Diff for /imach/src/imach.c between versions 1.51 and 1.128

version 1.51, 2002/07/19 12:22:25 version 1.128, 2006/06/30 13:02:05
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.128  2006/06/30 13:02:05  brouard
      (Module): Clarifications on computing e.j
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.127  2006/04/28 18:11:50  brouard
   first survey ("cross") where individuals from different ages are    (Module): Yes the sum of survivors was wrong since
   interviewed on their health status or degree of disability (in the    imach-114 because nhstepm was no more computed in the age
   case of a health survey which is our main interest) -2- at least a    loop. Now we define nhstepma in the age loop.
   second wave of interviews ("longitudinal") which measure each change    (Module): In order to speed up (in case of numerous covariates) we
   (if any) in individual health status.  Health expectancies are    compute health expectancies (without variances) in a first step
   computed from the time spent in each health state according to a    and then all the health expectancies with variances or standard
   model. More health states you consider, more time is necessary to reach the    deviation (needs data from the Hessian matrices) which slows the
   Maximum Likelihood of the parameters involved in the model.  The    computation.
   simplest model is the multinomial logistic model where pij is the    In the future we should be able to stop the program is only health
   probability to be observed in state j at the second wave    expectancies and graph are needed without standard deviations.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.126  2006/04/28 17:23:28  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Yes the sum of survivors was wrong since
   complex model than "constant and age", you should modify the program    imach-114 because nhstepm was no more computed in the age
   where the markup *Covariates have to be included here again* invites    loop. Now we define nhstepma in the age loop.
   you to do it.  More covariates you add, slower the    Version 0.98h
   convergence.  
     Revision 1.125  2006/04/04 15:20:31  lievre
   The advantage of this computer programme, compared to a simple    Errors in calculation of health expectancies. Age was not initialized.
   multinomial logistic model, is clear when the delay between waves is not    Forecasting file added.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.124  2006/03/22 17:13:53  lievre
   account using an interpolation or extrapolation.      Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.123  2006/03/20 10:52:43  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Module): <title> changed, corresponds to .htm file
   states. This elementary transition (by month or quarter trimester,    name. <head> headers where missing.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Module): Weights can have a decimal point as for
   and the contribution of each individual to the likelihood is simply    English (a comma might work with a correct LC_NUMERIC environment,
   hPijx.    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Also this programme outputs the covariance matrix of the parameters but also    1.
   of the life expectancies. It also computes the prevalence limits.    Version 0.98g
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.122  2006/03/20 09:45:41  brouard
            Institut national d'études démographiques, Paris.    (Module): Weights can have a decimal point as for
   This software have been partly granted by Euro-REVES, a concerted action    English (a comma might work with a correct LC_NUMERIC environment,
   from the European Union.    otherwise the weight is truncated).
   It is copyrighted identically to a GNU software product, ie programme and    Modification of warning when the covariates values are not 0 or
   software can be distributed freely for non commercial use. Latest version    1.
   can be accessed at http://euroreves.ined.fr/imach .    Version 0.98g
   **********************************************************************/  
      Revision 1.121  2006/03/16 17:45:01  lievre
 #include <math.h>    * imach.c (Module): Comments concerning covariates added
 #include <stdio.h>  
 #include <stdlib.h>    * imach.c (Module): refinements in the computation of lli if
 #include <unistd.h>    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.120  2006/03/16 15:10:38  lievre
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    (Module): refinements in the computation of lli if
 #define FILENAMELENGTH 80    status=-2 in order to have more reliable computation if stepm is
 /*#define DEBUG*/    not 1 month. Version 0.98f
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.119  2006/03/15 17:42:26  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 #define NINTERVMAX 8    table of variances if popbased=1 .
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): Function pstamp added
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Version 0.98d
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.117  2006/03/14 17:16:22  brouard
 #define AGESUP 130    (Module): varevsij Comments added explaining the second
 #define AGEBASE 40    table of variances if popbased=1 .
 #ifdef windows    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define DIRSEPARATOR '\\'    (Module): Function pstamp added
 #define ODIRSEPARATOR '/'    (Module): Version 0.98d
 #else  
 #define DIRSEPARATOR '/'    Revision 1.116  2006/03/06 10:29:27  brouard
 #define ODIRSEPARATOR '\\'    (Module): Variance-covariance wrong links and
 #endif    varian-covariance of ej. is needed (Saito).
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Revision 1.115  2006/02/27 12:17:45  brouard
 int erreur; /* Error number */    (Module): One freematrix added in mlikeli! 0.98c
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.114  2006/02/26 12:57:58  brouard
 int npar=NPARMAX;    (Module): Some improvements in processing parameter
 int nlstate=2; /* Number of live states */    filename with strsep.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.113  2006/02/24 14:20:24  brouard
 int popbased=0;    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 int *wav; /* Number of waves for this individuual 0 is possible */    allocation too.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.112  2006/01/30 09:55:26  brouard
 int mle, weightopt;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.111  2006/01/25 20:38:18  brouard
 double jmean; /* Mean space between 2 waves */    (Module): Lots of cleaning and bugs added (Gompertz)
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Comments can be added in data file. Missing date values
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    can be a simple dot '.'.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog;    Revision 1.110  2006/01/25 00:51:50  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    (Module): Lots of cleaning and bugs added (Gompertz)
 FILE *ficresprobmorprev;  
 FILE *fichtm; /* Html File */    Revision 1.109  2006/01/24 19:37:15  brouard
 FILE *ficreseij;    (Module): Comments (lines starting with a #) are allowed in data.
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.108  2006/01/19 18:05:42  lievre
 char fileresv[FILENAMELENGTH];    Gnuplot problem appeared...
 FILE  *ficresvpl;    To be fixed
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.107  2006/01/19 16:20:37  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Test existence of gnuplot in imach path
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.106  2006/01/19 13:24:36  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Some cleaning and links added in html output
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.105  2006/01/05 20:23:19  lievre
 char fileregp[FILENAMELENGTH];    *** empty log message ***
 char popfile[FILENAMELENGTH];  
     Revision 1.104  2005/09/30 16:11:43  lievre
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 #define NR_END 1    that the person is alive, then we can code his/her status as -2
 #define FREE_ARG char*    (instead of missing=-1 in earlier versions) and his/her
 #define FTOL 1.0e-10    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define NRANSI    the healthy state at last known wave). Version is 0.98
 #define ITMAX 200  
     Revision 1.103  2005/09/30 15:54:49  lievre
 #define TOL 2.0e-4    (Module): sump fixed, loop imx fixed, and simplifications.
   
 #define CGOLD 0.3819660    Revision 1.102  2004/09/15 17:31:30  brouard
 #define ZEPS 1.0e-10    Add the possibility to read data file including tab characters.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.101  2004/09/15 10:38:38  brouard
 #define GOLD 1.618034    Fix on curr_time
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.99  2004/06/05 08:57:40  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    *** empty log message ***
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.98  2004/05/16 15:05:56  brouard
 #define rint(a) floor(a+0.5)    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 static double sqrarg;    state at each age, but using a Gompertz model: log u =a + b*age .
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    This is the basic analysis of mortality and should be done before any
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 int imx;    from other sources like vital statistic data.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    The same imach parameter file can be used but the option for mle should be -3.
   
 int estepm;    Agnès, who wrote this part of the code, tried to keep most of the
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    former routines in order to include the new code within the former code.
   
 int m,nb;    The output is very simple: only an estimate of the intercept and of
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    the slope with 95% confident intervals.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Current limitations:
 double dateintmean=0;    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 double *weight;    B) There is no computation of Life Expectancy nor Life Table.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.97  2004/02/20 13:25:42  lievre
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 /**************** split *************************/    rewritten within the same printf. Workaround: many printfs.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.95  2003/07/08 07:54:34  brouard
    char *s;                             /* pointer */    * imach.c (Repository):
    int  l1, l2;                         /* length counters */    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.94  2003/06/27 13:00:02  brouard
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Just cleaning
    if ( s == NULL ) {                   /* no directory, so use current */  
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Revision 1.93  2003/06/25 16:33:55  brouard
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    (Module): On windows (cygwin) function asctime_r doesn't
 #if     defined(__bsd__)                /* get current working directory */    exist so I changed back to asctime which exists.
       extern char       *getwd( );    (Module): Version 0.96b
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.92  2003/06/25 16:30:45  brouard
 #else    (Module): On windows (cygwin) function asctime_r doesn't
       extern char       *getcwd( );    exist so I changed back to asctime which exists.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.91  2003/06/25 15:30:29  brouard
 #endif    * imach.c (Repository): Duplicated warning errors corrected.
          return( GLOCK_ERROR_GETCWD );    (Repository): Elapsed time after each iteration is now output. It
       }    helps to forecast when convergence will be reached. Elapsed time
       strcpy( name, path );             /* we've got it */    is stamped in powell.  We created a new html file for the graphs
    } else {                             /* strip direcotry from path */    concerning matrix of covariance. It has extension -cov.htm.
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.90  2003/06/24 12:34:15  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Some bugs corrected for windows. Also, when
       strcpy( name, s );                /* save file name */    mle=-1 a template is output in file "or"mypar.txt with the design
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    of the covariance matrix to be input.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.89  2003/06/24 12:30:52  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): Some bugs corrected for windows. Also, when
 #ifdef windows    mle=-1 a template is output in file "or"mypar.txt with the design
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    of the covariance matrix to be input.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.88  2003/06/23 17:54:56  brouard
 #endif    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.87  2003/06/18 12:26:01  brouard
    strcpy(ext,s);                       /* save extension */    Version 0.96
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.86  2003/06/17 20:04:08  brouard
    strncpy( finame, name, l1-l2);    (Module): Change position of html and gnuplot routines and added
    finame[l1-l2]= 0;    routine fileappend.
    return( 0 );                         /* we're done */  
 }    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 /******************************************/    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 void replace(char *s, char*t)    assuming that the date of death was just one stepm after the
 {    interview.
   int i;    (Repository): Because some people have very long ID (first column)
   int lg=20;    we changed int to long in num[] and we added a new lvector for
   i=0;    memory allocation. But we also truncated to 8 characters (left
   lg=strlen(t);    truncation)
   for(i=0; i<= lg; i++) {    (Repository): No more line truncation errors.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.84  2003/06/13 21:44:43  brouard
   }    * imach.c (Repository): Replace "freqsummary" at a correct
 }    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 int nbocc(char *s, char occ)    parcimony.
 {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   int i,j=0;  
   int lg=20;    Revision 1.83  2003/06/10 13:39:11  lievre
   i=0;    *** empty log message ***
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.82  2003/06/05 15:57:20  brouard
   if  (s[i] == occ ) j++;    Add log in  imach.c and  fullversion number is now printed.
   }  
   return j;  */
 }  /*
      Interpolated Markov Chain
 void cutv(char *u,char *v, char*t, char occ)  
 {    Short summary of the programme:
   /* cuts string t into u and v where u is ended by char occ excluding it    
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    This program computes Healthy Life Expectancies from
      gives u="abcedf" and v="ghi2j" */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   int i,lg,j,p=0;    first survey ("cross") where individuals from different ages are
   i=0;    interviewed on their health status or degree of disability (in the
   for(j=0; j<=strlen(t)-1; j++) {    case of a health survey which is our main interest) -2- at least a
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    second wave of interviews ("longitudinal") which measure each change
   }    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
   lg=strlen(t);    model. More health states you consider, more time is necessary to reach the
   for(j=0; j<p; j++) {    Maximum Likelihood of the parameters involved in the model.  The
     (u[j] = t[j]);    simplest model is the multinomial logistic model where pij is the
   }    probability to be observed in state j at the second wave
      u[p]='\0';    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    for(j=0; j<= lg; j++) {    'age' is age and 'sex' is a covariate. If you want to have a more
     if (j>=(p+1))(v[j-p-1] = t[j]);    complex model than "constant and age", you should modify the program
   }    where the markup *Covariates have to be included here again* invites
 }    you to do it.  More covariates you add, slower the
     convergence.
 /********************** nrerror ********************/  
     The advantage of this computer programme, compared to a simple
 void nrerror(char error_text[])    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
   fprintf(stderr,"ERREUR ...\n");    intermediate interview, the information is lost, but taken into
   fprintf(stderr,"%s\n",error_text);    account using an interpolation or extrapolation.  
   exit(1);  
 }    hPijx is the probability to be observed in state i at age x+h
 /*********************** vector *******************/    conditional to the observed state i at age x. The delay 'h' can be
 double *vector(int nl, int nh)    split into an exact number (nh*stepm) of unobserved intermediate
 {    states. This elementary transition (by month, quarter,
   double *v;    semester or year) is modelled as a multinomial logistic.  The hPx
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    matrix is simply the matrix product of nh*stepm elementary matrices
   if (!v) nrerror("allocation failure in vector");    and the contribution of each individual to the likelihood is simply
   return v-nl+NR_END;    hPijx.
 }  
     Also this programme outputs the covariance matrix of the parameters but also
 /************************ free vector ******************/    of the life expectancies. It also computes the period (stable) prevalence. 
 void free_vector(double*v, int nl, int nh)    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   free((FREE_ARG)(v+nl-NR_END));             Institut national d'études démographiques, Paris.
 }    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 /************************ivector *******************************/    It is copyrighted identically to a GNU software product, ie programme and
 int *ivector(long nl,long nh)    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   if (!v) nrerror("allocation failure in ivector");    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   return v-nl+NR_END;    
 }    **********************************************************************/
   /*
 /******************free ivector **************************/    main
 void free_ivector(int *v, long nl, long nh)    read parameterfile
 {    read datafile
   free((FREE_ARG)(v+nl-NR_END));    concatwav
 }    freqsummary
     if (mle >= 1)
 /******************* imatrix *******************************/      mlikeli
 int **imatrix(long nrl, long nrh, long ncl, long nch)    print results files
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    if mle==1 
 {       computes hessian
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    read end of parameter file: agemin, agemax, bage, fage, estepm
   int **m;        begin-prev-date,...
      open gnuplot file
   /* allocate pointers to rows */    open html file
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    period (stable) prevalence
   if (!m) nrerror("allocation failure 1 in matrix()");     for age prevalim()
   m += NR_END;    h Pij x
   m -= nrl;    variance of p varprob
      forecasting if prevfcast==1 prevforecast call prevalence()
      health expectancies
   /* allocate rows and set pointers to them */    Variance-covariance of DFLE
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    prevalence()
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");     movingaverage()
   m[nrl] += NR_END;    varevsij() 
   m[nrl] -= ncl;    if popbased==1 varevsij(,popbased)
      total life expectancies
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Variance of period (stable) prevalence
     end
   /* return pointer to array of pointers to rows */  */
   return m;  
 }  
   
