*nrfunc)(double []); 
      before: only the contents of out is modified. The function returns   
      a pointer to pointers identical to out */  double f1dim(double x) 
   long i, j, k;  { 
   for(i=nrl; i<= nrh; i++)    int j; 
     for(k=ncolol; k<=ncoloh; k++)    double f;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double *xt; 
         out[i][k] +=in[i][j]*b[j][k];   
     xt=vector(1,ncom); 
   return out;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
     return f; 
 /************* Higher Matrix Product ***************/  } 
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*****************brent *************************/
 {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  { 
      duration (i.e. until    int iter; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    double a,b,d,etemp;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    double fu,fv,fw,fx;
      (typically every 2 years instead of every month which is too big).    double ftemp;
      Model is determined by parameters x and covariates have to be    double p,q,r,tol1,tol2,u,v,w,x,xm; 
      included manually here.    double e=0.0; 
    
      */    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
   int i, j, d, h, k;    x=w=v=bx; 
   double **out, cov[NCOVMAX];    fw=fv=fx=(*f)(x); 
   double **newm;    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
   /* Hstepm could be zero and should return the unit matrix */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for (i=1;i<=nlstate+ndeath;i++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for (j=1;j<=nlstate+ndeath;j++){      printf(".");fflush(stdout);
       oldm[i][j]=(i==j ? 1.0 : 0.0);      fprintf(ficlog,".");fflush(ficlog);
       po[i][j][0]=(i==j ? 1.0 : 0.0);  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for(h=1; h <=nhstepm; h++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for(d=1; d <=hstepm; d++){  #endif
       newm=savm;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       /* Covariates have to be included here again */        *xmin=x; 
       cov[1]=1.;        return fx; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      ftemp=fu;
       for (k=1; k<=cptcovage;k++)      if (fabs(e) > tol1) { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        r=(x-w)*(fx-fv); 
       for (k=1; k<=cptcovprod;k++)        q=(x-v)*(fx-fw); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        q=fabs(q); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        etemp=e; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        e=d; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       savm=oldm;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       oldm=newm;        else { 
     }          d=p/q; 
     for(i=1; i<=nlstate+ndeath; i++)          u=x+d; 
       for(j=1;j<=nlstate+ndeath;j++) {          if (u-a < tol2 || b-u < tol2) 
         po[i][j][h]=newm[i][j];            d=SIGN(tol1,xm-x); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        } 
          */      } else { 
       }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   } /* end h */      } 
   return po;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 }      fu=(*f)(u); 
       if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
 /*************** log-likelihood *************/        SHFT(v,w,x,u) 
 double func( double *x)          SHFT(fv,fw,fx,fu) 
 {          } else { 
   int i, ii, j, k, mi, d, kk;            if (u < x) a=u; else b=u; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];            if (fu <= fw || w == x) { 
   double **out;              v=w; 
   double sw; /* Sum of weights */              w=u; 
   double lli; /* Individual log likelihood */              fv=fw; 
   long ipmx;              fw=fu; 
   /*extern weight */            } else if (fu <= fv || v == x || v == w) { 
   /* We are differentiating ll according to initial status */              v=u; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/              fv=fu; 
   /*for(i=1;i<imx;i++)            } 
     printf(" %d\n",s[4][i]);          } 
   */    } 
   cov[1]=1.;    nrerror("Too many iterations in brent"); 
     *xmin=x; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    return fx; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  } 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  /****************** mnbrak ***********************/
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       for(d=0; d<dh[mi][i]; d++){              double (*func)(double)) 
         newm=savm;  { 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double ulim,u,r,q, dum;
         for (kk=1; kk<=cptcovage;kk++) {    double fu; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];   
         }    *fa=(*func)(*ax); 
            *fb=(*func)(*bx); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    if (*fb > *fa) { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      SHFT(dum,*ax,*bx,dum) 
         savm=oldm;        SHFT(dum,*fb,*fa,dum) 
         oldm=newm;        } 
            *cx=(*bx)+GOLD*(*bx-*ax); 
            *fc=(*func)(*cx); 
       } /* end mult */    while (*fb > *fc) { 
            r=(*bx-*ax)*(*fb-*fc); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      q=(*bx-*cx)*(*fb-*fa); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       ipmx +=1;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       sw += weight[i];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      if ((*bx-u)*(u-*cx) > 0.0) { 
     } /* end of wave */        fu=(*func)(u); 
   } /* end of individual */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        if (fu < *fc) { 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            SHFT(*fb,*fc,fu,(*func)(u)) 
   return -l;            } 
 }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
         fu=(*func)(u); 
 /*********** Maximum Likelihood Estimation ***************/      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        fu=(*func)(u); 
 {      } 
   int i,j, iter;      SHFT(*ax,*bx,*cx,u) 
   double **xi,*delti;        SHFT(*fa,*fb,*fc,fu) 
   double fret;        } 
   xi=matrix(1,npar,1,npar);  } 
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  /*************** linmin ************************/
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  int ncom; 
   powell(p,xi,npar,ftol,&iter,&fret,func);  double *pcom,*xicom;
   double (*nrfunc)(double []); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));   
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 }    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 /**** Computes Hessian and covariance matrix ***/    double f1dim(double x); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 {                double *fc, double (*func)(double)); 
   double  **a,**y,*x,pd;    int j; 
   double **hess;    double xx,xmin,bx,ax; 
   int i, j,jk;    double fx,fb,fa;
   int *indx;   
     ncom=n; 
   double hessii(double p[], double delta, int theta, double delti[]);    pcom=vector(1,n); 
   double hessij(double p[], double delti[], int i, int j);    xicom=vector(1,n); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    nrfunc=func; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   hess=matrix(1,npar,1,npar);      xicom[j]=xi[j]; 
     } 
   printf("\nCalculation of the hessian matrix. Wait...\n");    ax=0.0; 
   for (i=1;i<=npar;i++){    xx=1.0; 
     printf("%d",i);fflush(stdout);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     /*printf(" %f ",p[i]);*/  #ifdef DEBUG
     /*printf(" %lf ",hess[i][i]);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    #endif
   for (i=1;i<=npar;i++) {    for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++)  {      xi[j] *= xmin; 
       if (j>i) {      p[j] += xi[j]; 
         printf(".%d%d",i,j);fflush(stdout);    } 
         hess[i][j]=hessij(p,delti,i,j);    free_vector(xicom,1,n); 
         hess[j][i]=hess[i][j];        free_vector(pcom,1,n); 
         /*printf(" %lf ",hess[i][j]);*/  } 
       }  
     }  char *asc_diff_time(long time_sec, char ascdiff[])
   }  {
   printf("\n");    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    sec_left = (time_sec) % (60*60*24);
      hours = (sec_left) / (60*60) ;
   a=matrix(1,npar,1,npar);    sec_left = (sec_left) %(60*60);
   y=matrix(1,npar,1,npar);    minutes = (sec_left) /60;
   x=vector(1,npar);    sec_left = (sec_left) % (60);
   indx=ivector(1,npar);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   for (i=1;i<=npar;i++)    return ascdiff;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  }
   ludcmp(a,npar,indx,&pd);  
   /*************** powell ************************/
   for (j=1;j<=npar;j++) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (i=1;i<=npar;i++) x[i]=0;              double (*func)(double [])) 
     x[j]=1;  { 
     lubksb(a,npar,indx,x);    void linmin(double p[], double xi[], int n, double *fret, 
     for (i=1;i<=npar;i++){                double (*func)(double [])); 
       matcov[i][j]=x[i];    int i,ibig,j; 
     }    double del,t,*pt,*ptt,*xit;
   }    double fp,fptt;
     double *xits;
   printf("\n#Hessian matrix#\n");    int niterf, itmp;
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {    pt=vector(1,n); 
       printf("%.3e ",hess[i][j]);    ptt=vector(1,n); 
     }    xit=vector(1,n); 
     printf("\n");    xits=vector(1,n); 
   }    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
   /* Recompute Inverse */    for (*iter=1;;++(*iter)) { 
   for (i=1;i<=npar;i++)      fp=(*fret); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      ibig=0; 
   ludcmp(a,npar,indx,&pd);      del=0.0; 
       last_time=curr_time;
   /*  printf("\n#Hessian matrix recomputed#\n");      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   for (j=1;j<=npar;j++) {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     for (i=1;i<=npar;i++) x[i]=0;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     x[j]=1;     for (i=1;i<=n;i++) {
     lubksb(a,npar,indx,x);        printf(" %d %.12f",i, p[i]);
     for (i=1;i<=npar;i++){        fprintf(ficlog," %d %.12lf",i, p[i]);
       y[i][j]=x[i];        fprintf(ficrespow," %.12lf", p[i]);
       printf("%.3e ",y[i][j]);      }
     }      printf("\n");
     printf("\n");      fprintf(ficlog,"\n");
   }      fprintf(ficrespow,"\n");fflush(ficrespow);
   */      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   free_matrix(a,1,npar,1,npar);        strcpy(strcurr,asctime(&tm));
   free_matrix(y,1,npar,1,npar);  /*       asctime_r(&tm,strcurr); */
   free_vector(x,1,npar);        forecast_time=curr_time; 
   free_ivector(indx,1,npar);        itmp = strlen(strcurr);
   free_matrix(hess,1,npar,1,npar);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
 /*************** hessian matrix ****************/          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 double hessii( double x[], double delta, int theta, double delti[])          tmf = *localtime(&forecast_time.tv_sec);
 {  /*      asctime_r(&tmf,strfor); */
   int i;          strcpy(strfor,asctime(&tmf));
   int l=1, lmax=20;          itmp = strlen(strfor);
   double k1,k2;          if(strfor[itmp-1]=='\n')
   double p2[NPARMAX+1];          strfor[itmp-1]='\0';
   double res;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double fx;        }
   int k=0,kmax=10;      }
   double l1;      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   fx=func(x);        fptt=(*fret); 
   for (i=1;i<=npar;i++) p2[i]=x[i];  #ifdef DEBUG
   for(l=0 ; l <=lmax; l++){        printf("fret=%lf \n",*fret);
     l1=pow(10,l);        fprintf(ficlog,"fret=%lf \n",*fret);
     delts=delt;  #endif
     for(k=1 ; k <kmax; k=k+1){        printf("%d",i);fflush(stdout);
       delt = delta*(l1*k);        fprintf(ficlog,"%d",i);fflush(ficlog);
       p2[theta]=x[theta] +delt;        linmin(p,xit,n,fret,func); 
       k1=func(p2)-fx;        if (fabs(fptt-(*fret)) > del) { 
       p2[theta]=x[theta]-delt;          del=fabs(fptt-(*fret)); 
       k2=func(p2)-fx;          ibig=i; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        } 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  #ifdef DEBUG
              printf("%d %.12e",i,(*fret));
 #ifdef DEBUG        fprintf(ficlog,"%d %.12e",i,(*fret));
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for (j=1;j<=n;j++) {
 #endif          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          printf(" x(%d)=%.12e",j,xit[j]);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         k=kmax;        }
       }        for(j=1;j<=n;j++) {
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          printf(" p=%.12e",p[j]);
         k=kmax; l=lmax*10.;          fprintf(ficlog," p=%.12e",p[j]);
       }        }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        printf("\n");
         delts=delt;        fprintf(ficlog,"\n");
       }  #endif
     }      } 
   }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   delti[theta]=delts;  #ifdef DEBUG
   return res;        int k[2],l;
          k[0]=1;
 }        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 double hessij( double x[], double delti[], int thetai,int thetaj)        fprintf(ficlog,"Max: %.12e",(*func)(p));
 {        for (j=1;j<=n;j++) {
   int i;          printf(" %.12e",p[j]);
   int l=1, l1, lmax=20;          fprintf(ficlog," %.12e",p[j]);
   double k1,k2,k3,k4,res,fx;        }
   double p2[NPARMAX+1];        printf("\n");
   int k;        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
   fx=func(x);          for (j=1;j<=n;j++) {
   for (k=1; k<=2; k++) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for (i=1;i<=npar;i++) p2[i]=x[i];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          }
     k1=func(p2)-fx;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #endif
     k2=func(p2)-fx;  
    