 /****************** free_imatrix *************************/   
 void free_imatrix(m,nrl,nrh,ncl,nch)  #include <math.h>
       int **m;  #include <stdio.h>
       long nch,ncl,nrh,nrl;  #include <stdlib.h>
      /* free an int matrix allocated by imatrix() */  #include <string.h>
 {  #include <unistd.h>
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  #include <limits.h>
 }  #include <sys/types.h>
   #include <sys/stat.h>
 /******************* matrix *******************************/  #include <errno.h>
 double **matrix(long nrl, long nrh, long ncl, long nch)  extern int errno;
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  /* #include <sys/time.h> */
   double **m;  #include <time.h>
   #include "timeval.h"
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /* #include <libintl.h> */
   m += NR_END;  /* #define _(String) gettext (String) */
   m -= nrl;  
   #define MAXLINE 256
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define GNUPLOTPROGRAM "gnuplot"
   m[nrl] += NR_END;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   m[nrl] -= ncl;  #define FILENAMELENGTH 132
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   return m;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /*************************free matrix ************************/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  #define NINTERVMAX 8
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   free((FREE_ARG)(m+nrl-NR_END));  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 }  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 /******************* ma3x *******************************/  #define YEARM 12. /* Number of months per year */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define AGESUP 130
 {  #define AGEBASE 40
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   double ***m;  #ifdef UNIX
   #define DIRSEPARATOR '/'
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define CHARSEPARATOR "/"
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ODIRSEPARATOR '\\'
   m += NR_END;  #else
   m -= nrl;  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define ODIRSEPARATOR '/'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #endif
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /* $Id$ */
   /* $State$ */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char fullversion[]="$Revision$ $Date$"; 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char strstart[80];
   m[nrl][ncl] += NR_END;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   m[nrl][ncl] -= nll;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   for (j=ncl+1; j<=nch; j++)  int nvar;
     m[nrl][j]=m[nrl][j-1]+nlay;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    int npar=NPARMAX;
   for (i=nrl+1; i<=nrh; i++) {  int nlstate=2; /* Number of live states */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int ndeath=1; /* Number of dead states */
     for (j=ncl+1; j<=nch; j++)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       m[i][j]=m[i][j-1]+nlay;  int popbased=0;
   }  
   return m;  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 /*************************free ma3x ************************/  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int mle, weightopt;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   free((FREE_ARG)(m+nrl-NR_END));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /***************** f1dim *************************/  double jmean; /* Mean space between 2 waves */
 extern int ncom;  double **oldm, **newm, **savm; /* Working pointers to matrices */
 extern double *pcom,*xicom;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 extern double (*nrfunc)(double []);  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    FILE *ficlog, *ficrespow;
 double f1dim(double x)  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   int j;  long ipmx; /* Number of contributions */
   double f;  double sw; /* Sum of weights */
   double *xt;  char filerespow[FILENAMELENGTH];
    char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   xt=vector(1,ncom);  FILE *ficresilk;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   f=(*nrfunc)(xt);  FILE *ficresprobmorprev;
   free_vector(xt,1,ncom);  FILE *fichtm, *fichtmcov; /* Html File */
   return f;  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
 /*****************brent *************************/  char fileresstde[FILENAMELENGTH];
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  FILE *ficrescveij;
 {  char filerescve[FILENAMELENGTH];
   int iter;  FILE  *ficresvij;
   double a,b,d,etemp;  char fileresv[FILENAMELENGTH];
   double fu,fv,fw,fx;  FILE  *ficresvpl;
   double ftemp;  char fileresvpl[FILENAMELENGTH];
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char title[MAXLINE];
   double e=0.0;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   a=(ax < cx ? ax : cx);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   b=(ax > cx ? ax : cx);  char command[FILENAMELENGTH];
   x=w=v=bx;  int  outcmd=0;
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  char filelog[FILENAMELENGTH]; /* Log file */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char filerest[FILENAMELENGTH];
     printf(".");fflush(stdout);  char fileregp[FILENAMELENGTH];
     fprintf(ficlog,".");fflush(ficlog);  char popfile[FILENAMELENGTH];
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 #endif  struct timezone tzp;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  extern int gettimeofday();
       *xmin=x;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       return fx;  long time_value;
     }  extern long time();
     ftemp=fu;  char strcurr[80], strfor[80];
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  char *endptr;
       q=(x-v)*(fx-fw);  long lval;
       p=(x-v)*q-(x-w)*r;  double dval;
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  #define NR_END 1
       q=fabs(q);  #define FREE_ARG char*
       etemp=e;  #define FTOL 1.0e-10
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define NRANSI 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define ITMAX 200 
       else {  
         d=p/q;  #define TOL 2.0e-4 
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  #define CGOLD 0.3819660 
           d=SIGN(tol1,xm-x);  #define ZEPS 1.0e-10 
       }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define GOLD 1.618034 
     }  #define GLIMIT 100.0 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define TINY 1.0e-20 
     fu=(*f)(u);  
     if (fu <= fx) {  static double maxarg1,maxarg2;
       if (u >= x) a=x; else b=x;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       SHFT(v,w,x,u)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         SHFT(fv,fw,fx,fu)    
         } else {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
           if (u < x) a=u; else b=u;  #define rint(a) floor(a+0.5)
           if (fu <= fw || w == x) {  
             v=w;  static double sqrarg;
             w=u;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
             fv=fw;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
             fw=fu;  int agegomp= AGEGOMP;
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  int imx; 
             fv=fu;  int stepm=1;
           }  /* Stepm, step in month: minimum step interpolation*/
         }  
   }  int estepm;
   nrerror("Too many iterations in brent");  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   *xmin=x;  
   return fx;  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 /****************** mnbrak ***********************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  double *ageexmed,*agecens;
             double (*func)(double))  double dateintmean=0;
 {  
   double ulim,u,r,q, dum;  double *weight;
   double fu;  int **s; /* Status */
    double *agedc, **covar, idx;
   *fa=(*func)(*ax);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   *fb=(*func)(*bx);  double *lsurv, *lpop, *tpop;
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       SHFT(dum,*fb,*fa,dum)  double ftolhess; /* Tolerance for computing hessian */
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  /**************** split *************************/
   *fc=(*func)(*cx);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   while (*fb > *fc) {  {
     r=(*bx-*ax)*(*fb-*fc);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     q=(*bx-*cx)*(*fb-*fa);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    */ 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    char  *ss;                            /* pointer */
     ulim=(*bx)+GLIMIT*(*cx-*bx);    int   l1, l2;                         /* length counters */
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);    l1 = strlen(path );                   /* length of path */
     } else if ((*cx-u)*(u-ulim) > 0.0) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       fu=(*func)(u);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       if (fu < *fc) {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      strcpy( name, path );               /* we got the fullname name because no directory */
           SHFT(*fb,*fc,fu,(*func)(u))      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
           }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      /* get current working directory */
       u=ulim;      /*    extern  char* getcwd ( char *buf , int len);*/
       fu=(*func)(u);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     } else {        return( GLOCK_ERROR_GETCWD );
       u=(*cx)+GOLD*(*cx-*bx);      }
       fu=(*func)(u);      /* got dirc from getcwd*/
     }      printf(" DIRC = %s \n",dirc);
     SHFT(*ax,*bx,*cx,u)    } else {                              /* strip direcotry from path */
       SHFT(*fa,*fb,*fc,fu)      ss++;                               /* after this, the filename */
       }      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /*************** linmin ************************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 int ncom;      printf(" DIRC2 = %s \n",dirc);
 double *pcom,*xicom;    }
 double (*nrfunc)(double []);    /* We add a separator at the end of dirc if not exists */
      l1 = strlen( dirc );                  /* length of directory */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    if( dirc[l1-1] != DIRSEPARATOR ){
 {      dirc[l1] =  DIRSEPARATOR;
   double brent(double ax, double bx, double cx,      dirc[l1+1] = 0; 
                double (*f)(double), double tol, double *xmin);      printf(" DIRC3 = %s \n",dirc);
   double f1dim(double x);    }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    ss = strrchr( name, '.' );            /* find last / */
               double *fc, double (*func)(double));    if (ss >0){
   int j;      ss++;
   double xx,xmin,bx,ax;      strcpy(ext,ss);                     /* save extension */
   double fx,fb,fa;      l1= strlen( name);
        l2= strlen(ss)+1;
   ncom=n;      strncpy( finame, name, l1-l2);
   pcom=vector(1,n);      finame[l1-l2]= 0;
   xicom=vector(1,n);    }
   nrfunc=func;  
   for (j=1;j<=n;j++) {    return( 0 );                          /* we're done */
     pcom[j]=p[j];  }
     xicom[j]=xi[j];  
   }  
   ax=0.0;  /******************************************/
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  void replace_back_to_slash(char *s, char*t)
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  {
 #ifdef DEBUG    int i;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    int lg=0;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    i=0;
 #endif    lg=strlen(t);
   for (j=1;j<=n;j++) {    for(i=0; i<= lg; i++) {
     xi[j] *= xmin;      (s[i] = t[i]);
     p[j] += xi[j];      if (t[i]== '\\') s[i]='/';
   }    }
   free_vector(xicom,1,n);  }
   free_vector(pcom,1,n);  
 }  int nbocc(char *s, char occ)
   {
 /*************** powell ************************/    int i,j=0;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    int lg=20;
             double (*func)(double []))    i=0;
 {    lg=strlen(s);
   void linmin(double p[], double xi[], int n, double *fret,    for(i=0; i<= lg; i++) {
               double (*func)(double []));    if  (s[i] == occ ) j++;
   int i,ibig,j;    }
   double del,t,*pt,*ptt,*xit;    return j;
   double fp,fptt;  }
   double *xits;  
   pt=vector(1,n);  void cutv(char *u,char *v, char*t, char occ)
   ptt=vector(1,n);  {
   xit=vector(1,n);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   xits=vector(1,n);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   *fret=(*func)(p);       gives u="abcedf" and v="ghi2j" */
   for (j=1;j<=n;j++) pt[j]=p[j];    int i,lg,j,p=0;
   for (*iter=1;;++(*iter)) {    i=0;
     fp=(*fret);    for(j=0; j<=strlen(t)-1; j++) {
     ibig=0;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     del=0.0;    }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    lg=strlen(t);
     for (i=1;i<=n;i++)    for(j=0; j<p; j++) {
       printf(" %d %.12f",i, p[i]);      (u[j] = t[j]);
     fprintf(ficlog," %d %.12f",i, p[i]);    }
     printf("\n");       u[p]='\0';
     fprintf(ficlog,"\n");  
     for (i=1;i<=n;i++) {     for(j=0; j<= lg; j++) {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      if (j>=(p+1))(v[j-p-1] = t[j]);
       fptt=(*fret);    }
 #ifdef DEBUG  }
       printf("fret=%lf \n",*fret);  
       fprintf(ficlog,"fret=%lf \n",*fret);  /********************** nrerror ********************/
 #endif  
       printf("%d",i);fflush(stdout);  void nrerror(char error_text[])
       fprintf(ficlog,"%d",i);fflush(ficlog);  {
       linmin(p,xit,n,fret,func);    fprintf(stderr,"ERREUR ...\n");
       if (fabs(fptt-(*fret)) > del) {    fprintf(stderr,"%s\n",error_text);
         del=fabs(fptt-(*fret));    exit(EXIT_FAILURE);
         ibig=i;  }
       }  /*********************** vector *******************/
 #ifdef DEBUG  double *vector(int nl, int nh)
       printf("%d %.12e",i,(*fret));  {
       fprintf(ficlog,"%d %.12e",i,(*fret));    double *v;
       for (j=1;j<=n;j++) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    if (!v) nrerror("allocation failure in vector");
         printf(" x(%d)=%.12e",j,xit[j]);    return v-nl+NR_END;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++) {  /************************ free vector ******************/
         printf(" p=%.12e",p[j]);  void free_vector(double*v, int nl, int nh)
         fprintf(ficlog," p=%.12e",p[j]);  {
       }    free((FREE_ARG)(v+nl-NR_END));
       printf("\n");  }
       fprintf(ficlog,"\n");  
 #endif  /************************ivector *******************************/
     }  int *ivector(long nl,long nh)
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  {
 #ifdef DEBUG    int *v;
       int k[2],l;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       k[0]=1;    if (!v) nrerror("allocation failure in ivector");
       k[1]=-1;    return v-nl+NR_END;
       printf("Max: %.12e",(*func)(p));  }
       fprintf(ficlog,"Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++) {  /******************free ivector **************************/
         printf(" %.12e",p[j]);  void free_ivector(int *v, long nl, long nh)
         fprintf(ficlog," %.12e",p[j]);  {
       }    free((FREE_ARG)(v+nl-NR_END));
       printf("\n");  }
       fprintf(ficlog,"\n");  
       for(l=0;l<=1;l++) {  /************************lvector *******************************/
         for (j=1;j<=n;j++) {  long *lvector(long nl,long nh)
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  {
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    long *v;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         }    if (!v) nrerror("allocation failure in ivector");
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    return v-nl+NR_END;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  }
       }  
 #endif  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
   {
       free_vector(xit,1,n);    free((FREE_ARG)(v+nl-NR_END));
       free_vector(xits,1,n);  }
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  /******************* imatrix *******************************/
       return;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  { 
     for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       ptt[j]=2.0*p[j]-pt[j];    int **m; 
       xit[j]=p[j]-pt[j];    
       pt[j]=p[j];    /* allocate pointers to rows */ 
     }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     fptt=(*func)(ptt);    if (!m) nrerror("allocation failure 1 in matrix()"); 
     if (fptt < fp) {    m += NR_END; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m -= nrl; 
       if (t < 0.0) {    
         linmin(p,xit,n,fret,func);    
         for (j=1;j<=n;j++) {    /* allocate rows and set pointers to them */ 
           xi[j][ibig]=xi[j][n];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
           xi[j][n]=xit[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         }    m[nrl] += NR_END; 
 #ifdef DEBUG    m[nrl] -= ncl; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         for(j=1;j<=n;j++){    
           printf(" %.12e",xit[j]);    /* return pointer to array of pointers to rows */ 
           fprintf(ficlog," %.12e",xit[j]);    return m; 
         }  } 
         printf("\n");  
         fprintf(ficlog,"\n");  /****************** free_imatrix *************************/
 #endif  void free_imatrix(m,nrl,nrh,ncl,nch)
       }        int **m;
     }        long nch,ncl,nrh,nrl; 
   }       /* free an int matrix allocated by imatrix() */ 
 }  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 /**** Prevalence limit ****************/    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  /******************* matrix *******************************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  double **matrix(long nrl, long nrh, long ncl, long nch)
      matrix by transitions matrix until convergence is reached */  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   int i, ii,j,k;    double **m;
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double **out, cov[NCOVMAX], **pmij();    if (!m) nrerror("allocation failure 1 in matrix()");
   double **newm;    m += NR_END;
   double agefin, delaymax=50 ; /* Max number of years to converge */    m -= nrl;
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (j=1;j<=nlstate+ndeath;j++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   
    cov[1]=1.;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      return m;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){     */
     newm=savm;  }
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /*************************free matrix ************************/
    void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for (k=1; k<=cptcovn;k++) {  {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    free((FREE_ARG)(m+nrl-NR_END));
       }  }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /******************* ma3x *******************************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    double ***m;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
     savm=oldm;    m += NR_END;
     oldm=newm;    m -= nrl;
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       min=1.;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       max=0.;    m[nrl] += NR_END;
       for(i=1; i<=nlstate; i++) {    m[nrl] -= ncl;
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         min=FMIN(min,prlim[i][j]);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       }    m[nrl][ncl] += NR_END;
       maxmin=max-min;    m[nrl][ncl] -= nll;
       maxmax=FMAX(maxmax,maxmin);    for (j=ncl+1; j<=nch; j++) 
     }      m[nrl][j]=m[nrl][j-1]+nlay;
     if(maxmax < ftolpl){    
       return prlim;    for (i=nrl+1; i<=nrh; i++) {
     }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   }      for (j=ncl+1; j<=nch; j++) 
 }        m[i][j]=m[i][j-1]+nlay;
     }
 /*************** transition probabilities ***************/    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 {    */
   double s1, s2;  }
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for(i=1; i<= nlstate; i++){  {
     for(j=1; j<i;j++){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         /*s2 += param[i][j][nc]*cov[nc];*/    free((FREE_ARG)(m+nrl-NR_END));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /*************** function subdirf ***********/
       ps[i][j]=s2;  char *subdirf(char fileres[])
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  {
     }    /* Caution optionfilefiname is hidden */
     for(j=i+1; j<=nlstate+ndeath;j++){    strcpy(tmpout,optionfilefiname);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcat(tmpout,"/"); /* Add to the right */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcat(tmpout,fileres);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    return tmpout;
       }  }
       ps[i][j]=s2;  
     }  /*************** function subdirf2 ***********/
   }  char *subdirf2(char fileres[], char *preop)
     /*ps[3][2]=1;*/  {
     