     p2[thetai]=x[thetai]-delti[thetai]/k;        free_vector(xit,1,n); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        free_vector(xits,1,n); 
     k3=func(p2)-fx;        free_vector(ptt,1,n); 
          free_vector(pt,1,n); 
     p2[thetai]=x[thetai]-delti[thetai]/k;        return; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      } 
     k4=func(p2)-fx;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      for (j=1;j<=n;j++) { 
 #ifdef DEBUG        ptt[j]=2.0*p[j]-pt[j]; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        xit[j]=p[j]-pt[j]; 
 #endif        pt[j]=p[j]; 
   }      } 
   return res;      fptt=(*func)(ptt); 
 }      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 /************** Inverse of matrix **************/        if (t < 0.0) { 
 void ludcmp(double **a, int n, int *indx, double *d)          linmin(p,xit,n,fret,func); 
 {          for (j=1;j<=n;j++) { 
   int i,imax,j,k;            xi[j][ibig]=xi[j][n]; 
   double big,dum,sum,temp;            xi[j][n]=xit[j]; 
   double *vv;          }
    #ifdef DEBUG
   vv=vector(1,n);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   *d=1.0;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=n;i++) {          for(j=1;j<=n;j++){
     big=0.0;            printf(" %.12e",xit[j]);
     for (j=1;j<=n;j++)            fprintf(ficlog," %.12e",xit[j]);
       if ((temp=fabs(a[i][j])) > big) big=temp;          }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          printf("\n");
     vv[i]=1.0/big;          fprintf(ficlog,"\n");
   }  #endif
   for (j=1;j<=n;j++) {        }
     for (i=1;i<j;i++) {      } 
       sum=a[i][j];    } 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  } 
       a[i][j]=sum;  
     }  /**** Prevalence limit (stable or period prevalence)  ****************/
     big=0.0;  
     for (i=j;i<=n;i++) {  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       sum=a[i][j];  {
       for (k=1;k<j;k++)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         sum -= a[i][k]*a[k][j];       matrix by transitions matrix until convergence is reached */
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {    int i, ii,j,k;
         big=dum;    double min, max, maxmin, maxmax,sumnew=0.;
         imax=i;    double **matprod2();
       }    double **out, cov[NCOVMAX], **pmij();
     }    double **newm;
     if (j != imax) {    double agefin, delaymax=50 ; /* Max number of years to converge */
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];    for (ii=1;ii<=nlstate+ndeath;ii++)
         a[imax][k]=a[j][k];      for (j=1;j<=nlstate+ndeath;j++){
         a[j][k]=dum;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }      }
       *d = -(*d);  
       vv[imax]=vv[j];     cov[1]=1.;
     }   
     indx[j]=imax;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     if (a[j][j] == 0.0) a[j][j]=TINY;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     if (j != n) {      newm=savm;
       dum=1.0/(a[j][j]);      /* Covariates have to be included here again */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;       cov[2]=agefin;
     }    
   }        for (k=1; k<=cptcovn;k++) {
   free_vector(vv,1,n);  /* Doesn't work */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 ;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 }        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 void lubksb(double **a, int n, int *indx, double b[])        for (k=1; k<=cptcovprod;k++)
 {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int i,ii=0,ip,j;  
   double sum;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
          /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   for (i=1;i<=n;i++) {        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     ip=indx[i];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     sum=b[ip];  
     b[ip]=b[i];      savm=oldm;
     if (ii)      oldm=newm;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      maxmax=0.;
     else if (sum) ii=i;      for(j=1;j<=nlstate;j++){
     b[i]=sum;        min=1.;
   }        max=0.;
   for (i=n;i>=1;i--) {        for(i=1; i<=nlstate; i++) {
     sum=b[i];          sumnew=0;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     b[i]=sum/a[i][i];          prlim[i][j]= newm[i][j]/(1-sumnew);
   }          max=FMAX(max,prlim[i][j]);
 }          min=FMIN(min,prlim[i][j]);
         }
 /************ Frequencies ********************/        maxmin=max-min;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        maxmax=FMAX(maxmax,maxmin);
 {  /* Some frequencies */      }
        if(maxmax < ftolpl){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        return prlim;
   double ***freq; /* Frequencies */      }
   double *pp;    }
   double pos, k2, dateintsum=0,k2cpt=0;  }
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];  /*************** transition probabilities ***************/ 
    
   pp=vector(1,nlstate);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
   strcpy(fileresp,"p");    double s1, s2;
   strcat(fileresp,fileres);    /*double t34;*/
   if((ficresp=fopen(fileresp,"w"))==NULL) {    int i,j,j1, nc, ii, jj;
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);      for(i=1; i<= nlstate; i++){
   }        for(j=1; j<i;j++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   j1=0;            /*s2 += param[i][j][nc]*cov[nc];*/
              s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   j=cptcoveff;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          }
            ps[i][j]=s2;
   for(k1=1; k1<=j;k1++){  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     for(i1=1; i1<=ncodemax[k1];i1++){        }
       j1++;        for(j=i+1; j<=nlstate+ndeath;j++){
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         scanf("%d", i);*/            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for (i=-1; i<=nlstate+ndeath; i++)    /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         for (jk=-1; jk<=nlstate+ndeath; jk++)            }
           for(m=agemin; m <= agemax+3; m++)          ps[i][j]=s2;
             freq[i][jk][m]=0;        }
            }
       dateintsum=0;      /*ps[3][2]=1;*/
       k2cpt=0;      
       for (i=1; i<=imx; i++) {      for(i=1; i<= nlstate; i++){
         bool=1;        s1=0;
         if  (cptcovn>0) {        for(j=1; j<i; j++)
           for (z1=1; z1<=cptcoveff; z1++)          s1+=exp(ps[i][j]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for(j=i+1; j<=nlstate+ndeath; j++)
               bool=0;          s1+=exp(ps[i][j]);
         }        ps[i][i]=1./(s1+1.);
         if (bool==1) {        for(j=1; j<i; j++)
           for(m=firstpass; m<=lastpass; m++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
             k2=anint[m][i]+(mint[m][i]/12.);        for(j=i+1; j<=nlstate+ndeath; j++)
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
               if(agev[m][i]==0) agev[m][i]=agemax+1;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
               if(agev[m][i]==1) agev[m][i]=agemax+2;      } /* end i */
               if (m<lastpass) {      
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for(jj=1; jj<= nlstate+ndeath; jj++){
               }          ps[ii][jj]=0;
                        ps[ii][ii]=1;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        }
                 dateintsum=dateintsum+k2;      }
                 k2cpt++;      
               }  
             }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         }  /*         printf("ddd %lf ",ps[ii][jj]); */
       }  /*       } */
          /*       printf("\n "); */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
       if  (cptcovn>0) {         /*
         fprintf(ficresp, "\n#********** Variable ");        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        goto end;*/
         fprintf(ficresp, "**********\n#");      return ps;
       }  }
       for(i=1; i<=nlstate;i++)  
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  /**************** Product of 2 matrices ******************/
       fprintf(ficresp, "\n");  
        double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       for(i=(int)agemin; i <= (int)agemax+3; i++){  {
         if(i==(int)agemax+3)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           printf("Total");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         else    /* in, b, out are matrice of pointers which should have been initialized 
           printf("Age %d", i);       before: only the contents of out is modified. The function returns
         for(jk=1; jk <=nlstate ; jk++){       a pointer to pointers identical to out */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    long i, j, k;
             pp[jk] += freq[jk][m][i];    for(i=nrl; i<= nrh; i++)
         }      for(k=ncolol; k<=ncoloh; k++)
         for(jk=1; jk <=nlstate ; jk++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           for(m=-1, pos=0; m <=0 ; m++)          out[i][k] +=in[i][j]*b[j][k];
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10)    return out;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  }
           else  
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
         }  /************* Higher Matrix Product ***************/
   
         for(jk=1; jk <=nlstate ; jk++){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  {
             pp[jk] += freq[jk][m][i];    /* Computes the transition matrix starting at age 'age' over 
         }       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         for(jk=1,pos=0; jk <=nlstate ; jk++)       nhstepm*hstepm matrices. 
           pos += pp[jk];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         for(jk=1; jk <=nlstate ; jk++){       (typically every 2 years instead of every month which is too big 
           if(pos>=1.e-5)       for the memory).
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);       Model is determined by parameters x and covariates have to be 
           else       included manually here. 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           if( i <= (int) agemax){       */
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    int i, j, d, h, k;
               probs[i][jk][j1]= pp[jk]/pos;    double **out, cov[NCOVMAX];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    double **newm;
             }  
             else    /* Hstepm could be zero and should return the unit matrix */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    for (i=1;i<=nlstate+ndeath;i++)
           }      for (j=1;j<=nlstate+ndeath;j++){
         }        oldm[i][j]=(i==j ? 1.0 : 0.0);
                po[i][j][0]=(i==j ? 1.0 : 0.0);
         for(jk=-1; jk <=nlstate+ndeath; jk++)      }
           for(m=-1; m <=nlstate+ndeath; m++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    for(h=1; h <=nhstepm; h++){
         if(i <= (int) agemax)      for(d=1; d <=hstepm; d++){
           fprintf(ficresp,"\n");        newm=savm;
         printf("\n");        /* Covariates have to be included here again */
       }        cov[1]=1.;
     }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   dateintmean=dateintsum/k2cpt;        for (k=1; k<=cptcovage;k++)
            cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   fclose(ficresp);        for (k=1; k<=cptcovprod;k++)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   free_vector(pp,1,nlstate);  
    
   /* End of Freq */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 /************ Prevalence ********************/                     pmij(pmmij,cov,ncovmodel,x,nlstate));
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        savm=oldm;
 {  /* Some frequencies */        oldm=newm;
        }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      for(i=1; i<=nlstate+ndeath; i++)
   double ***freq; /* Frequencies */        for(j=1;j<=nlstate+ndeath;j++) {
   double *pp;          po[i][j][h]=newm[i][j];
   double pos, k2;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
            */
   pp=vector(1,nlstate);        }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    } /* end h */
      return po;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  }
   j1=0;  
    
   j=cptcoveff;  /*************** log-likelihood *************/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  double func( double *x)
    {
   for(k1=1; k1<=j;k1++){    int i, ii, j, k, mi, d, kk;
     for(i1=1; i1<=ncodemax[k1];i1++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       j1++;    double **out;
          double sw; /* Sum of weights */
       for (i=-1; i<=nlstate+ndeath; i++)      double lli; /* Individual log likelihood */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      int s1, s2;
           for(m=agemin; m <= agemax+3; m++)    double bbh, survp;
             freq[i][jk][m]=0;    long ipmx;
          /*extern weight */
       for (i=1; i<=imx; i++) {    /* We are differentiating ll according to initial status */
         bool=1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         if  (cptcovn>0) {    /*for(i=1;i<imx;i++) 
           for (z1=1; z1<=cptcoveff; z1++)      printf(" %d\n",s[4][i]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    */
               bool=0;    cov[1]=1.;
         }  
         if (bool==1) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);    if(mle==1){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for(mi=1; mi<= wav[i]-1; mi++){
               if (m<lastpass) {          for (ii=1;ii<=nlstate+ndeath;ii++)
                 if (calagedate>0)            for (j=1;j<=nlstate+ndeath;j++){
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            }
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          for(d=0; d<dh[mi][i]; d++){
               }            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
       for(i=(int)agemin; i <= (int)agemax+3; i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            savm=oldm;
             pp[jk] += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
         for(jk=1; jk <=nlstate ; jk++){        
           for(m=-1, pos=0; m <=0 ; m++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             pos += freq[jk][m][i];          /* But now since version 0.9 we anticipate for bias at large stepm.
         }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   * (in months) between two waves is not a multiple of stepm, we rounded to 
         for(jk=1; jk <=nlstate ; jk++){           * the nearest (and in case of equal distance, to the lowest) interval but now
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             pp[jk] += freq[jk][m][i];           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         }           * probability in order to take into account the bias as a fraction of the way
                   * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];           * -stepm/2 to stepm/2 .
                   * For stepm=1 the results are the same as for previous versions of Imach.
         for(jk=1; jk <=nlstate ; jk++){               * For stepm > 1 the results are less biased than in previous versions. 
           if( i <= (int) agemax){           */
             if(pos>=1.e-5){          s1=s[mw[mi][i]][i];
               probs[i][jk][j1]= pp[jk]/pos;          s2=s[mw[mi+1][i]][i];
             }          bbh=(double)bh[mi][i]/(double)stepm; 
           }          /* bias bh is positive if real duration
         }           * is higher than the multiple of stepm and negative otherwise.
                   */
       }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     }          if( s2 > nlstate){ 
   }            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
                 die between last step unit time and current  step unit time, 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);               which is also equal to probability to die before dh 
   free_vector(pp,1,nlstate);               minus probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
 }  /* End of Freq */          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
 /************* Waves Concatenation ***************/          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          (healthy, disable or death) and IMaCh was corrected; but when we
 {          introduced the exact date of death then we should have modified
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          the contribution of an exact death to the likelihood. This new
      Death is a valid wave (if date is known).          contribution is smaller and very dependent of the step unit
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          stepm. It is no more the probability to die between last interview
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          and month of death but the probability to survive from last
      and mw[mi+1][i]. dh depends on stepm.          interview up to one month before death multiplied by the
      */          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
   int i, mi, m;          mortality artificially. The bad side is that we add another loop
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          which slows down the processing. The difference can be up to 10%
      double sum=0., jmean=0.;*/          lower mortality.
             */
   int j, k=0,jk, ju, jl;            lli=log(out[s1][s2] - savm[s1][s2]);
   double sum=0.;  
   jmin=1e+5;  
   jmax=-1;          } else if  (s2==-2) {
   jmean=0.;            for (j=1,survp=0. ; j<=nlstate; j++) 
   for(i=1; i<=imx; i++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     mi=0;            /*survp += out[s1][j]; */
     m=firstpass;            lli= log(survp);
     while(s[m][i] <= nlstate){          }
       if(s[m][i]>=1)          
         mw[++mi][i]=m;          else if  (s2==-4) { 
       if(m >=lastpass)            for (j=3,survp=0. ; j<=nlstate; j++)  
         break;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       else            lli= log(survp); 
         m++;          } 
     }/* end while */  
     if (s[m][i] > nlstate){          else if  (s2==-5) { 
       mi++;     /* Death is another wave */            for (j=1,survp=0. ; j<=2; j++)  
       /* if(mi==0)  never been interviewed correctly before death */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
          /* Only death is a correct wave */            lli= log(survp); 
       mw[mi][i]=m;          } 
     }          
           else{
     wav[i]=mi;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     if(mi==0)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          } 
   }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   for(i=1; i<=imx; i++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for(mi=1; mi<wav[i];mi++){          ipmx +=1;
       if (stepm <=0)          sw += weight[i];
         dh[mi][i]=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       else{        } /* end of wave */
         if (s[mw[mi+1][i]][i] > nlstate) {      } /* end of individual */
           if (agedc[i] < 2*AGESUP) {    }  else if(mle==2){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if(j==0) j=1;  /* Survives at least one month after exam */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           k=k+1;        for(mi=1; mi<= wav[i]-1; mi++){
           if (j >= jmax) jmax=j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           if (j <= jmin) jmin=j;            for (j=1;j<=nlstate+ndeath;j++){
           sum=sum+j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         }          for(d=0; d<=dh[mi][i]; d++){
         else{            newm=savm;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           k=k+1;            for (kk=1; kk<=cptcovage;kk++) {
           if (j >= jmax) jmax=j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           else if (j <= jmin)jmin=j;            }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           sum=sum+j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         jk= j/stepm;            oldm=newm;
         jl= j -jk*stepm;          } /* end mult */
         ju= j -(jk+1)*stepm;        
         if(jl <= -ju)          s1=s[mw[mi][i]][i];
           dh[mi][i]=jk;          s2=s[mw[mi+1][i]][i];
         else          bbh=(double)bh[mi][i]/(double)stepm; 
           dh[mi][i]=jk+1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         if(dh[mi][i]==0)          ipmx +=1;
           dh[mi][i]=1; /* At least one step */          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
   }      } /* end of individual */
   jmean=sum/k;    }  else if(mle==3){  /* exponential inter-extrapolation */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*********** Tricode ****************************/        for(mi=1; mi<= wav[i]-1; mi++){
 void tricode(int *Tvar, int **nbcode, int imx)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   int Ndum[20],ij=1, k, j, i;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int cptcode=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   cptcoveff=0;            }
            for(d=0; d<dh[mi][i]; d++){
   for (k=0; k<19; k++) Ndum[k]=0;            newm=savm;
   for (k=1; k<=7; k++) ncodemax[k]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=1; i<=imx; i++) {            }
       ij=(int)(covar[Tvar[j]][i]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       Ndum[ij]++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            savm=oldm;
       if (ij > cptcode) cptcode=ij;            oldm=newm;
     }          } /* end mult */
         
     for (i=0; i<=cptcode; i++) {          s1=s[mw[mi][i]][i];
       if(Ndum[i]!=0) ncodemax[j]++;          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     ij=1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
           sw += weight[i];
     for (i=1; i<=ncodemax[j]; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (k=0; k<=19; k++) {        } /* end of wave */
         if (Ndum[k] != 0) {      } /* end of individual */
           nbcode[Tvar[j]][ij]=k;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
                for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           ij++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
         if (ij > ncodemax[j]) break;          for (ii=1;ii<=nlstate+ndeath;ii++)
       }              for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }                savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
  for (k=0; k<19; k++) Ndum[k]=0;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
  for (i=1; i<=ncovmodel-2; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       ij=Tvar[i];            for (kk=1; kk<=cptcovage;kk++) {
       Ndum[ij]++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
           
  ij=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  for (i=1; i<=10; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    if((Ndum[i]!=0) && (i<=ncovcol)){            savm=oldm;
      Tvaraff[ij]=i;            oldm=newm;
      ij++;          } /* end mult */
    }        
  }          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
     cptcoveff=ij-1;          if( s2 > nlstate){ 
 }            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
 /*********** Health Expectancies ****************/            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          ipmx +=1;
           sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Health expectancies */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        } /* end of wave */
   double age, agelim, hf;      } /* end of individual */
   double ***p3mat,***varhe;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   double **dnewm,**doldm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *xp;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **gp, **gm;        for(mi=1; mi<= wav[i]-1; mi++){
   double ***gradg, ***trgradg;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int theta;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   xp=vector(1,npar);            }
   dnewm=matrix(1,nlstate*2,1,npar);          for(d=0; d<dh[mi][i]; d++){
   doldm=matrix(1,nlstate*2,1,nlstate*2);            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficreseij,"# Health expectancies\n");            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficreseij,"# Age");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=1; i<=nlstate;i++)            }
     for(j=1; j<=nlstate;j++)          
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficreseij,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   if(estepm < stepm){            oldm=newm;
     printf ("Problem %d lower than %d\n",estepm, stepm);          } /* end mult */
   }        
   else  hstepm=estepm;            s1=s[mw[mi][i]][i];
   /* We compute the life expectancy from trapezoids spaced every estepm months          s2=s[mw[mi+1][i]][i];
    * This is mainly to measure the difference between two models: for example          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
    * if stepm=24 months pijx are given only every 2 years and by summing them          ipmx +=1;
    * we are calculating an estimate of the Life Expectancy assuming a linear          sw += weight[i];
    * progression inbetween and thus overestimating or underestimating according          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    * to the curvature of the survival function. If, for the same date, we          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        } /* end of wave */
    * to compare the new estimate of Life expectancy with the same linear      } /* end of individual */
    * hypothesis. A more precise result, taking into account a more precise    } /* End of if */
    * curvature will be obtained if estepm is as small as stepm. */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /* For example we decided to compute the life expectancy with the smallest unit */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    return -l;
      nhstepm is the number of hstepm from age to agelim  }
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  /*************** log-likelihood *************/
      and note for a fixed period like estepm months */  double funcone( double *x)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  {
      survival function given by stepm (the optimization length). Unfortunately it    /* Same as likeli but slower because of a lot of printf and if */
      means that if the survival funtion is printed only each two years of age and if    int i, ii, j, k, mi, d, kk;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      results. So we changed our mind and took the option of the best precision.    double **out;
   */    double lli; /* Individual log likelihood */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double llt;
     int s1, s2;
   agelim=AGESUP;    double bbh, survp;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /*extern weight */
     /* nhstepm age range expressed in number of stepm */    /* We are differentiating ll according to initial status */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    /*for(i=1;i<imx;i++) 
     /* if (stepm >= YEARM) hstepm=1;*/      printf(" %d\n",s[4][i]);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    cov[1]=1.;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  
     gp=matrix(0,nhstepm,1,nlstate*2);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     gm=matrix(0,nhstepm,1,nlstate*2);  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      for(mi=1; mi<= wav[i]-1; mi++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          for (ii=1;ii<=nlstate+ndeath;ii++)
            for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
     /* Computing Variances of health expectancies */        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
      for(theta=1; theta <=npar; theta++){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(i=1; i<=npar; i++){          for (kk=1; kk<=cptcovage;kk++) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       cptj=0;          savm=oldm;
       for(j=1; j<= nlstate; j++){          oldm=newm;
         for(i=1; i<=nlstate; i++){        } /* end mult */
           cptj=cptj+1;        
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        s1=s[mw[mi][i]][i];
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        s2=s[mw[mi+1][i]][i];
           }        bbh=(double)bh[mi][i]/(double)stepm; 
         }        /* bias is positive if real duration
       }         * is higher than the multiple of stepm and negative otherwise.
               */
              if( s2 > nlstate && (mle <5) ){  /* Jackson */
       for(i=1; i<=npar; i++)          lli=log(out[s1][s2] - savm[s1][s2]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        } else if  (s2==-2) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for (j=1,survp=0. ; j<=nlstate; j++) 
                  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       cptj=0;          lli= log(survp);
       for(j=1; j<= nlstate; j++){        }else if (mle==1){
         for(i=1;i<=nlstate;i++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           cptj=cptj+1;        } else if(mle==2){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        } else if(mle==3){  /* exponential inter-extrapolation */
           }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       }          lli=log(out[s1][s2]); /* Original formula */
       for(j=1; j<= nlstate*2; j++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         for(h=0; h<=nhstepm-1; h++){          lli=log(out[s1][s2]); /* Original formula */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        } /* End of if */
         }        ipmx +=1;
      }        sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /* End theta */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
      for(h=0; h<=nhstepm-1; h++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       for(j=1; j<=nlstate*2;j++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         for(theta=1; theta <=npar; theta++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           trgradg[h][j][theta]=gradg[h][theta][j];            llt +=ll[k]*gipmx/gsw;
                  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
      for(i=1;i<=nlstate*2;i++)          fprintf(ficresilk," %10.6f\n", -llt);
       for(j=1;j<=nlstate*2;j++)        }
         varhe[i][j][(int)age] =0.;      } /* end of wave */
     } /* end of individual */
      printf("%d|",(int)age);fflush(stdout);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      for(h=0;h<=nhstepm-1;h++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(k=0;k<=nhstepm-1;k++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    if(globpr==0){ /* First time we count the contributions and weights */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      gipmx=ipmx;
         for(i=1;i<=nlstate*2;i++)      gsw=sw;
           for(j=1;j<=nlstate*2;j++)    }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    return -l;
       }  }
     }  
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)  /*************** function likelione ***********/
       for(j=1; j<=nlstate;j++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  {
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    /* This routine should help understanding what is done with 
                 the selection of individuals/waves and
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/       to check the exact contribution to the likelihood.
        Plotting could be done.
         }     */
     int k;
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;    if(*globpri !=0){ /* Just counts and sums, no printings */
     for(i=1; i<=nlstate;i++)      strcpy(fileresilk,"ilk"); 
       for(j=1; j<=nlstate;j++){      strcat(fileresilk,fileres);
         cptj++;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        printf("Problem with resultfile: %s\n", fileresilk);
       }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     fprintf(ficreseij,"\n");      }
          fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     free_matrix(gm,0,nhstepm,1,nlstate*2);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     free_matrix(gp,0,nhstepm,1,nlstate*2);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      for(k=1; k<=nlstate; k++) 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   }    }
   printf("\n");  
     *fretone=(*funcone)(p);
   free_vector(xp,1,npar);    if(*globpri !=0){
   free_matrix(dnewm,1,nlstate*2,1,npar);      fclose(ficresilk);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      fflush(fichtm); 
 }    } 
     return;
 /************ Variance ******************/  }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  
 {  
   /* Variance of health expectancies */  /*********** Maximum Likelihood Estimation ***************/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   double **dnewm,**doldm;  {
   int i, j, nhstepm, hstepm, h, nstepm ;    int i,j, iter;
   int k, cptcode;    double **xi;
   double *xp;    double fret;
   double **gp, **gm;    double fretone; /* Only one call to likelihood */
   double ***gradg, ***trgradg;    /*  char filerespow[FILENAMELENGTH];*/
   double ***p3mat;    xi=matrix(1,npar,1,npar);
   double age,agelim, hf;    for (i=1;i<=npar;i++)
   int theta;      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   fprintf(ficresvij,"# Age");    strcpy(filerespow,"pow"); 
   for(i=1; i<=nlstate;i++)    strcat(filerespow,fileres);
     for(j=1; j<=nlstate;j++)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      printf("Problem with resultfile: %s\n", filerespow);
   fprintf(ficresvij,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
   xp=vector(1,npar);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   dnewm=matrix(1,nlstate,1,npar);    for (i=1;i<=nlstate;i++)
   doldm=matrix(1,nlstate,1,nlstate);      for(j=1;j<=nlstate+ndeath;j++)
          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   if(estepm < stepm){    fprintf(ficrespow,"\n");
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    powell(p,xi,npar,ftol,&iter,&fret,func);
   else  hstepm=estepm;    
   /* For example we decided to compute the life expectancy with the smallest unit */    free_matrix(xi,1,npar,1,npar);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    fclose(ficrespow);
      nhstepm is the number of hstepm from age to agelim    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      nstepm is the number of stepm from age to agelin.    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      Look at hpijx to understand the reason of that which relies in memory size    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  }
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if  /**** Computes Hessian and covariance matrix ***/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      results. So we changed our mind and took the option of the best precision.  {
   */    double  **a,**y,*x,pd;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double **hess;
   agelim = AGESUP;    int i, j,jk;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int *indx;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     gp=matrix(0,nhstepm,1,nlstate);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     gm=matrix(0,nhstepm,1,nlstate);    double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    printf("\nCalculation of the hessian matrix. Wait...\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       }    for (i=1;i<=npar;i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        printf("%d",i);fflush(stdout);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficlog,"%d",i);fflush(ficlog);
      
       if (popbased==1) {       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         for(i=1; i<=nlstate;i++)      
           prlim[i][i]=probs[(int)age][i][ij];      /*  printf(" %f ",p[i]);
       }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      }
       for(j=1; j<= nlstate; j++){    
         for(h=0; h<=nhstepm; h++){    for (i=1;i<=npar;i++) {
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for (j=1;j<=npar;j++)  {
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        if (j>i) { 
         }          printf(".%d%d",i,j);fflush(stdout);
       }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
              hess[i][j]=hessij(p,delti,i,j,func,npar);
       for(i=1; i<=npar; i++) /* Computes gradient */          
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          hess[j][i]=hess[i][j];    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            /*printf(" %lf ",hess[i][j]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
        }
       if (popbased==1) {    }
         for(i=1; i<=nlstate;i++)    printf("\n");
           prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficlog,"\n");
       }  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(j=1; j<= nlstate; j++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         for(h=0; h<=nhstepm; h++){    
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    a=matrix(1,npar,1,npar);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    y=matrix(1,npar,1,npar);
         }    x=vector(1,npar);
       }    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
       for(j=1; j<= nlstate; j++)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         for(h=0; h<=nhstepm; h++){    ludcmp(a,npar,indx,&pd);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    for (j=1;j<=npar;j++) {
     } /* End theta */      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
     for(h=0; h<=nhstepm; h++)        matcov[i][j]=x[i];
       for(j=1; j<=nlstate;j++)      }
         for(theta=1; theta <=npar; theta++)    }
           trgradg[h][j][theta]=gradg[h][theta][j];  
     printf("\n#Hessian matrix#\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    fprintf(ficlog,"\n#Hessian matrix#\n");
     for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++) { 
       for(j=1;j<=nlstate;j++)      for (j=1;j<=npar;j++) { 
         vareij[i][j][(int)age] =0.;        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
     for(h=0;h<=nhstepm;h++){      }
       for(k=0;k<=nhstepm;k++){      printf("\n");
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      fprintf(ficlog,"\n");
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    }
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)    /* Recompute Inverse */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     }    ludcmp(a,npar,indx,&pd);
   