   for(i=1; i<= nlstate; i++){    /* Caution optionfilefiname is hidden */
      s1=0;    strcpy(tmpout,optionfilefiname);
     for(j=1; j<i; j++)    strcat(tmpout,"/");
       s1+=exp(ps[i][j]);    strcat(tmpout,preop);
     for(j=i+1; j<=nlstate+ndeath; j++)    strcat(tmpout,fileres);
       s1+=exp(ps[i][j]);    return tmpout;
     ps[i][i]=1./(s1+1.);  }
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*************** function subdirf3 ***********/
     for(j=i+1; j<=nlstate+ndeath; j++)  char *subdirf3(char fileres[], char *preop, char *preop2)
       ps[i][j]= exp(ps[i][j])*ps[i][i];  {
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    
   } /* end i */    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    strcat(tmpout,"/");
     for(jj=1; jj<= nlstate+ndeath; jj++){    strcat(tmpout,preop);
       ps[ii][jj]=0;    strcat(tmpout,preop2);
       ps[ii][ii]=1;    strcat(tmpout,fileres);
     }    return tmpout;
   }  }
   
   /***************** f1dim *************************/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  extern int ncom; 
     for(jj=1; jj<= nlstate+ndeath; jj++){  extern double *pcom,*xicom;
      printf("%lf ",ps[ii][jj]);  extern double (*nrfunc)(double []); 
    }   
     printf("\n ");  double f1dim(double x) 
     }  { 
     printf("\n ");printf("%lf ",cov[2]);*/    int j; 
 /*    double f;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double *xt; 
   goto end;*/   
     return ps;    xt=vector(1,ncom); 
 }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
 /**************** Product of 2 matrices ******************/    free_vector(xt,1,ncom); 
     return f; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  } 
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  /*****************brent *************************/
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   /* in, b, out are matrice of pointers which should have been initialized  { 
      before: only the contents of out is modified. The function returns    int iter; 
      a pointer to pointers identical to out */    double a,b,d,etemp;
   long i, j, k;    double fu,fv,fw,fx;
   for(i=nrl; i<= nrh; i++)    double ftemp;
     for(k=ncolol; k<=ncoloh; k++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double e=0.0; 
         out[i][k] +=in[i][j]*b[j][k];   
     a=(ax < cx ? ax : cx); 
   return out;    b=(ax > cx ? ax : cx); 
 }    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
 /************* Higher Matrix Product ***************/      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 {      printf(".");fflush(stdout);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      fprintf(ficlog,".");fflush(ficlog);
      duration (i.e. until  #ifdef DEBUG
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      (typically every 2 years instead of every month which is too big).      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      Model is determined by parameters x and covariates have to be  #endif
      included manually here.      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
      */        return fx; 
       } 
   int i, j, d, h, k;      ftemp=fu;
   double **out, cov[NCOVMAX];      if (fabs(e) > tol1) { 
   double **newm;        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
   /* Hstepm could be zero and should return the unit matrix */        p=(x-v)*q-(x-w)*r; 
   for (i=1;i<=nlstate+ndeath;i++)        q=2.0*(q-r); 
     for (j=1;j<=nlstate+ndeath;j++){        if (q > 0.0) p = -p; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        q=fabs(q); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        etemp=e; 
     }        e=d; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for(h=1; h <=nhstepm; h++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(d=1; d <=hstepm; d++){        else { 
       newm=savm;          d=p/q; 
       /* Covariates have to be included here again */          u=x+d; 
       cov[1]=1.;          if (u-a < tol2 || b-u < tol2) 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;            d=SIGN(tol1,xm-x); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        } 
       for (k=1; k<=cptcovage;k++)      } else { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (k=1; k<=cptcovprod;k++)      } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
       if (fu <= fx) { 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        if (u >= x) a=x; else b=x; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        SHFT(v,w,x,u) 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          SHFT(fv,fw,fx,fu) 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          } else { 
       savm=oldm;            if (u < x) a=u; else b=u; 
       oldm=newm;            if (fu <= fw || w == x) { 
     }              v=w; 
     for(i=1; i<=nlstate+ndeath; i++)              w=u; 
       for(j=1;j<=nlstate+ndeath;j++) {              fv=fw; 
         po[i][j][h]=newm[i][j];              fw=fu; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);            } else if (fu <= fv || v == x || v == w) { 
          */              v=u; 
       }              fv=fu; 
   } /* end h */            } 
   return po;          } 
 }    } 
     nrerror("Too many iterations in brent"); 
     *xmin=x; 
 /*************** log-likelihood *************/    return fx; 
 double func( double *x)  } 
 {  
   int i, ii, j, k, mi, d, kk;  /****************** mnbrak ***********************/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   double sw; /* Sum of weights */              double (*func)(double)) 
   double lli; /* Individual log likelihood */  { 
   long ipmx;    double ulim,u,r,q, dum;
   /*extern weight */    double fu; 
   /* We are differentiating ll according to initial status */   
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    *fa=(*func)(*ax); 
   /*for(i=1;i<imx;i++)    *fb=(*func)(*bx); 
     printf(" %d\n",s[4][i]);    if (*fb > *fa) { 
   */      SHFT(dum,*ax,*bx,dum) 
   cov[1]=1.;        SHFT(dum,*fb,*fa,dum) 
         } 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    *cx=(*bx)+GOLD*(*bx-*ax); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    *fc=(*func)(*cx); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    while (*fb > *fc) { 
     for(mi=1; mi<= wav[i]-1; mi++){      r=(*bx-*ax)*(*fb-*fc); 
       for (ii=1;ii<=nlstate+ndeath;ii++)      q=(*bx-*cx)*(*fb-*fa); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       for(d=0; d<dh[mi][i]; d++){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         newm=savm;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      if ((*bx-u)*(u-*cx) > 0.0) { 
         for (kk=1; kk<=cptcovage;kk++) {        fu=(*func)(u); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         }        fu=(*func)(u); 
                if (fu < *fc) { 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            SHFT(*fb,*fc,fu,(*func)(u)) 
         savm=oldm;            } 
         oldm=newm;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
                u=ulim; 
                fu=(*func)(u); 
       } /* end mult */      } else { 
              u=(*cx)+GOLD*(*cx-*bx); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        fu=(*func)(u); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      } 
       ipmx +=1;      SHFT(*ax,*bx,*cx,u) 
       sw += weight[i];        SHFT(*fa,*fb,*fc,fu) 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        } 
     } /* end of wave */  } 
   } /* end of individual */  
   /*************** linmin ************************/
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  int ncom; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  double *pcom,*xicom;
   return -l;  double (*nrfunc)(double []); 
 }   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 /*********** Maximum Likelihood Estimation ***************/    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    double f1dim(double x); 
 {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   int i,j, iter;                double *fc, double (*func)(double)); 
   double **xi,*delti;    int j; 
   double fret;    double xx,xmin,bx,ax; 
   xi=matrix(1,npar,1,npar);    double fx,fb,fa;
   for (i=1;i<=npar;i++)   
     for (j=1;j<=npar;j++)    ncom=n; 
       xi[i][j]=(i==j ? 1.0 : 0.0);    pcom=vector(1,n); 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    xicom=vector(1,n); 
   powell(p,xi,npar,ftol,&iter,&fret,func);    nrfunc=func; 
     for (j=1;j<=n;j++) { 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      pcom[j]=p[j]; 
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      xicom[j]=xi[j]; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    } 
     ax=0.0; 
 }    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 /**** Computes Hessian and covariance matrix ***/    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  #ifdef DEBUG
 {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double  **a,**y,*x,pd;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **hess;  #endif
   int i, j,jk;    for (j=1;j<=n;j++) { 
   int *indx;      xi[j] *= xmin; 
       p[j] += xi[j]; 
   double hessii(double p[], double delta, int theta, double delti[]);    } 
   double hessij(double p[], double delti[], int i, int j);    free_vector(xicom,1,n); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    free_vector(pcom,1,n); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  } 
   
   hess=matrix(1,npar,1,npar);  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   printf("\nCalculation of the hessian matrix. Wait...\n");    long sec_left, days, hours, minutes;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    days = (time_sec) / (60*60*24);
   for (i=1;i<=npar;i++){    sec_left = (time_sec) % (60*60*24);
     printf("%d",i);fflush(stdout);    hours = (sec_left) / (60*60) ;
     fprintf(ficlog,"%d",i);fflush(ficlog);    sec_left = (sec_left) %(60*60);
     hess[i][i]=hessii(p,ftolhess,i,delti);    minutes = (sec_left) /60;
     /*printf(" %f ",p[i]);*/    sec_left = (sec_left) % (60);
     /*printf(" %lf ",hess[i][i]);*/    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   }    return ascdiff;
    }
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {  /*************** powell ************************/
       if (j>i) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         printf(".%d%d",i,j);fflush(stdout);              double (*func)(double [])) 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  { 
         hess[i][j]=hessij(p,delti,i,j);    void linmin(double p[], double xi[], int n, double *fret, 
         hess[j][i]=hess[i][j];                    double (*func)(double [])); 
         /*printf(" %lf ",hess[i][j]);*/    int i,ibig,j; 
       }    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
   }    double *xits;
   printf("\n");    int niterf, itmp;
   fprintf(ficlog,"\n");  
     pt=vector(1,n); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    ptt=vector(1,n); 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    xit=vector(1,n); 
      xits=vector(1,n); 
   a=matrix(1,npar,1,npar);    *fret=(*func)(p); 
   y=matrix(1,npar,1,npar);    for (j=1;j<=n;j++) pt[j]=p[j]; 
   x=vector(1,npar);    for (*iter=1;;++(*iter)) { 
   indx=ivector(1,npar);      fp=(*fret); 
   for (i=1;i<=npar;i++)      ibig=0; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      del=0.0; 
   ludcmp(a,npar,indx,&pd);      last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
   for (j=1;j<=npar;j++) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for (i=1;i<=npar;i++) x[i]=0;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     x[j]=1;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     lubksb(a,npar,indx,x);     for (i=1;i<=n;i++) {
     for (i=1;i<=npar;i++){        printf(" %d %.12f",i, p[i]);
       matcov[i][j]=x[i];        fprintf(ficlog," %d %.12lf",i, p[i]);
     }        fprintf(ficrespow," %.12lf", p[i]);
   }      }
       printf("\n");
   printf("\n#Hessian matrix#\n");      fprintf(ficlog,"\n");
   fprintf(ficlog,"\n#Hessian matrix#\n");      fprintf(ficrespow,"\n");fflush(ficrespow);
   for (i=1;i<=npar;i++) {      if(*iter <=3){
     for (j=1;j<=npar;j++) {        tm = *localtime(&curr_time.tv_sec);
       printf("%.3e ",hess[i][j]);        strcpy(strcurr,asctime(&tm));
       fprintf(ficlog,"%.3e ",hess[i][j]);  /*       asctime_r(&tm,strcurr); */
     }        forecast_time=curr_time; 
     printf("\n");        itmp = strlen(strcurr);
     fprintf(ficlog,"\n");        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   }          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /* Recompute Inverse */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++)        for(niterf=10;niterf<=30;niterf+=10){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   ludcmp(a,npar,indx,&pd);          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
   /*  printf("\n#Hessian matrix recomputed#\n");          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
   for (j=1;j<=npar;j++) {          if(strfor[itmp-1]=='\n')
     for (i=1;i<=npar;i++) x[i]=0;          strfor[itmp-1]='\0';
     x[j]=1;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     lubksb(a,npar,indx,x);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (i=1;i<=npar;i++){        }
       y[i][j]=x[i];      }
       printf("%.3e ",y[i][j]);      for (i=1;i<=n;i++) { 
       fprintf(ficlog,"%.3e ",y[i][j]);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }        fptt=(*fret); 
     printf("\n");  #ifdef DEBUG
     fprintf(ficlog,"\n");        printf("fret=%lf \n",*fret);
   }        fprintf(ficlog,"fret=%lf \n",*fret);
   */  #endif
         printf("%d",i);fflush(stdout);
   free_matrix(a,1,npar,1,npar);        fprintf(ficlog,"%d",i);fflush(ficlog);
   free_matrix(y,1,npar,1,npar);        linmin(p,xit,n,fret,func); 
   free_vector(x,1,npar);        if (fabs(fptt-(*fret)) > del) { 
   free_ivector(indx,1,npar);          del=fabs(fptt-(*fret)); 
   free_matrix(hess,1,npar,1,npar);          ibig=i; 
         } 
   #ifdef DEBUG
 }        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
 /*************** hessian matrix ****************/        for (j=1;j<=n;j++) {
 double hessii( double x[], double delta, int theta, double delti[])          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 {          printf(" x(%d)=%.12e",j,xit[j]);
   int i;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   int l=1, lmax=20;        }
   double k1,k2;        for(j=1;j<=n;j++) {
   double p2[NPARMAX+1];          printf(" p=%.12e",p[j]);
   double res;          fprintf(ficlog," p=%.12e",p[j]);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        }
   double fx;        printf("\n");
   int k=0,kmax=10;        fprintf(ficlog,"\n");
   double l1;  #endif
       } 
   fx=func(x);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   for (i=1;i<=npar;i++) p2[i]=x[i];  #ifdef DEBUG
   for(l=0 ; l <=lmax; l++){        int k[2],l;
     l1=pow(10,l);        k[0]=1;
     delts=delt;        k[1]=-1;
     for(k=1 ; k <kmax; k=k+1){        printf("Max: %.12e",(*func)(p));
       delt = delta*(l1*k);        fprintf(ficlog,"Max: %.12e",(*func)(p));
       p2[theta]=x[theta] +delt;        for (j=1;j<=n;j++) {
       k1=func(p2)-fx;          printf(" %.12e",p[j]);
       p2[theta]=x[theta]-delt;          fprintf(ficlog," %.12e",p[j]);
       k2=func(p2)-fx;        }
       /*res= (k1-2.0*fx+k2)/delt/delt; */        printf("\n");
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        fprintf(ficlog,"\n");
              for(l=0;l<=1;l++) {
 #ifdef DEBUG          for (j=1;j<=n;j++) {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 #endif            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         k=kmax;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }        }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  #endif
         k=kmax; l=lmax*10.;  
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        free_vector(xit,1,n); 
         delts=delt;        free_vector(xits,1,n); 
       }        free_vector(ptt,1,n); 
     }        free_vector(pt,1,n); 
   }        return; 
   delti[theta]=delts;      } 
   return res;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
        for (j=1;j<=n;j++) { 
 }        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
 double hessij( double x[], double delti[], int thetai,int thetaj)        pt[j]=p[j]; 
 {      } 
   int i;      fptt=(*func)(ptt); 
   int l=1, l1, lmax=20;      if (fptt < fp) { 
   double k1,k2,k3,k4,res,fx;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   double p2[NPARMAX+1];        if (t < 0.0) { 
   int k;          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
   fx=func(x);            xi[j][ibig]=xi[j][n]; 
   for (k=1; k<=2; k++) {            xi[j][n]=xit[j]; 
     for (i=1;i<=npar;i++) p2[i]=x[i];          }
     p2[thetai]=x[thetai]+delti[thetai]/k;  #ifdef DEBUG
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     k1=func(p2)-fx;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            for(j=1;j<=n;j++){
     p2[thetai]=x[thetai]+delti[thetai]/k;            printf(" %.12e",xit[j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            fprintf(ficlog," %.12e",xit[j]);
     k2=func(p2)-fx;          }
            printf("\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;          fprintf(ficlog,"\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  #endif
     k3=func(p2)-fx;        }
        } 
     p2[thetai]=x[thetai]-delti[thetai]/k;    } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  } 
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  /**** Prevalence limit (stable or period prevalence)  ****************/
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  {
 #endif    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   }       matrix by transitions matrix until convergence is reached */
   return res;  
 }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
 /************** Inverse of matrix **************/    double **matprod2();
 void ludcmp(double **a, int n, int *indx, double *d)    double **out, cov[NCOVMAX], **pmij();
 {    double **newm;
   int i,imax,j,k;    double agefin, delaymax=50 ; /* Max number of years to converge */
   double big,dum,sum,temp;  
   double *vv;    for (ii=1;ii<=nlstate+ndeath;ii++)
        for (j=1;j<=nlstate+ndeath;j++){
   vv=vector(1,n);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   *d=1.0;      }
   for (i=1;i<=n;i++) {  
     big=0.0;     cov[1]=1.;
     for (j=1;j<=n;j++)   
       if ((temp=fabs(a[i][j])) > big) big=temp;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     vv[i]=1.0/big;      newm=savm;
   }      /* Covariates have to be included here again */
   for (j=1;j<=n;j++) {       cov[2]=agefin;
     for (i=1;i<j;i++) {    
       sum=a[i][j];        for (k=1; k<=cptcovn;k++) {
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       a[i][j]=sum;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     }        }
     big=0.0;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (i=j;i<=n;i++) {        for (k=1; k<=cptcovprod;k++)
       sum=a[i][j];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       a[i][j]=sum;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       if ( (dum=vv[i]*fabs(sum)) >= big) {        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         big=dum;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         imax=i;  
       }      savm=oldm;
     }      oldm=newm;
     if (j != imax) {      maxmax=0.;
       for (k=1;k<=n;k++) {      for(j=1;j<=nlstate;j++){
         dum=a[imax][k];        min=1.;
         a[imax][k]=a[j][k];        max=0.;
         a[j][k]=dum;        for(i=1; i<=nlstate; i++) {
       }          sumnew=0;
       *d = -(*d);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       vv[imax]=vv[j];          prlim[i][j]= newm[i][j]/(1-sumnew);
     }          max=FMAX(max,prlim[i][j]);
     indx[j]=imax;          min=FMIN(min,prlim[i][j]);
     if (a[j][j] == 0.0) a[j][j]=TINY;        }
     if (j != n) {        maxmin=max-min;
       dum=1.0/(a[j][j]);        maxmax=FMAX(maxmax,maxmin);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      }
     }      if(maxmax < ftolpl){
   }        return prlim;
   free_vector(vv,1,n);  /* Doesn't work */      }
 ;    }
 }  }
   
 void lubksb(double **a, int n, int *indx, double b[])  /*************** transition probabilities ***************/ 
 {  
   int i,ii=0,ip,j;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   double sum;  {
      double s1, s2;
   for (i=1;i<=n;i++) {    /*double t34;*/
     ip=indx[i];    int i,j,j1, nc, ii, jj;
     sum=b[ip];  
     b[ip]=b[i];      for(i=1; i<= nlstate; i++){
     if (ii)        for(j=1; j<i;j++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     else if (sum) ii=i;            /*s2 += param[i][j][nc]*cov[nc];*/
     b[i]=sum;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   for (i=n;i>=1;i--) {          }
     sum=b[i];          ps[i][j]=s2;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     b[i]=sum/a[i][i];        }
   }        for(j=i+1; j<=nlstate+ndeath;j++){
 }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /************ Frequencies ********************/  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          }
 {  /* Some frequencies */          ps[i][j]=s2;
          }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      }
   int first;      /*ps[3][2]=1;*/
   double ***freq; /* Frequencies */      
   double *pp;      for(i=1; i<= nlstate; i++){
   double pos, k2, dateintsum=0,k2cpt=0;        s1=0;
   FILE *ficresp;        for(j=1; j<i; j++)
   char fileresp[FILENAMELENGTH];          s1+=exp(ps[i][j]);
          for(j=i+1; j<=nlstate+ndeath; j++)
   pp=vector(1,nlstate);          s1+=exp(ps[i][j]);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        ps[i][i]=1./(s1+1.);
   strcpy(fileresp,"p");        for(j=1; j<i; j++)
   strcat(fileresp,fileres);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for(j=i+1; j<=nlstate+ndeath; j++)
     printf("Problem with prevalence resultfile: %s\n", fileresp);          ps[i][j]= exp(ps[i][j])*ps[i][i];
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     exit(0);      } /* end i */
   }      
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   j1=0;        for(jj=1; jj<= nlstate+ndeath; jj++){
            ps[ii][jj]=0;
   j=cptcoveff;          ps[ii][ii]=1;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        }
       }
   first=1;      
   