     fprintf(ficresvij,"%.0f ",age );    /*  printf("\n#Hessian matrix recomputed#\n");
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    for (j=1;j<=npar;j++) {
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
     fprintf(ficresvij,"\n");      lubksb(a,npar,indx,x);
     free_matrix(gp,0,nhstepm,1,nlstate);      for (i=1;i<=npar;i++){ 
     free_matrix(gm,0,nhstepm,1,nlstate);        y[i][j]=x[i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        printf("%.3e ",y[i][j]);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        fprintf(ficlog,"%.3e ",y[i][j]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
   } /* End age */      printf("\n");
        fprintf(ficlog,"\n");
   free_vector(xp,1,npar);    }
   free_matrix(doldm,1,nlstate,1,npar);    */
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     free_matrix(a,1,npar,1,npar);
 }    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
 /************ Variance of prevlim ******************/    free_ivector(indx,1,npar);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    free_matrix(hess,1,npar,1,npar);
 {  
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  }
   double **newm;  
   double **dnewm,**doldm;  /*************** hessian matrix ****************/
   int i, j, nhstepm, hstepm;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   int k, cptcode;  {
   double *xp;    int i;
   double *gp, *gm;    int l=1, lmax=20;
   double **gradg, **trgradg;    double k1,k2;
   double age,agelim;    double p2[NPARMAX+1];
   int theta;    double res;
        double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    double fx;
   fprintf(ficresvpl,"# Age");    int k=0,kmax=10;
   for(i=1; i<=nlstate;i++)    double l1;
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   xp=vector(1,npar);    for(l=0 ; l <=lmax; l++){
   dnewm=matrix(1,nlstate,1,npar);      l1=pow(10,l);
   doldm=matrix(1,nlstate,1,nlstate);      delts=delt;
        for(k=1 ; k <kmax; k=k+1){
   hstepm=1*YEARM; /* Every year of age */        delt = delta*(l1*k);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        p2[theta]=x[theta] +delt;
   agelim = AGESUP;        k1=func(p2)-fx;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        p2[theta]=x[theta]-delt;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        k2=func(p2)-fx;
     if (stepm >= YEARM) hstepm=1;        /*res= (k1-2.0*fx+k2)/delt/delt; */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     gradg=matrix(1,npar,1,nlstate);        
     gp=vector(1,nlstate);  #ifdef DEBUG
     gm=vector(1,nlstate);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(theta=1; theta <=npar; theta++){  #endif
       for(i=1; i<=npar; i++){ /* Computes gradient */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       }          k=kmax;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
       for(i=1;i<=nlstate;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         gp[i] = prlim[i][i];          k=kmax; l=lmax*10.;
            }
       for(i=1; i<=npar; i++) /* Computes gradient */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          delts=delt;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
       for(i=1;i<=nlstate;i++)      }
         gm[i] = prlim[i][i];    }
     delti[theta]=delts;
       for(i=1;i<=nlstate;i++)    return res; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    
     } /* End theta */  }
   
     trgradg =matrix(1,nlstate,1,npar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
     for(j=1; j<=nlstate;j++)    int i;
       for(theta=1; theta <=npar; theta++)    int l=1, l1, lmax=20;
         trgradg[j][theta]=gradg[theta][j];    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
     for(i=1;i<=nlstate;i++)    int k;
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    fx=func(x);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    for (k=1; k<=2; k++) {
     for(i=1;i<=nlstate;i++)      for (i=1;i<=npar;i++) p2[i]=x[i];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fprintf(ficresvpl,"%.0f ",age );      k1=func(p2)-fx;
     for(i=1; i<=nlstate;i++)    
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      p2[thetai]=x[thetai]+delti[thetai]/k;
     fprintf(ficresvpl,"\n");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     free_vector(gp,1,nlstate);      k2=func(p2)-fx;
     free_vector(gm,1,nlstate);    
     free_matrix(gradg,1,npar,1,nlstate);      p2[thetai]=x[thetai]-delti[thetai]/k;
     free_matrix(trgradg,1,nlstate,1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   } /* End age */      k3=func(p2)-fx;
     
   free_vector(xp,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
   free_matrix(doldm,1,nlstate,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   free_matrix(dnewm,1,nlstate,1,nlstate);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 }  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 /************ Variance of one-step probabilities  ******************/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  #endif
 {    }
   int i, j,  i1, k1, l1;    return res;
   int k2, l2, j1,  z1;  }
   int k=0,l, cptcode;  
   int first=1;  /************** Inverse of matrix **************/
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;  void ludcmp(double **a, int n, int *indx, double *d) 
   double **dnewm,**doldm;  { 
   double *xp;    int i,imax,j,k; 
   double *gp, *gm;    double big,dum,sum,temp; 
   double **gradg, **trgradg;    double *vv; 
   double **mu;   
   double age,agelim, cov[NCOVMAX];    vv=vector(1,n); 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    *d=1.0; 
   int theta;    for (i=1;i<=n;i++) { 
   char fileresprob[FILENAMELENGTH];      big=0.0; 
   char fileresprobcov[FILENAMELENGTH];      for (j=1;j<=n;j++) 
   char fileresprobcor[FILENAMELENGTH];        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double ***varpij;      vv[i]=1.0/big; 
     } 
   strcpy(fileresprob,"prob");    for (j=1;j<=n;j++) { 
   strcat(fileresprob,fileres);      for (i=1;i<j;i++) { 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        sum=a[i][j]; 
     printf("Problem with resultfile: %s\n", fileresprob);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   }        a[i][j]=sum; 
   strcpy(fileresprobcov,"probcov");      } 
   strcat(fileresprobcov,fileres);      big=0.0; 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      for (i=j;i<=n;i++) { 
     printf("Problem with resultfile: %s\n", fileresprobcov);        sum=a[i][j]; 
   }        for (k=1;k<j;k++) 
   strcpy(fileresprobcor,"probcor");          sum -= a[i][k]*a[k][j]; 
   strcat(fileresprobcor,fileres);        a[i][j]=sum; 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     printf("Problem with resultfile: %s\n", fileresprobcor);          big=dum; 
   }          imax=i; 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        } 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      } 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      if (j != imax) { 
          for (k=1;k<=n;k++) { 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          dum=a[imax][k]; 
   fprintf(ficresprob,"# Age");          a[imax][k]=a[j][k]; 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          a[j][k]=dum; 
   fprintf(ficresprobcov,"# Age");        } 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        *d = -(*d); 
   fprintf(ficresprobcov,"# Age");        vv[imax]=vv[j]; 
       } 
       indx[j]=imax; 
   for(i=1; i<=nlstate;i++)      if (a[j][j] == 0.0) a[j][j]=TINY; 
     for(j=1; j<=(nlstate+ndeath);j++){      if (j != n) { 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        dum=1.0/(a[j][j]); 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      } 
     }      } 
   fprintf(ficresprob,"\n");    free_vector(vv,1,n);  /* Doesn't work */
   fprintf(ficresprobcov,"\n");  ;
   fprintf(ficresprobcor,"\n");  } 
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  void lubksb(double **a, int n, int *indx, double b[]) 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  { 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    int i,ii=0,ip,j; 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    double sum; 
   first=1;   
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    for (i=1;i<=n;i++) { 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      ip=indx[i]; 
     exit(0);      sum=b[ip]; 
   }      b[ip]=b[i]; 
   else{      if (ii) 
     fprintf(ficgp,"\n# Routine varprob");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   }      else if (sum) ii=i; 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      b[i]=sum; 
     printf("Problem with html file: %s\n", optionfilehtm);    } 
     exit(0);    for (i=n;i>=1;i--) { 
   }      sum=b[i]; 
   else{      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");      b[i]=sum/a[i][i]; 
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    } 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");  } 
   
   }  void pstamp(FILE *fichier)
   cov[1]=1;  {
   j=cptcoveff;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  }
   j1=0;  
   for(k1=1; k1<=1;k1++){  /************ Frequencies ********************/
     for(i1=1; i1<=ncodemax[k1];i1++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     j1++;  {  /* Some frequencies */
     
     if  (cptcovn>0) {    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       fprintf(ficresprob, "\n#********** Variable ");    int first;
       fprintf(ficresprobcov, "\n#********** Variable ");    double ***freq; /* Frequencies */
       fprintf(ficgp, "\n#********** Variable ");    double *pp, **prop;
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       fprintf(ficresprobcor, "\n#********** Variable ");    char fileresp[FILENAMELENGTH];
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    
       fprintf(ficresprob, "**********\n#");    pp=vector(1,nlstate);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    prop=matrix(1,nlstate,iagemin,iagemax+3);
       fprintf(ficresprobcov, "**********\n#");    strcpy(fileresp,"p");
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    strcat(fileresp,fileres);
       fprintf(ficgp, "**********\n#");    if((ficresp=fopen(fileresp,"w"))==NULL) {
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficgp, "**********\n#");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      exit(0);
       fprintf(fichtm, "**********\n#");    }
     }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
        j1=0;
       for (age=bage; age<=fage; age ++){    
         cov[2]=age;    j=cptcoveff;
         for (k=1; k<=cptcovn;k++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
         }    first=1;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)    for(k1=1; k1<=j;k1++){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for(i1=1; i1<=ncodemax[k1];i1++){
                j1++;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          scanf("%d", i);*/
         gp=vector(1,(nlstate)*(nlstate+ndeath));        for (i=-5; i<=nlstate+ndeath; i++)  
         gm=vector(1,(nlstate)*(nlstate+ndeath));          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                for(m=iagemin; m <= iagemax+3; m++)
         for(theta=1; theta <=npar; theta++){              freq[i][jk][m]=0;
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1; i<=nlstate; i++)  
                  for(m=iagemin; m <= iagemax+3; m++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          prop[i][m]=0;
                  
           k=0;        dateintsum=0;
           for(i=1; i<= (nlstate); i++){        k2cpt=0;
             for(j=1; j<=(nlstate+ndeath);j++){        for (i=1; i<=imx; i++) {
               k=k+1;          bool=1;
               gp[k]=pmmij[i][j];          if  (cptcovn>0) {
             }            for (z1=1; z1<=cptcoveff; z1++) 
           }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                          bool=0;
           for(i=1; i<=npar; i++)          }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          if (bool==1){
                for(m=firstpass; m<=lastpass; m++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              k2=anint[m][i]+(mint[m][i]/12.);
           k=0;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           for(i=1; i<=(nlstate); i++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             for(j=1; j<=(nlstate+ndeath);j++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               k=k+1;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               gm[k]=pmmij[i][j];                if (m<lastpass) {
             }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                      }
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)                
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                  if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         }                  dateintsum=dateintsum+k2;
                   k2cpt++;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)                }
           for(theta=1; theta <=npar; theta++)                /*}*/
             trgradg[j][theta]=gradg[theta][j];            }
                  }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);         
                /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pmij(pmmij,cov,ncovmodel,x,nlstate);        pstamp(ficresp);
                if  (cptcovn>0) {
         k=0;          fprintf(ficresp, "\n#********** Variable "); 
         for(i=1; i<=(nlstate); i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(j=1; j<=(nlstate+ndeath);j++){          fprintf(ficresp, "**********\n#");
             k=k+1;        }
             mu[k][(int) age]=pmmij[i][j];        for(i=1; i<=nlstate;i++) 
           }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         }        fprintf(ficresp, "\n");
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        for(i=iagemin; i <= iagemax+3; i++){
             varpij[i][j][(int)age] = doldm[i][j];          if(i==iagemax+3){
             fprintf(ficlog,"Total");
         /*printf("\n%d ",(int)age);          }else{
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            if(first==1){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              first=0;
      }*/              printf("See log file for details...\n");
             }
         fprintf(ficresprob,"\n%d ",(int)age);            fprintf(ficlog,"Age %d", i);
         fprintf(ficresprobcov,"\n%d ",(int)age);          }
         fprintf(ficresprobcor,"\n%d ",(int)age);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)              pp[jk] += freq[jk][m][i]; 
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          for(jk=1; jk <=nlstate ; jk++){
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            for(m=-1, pos=0; m <=0 ; m++)
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);              pos += freq[jk][m][i];
         }            if(pp[jk]>=1.e-10){
         i=0;              if(first==1){
         for (k=1; k<=(nlstate);k++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for (l=1; l<=(nlstate+ndeath);l++){              }
             i=i++;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            }else{
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);              if(first==1)
             for (j=1; j<=i;j++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            }
             }          }
           }  
         }/* end of loop for state */          for(jk=1; jk <=nlstate ; jk++){
       } /* end of loop for age */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              pp[jk] += freq[jk][m][i];
       for (k1=1; k1<=(nlstate);k1++){          }       
         for (l1=1; l1<=(nlstate+ndeath);l1++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           if(l1==k1) continue;            pos += pp[jk];
           i=(k1-1)*(nlstate+ndeath)+l1;            posprop += prop[jk][i];
           for (k2=1; k2<=(nlstate);k2++){          }
             for (l2=1; l2<=(nlstate+ndeath);l2++){          for(jk=1; jk <=nlstate ; jk++){
               if(l2==k2) continue;            if(pos>=1.e-5){
               j=(k2-1)*(nlstate+ndeath)+l2;              if(first==1)
               if(j<=i) continue;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               for (age=bage; age<=fage; age ++){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                 if ((int)age %5==0){            }else{
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;              if(first==1)
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   mu1=mu[i][(int) age]/stepm*YEARM ;            }
                   mu2=mu[j][(int) age]/stepm*YEARM;            if( i <= iagemax){
                   /* Computing eigen value of matrix of covariance */              if(pos>=1.e-5){
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));                /*probs[i][jk][j1]= pp[jk]/pos;*/
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                   /* Eigen vectors */              }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));              else
                   v21=sqrt(1.-v11*v11);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                   v12=-v21;            }
                   v22=v11;          }
                   /*printf(fignu*/          
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          for(jk=-1; jk <=nlstate+ndeath; jk++)
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */            for(m=-1; m <=nlstate+ndeath; m++)
                   if(first==1){              if(freq[jk][m][i] !=0 ) {
                     first=0;              if(first==1)
                     fprintf(ficgp,"\nset parametric;set nolabel");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              }
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);          if(i <= iagemax)
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);            fprintf(ficresp,"\n");
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);          if(first==1)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            printf("Others in log...\n");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          fprintf(ficlog,"\n");
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    }
                   }else{    dateintmean=dateintsum/k2cpt; 
                     first=0;   
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    fclose(ficresp);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    free_vector(pp,1,nlstate);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    /* End of Freq */
                   }/* if first */  }
                 } /* age mod 5 */  
               } /* end loop age */  /************ Prevalence ********************/
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
               first=1;  {  
             } /*l12 */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           } /* k12 */       in each health status at the date of interview (if between dateprev1 and dateprev2).
         } /*l1 */       We still use firstpass and lastpass as another selection.
       }/* k1 */    */
     } /* loop covariates */   
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    double ***freq; /* Frequencies */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    double *pp, **prop;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    double pos,posprop; 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double  y2; /* in fractional years */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int iagemin, iagemax;
   }  
   free_vector(xp,1,npar);    iagemin= (int) agemin;
   fclose(ficresprob);    iagemax= (int) agemax;
   fclose(ficresprobcov);    /*pp=vector(1,nlstate);*/
   fclose(ficresprobcor);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   fclose(ficgp);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   fclose(fichtm);    j1=0;
 }    
     j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 /******************* Printing html file ***********/    
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    for(k1=1; k1<=j;k1++){
                   int lastpass, int stepm, int weightopt, char model[],\      for(i1=1; i1<=ncodemax[k1];i1++){
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        j1++;
                   int popforecast, int estepm ,\        
                   double jprev1, double mprev1,double anprev1, \        for (i=1; i<=nlstate; i++)  
                   double jprev2, double mprev2,double anprev2){          for(m=iagemin; m <= iagemax+3; m++)
   int jj1, k1, i1, cpt;            prop[i][m]=0.0;
   /*char optionfilehtm[FILENAMELENGTH];*/       
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {        for (i=1; i<=imx; i++) { /* Each individual */
     printf("Problem with %s \n",optionfilehtm), exit(0);          bool=1;
   }          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n                bool=0;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n          } 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          if (bool==1) { 
  - Life expectancies by age and initial health status (estepm=%2d months):            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
    <a href=\"e%s\">e%s</a> <br>\n</li>", \              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n                if(agev[m][i]==1) agev[m][i]=iagemax+2;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n                if (s[m][i]>0 && s[m][i]<=nlstate) { 
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n                  prop[s[m][i]][iagemax+3] += weight[i]; 
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n                } 
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              }
             } /* end selection of waves */
  if(popforecast==1) fprintf(fichtm,"\n          }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        for(i=iagemin; i <= iagemax+3; i++){  
         <br>",fileres,fileres,fileres,fileres);          
  else          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            posprop += prop[jk][i]; 
 fprintf(fichtm," <li>Graphs</li><p>");          } 
   
  m=cptcoveff;          for(jk=1; jk <=nlstate ; jk++){     
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
  jj1=0;                probs[i][jk][j1]= prop[jk][i]/posprop;
  for(k1=1; k1<=m;k1++){              } 
    for(i1=1; i1<=ncodemax[k1];i1++){            } 
      jj1++;          }/* end jk */ 
      if (cptcovn > 0) {        }/* end i */ 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      } /* end i1 */
        for (cpt=1; cpt<=cptcoveff;cpt++)    } /* end k1 */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      }    /*free_vector(pp,1,nlstate);*/
      /* Pij */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>  }  /* End of prevalence */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
      /* Quasi-incidences */  /************* Waves Concatenation ***************/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
        /* Stable prevalence in each health state */  {
        for(cpt=1; cpt<nlstate;cpt++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>       Death is a valid wave (if date is known).
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     for(cpt=1; cpt<=nlstate;cpt++) {       and mw[mi+1][i]. dh depends on stepm.
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident       */
 interval) in state (%d): v%s%d%d.png <br>  
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      int i, mi, m;
      }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
      for(cpt=1; cpt<=nlstate;cpt++) {       double sum=0., jmean=0.;*/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    int first;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    int j, k=0,jk, ju, jl;
      }    double sum=0.;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    first=0;
 health expectancies in states (1) and (2): e%s%d.png<br>    jmin=1e+5;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    jmax=-1;
    }    jmean=0.;
  }    for(i=1; i<=imx; i++){
 fclose(fichtm);      mi=0;
 }      m=firstpass;
       while(s[m][i] <= nlstate){
 /******************* Gnuplot file **************/        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          mw[++mi][i]=m;
         if(m >=lastpass)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          break;
   int ng;        else
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          m++;
     printf("Problem with file %s",optionfilegnuplot);      }/* end while */
   }      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
 #ifdef windows        /* if(mi==0)  never been interviewed correctly before death */
     fprintf(ficgp,"cd \"%s\" \n",pathc);           /* Only death is a correct wave */
 #endif        mw[mi][i]=m;
 m=pow(2,cptcoveff);      }
    
  /* 1eme*/      wav[i]=mi;
   for (cpt=1; cpt<= nlstate ; cpt ++) {      if(mi==0){
    for (k1=1; k1<= m ; k1 ++) {        nbwarn++;
         if(first==0){
 #ifdef windows          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          first=1;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        }
 #endif        if(first==1){
 #ifdef unix          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      } /* end mi==0 */
 #endif    } /* End individuals */
   
 for (i=1; i<= nlstate ; i ++) {    for(i=1; i<=imx; i++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(mi=1; mi<wav[i];mi++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if (stepm <=0)
 }          dh[mi][i]=1;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        else{
     for (i=1; i<= nlstate ; i ++) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if (agedc[i] < 2*AGESUP) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 }              if(j==0) j=1;  /* Survives at least one month after exam */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              else if(j<0){
      for (i=1; i<= nlstate ; i ++) {                nberr++;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");                j=1; /* Temporary Dangerous patch */
 }                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 #ifdef unix                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");              }
 #endif              k=k+1;
    }              if (j >= jmax){
   }                jmax=j;
   /*2 eme*/                ijmax=i;
               }
   for (k1=1; k1<= m ; k1 ++) {              if (j <= jmin){
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);                jmin=j;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                ijmin=i;
                  }
     for (i=1; i<= nlstate+1 ; i ++) {              sum=sum+j;
       k=2*i;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       for (j=1; j<= nlstate+1 ; j ++) {            }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          else{
 }              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            k=k+1;
       for (j=1; j<= nlstate+1 ; j ++) {            if (j >= jmax) {
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              jmax=j;
         else fprintf(ficgp," \%%*lf (\%%*lf)");              ijmax=i;
 }              }
       fprintf(ficgp,"\" t\"\" w l 0,");            else if (j <= jmin){
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              jmin=j;
       for (j=1; j<= nlstate+1 ; j ++) {              ijmin=i;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 }              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            if(j<0){
       else fprintf(ficgp,"\" t\"\" w l 0,");              nberr++;
     }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              }
   /*3eme*/            sum=sum+j;
           }
   for (k1=1; k1<= m ; k1 ++) {          jk= j/stepm;
     for (cpt=1; cpt<= nlstate ; cpt ++) {          jl= j -jk*stepm;
       k=2+nlstate*(2*cpt-2);          ju= j -(jk+1)*stepm;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            if(jl==0){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              dh[mi][i]=jk;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              bh[mi][i]=0;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }else{ /* We want a negative bias in order to only have interpolation ie
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                    * at the price of an extra matrix product in likelihood */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              dh[mi][i]=jk+1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              bh[mi][i]=ju;
             }
 */          }else{
       for (i=1; i< nlstate ; i ++) {            if(jl <= -ju){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
       }                                   * is higher than the multiple of stepm and negative otherwise.
     }                                   */
   }            }
              else{
   /* CV preval stat */              dh[mi][i]=jk+1;
     for (k1=1; k1<= m ; k1 ++) {              bh[mi][i]=ju;
     for (cpt=1; cpt<nlstate ; cpt ++) {            }
       k=3;            if(dh[mi][i]==0){
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              dh[mi][i]=1; /* At least one step */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for (i=1; i< nlstate ; i ++)            }
         fprintf(ficgp,"+$%d",k+i+1);          } /* end if mle */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        }
            } /* end wave */
       l=3+(nlstate+ndeath)*cpt;    }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    jmean=sum/k;
       for (i=1; i< nlstate ; i ++) {    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         l=3+(nlstate+ndeath)*cpt;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         fprintf(ficgp,"+$%d",l+i+1);   }
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    /*********** Tricode ****************************/
     }  void tricode(int *Tvar, int **nbcode, int imx)
   }    {
      
   /* proba elementaires */    int Ndum[20],ij=1, k, j, i, maxncov=19;
    for(i=1,jk=1; i <=nlstate; i++){    int cptcode=0;
     for(k=1; k <=(nlstate+ndeath); k++){    cptcoveff=0; 
       if (k != i) {   
         for(j=1; j <=ncovmodel; j++){    for (k=0; k<maxncov; k++) Ndum[k]=0;
            for (k=1; k<=7; k++) ncodemax[k]=0;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           fprintf(ficgp,"\n");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         }                                 modality*/ 
       }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     }        Ndum[ij]++; /*store the modality */
    }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/                                         Tvar[j]. If V=sex and male is 0 and 
      for(jk=1; jk <=m; jk++) {                                         female is 1, then  cptcode=1.*/
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      }
        if (ng==2)  
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      for (i=0; i<=cptcode; i++) {
        else        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
          fprintf(ficgp,"\nset title \"Probability\"\n");      }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
        i=1;      ij=1; 
        for(k2=1; k2<=nlstate; k2++) {      for (i=1; i<=ncodemax[j]; i++) {
          k3=i;        for (k=0; k<= maxncov; k++) {
          for(k=1; k<=(nlstate+ndeath); k++) {          if (Ndum[k] != 0) {
            if (k != k2){            nbcode[Tvar[j]][ij]=k; 
              if(ng==2)            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);            
              else            ij++;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          }
              ij=1;          if (ij > ncodemax[j]) break; 
              for(j=3; j <=ncovmodel; j++) {        }  
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      } 
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    }  
                  ij++;  
                }   for (k=0; k< maxncov; k++) Ndum[k]=0;
                else  
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   for (i=1; i<=ncovmodel-2; i++) { 
              }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
              fprintf(ficgp,")/(1");     ij=Tvar[i];
                   Ndum[ij]++;
              for(k1=1; k1 <=nlstate; k1++){     }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
                ij=1;   ij=1;
                for(j=3; j <=ncovmodel; j++){   for (i=1; i<= maxncov; i++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     if((Ndum[i]!=0) && (i<=ncovcol)){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       Tvaraff[ij]=i; /*For printing */
                    ij++;       ij++;
                  }     }
                  else   }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   
                }   cptcoveff=ij-1; /*Number of simple covariates*/
                fprintf(ficgp,")");  }
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  /*********** Health Expectancies ****************/
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
            }  
          }  {
        }    /* Health expectancies, no variances */
      }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
    }    int nhstepma, nstepma; /* Decreasing with age */
    fclose(ficgp);    double age, agelim, hf;
 }  /* end gnuplot */    double ***p3mat;
     double eip;
   
 /*************** Moving average **************/    pstamp(ficreseij);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
   int i, cpt, cptcod;    for(i=1; i<=nlstate;i++){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      for(j=1; j<=nlstate;j++){
       for (i=1; i<=nlstate;i++)        fprintf(ficreseij," e%1d%1d ",i,j);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      }
           mobaverage[(int)agedeb][i][cptcod]=0.;      fprintf(ficreseij," e%1d. ",i);
        }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    fprintf(ficreseij,"\n");
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    
           for (cpt=0;cpt<=4;cpt++){    if(estepm < stepm){
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      printf ("Problem %d lower than %d\n",estepm, stepm);
           }    }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    else  hstepm=estepm;   
         }    /* We compute the life expectancy from trapezoids spaced every estepm months
       }     * This is mainly to measure the difference between two models: for example
     }     * if stepm=24 months pijx are given only every 2 years and by summing them
         * we are calculating an estimate of the Life Expectancy assuming a linear 
 }     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
 /************** Forecasting ******************/     * to compare the new estimate of Life expectancy with the same linear 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;    /* For example we decided to compute the life expectancy with the smallest unit */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double *popeffectif,*popcount;       nhstepm is the number of hstepm from age to agelim 
   double ***p3mat;       nstepm is the number of stepm from age to agelin. 
   char fileresf[FILENAMELENGTH];       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
  agelim=AGESUP;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
      */
   strcpy(fileresf,"f");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {    agelim=AGESUP;
     printf("Problem with forecast resultfile: %s\n", fileresf);    /* If stepm=6 months */
   }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   printf("Computing forecasting: result on file '%s' \n", fileresf);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   if (mobilav==1) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* if (stepm >= YEARM) hstepm=1;*/
     movingaverage(agedeb, fage, ageminpar, mobaverage);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for (age=bage; age<=fage; age ++){ 
   if (stepm<=12) stepsize=1;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   agelim=AGESUP;      /* if (stepm >= YEARM) hstepm=1;*/
        nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   hstepm=1;  
   hstepm=hstepm/stepm;      /* If stepm=6 months */
   yp1=modf(dateintmean,&yp);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   anprojmean=yp;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   yp2=modf((yp1*12),&yp);      
   mprojmean=yp;      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   yp1=modf((yp2*30.5),&yp);      
   jprojmean=yp;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if(jprojmean==0) jprojmean=1;      
   if(mprojmean==0) jprojmean=1;      printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      
        /* Computing expectancies */
   for(cptcov=1;cptcov<=i2;cptcov++){      for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(j=1; j<=nlstate;j++)
       k=k+1;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       fprintf(ficresf,"\n#******");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       for(j=1;j<=cptcoveff;j++) {            
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       }  
       fprintf(ficresf,"******\n");          }
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      fprintf(ficreseij,"%3.0f",age );
            for(i=1; i<=nlstate;i++){
              eip=0;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        for(j=1; j<=nlstate;j++){
         fprintf(ficresf,"\n");          eip +=eij[i][j][(int)age];
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        fprintf(ficreseij,"%9.4f", eip );
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      }
           nhstepm = nhstepm/hstepm;      fprintf(ficreseij,"\n");
                