   for(k1=1; k1<=j;k1++){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     for(i1=1; i1<=ncodemax[k1];i1++){  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       j1++;  /*         printf("ddd %lf ",ps[ii][jj]); */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  /*       } */
         scanf("%d", i);*/  /*       printf("\n "); */
       for (i=-1; i<=nlstate+ndeath; i++)    /*        } */
         for (jk=-1; jk<=nlstate+ndeath; jk++)    /*        printf("\n ");printf("%lf ",cov[2]); */
           for(m=agemin; m <= agemax+3; m++)         /*
             freq[i][jk][m]=0;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
              goto end;*/
       dateintsum=0;      return ps;
       k2cpt=0;  }
       for (i=1; i<=imx; i++) {  
         bool=1;  /**************** Product of 2 matrices ******************/
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  {
               bool=0;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         if (bool==1) {    /* in, b, out are matrice of pointers which should have been initialized 
           for(m=firstpass; m<=lastpass; m++){       before: only the contents of out is modified. The function returns
             k2=anint[m][i]+(mint[m][i]/12.);       a pointer to pointers identical to out */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    long i, j, k;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    for(i=nrl; i<= nrh; i++)
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for(k=ncolol; k<=ncoloh; k++)
               if (m<lastpass) {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          out[i][k] +=in[i][j]*b[j][k];
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
               }    return out;
                }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;  
                 k2cpt++;  /************* Higher Matrix Product ***************/
               }  
             }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           }  {
         }    /* Computes the transition matrix starting at age 'age' over 
       }       'nhstepm*hstepm*stepm' months (i.e. until
               age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       if  (cptcovn>0) {       (typically every 2 years instead of every month which is too big 
         fprintf(ficresp, "\n#********** Variable ");       for the memory).
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       Model is determined by parameters x and covariates have to be 
         fprintf(ficresp, "**********\n#");       included manually here. 
       }  
       for(i=1; i<=nlstate;i++)       */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");    int i, j, d, h, k;
          double **out, cov[NCOVMAX];
       for(i=(int)agemin; i <= (int)agemax+3; i++){    double **newm;
         if(i==(int)agemax+3){  
           fprintf(ficlog,"Total");    /* Hstepm could be zero and should return the unit matrix */
         }else{    for (i=1;i<=nlstate+ndeath;i++)
           if(first==1){      for (j=1;j<=nlstate+ndeath;j++){
             first=0;        oldm[i][j]=(i==j ? 1.0 : 0.0);
             printf("See log file for details...\n");        po[i][j][0]=(i==j ? 1.0 : 0.0);
           }      }
           fprintf(ficlog,"Age %d", i);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         }    for(h=1; h <=nhstepm; h++){
         for(jk=1; jk <=nlstate ; jk++){      for(d=1; d <=hstepm; d++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        newm=savm;
             pp[jk] += freq[jk][m][i];        /* Covariates have to be included here again */
         }        cov[1]=1.;
         for(jk=1; jk <=nlstate ; jk++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           for(m=-1, pos=0; m <=0 ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             pos += freq[jk][m][i];        for (k=1; k<=cptcovage;k++)
           if(pp[jk]>=1.e-10){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             if(first==1){        for (k=1; k<=cptcovprod;k++)
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             }  
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           }else{        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
             if(first==1)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           }        savm=oldm;
         }        oldm=newm;
       }
         for(jk=1; jk <=nlstate ; jk++){      for(i=1; i<=nlstate+ndeath; i++)
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(j=1;j<=nlstate+ndeath;j++) {
             pp[jk] += freq[jk][m][i];          po[i][j][h]=newm[i][j];
         }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
         for(jk=1,pos=0; jk <=nlstate ; jk++)      /*printf("h=%d ",h);*/
           pos += pp[jk];    } /* end h */
         for(jk=1; jk <=nlstate ; jk++){  /*     printf("\n H=%d \n",h); */
           if(pos>=1.e-5){    return po;
             if(first==1)  }
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
           }else{  /*************** log-likelihood *************/
             if(first==1)  double func( double *x)
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  {
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    int i, ii, j, k, mi, d, kk;
           }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           if( i <= (int) agemax){    double **out;
             if(pos>=1.e-5){    double sw; /* Sum of weights */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    double lli; /* Individual log likelihood */
               probs[i][jk][j1]= pp[jk]/pos;    int s1, s2;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    double bbh, survp;
             }    long ipmx;
             else    /*extern weight */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    /* We are differentiating ll according to initial status */
           }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++) 
              printf(" %d\n",s[4][i]);
         for(jk=-1; jk <=nlstate+ndeath; jk++)    */
           for(m=-1; m <=nlstate+ndeath; m++)    cov[1]=1.;
             if(freq[jk][m][i] !=0 ) {  
             if(first==1)    for(k=1; k<=nlstate; k++) ll[k]=0.;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    if(mle==1){
             }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if(i <= (int) agemax)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           fprintf(ficresp,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
         if(first==1)          for (ii=1;ii<=nlstate+ndeath;ii++)
           printf("Others in log...\n");            for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficlog,"\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
   }          for(d=0; d<dh[mi][i]; d++){
   dateintmean=dateintsum/k2cpt;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fclose(ficresp);            for (kk=1; kk<=cptcovage;kk++) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_vector(pp,1,nlstate);            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* End of Freq */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
             oldm=newm;
 /************ Prevalence ********************/          } /* end mult */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        
 {  /* Some frequencies */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias at large stepm.
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double ***freq; /* Frequencies */           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double *pp;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double pos, k2;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   pp=vector(1,nlstate);           * probability in order to take into account the bias as a fraction of the way
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             * -stepm/2 to stepm/2 .
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * For stepm=1 the results are the same as for previous versions of Imach.
   j1=0;           * For stepm > 1 the results are less biased than in previous versions. 
             */
   j=cptcoveff;          s1=s[mw[mi][i]][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   for(k1=1; k1<=j;k1++){          /* bias bh is positive if real duration
     for(i1=1; i1<=ncodemax[k1];i1++){           * is higher than the multiple of stepm and negative otherwise.
       j1++;           */
                /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for (i=-1; i<=nlstate+ndeath; i++)            if( s2 > nlstate){ 
         for (jk=-1; jk<=nlstate+ndeath; jk++)              /* i.e. if s2 is a death state and if the date of death is known 
           for(m=agemin; m <= agemax+3; m++)               then the contribution to the likelihood is the probability to 
             freq[i][jk][m]=0;               die between last step unit time and current  step unit time, 
                     which is also equal to probability to die before dh 
       for (i=1; i<=imx; i++) {               minus probability to die before dh-stepm . 
         bool=1;               In version up to 0.92 likelihood was computed
         if  (cptcovn>0) {          as if date of death was unknown. Death was treated as any other
           for (z1=1; z1<=cptcoveff; z1++)          health state: the date of the interview describes the actual state
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          and not the date of a change in health state. The former idea was
               bool=0;          to consider that at each interview the state was recorded
         }          (healthy, disable or death) and IMaCh was corrected; but when we
         if (bool==1) {          introduced the exact date of death then we should have modified
           for(m=firstpass; m<=lastpass; m++){          the contribution of an exact death to the likelihood. This new
             k2=anint[m][i]+(mint[m][i]/12.);          contribution is smaller and very dependent of the step unit
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          stepm. It is no more the probability to die between last interview
               if(agev[m][i]==0) agev[m][i]=agemax+1;          and month of death but the probability to survive from last
               if(agev[m][i]==1) agev[m][i]=agemax+2;          interview up to one month before death multiplied by the
               if (m<lastpass) {          probability to die within a month. Thanks to Chris
                 if (calagedate>0)          Jackson for correcting this bug.  Former versions increased
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          mortality artificially. The bad side is that we add another loop
                 else          which slows down the processing. The difference can be up to 10%
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          lower mortality.
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            */
               }            lli=log(out[s1][s2] - savm[s1][s2]);
             }  
           }  
         }          } else if  (s2==-2) {
       }            for (j=1,survp=0. ; j<=nlstate; j++) 
       for(i=(int)agemin; i <= (int)agemax+3; i++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for(jk=1; jk <=nlstate ; jk++){            /*survp += out[s1][j]; */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            lli= log(survp);
             pp[jk] += freq[jk][m][i];          }
         }          
         for(jk=1; jk <=nlstate ; jk++){          else if  (s2==-4) { 
           for(m=-1, pos=0; m <=0 ; m++)            for (j=3,survp=0. ; j<=nlstate; j++)  
             pos += freq[jk][m][i];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            lli= log(survp); 
                  } 
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          else if  (s2==-5) { 
             pp[jk] += freq[jk][m][i];            for (j=1,survp=0. ; j<=2; j++)  
         }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                    lli= log(survp); 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          } 
                  
         for(jk=1; jk <=nlstate ; jk++){              else{
           if( i <= (int) agemax){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             if(pos>=1.e-5){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
               probs[i][jk][j1]= pp[jk]/pos;          } 
             }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           }          /*if(lli ==000.0)*/
         }/* end jk */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       }/* end i */          ipmx +=1;
     } /* end i1 */          sw += weight[i];
   } /* end k1 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
        } /* end of individual */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    }  else if(mle==2){
   free_vector(pp,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }  /* End of Freq */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /************* Waves Concatenation ***************/            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          for(d=0; d<=dh[mi][i]; d++){
      Death is a valid wave (if date is known).            newm=savm;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            for (kk=1; kk<=cptcovage;kk++) {
      and mw[mi+1][i]. dh depends on stepm.              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      */            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, mi, m;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            savm=oldm;
      double sum=0., jmean=0.;*/            oldm=newm;
   int first;          } /* end mult */
   int j, k=0,jk, ju, jl;        
   double sum=0.;          s1=s[mw[mi][i]][i];
   first=0;          s2=s[mw[mi+1][i]][i];
   jmin=1e+5;          bbh=(double)bh[mi][i]/(double)stepm; 
   jmax=-1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   jmean=0.;          ipmx +=1;
   for(i=1; i<=imx; i++){          sw += weight[i];
     mi=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     m=firstpass;        } /* end of wave */
     while(s[m][i] <= nlstate){      } /* end of individual */
       if(s[m][i]>=1)    }  else if(mle==3){  /* exponential inter-extrapolation */
         mw[++mi][i]=m;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(m >=lastpass)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         break;        for(mi=1; mi<= wav[i]-1; mi++){
       else          for (ii=1;ii<=nlstate+ndeath;ii++)
         m++;            for (j=1;j<=nlstate+ndeath;j++){
     }/* end while */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (s[m][i] > nlstate){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       mi++;     /* Death is another wave */            }
       /* if(mi==0)  never been interviewed correctly before death */          for(d=0; d<dh[mi][i]; d++){
          /* Only death is a correct wave */            newm=savm;
       mw[mi][i]=m;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     wav[i]=mi;            }
     if(mi==0){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if(first==0){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);            savm=oldm;
         first=1;            oldm=newm;
       }          } /* end mult */
       if(first==1){        
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     } /* end mi==0 */          bbh=(double)bh[mi][i]/(double)stepm; 
   }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
   for(i=1; i<=imx; i++){          sw += weight[i];
     for(mi=1; mi<wav[i];mi++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if (stepm <=0)        } /* end of wave */
         dh[mi][i]=1;      } /* end of individual */
       else{    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         if (s[mw[mi+1][i]][i] > nlstate) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (agedc[i] < 2*AGESUP) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for(mi=1; mi<= wav[i]-1; mi++){
           if(j==0) j=1;  /* Survives at least one month after exam */          for (ii=1;ii<=nlstate+ndeath;ii++)
           k=k+1;            for (j=1;j<=nlstate+ndeath;j++){
           if (j >= jmax) jmax=j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (j <= jmin) jmin=j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           sum=sum+j;            }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         else{            for (kk=1; kk<=cptcovage;kk++) {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           k=k+1;            }
           if (j >= jmax) jmax=j;          
           else if (j <= jmin)jmin=j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           sum=sum+j;            savm=oldm;
         }            oldm=newm;
         jk= j/stepm;          } /* end mult */
         jl= j -jk*stepm;        
         ju= j -(jk+1)*stepm;          s1=s[mw[mi][i]][i];
         if(jl <= -ju)          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=jk;          if( s2 > nlstate){ 
         else            lli=log(out[s1][s2] - savm[s1][s2]);
           dh[mi][i]=jk+1;          }else{
         if(dh[mi][i]==0)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           dh[mi][i]=1; /* At least one step */          }
       }          ipmx +=1;
     }          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmean=sum/k;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        } /* end of wave */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      } /* end of individual */
  }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*********** Tricode ****************************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void tricode(int *Tvar, int **nbcode, int imx)        for(mi=1; mi<= wav[i]-1; mi++){
 {          for (ii=1;ii<=nlstate+ndeath;ii++)
   int Ndum[20],ij=1, k, j, i;            for (j=1;j<=nlstate+ndeath;j++){
   int cptcode=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   cptcoveff=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   for (k=0; k<19; k++) Ndum[k]=0;          for(d=0; d<dh[mi][i]; d++){
   for (k=1; k<=7; k++) ncodemax[k]=0;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            for (kk=1; kk<=cptcovage;kk++) {
     for (i=1; i<=imx; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       ij=(int)(covar[Tvar[j]][i]);            }
       Ndum[ij]++;          
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if (ij > cptcode) cptcode=ij;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
             oldm=newm;
     for (i=0; i<=cptcode; i++) {          } /* end mult */
       if(Ndum[i]!=0) ncodemax[j]++;        
     }          s1=s[mw[mi][i]][i];
     ij=1;          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
     for (i=1; i<=ncodemax[j]; i++) {          sw += weight[i];
       for (k=0; k<=19; k++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (Ndum[k] != 0) {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           nbcode[Tvar[j]][ij]=k;        } /* end of wave */
                } /* end of individual */
           ij++;    } /* End of if */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         if (ij > ncodemax[j]) break;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     }    return -l;
   }    }
   
  for (k=0; k<19; k++) Ndum[k]=0;  /*************** log-likelihood *************/
   double funcone( double *x)
  for (i=1; i<=ncovmodel-2; i++) {  {
    ij=Tvar[i];    /* Same as likeli but slower because of a lot of printf and if */
    Ndum[ij]++;    int i, ii, j, k, mi, d, kk;
  }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
  ij=1;    double lli; /* Individual log likelihood */
  for (i=1; i<=10; i++) {    double llt;
    if((Ndum[i]!=0) && (i<=ncovcol)){    int s1, s2;
      Tvaraff[ij]=i;    double bbh, survp;
      ij++;    /*extern weight */
    }    /* We are differentiating ll according to initial status */
  }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
  cptcoveff=ij-1;      printf(" %d\n",s[4][i]);
 }    */
     cov[1]=1.;
 /*********** Health Expectancies ****************/  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Health expectancies */      for(mi=1; mi<= wav[i]-1; mi++){
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double age, agelim, hf;          for (j=1;j<=nlstate+ndeath;j++){
   double ***p3mat,***varhe;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **dnewm,**doldm;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *xp;          }
   double **gp, **gm;        for(d=0; d<dh[mi][i]; d++){
   double ***gradg, ***trgradg;          newm=savm;
   int theta;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   xp=vector(1,npar);          }
   dnewm=matrix(1,nlstate*2,1,npar);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   doldm=matrix(1,nlstate*2,1,nlstate*2);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            savm=oldm;
   fprintf(ficreseij,"# Health expectancies\n");          oldm=newm;
   fprintf(ficreseij,"# Age");        } /* end mult */
   for(i=1; i<=nlstate;i++)        
     for(j=1; j<=nlstate;j++)        s1=s[mw[mi][i]][i];
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        s2=s[mw[mi+1][i]][i];
   fprintf(ficreseij,"\n");        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
   if(estepm < stepm){         * is higher than the multiple of stepm and negative otherwise.
     printf ("Problem %d lower than %d\n",estepm, stepm);         */
   }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   else  hstepm=estepm;            lli=log(out[s1][s2] - savm[s1][s2]);
   /* We compute the life expectancy from trapezoids spaced every estepm months        } else if  (s2==-2) {
    * This is mainly to measure the difference between two models: for example          for (j=1,survp=0. ; j<=nlstate; j++) 
    * if stepm=24 months pijx are given only every 2 years and by summing them            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    * we are calculating an estimate of the Life Expectancy assuming a linear          lli= log(survp);
    * progression inbetween and thus overestimating or underestimating according        }else if (mle==1){
    * to the curvature of the survival function. If, for the same date, we          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        } else if(mle==2){
    * to compare the new estimate of Life expectancy with the same linear          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
    * hypothesis. A more precise result, taking into account a more precise        } else if(mle==3){  /* exponential inter-extrapolation */
    * curvature will be obtained if estepm is as small as stepm. */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
   /* For example we decided to compute the life expectancy with the smallest unit */          lli=log(out[s1][s2]); /* Original formula */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
      nhstepm is the number of hstepm from age to agelim          lli=log(out[s1][s2]); /* Original formula */
      nstepm is the number of stepm from age to agelin.        } /* End of if */
      Look at hpijx to understand the reason of that which relies in memory size        ipmx +=1;
      and note for a fixed period like estepm months */        sw += weight[i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      survival function given by stepm (the optimization length). Unfortunately it  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
      means that if the survival funtion is printed only each two years of age and if        if(globpr){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
      results. So we changed our mind and took the option of the best precision.   %11.6f %11.6f %11.6f ", \
   */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   agelim=AGESUP;            llt +=ll[k]*gipmx/gsw;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     /* nhstepm age range expressed in number of stepm */          }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          fprintf(ficresilk," %10.6f\n", -llt);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        }
     /* if (stepm >= YEARM) hstepm=1;*/      } /* end of wave */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    } /* end of individual */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     gp=matrix(0,nhstepm,1,nlstate*2);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     gm=matrix(0,nhstepm,1,nlstate*2);    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      gsw=sw;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      return -l;
    }
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
   /*************** function likelione ***********/
     /* Computing Variances of health expectancies */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
      for(theta=1; theta <=npar; theta++){    /* This routine should help understanding what is done with 
       for(i=1; i<=npar; i++){       the selection of individuals/waves and
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       to check the exact contribution to the likelihood.
       }       Plotting could be done.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       */
      int k;
       cptj=0;  
       for(j=1; j<= nlstate; j++){    if(*globpri !=0){ /* Just counts and sums, no printings */
         for(i=1; i<=nlstate; i++){      strcpy(fileresilk,"ilk"); 
           cptj=cptj+1;      strcat(fileresilk,fileres);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        printf("Problem with resultfile: %s\n", fileresilk);
           }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         }      }
       }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
            fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
            /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(i=1; i<=npar; i++)      for(k=1; k<=nlstate; k++) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
          }
       cptj=0;  
       for(j=1; j<= nlstate; j++){    *fretone=(*funcone)(p);
         for(i=1;i<=nlstate;i++){    if(*globpri !=0){
           cptj=cptj+1;      fclose(ficresilk);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      fflush(fichtm); 
           }    } 
         }    return;
       }  }
       for(j=1; j<= nlstate*2; j++)  
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  /*********** Maximum Likelihood Estimation ***************/
         }  
      }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      {
 /* End theta */    int i,j, iter;
     double **xi;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    double fret;
     double fretone; /* Only one call to likelihood */
      for(h=0; h<=nhstepm-1; h++)    /*  char filerespow[FILENAMELENGTH];*/
       for(j=1; j<=nlstate*2;j++)    xi=matrix(1,npar,1,npar);
         for(theta=1; theta <=npar; theta++)    for (i=1;i<=npar;i++)
           trgradg[h][j][theta]=gradg[h][theta][j];      for (j=1;j<=npar;j++)
              xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
      for(i=1;i<=nlstate*2;i++)    strcpy(filerespow,"pow"); 
       for(j=1;j<=nlstate*2;j++)    strcat(filerespow,fileres);
         varhe[i][j][(int)age] =0.;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
      printf("%d|",(int)age);fflush(stdout);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    }
      for(h=0;h<=nhstepm-1;h++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for(k=0;k<=nhstepm-1;k++){    for (i=1;i<=nlstate;i++)
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      for(j=1;j<=nlstate+ndeath;j++)
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         for(i=1;i<=nlstate*2;i++)    fprintf(ficrespow,"\n");
           for(j=1;j<=nlstate*2;j++)  
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    powell(p,xi,npar,ftol,&iter,&fret,func);
       }  
     }    free_matrix(xi,1,npar,1,npar);
     /* Computing expectancies */    fclose(ficrespow);
     for(i=1; i<=nlstate;i++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(j=1; j<=nlstate;j++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  
            }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
   /**** Computes Hessian and covariance matrix ***/
         }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
     fprintf(ficreseij,"%3.0f",age );    double  **a,**y,*x,pd;
     cptj=0;    double **hess;
     for(i=1; i<=nlstate;i++)    int i, j,jk;
       for(j=1; j<=nlstate;j++){    int *indx;
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     fprintf(ficreseij,"\n");    void lubksb(double **a, int npar, int *indx, double b[]) ;
        void ludcmp(double **a, int npar, int *indx, double *d) ;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    double gompertz(double p[]);
     free_matrix(gp,0,nhstepm,1,nlstate*2);    hess=matrix(1,npar,1,npar);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    printf("\nCalculation of the hessian matrix. Wait...\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   }    for (i=1;i<=npar;i++){
   printf("\n");      printf("%d",i);fflush(stdout);
   fprintf(ficlog,"\n");      fprintf(ficlog,"%d",i);fflush(ficlog);
      
   free_vector(xp,1,npar);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   free_matrix(dnewm,1,nlstate*2,1,npar);      
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      /*  printf(" %f ",p[i]);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 }    }
     
 /************ Variance ******************/    for (i=1;i<=npar;i++) {
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)      for (j=1;j<=npar;j++)  {
 {        if (j>i) { 
   /* Variance of health expectancies */          printf(".%d%d",i,j);fflush(stdout);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   /* double **newm;*/          hess[i][j]=hessij(p,delti,i,j,func,npar);
   double **dnewm,**doldm;          
   double **dnewmp,**doldmp;          hess[j][i]=hess[i][j];    
   int i, j, nhstepm, hstepm, h, nstepm ;          /*printf(" %lf ",hess[i][j]);*/
   int k, cptcode;        }
   double *xp;      }
   double **gp, **gm;  /* for var eij */    }
   double ***gradg, ***trgradg; /*for var eij */    printf("\n");
   double **gradgp, **trgradgp; /* for var p point j */    fprintf(ficlog,"\n");
   double *gpp, *gmp; /* for var p point j */  
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   double ***p3mat;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   double age,agelim, hf;    
   int theta;    a=matrix(1,npar,1,npar);
   char digit[4];    y=matrix(1,npar,1,npar);
   char digitp[16];    x=vector(1,npar);
     indx=ivector(1,npar);
   char fileresprobmorprev[FILENAMELENGTH];    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   if(popbased==1)    ludcmp(a,npar,indx,&pd);
     strcpy(digitp,"-populbased-");  
   else    for (j=1;j<=npar;j++) {
     strcpy(digitp,"-stablbased-");      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
   strcpy(fileresprobmorprev,"prmorprev");      lubksb(a,npar,indx,x);
   sprintf(digit,"%-d",ij);      for (i=1;i<=npar;i++){ 
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        matcov[i][j]=x[i];
   strcat(fileresprobmorprev,digit); /* Tvar to be done */      }
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    }
   strcat(fileresprobmorprev,fileres);  
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    printf("\n#Hessian matrix#\n");
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    fprintf(ficlog,"\n#Hessian matrix#\n");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    for (i=1;i<=npar;i++) { 
   }      for (j=1;j<=npar;j++) { 
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        printf("%.3e ",hess[i][j]);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        fprintf(ficlog,"%.3e ",hess[i][j]);
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");      }
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      printf("\n");
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      fprintf(ficlog,"\n");
     fprintf(ficresprobmorprev," p.%-d SE",j);    }
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    /* Recompute Inverse */
   }      for (i=1;i<=npar;i++)
   fprintf(ficresprobmorprev,"\n");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    ludcmp(a,npar,indx,&pd);
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    /*  printf("\n#Hessian matrix recomputed#\n");
     exit(0);  
   }    for (j=1;j<=npar;j++) {
   else{      for (i=1;i<=npar;i++) x[i]=0;
     fprintf(ficgp,"\n# Routine varevsij");      x[j]=1;
   }      lubksb(a,npar,indx,x);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      for (i=1;i<=npar;i++){ 
     printf("Problem with html file: %s\n", optionfilehtm);        y[i][j]=x[i];
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);        printf("%.3e ",y[i][j]);
     exit(0);        fprintf(ficlog,"%.3e ",y[i][j]);
   }      }
   else{      printf("\n");
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");      fprintf(ficlog,"\n");
   }    }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    */
   