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      printf("\n");
            fprintf(ficlog,"\n");
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {  }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;  {
               for(i=1; i<=nlstate;i++) {                  /* Covariances of health expectancies eij and of total life expectancies according
                 if (mobilav==1)     to initial status i, ei. .
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    */
                 else {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    int nhstepma, nstepma; /* Decreasing with age */
                 }    double age, agelim, hf;
                    double ***p3matp, ***p3matm, ***varhe;
               }    double **dnewm,**doldm;
               if (h==(int)(calagedate+12*cpt)){    double *xp, *xm;
                 fprintf(ficresf," %.3f", kk1);    double **gp, **gm;
                            double ***gradg, ***trgradg;
               }    int theta;
             }  
           }    double eip, vip;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       }    xp=vector(1,npar);
     }    xm=vector(1,npar);
   }    dnewm=matrix(1,nlstate*nlstate,1,npar);
            doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
     pstamp(ficresstdeij);
   fclose(ficresf);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 }    fprintf(ficresstdeij,"# Age");
 /************** Forecasting ******************/    for(i=1; i<=nlstate;i++){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      for(j=1; j<=nlstate;j++)
          fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      fprintf(ficresstdeij," e%1d. ",i);
   int *popage;    }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficresstdeij,"\n");
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;    pstamp(ficrescveij);
   char filerespop[FILENAMELENGTH];    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(i=1; i<=nlstate;i++)
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=1; j<=nlstate;j++){
   agelim=AGESUP;        cptj= (j-1)*nlstate+i;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        for(i2=1; i2<=nlstate;i2++)
            for(j2=1; j2<=nlstate;j2++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            cptj2= (j2-1)*nlstate+i2;
              if(cptj2 <= cptj)
                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   strcpy(filerespop,"pop");          }
   strcat(filerespop,fileres);      }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    fprintf(ficrescveij,"\n");
     printf("Problem with forecast resultfile: %s\n", filerespop);    
   }    if(estepm < stepm){
   printf("Computing forecasting: result on file '%s' \n", filerespop);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   if (mobilav==1) {     * This is mainly to measure the difference between two models: for example
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * if stepm=24 months pijx are given only every 2 years and by summing them
     movingaverage(agedeb, fage, ageminpar, mobaverage);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   }     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   stepsize=(int) (stepm+YEARM-1)/YEARM;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   if (stepm<=12) stepsize=1;     * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
   agelim=AGESUP;     * curvature will be obtained if estepm is as small as stepm. */
    
   hstepm=1;    /* For example we decided to compute the life expectancy with the smallest unit */
   hstepm=hstepm/stepm;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   if (popforecast==1) {       nstepm is the number of stepm from age to agelin. 
     if((ficpop=fopen(popfile,"r"))==NULL) {       Look at hpijx to understand the reason of that which relies in memory size
       printf("Problem with population file : %s\n",popfile);exit(0);       and note for a fixed period like estepm months */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     popage=ivector(0,AGESUP);       survival function given by stepm (the optimization length). Unfortunately it
     popeffectif=vector(0,AGESUP);       means that if the survival funtion is printed only each two years of age and if
     popcount=vector(0,AGESUP);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
     i=1;      */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      
     imx=i;    /* If stepm=6 months */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    /* nhstepm age range expressed in number of stepm */
   }    agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   for(cptcov=1;cptcov<=i2;cptcov++){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* if (stepm >= YEARM) hstepm=1;*/
       k=k+1;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fprintf(ficrespop,"\n#******");    
       for(j=1;j<=cptcoveff;j++) {    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficrespop,"******\n");    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       fprintf(ficrespop,"# Age");    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
          for (age=bage; age<=fage; age ++){ 
       for (cpt=0; cpt<=0;cpt++) {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
              /* if (stepm >= YEARM) hstepm=1;*/
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;      /* If stepm=6 months */
                /* Computed by stepm unit matrices, product of hstepma matrices, stored
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           oldm=oldms;savm=savms;      
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          
           for (h=0; h<=nhstepm; h++){      /* Computing  Variances of health expectancies */
             if (h==(int) (calagedate+YEARM*cpt)) {      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);         decrease memory allocation */
             }      for(theta=1; theta <=npar; theta++){
             for(j=1; j<=nlstate+ndeath;j++) {        for(i=1; i<=npar; i++){ 
               kk1=0.;kk2=0;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               for(i=1; i<=nlstate;i++) {                        xm[i] = x[i] - (i==theta ?delti[theta]:0);
                 if (mobilav==1)        }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
                 else {        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    
                 }        for(j=1; j<= nlstate; j++){
               }          for(i=1; i<=nlstate; i++){
               if (h==(int)(calagedate+12*cpt)){            for(h=0; h<=nhstepm-1; h++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                   /*fprintf(ficrespop," %.3f", kk1);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            }
               }          }
             }        }
             for(i=1; i<=nlstate;i++){       
               kk1=0.;        for(ij=1; ij<= nlstate*nlstate; ij++)
                 for(j=1; j<=nlstate;j++){          for(h=0; h<=nhstepm-1; h++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                 }          }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      }/* End theta */
             }      
       
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      for(h=0; h<=nhstepm-1; h++)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        for(j=1; j<=nlstate*nlstate;j++)
           }          for(theta=1; theta <=npar; theta++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            trgradg[h][j][theta]=gradg[h][theta][j];
         }      
       }  
         for(ij=1;ij<=nlstate*nlstate;ij++)
   /******/        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         printf("%d|",(int)age);fflush(stdout);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       for(h=0;h<=nhstepm-1;h++){
           nhstepm = nhstepm/hstepm;        for(k=0;k<=nhstepm-1;k++){
                    matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           oldm=oldms;savm=savms;          for(ij=1;ij<=nlstate*nlstate;ij++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(ji=1;ji<=nlstate*nlstate;ji++)
           for (h=0; h<=nhstepm; h++){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
             if (h==(int) (calagedate+YEARM*cpt)) {        }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      }
             }  
             for(j=1; j<=nlstate+ndeath;j++) {      /* Computing expectancies */
               kk1=0.;kk2=0;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
               for(i=1; i<=nlstate;i++) {                    for(i=1; i<=nlstate;i++)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            for(j=1; j<=nlstate;j++)
               }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             }            
           }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }          }
       }  
    }      fprintf(ficresstdeij,"%3.0f",age );
   }      for(i=1; i<=nlstate;i++){
          eip=0.;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        vip=0.;
         for(j=1; j<=nlstate;j++){
   if (popforecast==1) {          eip += eij[i][j][(int)age];
     free_ivector(popage,0,AGESUP);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     free_vector(popeffectif,0,AGESUP);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     free_vector(popcount,0,AGESUP);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   }        }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
   fclose(ficrespop);      fprintf(ficresstdeij,"\n");
 }  
       fprintf(ficrescveij,"%3.0f",age );
 /***********************************************/      for(i=1; i<=nlstate;i++)
 /**************** Main Program *****************/        for(j=1; j<=nlstate;j++){
 /***********************************************/          cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
 int main(int argc, char *argv[])            for(j2=1; j2<=nlstate;j2++){
 {              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   double agedeb, agefin,hf;            }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        }
       fprintf(ficrescveij,"\n");
   double fret;     
   double **xi,tmp,delta;    }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   double dum; /* Dummy variable */    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   double ***p3mat;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   int *indx;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   char line[MAXLINE], linepar[MAXLINE];    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int firstobs=1, lastobs=10;    printf("\n");
   int sdeb, sfin; /* Status at beginning and end */    fprintf(ficlog,"\n");
   int c,  h , cpt,l;  
   int ju,jl, mi;    free_vector(xm,1,npar);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    free_vector(xp,1,npar);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   int mobilav=0,popforecast=0;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   int hstepm, nhstepm;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  }
   
   double bage, fage, age, agelim, agebase;  /************ Variance ******************/
   double ftolpl=FTOL;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   double **prlim;  {
   double *severity;    /* Variance of health expectancies */
   double ***param; /* Matrix of parameters */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   double  *p;    /* double **newm;*/
   double **matcov; /* Matrix of covariance */    double **dnewm,**doldm;
   double ***delti3; /* Scale */    double **dnewmp,**doldmp;
   double *delti; /* Scale */    int i, j, nhstepm, hstepm, h, nstepm ;
   double ***eij, ***vareij;    int k, cptcode;
   double **varpl; /* Variances of prevalence limits by age */    double *xp;
   double *epj, vepp;    double **gp, **gm;  /* for var eij */
   double kk1, kk2;    double ***gradg, ***trgradg; /*for var eij */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    double **gradgp, **trgradgp; /* for var p point j */
      double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
   char z[1]="c", occ;    int theta;
 #include <sys/time.h>    char digit[4];
 #include <time.h>    char digitp[25];
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
      char fileresprobmorprev[FILENAMELENGTH];
   /* long total_usecs;  
   struct timeval start_time, end_time;    if(popbased==1){
        if(mobilav!=0)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        strcpy(digitp,"-populbased-mobilav-");
   getcwd(pathcd, size);      else strcpy(digitp,"-populbased-nomobil-");
     }
   printf("\n%s",version);    else 
   if(argc <=1){      strcpy(digitp,"-stablbased-");
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   else{      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     strcpy(pathtot,argv[1]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      }
   /*cygwin_split_path(pathtot,path,optionfile);    }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   chdir(path);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   replace(pathc,path);    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 /*-------- arguments in the command line --------*/      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   strcpy(fileres,"r");    }
   strcat(fileres, optionfilefiname);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   strcat(fileres,".txt");    /* Other files have txt extension */   
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /*---------arguments file --------*/    pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     printf("Problem with optionfile %s\n",optionfile);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     goto end;      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   strcpy(filereso,"o");    }  
   strcat(filereso,fileres);    fprintf(ficresprobmorprev,"\n");
   if((ficparo=fopen(filereso,"w"))==NULL) {    fprintf(ficgp,"\n# Routine varevsij");
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /* Reads comments: lines beginning with '#' */  /*   } */
   while((c=getc(ficpar))=='#' && c!= EOF){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    pstamp(ficresvij);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     puts(line);    if(popbased==1)
     fputs(line,ficparo);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   }    else
   ungetc(c,ficpar);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    for(i=1; i<=nlstate;i++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      for(j=1; j<=nlstate;j++)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresvij,"\n");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    xp=vector(1,npar);
     puts(line);    dnewm=matrix(1,nlstate,1,npar);
     fputs(line,ficparo);    doldm=matrix(1,nlstate,1,nlstate);
   }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   ungetc(c,ficpar);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
        gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   covar=matrix(0,NCOVMAX,1,n);    gpp=vector(nlstate+1,nlstate+ndeath);
   cptcovn=0;    gmp=vector(nlstate+1,nlstate+ndeath);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
   ncovmodel=2+cptcovn;    if(estepm < stepm){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   /* Read guess parameters */    else  hstepm=estepm;   
   /* Reads comments: lines beginning with '#' */    /* For example we decided to compute the life expectancy with the smallest unit */
   while((c=getc(ficpar))=='#' && c!= EOF){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     ungetc(c,ficpar);       nhstepm is the number of hstepm from age to agelim 
     fgets(line, MAXLINE, ficpar);       nstepm is the number of stepm from age to agelin. 
     puts(line);       Look at hpijx to understand the reason of that which relies in memory size
     fputs(line,ficparo);       and note for a fixed period like k years */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   ungetc(c,ficpar);       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed every two years of age and if
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for(i=1; i <=nlstate; i++)       results. So we changed our mind and took the option of the best precision.
     for(j=1; j <=nlstate+ndeath-1; j++){    */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficparo,"%1d%1d",i1,j1);    agelim = AGESUP;
       printf("%1d%1d",i,j);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(k=1; k<=ncovmodel;k++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         fscanf(ficpar," %lf",&param[i][j][k]);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         printf(" %lf",param[i][j][k]);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficparo," %lf",param[i][j][k]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       }      gp=matrix(0,nhstepm,1,nlstate);
       fscanf(ficpar,"\n");      gm=matrix(0,nhstepm,1,nlstate);
       printf("\n");  
       fprintf(ficparo,"\n");  
     }      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   p=param[1][1];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){        if (popbased==1) {
     ungetc(c,ficpar);          if(mobilav ==0){
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=nlstate;i++)
     puts(line);              prlim[i][i]=probs[(int)age][i][ij];
     fputs(line,ficparo);          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    
   for(i=1; i <=nlstate; i++){        for(j=1; j<= nlstate; j++){
     for(j=1; j <=nlstate+ndeath-1; j++){          for(h=0; h<=nhstepm; h++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       printf("%1d%1d",i,j);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       fprintf(ficparo,"%1d%1d",i1,j1);          }
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar,"%le",&delti3[i][j][k]);        /* This for computing probability of death (h=1 means
         printf(" %le",delti3[i][j][k]);           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficparo," %le",delti3[i][j][k]);           as a weighted average of prlim.
       }        */
       fscanf(ficpar,"\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       printf("\n");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficparo,"\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     }        }    
   }        /* end probability of death */
   delti=delti3[1][1];  
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   /* Reads comments: lines beginning with '#' */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   while((c=getc(ficpar))=='#' && c!= EOF){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fgets(line, MAXLINE, ficpar);   
     puts(line);        if (popbased==1) {
     fputs(line,ficparo);          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   matcov=matrix(1,npar,1,npar);            for(i=1; i<=nlstate;i++)
   for(i=1; i <=npar; i++){              prlim[i][i]=mobaverage[(int)age][i][ij];
     fscanf(ficpar,"%s",&str);          }
     printf("%s",str);        }
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){        for(j=1; j<= nlstate; j++){
       fscanf(ficpar," %le",&matcov[i][j]);          for(h=0; h<=nhstepm; h++){
       printf(" %.5le",matcov[i][j]);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       fprintf(ficparo," %.5le",matcov[i][j]);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
     fscanf(ficpar,"\n");        }
     printf("\n");        /* This for computing probability of death (h=1 means
     fprintf(ficparo,"\n");           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
   for(i=1; i <=npar; i++)        */
     for(j=i+1;j<=npar;j++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       matcov[i][j]=matcov[j][i];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
               gmp[j] += prlim[i][i]*p3mat[i][j][1];
   printf("\n");        }    
         /* end probability of death */
   