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    free_matrix(a,1,npar,1,npar);
   fprintf(ficresvij,"# Age");    free_matrix(y,1,npar,1,npar);
   for(i=1; i<=nlstate;i++)    free_vector(x,1,npar);
     for(j=1; j<=nlstate;j++)    free_ivector(indx,1,npar);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    free_matrix(hess,1,npar,1,npar);
   fprintf(ficresvij,"\n");  
   
   xp=vector(1,npar);  }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  /*************** hessian matrix ****************/
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  {
     int i;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    int l=1, lmax=20;
   gpp=vector(nlstate+1,nlstate+ndeath);    double k1,k2;
   gmp=vector(nlstate+1,nlstate+ndeath);    double p2[NPARMAX+1];
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    double res;
      double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   if(estepm < stepm){    double fx;
     printf ("Problem %d lower than %d\n",estepm, stepm);    int k=0,kmax=10;
   }    double l1;
   else  hstepm=estepm;    
   /* For example we decided to compute the life expectancy with the smallest unit */    fx=func(x);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (i=1;i<=npar;i++) p2[i]=x[i];
      nhstepm is the number of hstepm from age to agelim    for(l=0 ; l <=lmax; l++){
      nstepm is the number of stepm from age to agelin.      l1=pow(10,l);
      Look at hpijx to understand the reason of that which relies in memory size      delts=delt;
      and note for a fixed period like k years */      for(k=1 ; k <kmax; k=k+1){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        delt = delta*(l1*k);
      survival function given by stepm (the optimization length). Unfortunately it        p2[theta]=x[theta] +delt;
      means that if the survival funtion is printed only each two years of age and if        k1=func(p2)-fx;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        p2[theta]=x[theta]-delt;
      results. So we changed our mind and took the option of the best precision.        k2=func(p2)-fx;
   */        /*res= (k1-2.0*fx+k2)/delt/delt; */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   agelim = AGESUP;        
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  #ifdef DEBUG
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #endif
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     gp=matrix(0,nhstepm,1,nlstate);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     gm=matrix(0,nhstepm,1,nlstate);          k=kmax;
         }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     for(theta=1; theta <=npar; theta++){          k=kmax; l=lmax*10.;
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       }          delts=delt;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
     }
       if (popbased==1) {    delti[theta]=delts;
         for(i=1; i<=nlstate;i++)    return res; 
           prlim[i][i]=probs[(int)age][i][ij];    
       }  }
    
       for(j=1; j<= nlstate; j++){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         for(h=0; h<=nhstepm; h++){  {
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    int i;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    int l=1, l1, lmax=20;
         }    double k1,k2,k3,k4,res,fx;
       }    double p2[NPARMAX+1];
       /* This for computing forces of mortality (h=1)as a weighted average */    int k;
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){  
         for(i=1; i<= nlstate; i++)    fx=func(x);
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    for (k=1; k<=2; k++) {
       }          for (i=1;i<=npar;i++) p2[i]=x[i];
       /* end force of mortality */      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(i=1; i<=npar; i++) /* Computes gradient */      k1=func(p2)-fx;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        p2[thetai]=x[thetai]+delti[thetai]/k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k2=func(p2)-fx;
       if (popbased==1) {    
         for(i=1; i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
           prlim[i][i]=probs[(int)age][i][ij];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       }      k3=func(p2)-fx;
     
       for(j=1; j<= nlstate; j++){      p2[thetai]=x[thetai]-delti[thetai]/k;
         for(h=0; h<=nhstepm; h++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      k4=func(p2)-fx;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         }  #ifdef DEBUG
       }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       /* This for computing force of mortality (h=1)as a weighted average */      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  #endif
         for(i=1; i<= nlstate; i++)    }
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    return res;
       }      }
       /* end force of mortality */  
   /************** Inverse of matrix **************/
       for(j=1; j<= nlstate; j++) /* vareij */  void ludcmp(double **a, int n, int *indx, double *d) 
         for(h=0; h<=nhstepm; h++){  { 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    int i,imax,j,k; 
         }    double big,dum,sum,temp; 
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    double *vv; 
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];   
       }    vv=vector(1,n); 
     *d=1.0; 
     } /* End theta */    for (i=1;i<=n;i++) { 
       big=0.0; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
     for(h=0; h<=nhstepm; h++) /* veij */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for(j=1; j<=nlstate;j++)      vv[i]=1.0/big; 
         for(theta=1; theta <=npar; theta++)    } 
           trgradg[h][j][theta]=gradg[h][theta][j];    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        sum=a[i][j]; 
       for(theta=1; theta <=npar; theta++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         trgradgp[j][theta]=gradgp[theta][j];        a[i][j]=sum; 
       } 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      big=0.0; 
     for(i=1;i<=nlstate;i++)      for (i=j;i<=n;i++) { 
       for(j=1;j<=nlstate;j++)        sum=a[i][j]; 
         vareij[i][j][(int)age] =0.;        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
     for(h=0;h<=nhstepm;h++){        a[i][j]=sum; 
       for(k=0;k<=nhstepm;k++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          big=dum; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          imax=i; 
         for(i=1;i<=nlstate;i++)        } 
           for(j=1;j<=nlstate;j++)      } 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      if (j != imax) { 
       }        for (k=1;k<=n;k++) { 
     }          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
     /* pptj */          a[j][k]=dum; 
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);        } 
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        *d = -(*d); 
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        vv[imax]=vv[j]; 
       for(i=nlstate+1;i<=nlstate+ndeath;i++)      } 
         varppt[j][i]=doldmp[j][i];      indx[j]=imax; 
     /* end ppptj */      if (a[j][j] == 0.0) a[j][j]=TINY; 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        if (j != n) { 
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        dum=1.0/(a[j][j]); 
          for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     if (popbased==1) {      } 
       for(i=1; i<=nlstate;i++)    } 
         prlim[i][i]=probs[(int)age][i][ij];    free_vector(vv,1,n);  /* Doesn't work */
     }  ;
      } 
     /* This for computing force of mortality (h=1)as a weighted average */  
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  void lubksb(double **a, int n, int *indx, double b[]) 
       for(i=1; i<= nlstate; i++)  { 
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    int i,ii=0,ip,j; 
     }        double sum; 
     /* end force of mortality */   
     for (i=1;i<=n;i++) { 
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      ip=indx[i]; 
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      sum=b[ip]; 
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));      b[ip]=b[i]; 
       for(i=1; i<=nlstate;i++){      if (ii) 
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       }      else if (sum) ii=i; 
     }      b[i]=sum; 
     fprintf(ficresprobmorprev,"\n");    } 
     for (i=n;i>=1;i--) { 
     fprintf(ficresvij,"%.0f ",age );      sum=b[i]; 
     for(i=1; i<=nlstate;i++)      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(j=1; j<=nlstate;j++){      b[i]=sum/a[i][i]; 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    } 
       }  } 
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);  void pstamp(FILE *fichier)
     free_matrix(gm,0,nhstepm,1,nlstate);  {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */  /************ Frequencies ********************/
   free_vector(gpp,nlstate+1,nlstate+ndeath);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   free_vector(gmp,nlstate+1,nlstate+ndeath);  {  /* Some frequencies */
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    int first;
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    double ***freq; /* Frequencies */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    double *pp, **prop;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    char fileresp[FILENAMELENGTH];
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    pp=vector(1,nlstate);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
   free_vector(xp,1,npar);    if((ficresp=fopen(fileresp,"w"))==NULL) {
   free_matrix(doldm,1,nlstate,1,nlstate);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   free_matrix(dnewm,1,nlstate,1,npar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      exit(0);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    }
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   fclose(ficresprobmorprev);    j1=0;
   fclose(ficgp);    
   fclose(fichtm);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 }  
     first=1;
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for(k1=1; k1<=j;k1++){
 {      for(i1=1; i1<=ncodemax[k1];i1++){
   /* Variance of prevalence limit */        j1++;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double **newm;          scanf("%d", i);*/
   double **dnewm,**doldm;        for (i=-5; i<=nlstate+ndeath; i++)  
   int i, j, nhstepm, hstepm;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   int k, cptcode;            for(m=iagemin; m <= iagemax+3; m++)
   double *xp;              freq[i][jk][m]=0;
   double *gp, *gm;  
   double **gradg, **trgradg;      for (i=1; i<=nlstate; i++)  
   double age,agelim;        for(m=iagemin; m <= iagemax+3; m++)
   int theta;          prop[i][m]=0;
            
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        dateintsum=0;
   fprintf(ficresvpl,"# Age");        k2cpt=0;
   for(i=1; i<=nlstate;i++)        for (i=1; i<=imx; i++) {
       fprintf(ficresvpl," %1d-%1d",i,i);          bool=1;
   fprintf(ficresvpl,"\n");          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   xp=vector(1,npar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   dnewm=matrix(1,nlstate,1,npar);                bool=0;
   doldm=matrix(1,nlstate,1,nlstate);          }
            if (bool==1){
   hstepm=1*YEARM; /* Every year of age */            for(m=firstpass; m<=lastpass; m++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              k2=anint[m][i]+(mint[m][i]/12.);
   agelim = AGESUP;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     if (stepm >= YEARM) hstepm=1;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                if (m<lastpass) {
     gradg=matrix(1,npar,1,nlstate);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     gp=vector(1,nlstate);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     gm=vector(1,nlstate);                }
                 
     for(theta=1; theta <=npar; theta++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       for(i=1; i<=npar; i++){ /* Computes gradient */                  dateintsum=dateintsum+k2;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                  k2cpt++;
       }                }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                /*}*/
       for(i=1;i<=nlstate;i++)            }
         gp[i] = prlim[i][i];          }
            }
       for(i=1; i<=npar; i++) /* Computes gradient */         
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        pstamp(ficresp);
       for(i=1;i<=nlstate;i++)        if  (cptcovn>0) {
         gm[i] = prlim[i][i];          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(i=1;i<=nlstate;i++)          fprintf(ficresp, "**********\n#");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        }
     } /* End theta */        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     trgradg =matrix(1,nlstate,1,npar);        fprintf(ficresp, "\n");
         
     for(j=1; j<=nlstate;j++)        for(i=iagemin; i <= iagemax+3; i++){
       for(theta=1; theta <=npar; theta++)          if(i==iagemax+3){
         trgradg[j][theta]=gradg[theta][j];            fprintf(ficlog,"Total");
           }else{
     for(i=1;i<=nlstate;i++)            if(first==1){
       varpl[i][(int)age] =0.;              first=0;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              printf("See log file for details...\n");
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            }
     for(i=1;i<=nlstate;i++)            fprintf(ficlog,"Age %d", i);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          }
           for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficresvpl,"%.0f ",age );            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     for(i=1; i<=nlstate;i++)              pp[jk] += freq[jk][m][i]; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          }
     fprintf(ficresvpl,"\n");          for(jk=1; jk <=nlstate ; jk++){
     free_vector(gp,1,nlstate);            for(m=-1, pos=0; m <=0 ; m++)
     free_vector(gm,1,nlstate);              pos += freq[jk][m][i];
     free_matrix(gradg,1,npar,1,nlstate);            if(pp[jk]>=1.e-10){
     free_matrix(trgradg,1,nlstate,1,npar);              if(first==1){
   } /* End age */              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
   free_vector(xp,1,npar);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   free_matrix(doldm,1,nlstate,1,npar);            }else{
   free_matrix(dnewm,1,nlstate,1,nlstate);              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
 /************ Variance of one-step probabilities  ******************/          }
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {          for(jk=1; jk <=nlstate ; jk++){
   int i, j=0,  i1, k1, l1, t, tj;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   int k2, l2, j1,  z1;              pp[jk] += freq[jk][m][i];
   int k=0,l, cptcode;          }       
   int first=1, first1;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;            pos += pp[jk];
   double **dnewm,**doldm;            posprop += prop[jk][i];
   double *xp;          }
   double *gp, *gm;          for(jk=1; jk <=nlstate ; jk++){
   double **gradg, **trgradg;            if(pos>=1.e-5){
   double **mu;              if(first==1)
   double age,agelim, cov[NCOVMAX];                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   int theta;            }else{
   char fileresprob[FILENAMELENGTH];              if(first==1)
   char fileresprobcov[FILENAMELENGTH];                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   char fileresprobcor[FILENAMELENGTH];              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
   double ***varpij;            if( i <= iagemax){
               if(pos>=1.e-5){
   strcpy(fileresprob,"prob");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   strcat(fileresprob,fileres);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     printf("Problem with resultfile: %s\n", fileresprob);              }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);              else
   }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   strcpy(fileresprobcov,"probcov");            }
   strcat(fileresprobcov,fileres);          }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          
     printf("Problem with resultfile: %s\n", fileresprobcov);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);            for(m=-1; m <=nlstate+ndeath; m++)
   }              if(freq[jk][m][i] !=0 ) {
   strcpy(fileresprobcor,"probcor");              if(first==1)
   strcat(fileresprobcor,fileres);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     printf("Problem with resultfile: %s\n", fileresprobcor);              }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);          if(i <= iagemax)
   }            fprintf(ficresp,"\n");
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          if(first==1)
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            printf("Others in log...\n");
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          fprintf(ficlog,"\n");
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      }
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    }
      dateintmean=dateintsum/k2cpt; 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");   
   fprintf(ficresprob,"# Age");    fclose(ficresp);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   fprintf(ficresprobcov,"# Age");    free_vector(pp,1,nlstate);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   fprintf(ficresprobcov,"# Age");    /* End of Freq */
   }
   