     /*-------- Rewriting paramater file ----------*/        for(j=1; j<= nlstate; j++) /* vareij */
      strcpy(rfileres,"r");    /* "Rparameterfile */          for(h=0; h<=nhstepm; h++){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
      strcat(rfileres,".");    /* */          }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     }        }
     fprintf(ficres,"#%s\n",version);  
          } /* End theta */
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
     n= lastobs;          for(theta=1; theta <=npar; theta++)
     severity = vector(1,maxwav);            trgradg[h][j][theta]=gradg[h][theta][j];
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     moisnais=vector(1,n);        for(theta=1; theta <=npar; theta++)
     annais=vector(1,n);          trgradgp[j][theta]=gradgp[theta][j];
     moisdc=vector(1,n);    
     andc=vector(1,n);  
     agedc=vector(1,n);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     cod=ivector(1,n);      for(i=1;i<=nlstate;i++)
     weight=vector(1,n);        for(j=1;j<=nlstate;j++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          vareij[i][j][(int)age] =0.;
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);      for(h=0;h<=nhstepm;h++){
     s=imatrix(1,maxwav+1,1,n);        for(k=0;k<=nhstepm;k++){
     adl=imatrix(1,maxwav+1,1,n);              matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     tab=ivector(1,NCOVMAX);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     ncodemax=ivector(1,8);          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
     i=1;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     while (fgets(line, MAXLINE, fic) != NULL)    {        }
       if ((i >= firstobs) && (i <=lastobs)) {      }
            
         for (j=maxwav;j>=1;j--){      /* pptj */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           strcpy(line,stra);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         }          varppt[j][i]=doldmp[j][i];
              /* end ppptj */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      /*  x centered again */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);   
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      if (popbased==1) {
         if(mobilav ==0){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1; i<=nlstate;i++)
         for (j=ncovcol;j>=1;j--){            prlim[i][i]=probs[(int)age][i][ij];
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }else{ /* mobilav */ 
         }          for(i=1; i<=nlstate;i++)
         num[i]=atol(stra);            prlim[i][i]=mobaverage[(int)age][i][ij];
                }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/               
       /* This for computing probability of death (h=1 means
         i=i+1;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       }         as a weighted average of prlim.
     }      */
     /* printf("ii=%d", ij);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
        scanf("%d",i);*/        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   imx=i-1; /* Number of individuals */          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
   /* for (i=1; i<=imx; i++){      /* end probability of death */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     }*/        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
    /*  for (i=1; i<=imx; i++){        for(i=1; i<=nlstate;i++){
      if (s[4][i]==9)  s[4][i]=-1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        }
        } 
        fprintf(ficresprobmorprev,"\n");
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);      fprintf(ficresvij,"%.0f ",age );
   Tprod=ivector(1,15);      for(i=1; i<=nlstate;i++)
   Tvaraff=ivector(1,15);        for(j=1; j<=nlstate;j++){
   Tvard=imatrix(1,15,1,2);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   Tage=ivector(1,15);              }
          fprintf(ficresvij,"\n");
   if (strlen(model) >1){      free_matrix(gp,0,nhstepm,1,nlstate);
     j=0, j1=0, k1=1, k2=1;      free_matrix(gm,0,nhstepm,1,nlstate);
     j=nbocc(model,'+');      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     j1=nbocc(model,'*');      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     cptcovn=j+1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     cptcovprod=j1;    } /* End age */
        free_vector(gpp,nlstate+1,nlstate+ndeath);
     strcpy(modelsav,model);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       printf("Error. Non available option model=%s ",model);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       goto end;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
        fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     for(i=(j+1); i>=1;i--){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       cutv(stra,strb,modelsav,'+');  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       /*scanf("%d",i);*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       if (strchr(strb,'*')) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         cutv(strd,strc,strb,'*');    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         if (strcmp(strc,"age")==0) {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           cptcovprod--;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           cutv(strb,stre,strd,'V');  */
           Tvar[i]=atoi(stre);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           cptcovage++;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/    free_vector(xp,1,npar);
         }    free_matrix(doldm,1,nlstate,1,nlstate);
         else if (strcmp(strd,"age")==0) {    free_matrix(dnewm,1,nlstate,1,npar);
           cptcovprod--;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           cutv(strb,stre,strc,'V');    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           Tvar[i]=atoi(stre);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           cptcovage++;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           Tage[cptcovage]=i;    fclose(ficresprobmorprev);
         }    fflush(ficgp);
         else {    fflush(fichtm); 
           cutv(strb,stre,strc,'V');  }  /* end varevsij */
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V');  /************ Variance of prevlim ******************/
           Tprod[k1]=i;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
           Tvard[k1][1]=atoi(strc);  {
           Tvard[k1][2]=atoi(stre);    /* Variance of prevalence limit */
           Tvar[cptcovn+k2]=Tvard[k1][1];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    double **newm;
           for (k=1; k<=lastobs;k++)    double **dnewm,**doldm;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    int i, j, nhstepm, hstepm;
           k1++;    int k, cptcode;
           k2=k2+2;    double *xp;
         }    double *gp, *gm;
       }    double **gradg, **trgradg;
       else {    double age,agelim;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    int theta;
        /*  scanf("%d",i);*/    
       cutv(strd,strc,strb,'V');    pstamp(ficresvpl);
       Tvar[i]=atoi(strc);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       }    fprintf(ficresvpl,"# Age");
       strcpy(modelsav,stra);      for(i=1; i<=nlstate;i++)
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        fprintf(ficresvpl," %1d-%1d",i,i);
         scanf("%d",i);*/    fprintf(ficresvpl,"\n");
     }  
 }    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    doldm=matrix(1,nlstate,1,nlstate);
   printf("cptcovprod=%d ", cptcovprod);    
   scanf("%d ",i);*/    hstepm=1*YEARM; /* Every year of age */
     fclose(fic);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     /*  if(mle==1){*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     if (weightopt != 1) { /* Maximisation without weights*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       for(i=1;i<=n;i++) weight[i]=1.0;      if (stepm >= YEARM) hstepm=1;
     }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     /*-calculation of age at interview from date of interview and age at death -*/      gradg=matrix(1,npar,1,nlstate);
     agev=matrix(1,maxwav,1,imx);      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {      for(theta=1; theta <=npar; theta++){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        for(i=1; i<=npar; i++){ /* Computes gradient */
          anint[m][i]=9999;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          s[m][i]=-1;        }
        }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        for(i=1;i<=nlstate;i++)
       }          gp[i] = prlim[i][i];
     }      
         for(i=1; i<=npar; i++) /* Computes gradient */
     for (i=1; i<=imx; i++)  {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(m=1; (m<= maxwav); m++){        for(i=1;i<=nlstate;i++)
         if(s[m][i] >0){          gm[i] = prlim[i][i];
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)        for(i=1;i<=nlstate;i++)
               if(moisdc[i]!=99 && andc[i]!=9999)          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                 agev[m][i]=agedc[i];      } /* End theta */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {      trgradg =matrix(1,nlstate,1,npar);
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      for(j=1; j<=nlstate;j++)
               agev[m][i]=-1;        for(theta=1; theta <=npar; theta++)
               }          trgradg[j][theta]=gradg[theta][j];
             }  
           }      for(i=1;i<=nlstate;i++)
           else if(s[m][i] !=9){ /* Should no more exist */        varpl[i][(int)age] =0.;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
             if(mint[m][i]==99 || anint[m][i]==9999)      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
               agev[m][i]=1;      for(i=1;i<=nlstate;i++)
             else if(agev[m][i] <agemin){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      fprintf(ficresvpl,"%.0f ",age );
             }      for(i=1; i<=nlstate;i++)
             else if(agev[m][i] >agemax){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
               agemax=agev[m][i];      fprintf(ficresvpl,"\n");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      free_vector(gp,1,nlstate);
             }      free_vector(gm,1,nlstate);
             /*agev[m][i]=anint[m][i]-annais[i];*/      free_matrix(gradg,1,npar,1,nlstate);
             /*   agev[m][i] = age[i]+2*m;*/      free_matrix(trgradg,1,nlstate,1,npar);
           }    } /* End age */
           else { /* =9 */  
             agev[m][i]=1;    free_vector(xp,1,npar);
             s[m][i]=-1;    free_matrix(doldm,1,nlstate,1,npar);
           }    free_matrix(dnewm,1,nlstate,1,nlstate);
         }  
         else /*= 0 Unknown */  }
           agev[m][i]=1;  
       }  /************ Variance of one-step probabilities  ******************/
      void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     }  {
     for (i=1; i<=imx; i++)  {    int i, j=0,  i1, k1, l1, t, tj;
       for(m=1; (m<= maxwav); m++){    int k2, l2, j1,  z1;
         if (s[m][i] > (nlstate+ndeath)) {    int k=0,l, cptcode;
           printf("Error: Wrong value in nlstate or ndeath\n");      int first=1, first1;
           goto end;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         }    double **dnewm,**doldm;
       }    double *xp;
     }    double *gp, *gm;
     double **gradg, **trgradg;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    double **mu;
     double age,agelim, cov[NCOVMAX];
     free_vector(severity,1,maxwav);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     free_imatrix(outcome,1,maxwav+1,1,n);    int theta;
     free_vector(moisnais,1,n);    char fileresprob[FILENAMELENGTH];
     free_vector(annais,1,n);    char fileresprobcov[FILENAMELENGTH];
     /* free_matrix(mint,1,maxwav,1,n);    char fileresprobcor[FILENAMELENGTH];
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);    double ***varpij;
     free_vector(andc,1,n);  
     strcpy(fileresprob,"prob"); 
        strcat(fileresprob,fileres);
     wav=ivector(1,imx);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      printf("Problem with resultfile: %s\n", fileresprob);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
        }
     /* Concatenates waves */    strcpy(fileresprobcov,"probcov"); 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       Tcode=ivector(1,100);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    }
       ncodemax[1]=1;    strcpy(fileresprobcor,"probcor"); 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    strcat(fileresprobcor,fileres);
          if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
    codtab=imatrix(1,100,1,10);      printf("Problem with resultfile: %s\n", fileresprobcor);
    h=0;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
    m=pow(2,cptcoveff);    }
      printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    for(k=1;k<=cptcoveff; k++){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      for(i=1; i <=(m/pow(2,k));i++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
        for(j=1; j <= ncodemax[k]; j++){    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
            h++;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    pstamp(ficresprob);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
          }    fprintf(ficresprob,"# Age");
        }    pstamp(ficresprobcov);
      }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
    }    fprintf(ficresprobcov,"# Age");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    pstamp(ficresprobcor);
       codtab[1][2]=1;codtab[2][2]=2; */    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
    /* for(i=1; i <=m ;i++){    fprintf(ficresprobcor,"# Age");
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }    for(i=1; i<=nlstate;i++)
       printf("\n");      for(j=1; j<=(nlstate+ndeath);j++){
       }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       scanf("%d",i);*/        fprintf(ficresprobcov," p%1d-%1d ",i,j);
            fprintf(ficresprobcor," p%1d-%1d ",i,j);
    /* Calculates basic frequencies. Computes observed prevalence at single age      }  
        and prints on file fileres'p'. */   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
        fprintf(ficresprobcor,"\n");
       */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   xp=vector(1,npar);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
          first=1;
     /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(ficgp,"\n# Routine varprob");
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fprintf(fichtm,"\n");
   
     if(mle==1){    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     }    file %s<br>\n",optionfilehtmcov);
        fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     /*--------- results files --------------*/  and drawn. It helps understanding how is the covariance between two incidences.\
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    jk=1;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  standard deviations wide on each axis. <br>\
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    for(i=1,jk=1; i <=nlstate; i++){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      for(k=1; k <=(nlstate+ndeath); k++){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
        if (k != i)  
          {    cov[1]=1;
            printf("%d%d ",i,k);    tj=cptcoveff;
            fprintf(ficres,"%1d%1d ",i,k);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
            for(j=1; j <=ncovmodel; j++){    j1=0;
              printf("%f ",p[jk]);    for(t=1; t<=tj;t++){
              fprintf(ficres,"%f ",p[jk]);      for(i1=1; i1<=ncodemax[t];i1++){ 
              jk++;        j1++;
            }        if  (cptcovn>0) {
            printf("\n");          fprintf(ficresprob, "\n#********** Variable "); 
            fprintf(ficres,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          }          fprintf(ficresprob, "**********\n#\n");
      }          fprintf(ficresprobcov, "\n#********** Variable "); 
    }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  if(mle==1){          fprintf(ficresprobcov, "**********\n#\n");
     /* Computing hessian and covariance matrix */          
     ftolhess=ftol; /* Usually correct */          fprintf(ficgp, "\n#********** Variable "); 
     hesscov(matcov, p, npar, delti, ftolhess, func);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  }          fprintf(ficgp, "**********\n#\n");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          
     printf("# Scales (for hessian or gradient estimation)\n");          
      for(i=1,jk=1; i <=nlstate; i++){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       for(j=1; j <=nlstate+ndeath; j++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         if (j!=i) {          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficres,"%1d%1d",i,j);          
           printf("%1d%1d",i,j);          fprintf(ficresprobcor, "\n#********** Variable ");    
           for(k=1; k<=ncovmodel;k++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             printf(" %.5e",delti[jk]);          fprintf(ficresprobcor, "**********\n#");    
             fprintf(ficres," %.5e",delti[jk]);        }
             jk++;        
           }        for (age=bage; age<=fage; age ++){ 
           printf("\n");          cov[2]=age;
           fprintf(ficres,"\n");          for (k=1; k<=cptcovn;k++) {
         }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       }          }
      }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              for (k=1; k<=cptcovprod;k++)
     k=1;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     for(i=1;i<=npar;i++){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       /*  if (k>nlstate) k=1;          gp=vector(1,(nlstate)*(nlstate+ndeath));
       i1=(i-1)/(ncovmodel*nlstate)+1;          gm=vector(1,(nlstate)*(nlstate+ndeath));
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      
       printf("%s%d%d",alph[k],i1,tab[i]);*/          for(theta=1; theta <=npar; theta++){
       fprintf(ficres,"%3d",i);            for(i=1; i<=npar; i++)
       printf("%3d",i);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       for(j=1; j<=i;j++){            
         fprintf(ficres," %.5e",matcov[i][j]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         printf(" %.5e",matcov[i][j]);            
       }            k=0;
       fprintf(ficres,"\n");            for(i=1; i<= (nlstate); i++){
       printf("\n");              for(j=1; j<=(nlstate+ndeath);j++){
       k++;                k=k+1;
     }                gp[k]=pmmij[i][j];
                  }
     while((c=getc(ficpar))=='#' && c!= EOF){            }
       ungetc(c,ficpar);            
       fgets(line, MAXLINE, ficpar);            for(i=1; i<=npar; i++)
       puts(line);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       fputs(line,ficparo);      
     }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     ungetc(c,ficpar);            k=0;
     estepm=0;            for(i=1; i<=(nlstate); i++){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);              for(j=1; j<=(nlstate+ndeath);j++){
     if (estepm==0 || estepm < stepm) estepm=stepm;                k=k+1;
     if (fage <= 2) {                gm[k]=pmmij[i][j];
       bage = ageminpar;              }
       fage = agemaxpar;            }
     }       
                for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
            for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     while((c=getc(ficpar))=='#' && c!= EOF){            for(theta=1; theta <=npar; theta++)
     ungetc(c,ficpar);              trgradg[j][theta]=gradg[theta][j];
     fgets(line, MAXLINE, ficpar);          
     puts(line);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     fputs(line,ficparo);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   ungetc(c,ficpar);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          pmij(pmmij,cov,ncovmodel,x,nlstate);
                
   while((c=getc(ficpar))=='#' && c!= EOF){          k=0;
     ungetc(c,ficpar);          for(i=1; i<=(nlstate); i++){
     fgets(line, MAXLINE, ficpar);            for(j=1; j<=(nlstate+ndeath);j++){
     puts(line);              k=k+1;
     fputs(line,ficparo);              mu[k][(int) age]=pmmij[i][j];
   }            }
   ungetc(c,ficpar);          }
            for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
    dateprev1=anprev1+mprev1/12.+jprev1/365.;              varpij[i][j][(int)age] = doldm[i][j];
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
           /*printf("\n%d ",(int)age);
   fscanf(ficpar,"pop_based=%d\n",&popbased);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fprintf(ficparo,"pop_based=%d\n",popbased);              printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   fprintf(ficres,"pop_based=%d\n",popbased);              fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              }*/
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);          fprintf(ficresprob,"\n%d ",(int)age);
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprobcov,"\n%d ",(int)age);
     puts(line);          fprintf(ficresprobcor,"\n%d ",(int)age);
     fputs(line,ficparo);  
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   ungetc(c,ficpar);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          }
           i=0;
           for (k=1; k<=(nlstate);k++){
 while((c=getc(ficpar))=='#' && c!= EOF){            for (l=1; l<=(nlstate+ndeath);l++){ 
     ungetc(c,ficpar);              i=i++;
     fgets(line, MAXLINE, ficpar);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     puts(line);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     fputs(line,ficparo);              for (j=1; j<=i;j++){
   }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   ungetc(c,ficpar);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          }/* end of loop for state */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        } /* end of loop for age */
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        /* Confidence intervalle of pij  */
         /*
 /*------------ gnuplot -------------*/          fprintf(ficgp,"\nset noparametric;unset label");
   strcpy(optionfilegnuplot,optionfilefiname);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   strcat(optionfilegnuplot,".gp");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     printf("Problem with file %s",optionfilegnuplot);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   fclose(ficgp);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        */
 /*--------- index.htm --------*/  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   strcpy(optionfilehtm,optionfile);        first1=1;
   strcat(optionfilehtm,".htm");        for (k2=1; k2<=(nlstate);k2++){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     printf("Problem with %s \n",optionfilehtm), exit(0);            if(l2==k2) continue;
   }            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                if(l1==k1) continue;
 \n                i=(k1-1)*(nlstate+ndeath)+l1;
 Total number of observations=%d <br>\n                if(i<=j) continue;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                for (age=bage; age<=fage; age ++){ 
 <hr  size=\"2\" color=\"#EC5E5E\">                  if ((int)age %5==0){
  <ul><li>Parameter files<br>\n                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   fclose(fichtm);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                    c12=cv12/sqrt(v1*v2);
                      /* Computing eigen value of matrix of covariance */
 /*------------ free_vector  -------------*/                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
  chdir(path);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      /* Eigen vectors */
  free_ivector(wav,1,imx);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                    /*v21=sqrt(1.-v11*v11); *//* error */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                      v21=(lc1-v1)/cv12*v11;
  free_ivector(num,1,n);                    v12=-v21;
  free_vector(agedc,1,n);                    v22=v11;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                    tnalp=v21/v11;
  fclose(ficparo);                    if(first1==1){
  fclose(ficres);                      first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
   /*--------------- Prevalence limit --------------*/                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                      /*printf(fignu*/
   strcpy(filerespl,"pl");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   strcat(filerespl,fileres);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                    if(first==1){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                      first=0;
   }                      fprintf(ficgp,"\nset parametric;unset label");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   fprintf(ficrespl,"#Prevalence limit\n");                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   fprintf(ficrespl,"#Age ");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   fprintf(ficrespl,"\n");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   prlim=matrix(1,nlstate,1,nlstate);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   k=0;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   agebase=ageminpar;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   agelim=agemaxpar;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   ftolpl=1.e-10;                    }else{
   i1=cptcoveff;                      first=0;
   if (cptcovn < 1){i1=1;}                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   for(cptcov=1;cptcov<=i1;cptcov++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         k=k+1;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         fprintf(ficrespl,"\n#******");                    }/* if first */
         for(j=1;j<=cptcoveff;j++)                  } /* age mod 5 */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                } /* end loop age */
         fprintf(ficrespl,"******\n");                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        first=1;
         for (age=agebase; age<=agelim; age++){              } /*l12 */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            } /* k12 */
           fprintf(ficrespl,"%.0f",age );          } /*l1 */
           for(i=1; i<=nlstate;i++)        }/* k1 */
           fprintf(ficrespl," %.5f", prlim[i][i]);      } /* loop covariates */
           fprintf(ficrespl,"\n");    }
         }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   fclose(ficrespl);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
   /*------------- h Pij x at various ages ------------*/    fclose(ficresprob);
      fclose(ficresprobcov);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    fclose(ficresprobcor);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    fflush(ficgp);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    fflush(fichtmcov);
   }  }
   printf("Computing pij: result on file '%s' \n", filerespij);  
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /******************* Printing html file ***********/
   /*if (stepm<=24) stepsize=2;*/  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
   agelim=AGESUP;                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   hstepm=stepsize*YEARM; /* Every year of age */                    int popforecast, int estepm ,\
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                    double jprev1, double mprev1,double anprev1, \
                      double jprev2, double mprev2,double anprev2){
   k=0;    int jj1, k1, i1, cpt;
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       k=k+1;     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
         fprintf(ficrespij,"\n#****** ");  </ul>");
         for(j=1;j<=cptcoveff;j++)     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
         fprintf(ficrespij,"******\n");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
             fprintf(fichtm,"\
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */     fprintf(fichtm,"\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
           oldm=oldms;savm=savms;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       fprintf(fichtm,"\
           fprintf(ficrespij,"# Age");   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
           for(i=1; i<=nlstate;i++)     <a href=\"%s\">%s</a> <br>\n",
             for(j=1; j<=nlstate+ndeath;j++)             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
               fprintf(ficrespij," %1d-%1d",i,j);     fprintf(fichtm,"\
           fprintf(ficrespij,"\n");   - Population projections by age and states: \
            for (h=0; h<=nhstepm; h++){     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);   m=cptcoveff;
             fprintf(ficrespij,"\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
              }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   jj1=0;
           fprintf(ficrespij,"\n");   for(k1=1; k1<=m;k1++){
         }     for(i1=1; i1<=ncodemax[k1];i1++){
     }       jj1++;
   }       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   fclose(ficrespij);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
   /*---------- Forecasting ------------------*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   if((stepm == 1) && (strcmp(model,".")==0)){  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);       /* Quasi-incidences */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   else{  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     erreur=108;         /* Period (stable) prevalence in each health state */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);         for(cpt=1; cpt<nlstate;cpt++){
   }           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
    <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
   /*---------- Health expectancies and variances ------------*/       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   strcpy(filerest,"t");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   strcat(filerest,fileres);       }
   if((ficrest=fopen(filerest,"w"))==NULL) {     } /* end i1 */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   }/* End k1 */
   }   fprintf(fichtm,"</ul>");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
   
    fprintf(fichtm,"\
   strcpy(filerese,"e");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   strcat(filerese,fileres);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);   fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  strcpy(fileresv,"v");           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {   fprintf(fichtm,"\
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   fprintf(fichtm,"\
   calagedate=-1;   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   k=0;   fprintf(fichtm,"\
   for(cptcov=1;cptcov<=i1;cptcov++){   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     <a href=\"%s\">%s</a> <br>\n</li>",
       k=k+1;             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       fprintf(ficrest,"\n#****** ");   fprintf(fichtm,"\
       for(j=1;j<=cptcoveff;j++)   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       fprintf(ficrest,"******\n");   fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficreseij,"\n#****** ");           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm,"\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       fprintf(ficreseij,"******\n");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
       fprintf(ficresvij,"\n#****** ");  /*  if(popforecast==1) fprintf(fichtm,"\n */
       for(j=1;j<=cptcoveff;j++)  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       fprintf(ficresvij,"******\n");  /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       oldm=oldms;savm=savms;   fflush(fichtm);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   m=cptcoveff;
       oldm=oldms;savm=savms;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  
       jj1=0;
    for(k1=1; k1<=m;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");       jj1++;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);       if (cptcovn > 0) {
       fprintf(ficrest,"\n");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
       epj=vector(1,nlstate+1);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       for(age=bage; age <=fage ;age++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       }
         if (popbased==1) {       for(cpt=1; cpt<=nlstate;cpt++) {
           for(i=1; i<=nlstate;i++)         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
             prlim[i][i]=probs[(int)age][i][k];  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
         }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
               }
         fprintf(ficrest," %4.0f",age);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  health expectancies in states (1) and (2): %s%d.png<br>\
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];     } /* end i1 */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/   }/* End k1 */
           }   fprintf(fichtm,"</ul>");
           epj[nlstate+1] +=epj[j];   fflush(fichtm);
         }  }
   
         for(i=1, vepp=0.;i <=nlstate;i++)  /******************* Gnuplot file **************/
           for(j=1;j <=nlstate;j++)  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    char dirfileres[132],optfileres[132];
         for(j=1;j <=nlstate;j++){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    int ng;
         }  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
         fprintf(ficrest,"\n");  /*     printf("Problem with file %s",optionfilegnuplot); */
       }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     }  /*   } */
   }  
 free_matrix(mint,1,maxwav,1,n);    /*#ifdef windows */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     free_vector(weight,1,n);      /*#endif */
   fclose(ficreseij);    m=pow(2,cptcoveff);
   fclose(ficresvij);  
   fclose(ficrest);    strcpy(dirfileres,optionfilefiname);
   fclose(ficpar);    strcpy(optfileres,"vpl");
   free_vector(epj,1,nlstate+1);   /* 1eme*/
      for (cpt=1; cpt<= nlstate ; cpt ++) {
   /*------- Variance limit prevalence------*/       for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   strcpy(fileresvpl,"vpl");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   strcat(fileresvpl,fileres);       fprintf(ficgp,"set xlabel \"Age\" \n\
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  set ylabel \"Probability\" \n\
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  set ter png small\n\
     exit(0);  set size 0.65,0.65\n\
   }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
        for (i=1; i<= nlstate ; i ++) {
   k=0;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       }
       k=k+1;       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       fprintf(ficresvpl,"\n#****** ");       for (i=1; i<= nlstate ; i ++) {
       for(j=1;j<=cptcoveff;j++)         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficresvpl,"******\n");       } 
             fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
       varpl=matrix(1,nlstate,(int) bage, (int) fage);       for (i=1; i<= nlstate ; i ++) {
       oldm=oldms;savm=savms;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     }       }  
  }       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
   fclose(ficresvpl);    }
     /*2 eme*/
   /*---------- End : free ----------------*/    
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    for (k1=1; k1<= m ; k1 ++) { 
        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      
        for (i=1; i<= nlstate+1 ; i ++) {
          k=2*i;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        for (j=1; j<= nlstate+1 ; j ++) {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
   free_matrix(matcov,1,npar,1,npar);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   free_vector(delti,1,npar);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   free_matrix(agev,1,maxwav,1,imx);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fprintf(fichtm,"\n</body>");          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fclose(fichtm);        }   
   fclose(ficgp);        fprintf(ficgp,"\" t\"\" w l 0,");
          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   if(erreur >0)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     printf("End of Imach with error or warning %d\n",erreur);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   else   printf("End of Imach\n");        }   
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
          else fprintf(ficgp,"\" t\"\" w l 0,");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      }
   /*printf("Total time was %d uSec.\n", total_usecs);*/    }
   /*------ End -----------*/    
     /*3eme*/
     
  end:    for (k1=1; k1<= m ; k1 ++) { 
 #ifdef windows      for (cpt=1; cpt<= nlstate ; cpt ++) {
   /* chdir(pathcd);*/        /*       k=2+nlstate*(2*cpt-2); */
 #endif        k=2+(nlstate+1)*(cpt-1);
  /*system("wgnuplot graph.plt");*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
  /*system("../gp37mgw/wgnuplot graph.plt");*/        fprintf(ficgp,"set ter png small\n\
  /*system("cd ../gp37mgw");*/  set size 0.65,0.65\n\
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
  strcpy(plotcmd,GNUPLOTPROGRAM);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
  strcat(plotcmd," ");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
  strcat(plotcmd,optionfilegnuplot);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
  system(plotcmd);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 #ifdef windows          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   while (z[0] != 'q') {          
     /* chdir(path); */        */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        for (i=1; i< nlstate ; i ++) {
     scanf("%s",z);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
     if (z[0] == 'c') system("./imach");          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
     else if (z[0] == 'e') system(optionfilehtm);          
     else if (z[0] == 'g') system(plotcmd);        } 
     else if (z[0] == 'q') exit(0);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   }      }
 #endif    }
 }    
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.126


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>