   for(i=1; i<=nlstate;i++)  /************ Prevalence ********************/
     for(j=1; j<=(nlstate+ndeath);j++){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  {  
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       fprintf(ficresprobcor," p%1d-%1d ",i,j);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     }         We still use firstpass and lastpass as another selection.
   fprintf(ficresprob,"\n");    */
   fprintf(ficresprobcov,"\n");   
   fprintf(ficresprobcor,"\n");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   xp=vector(1,npar);    double ***freq; /* Frequencies */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    double *pp, **prop;
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    double pos,posprop; 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    double  y2; /* in fractional years */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    int iagemin, iagemax;
   first=1;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    iagemin= (int) agemin;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    iagemax= (int) agemax;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    /*pp=vector(1,nlstate);*/
     exit(0);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   else{    j1=0;
     fprintf(ficgp,"\n# Routine varprob");    
   }    j=cptcoveff;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     printf("Problem with html file: %s\n", optionfilehtm);    
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    for(k1=1; k1<=j;k1++){
     exit(0);      for(i1=1; i1<=ncodemax[k1];i1++){
   }        j1++;
   else{        
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        for (i=1; i<=nlstate; i++)  
     fprintf(fichtm,"\n");          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");       
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        for (i=1; i<=imx; i++) { /* Each individual */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");          bool=1;
           if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
   cov[1]=1;          } 
   tj=cptcoveff;          if (bool==1) { 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   j1=0;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   for(t=1; t<=tj;t++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     for(i1=1; i1<=ncodemax[t];i1++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       j1++;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       if  (cptcovn>0) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         fprintf(ficresprob, "\n#********** Variable ");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         fprintf(ficresprob, "**********\n#");                  prop[s[m][i]][iagemax+3] += weight[i]; 
         fprintf(ficresprobcov, "\n#********** Variable ");                } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              }
         fprintf(ficresprobcov, "**********\n#");            } /* end selection of waves */
                  }
         fprintf(ficgp, "\n#********** Variable ");        }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(i=iagemin; i <= iagemax+3; i++){  
         fprintf(ficgp, "**********\n#");          
                  for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                    posprop += prop[jk][i]; 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");          } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");          for(jk=1; jk <=nlstate ; jk++){     
                    if( i <=  iagemax){ 
         fprintf(ficresprobcor, "\n#********** Variable ");                  if(posprop>=1.e-5){ 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                probs[i][jk][j1]= prop[jk][i]/posprop;
         fprintf(ficgp, "**********\n#");                  } else
       }                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
                  } 
       for (age=bage; age<=fage; age ++){          }/* end jk */ 
         cov[2]=age;        }/* end i */ 
         for (k=1; k<=cptcovn;k++) {      } /* end i1 */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    } /* end k1 */
         }    
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         for (k=1; k<=cptcovprod;k++)    /*free_vector(pp,1,nlstate);*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
          }  /* End of prevalence */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  /************* Waves Concatenation ***************/
         gp=vector(1,(nlstate)*(nlstate+ndeath));  
         gm=vector(1,(nlstate)*(nlstate+ndeath));  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      {
         for(theta=1; theta <=npar; theta++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           for(i=1; i<=npar; i++)       Death is a valid wave (if date is known).
             xp[i] = x[i] + (i==theta ?delti[theta]:0);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                 dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       and mw[mi+1][i]. dh depends on stepm.
                 */
           k=0;  
           for(i=1; i<= (nlstate); i++){    int i, mi, m;
             for(j=1; j<=(nlstate+ndeath);j++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
               k=k+1;       double sum=0., jmean=0.;*/
               gp[k]=pmmij[i][j];    int first;
             }    int j, k=0,jk, ju, jl;
           }    double sum=0.;
              first=0;
           for(i=1; i<=npar; i++)    jmin=1e+5;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    jmax=-1;
        jmean=0.;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    for(i=1; i<=imx; i++){
           k=0;      mi=0;
           for(i=1; i<=(nlstate); i++){      m=firstpass;
             for(j=1; j<=(nlstate+ndeath);j++){      while(s[m][i] <= nlstate){
               k=k+1;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
               gm[k]=pmmij[i][j];          mw[++mi][i]=m;
             }        if(m >=lastpass)
           }          break;
              else
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          m++;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        }/* end while */
         }      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        /* if(mi==0)  never been interviewed correctly before death */
           for(theta=1; theta <=npar; theta++)           /* Only death is a correct wave */
             trgradg[j][theta]=gradg[theta][j];        mw[mi][i]=m;
              }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      wav[i]=mi;
              if(mi==0){
         pmij(pmmij,cov,ncovmodel,x,nlstate);        nbwarn++;
                if(first==0){
         k=0;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         for(i=1; i<=(nlstate); i++){          first=1;
           for(j=1; j<=(nlstate+ndeath);j++){        }
             k=k+1;        if(first==1){
             mu[k][(int) age]=pmmij[i][j];          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           }        }
         }      } /* end mi==0 */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    } /* End individuals */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  
             varpij[i][j][(int)age] = doldm[i][j];    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
         /*printf("\n%d ",(int)age);        if (stepm <=0)
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          dh[mi][i]=1;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        else{
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
      }*/            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         fprintf(ficresprob,"\n%d ",(int)age);              if(j==0) j=1;  /* Survives at least one month after exam */
         fprintf(ficresprobcov,"\n%d ",(int)age);              else if(j<0){
         fprintf(ficresprobcor,"\n%d ",(int)age);                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)                j=1; /* Temporary Dangerous patch */
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);              }
         }              k=k+1;
         i=0;              if (j >= jmax){
         for (k=1; k<=(nlstate);k++){                jmax=j;
           for (l=1; l<=(nlstate+ndeath);l++){                ijmax=i;
             i=i++;              }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              if (j <= jmin){
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);                jmin=j;
             for (j=1; j<=i;j++){                ijmin=i;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));              sum=sum+j;
             }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         }/* end of loop for state */            }
       } /* end of loop for age */          }
           else{
       /* Confidence intervalle of pij  */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       /*  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       fprintf(ficgp,"\nset noparametric;unset label");  
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");            k=k+1;
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            if (j >= jmax) {
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);              jmax=j;
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);              ijmax=i;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);            }
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);            else if (j <= jmin){
       */              jmin=j;
               ijmin=i;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            }
       first1=1;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       for (k2=1; k2<=(nlstate);k2++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         for (l2=1; l2<=(nlstate+ndeath);l2++){            if(j<0){
           if(l2==k2) continue;              nberr++;
           j=(k2-1)*(nlstate+ndeath)+l2;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           for (k1=1; k1<=(nlstate);k1++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             for (l1=1; l1<=(nlstate+ndeath);l1++){            }
               if(l1==k1) continue;            sum=sum+j;
               i=(k1-1)*(nlstate+ndeath)+l1;          }
               if(i<=j) continue;          jk= j/stepm;
               for (age=bage; age<=fage; age ++){          jl= j -jk*stepm;
                 if ((int)age %5==0){          ju= j -(jk+1)*stepm;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;            if(jl==0){
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              dh[mi][i]=jk;
                   mu1=mu[i][(int) age]/stepm*YEARM ;              bh[mi][i]=0;
                   mu2=mu[j][(int) age]/stepm*YEARM;            }else{ /* We want a negative bias in order to only have interpolation ie
                   c12=cv12/sqrt(v1*v2);                    * at the price of an extra matrix product in likelihood */
                   /* Computing eigen value of matrix of covariance */              dh[mi][i]=jk+1;
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;              bh[mi][i]=ju;
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            }
                   /* Eigen vectors */          }else{
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            if(jl <= -ju){
                   /*v21=sqrt(1.-v11*v11); *//* error */              dh[mi][i]=jk;
                   v21=(lc1-v1)/cv12*v11;              bh[mi][i]=jl;       /* bias is positive if real duration
                   v12=-v21;                                   * is higher than the multiple of stepm and negative otherwise.
                   v22=v11;                                   */
                   tnalp=v21/v11;            }
                   if(first1==1){            else{
                     first1=0;              dh[mi][i]=jk+1;
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);              bh[mi][i]=ju;
                   }            }
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);            if(dh[mi][i]==0){
                   /*printf(fignu*/              dh[mi][i]=1; /* At least one step */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              bh[mi][i]=ju; /* At least one step */
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                   if(first==1){            }
                     first=0;          } /* end if mle */
                     fprintf(ficgp,"\nset parametric;unset label");        }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);      } /* end wave */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    }
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);    jmean=sum/k;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);   }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  /*********** Tricode ****************************/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  void tricode(int *Tvar, int **nbcode, int imx)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  {
                   }else{    
                     first=0;    int Ndum[20],ij=1, k, j, i, maxncov=19;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    int cptcode=0;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    cptcoveff=0; 
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\   
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    for (k=0; k<maxncov; k++) Ndum[k]=0;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    for (k=1; k<=7; k++) ncodemax[k]=0;
                   }/* if first */  
                 } /* age mod 5 */    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
               } /* end loop age */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);                                 modality*/ 
               first=1;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
             } /*l12 */        Ndum[ij]++; /*store the modality */
           } /* k12 */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         } /*l1 */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       }/* k1 */                                         Tvar[j]. If V=sex and male is 0 and 
     } /* loop covariates */                                         female is 1, then  cptcode=1.*/
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=0; i<=cptcode; i++) {
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }      ij=1; 
   free_vector(xp,1,npar);      for (i=1; i<=ncodemax[j]; i++) {
   fclose(ficresprob);        for (k=0; k<= maxncov; k++) {
   fclose(ficresprobcov);          if (Ndum[k] != 0) {
   fclose(ficresprobcor);            nbcode[Tvar[j]][ij]=k; 
   fclose(ficgp);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   fclose(fichtm);            
 }            ij++;
           }
           if (ij > ncodemax[j]) break; 
 /******************* Printing html file ***********/        }  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      } 
                   int lastpass, int stepm, int weightopt, char model[],\    }  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\   for (k=0; k< maxncov; k++) Ndum[k]=0;
                   double jprev1, double mprev1,double anprev1, \  
                   double jprev2, double mprev2,double anprev2){   for (i=1; i<=ncovmodel-2; i++) { 
   int jj1, k1, i1, cpt;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   /*char optionfilehtm[FILENAMELENGTH];*/     ij=Tvar[i];
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {     Ndum[ij]++;
     printf("Problem with %s \n",optionfilehtm), exit(0);   }
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);  
   }   ij=1;
    for (i=1; i<= maxncov; i++) {
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n     if((Ndum[i]!=0) && (i<=ncovcol)){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n       Tvaraff[ij]=i; /*For printing */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n       ij++;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n     }
  - Life expectancies by age and initial health status (estepm=%2d months):   }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \   
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);   cptcoveff=ij-1; /*Number of simple covariates*/
   }
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");  
   /*********** Health Expectancies ****************/
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
  jj1=0;  {
  for(k1=1; k1<=m;k1++){    /* Health expectancies, no variances */
    for(i1=1; i1<=ncodemax[k1];i1++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
      jj1++;    int nhstepma, nstepma; /* Decreasing with age */
      if (cptcovn > 0) {    double age, agelim, hf;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double ***p3mat;
        for (cpt=1; cpt<=cptcoveff;cpt++)    double eip;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    pstamp(ficreseij);
      }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
      /* Pij */    fprintf(ficreseij,"# Age");
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    for(i=1; i<=nlstate;i++){
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          for(j=1; j<=nlstate;j++){
      /* Quasi-incidences */        fprintf(ficreseij," e%1d%1d ",i,j);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>      }
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      fprintf(ficreseij," e%1d. ",i);
        /* Stable prevalence in each health state */    }
        for(cpt=1; cpt<nlstate;cpt++){    fprintf(ficreseij,"\n");
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
        }    if(estepm < stepm){
      for(cpt=1; cpt<=nlstate;cpt++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    }
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    else  hstepm=estepm;   
      }    /* We compute the life expectancy from trapezoids spaced every estepm months
      fprintf(fichtm,"\n<br>- Total life expectancy by age and     * This is mainly to measure the difference between two models: for example
 health expectancies in states (1) and (2): e%s%d.png<br>     * if stepm=24 months pijx are given only every 2 years and by summing them
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
    } /* end i1 */     * progression in between and thus overestimating or underestimating according
  }/* End k1 */     * to the curvature of the survival function. If, for the same date, we 
  fprintf(fichtm,"</ul>");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n     * curvature will be obtained if estepm is as small as stepm. */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    /* For example we decided to compute the life expectancy with the smallest unit */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n       nhstepm is the number of hstepm from age to agelim 
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n       nstepm is the number of stepm from age to agelin. 
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n       Look at hpijx to understand the reason of that which relies in memory size
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  if(popforecast==1) fprintf(fichtm,"\n       survival function given by stepm (the optimization length). Unfortunately it
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n       means that if the survival funtion is printed only each two years of age and if
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         <br>",fileres,fileres,fileres,fileres);       results. So we changed our mind and took the option of the best precision.
  else    */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");  
     agelim=AGESUP;
  m=cptcoveff;    /* If stepm=6 months */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
  jj1=0;      
  for(k1=1; k1<=m;k1++){  /* nhstepm age range expressed in number of stepm */
    for(i1=1; i1<=ncodemax[k1];i1++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
      jj1++;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      if (cptcovn > 0) {    /* if (stepm >= YEARM) hstepm=1;*/
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        for (cpt=1; cpt<=cptcoveff;cpt++)    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    for (age=bage; age<=fage; age ++){ 
      }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
      for(cpt=1; cpt<=nlstate;cpt++) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      /* if (stepm >= YEARM) hstepm=1;*/
 interval) in state (%d): v%s%d%d.png <br>      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
      }      /* If stepm=6 months */
    } /* end i1 */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
  }/* End k1 */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
  fprintf(fichtm,"</ul>");      
 fclose(fichtm);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 }      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 /******************* Gnuplot file **************/      
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      
   int ng;      /* Computing expectancies */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with file %s",optionfilegnuplot);        for(j=1; j<=nlstate;j++)
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
 #ifdef windows            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif          }
 m=pow(2,cptcoveff);  
        fprintf(ficreseij,"%3.0f",age );
  /* 1eme*/      for(i=1; i<=nlstate;i++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {        eip=0;
    for (k1=1; k1<= m ; k1 ++) {        for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
 #ifdef windows          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        }
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        fprintf(ficreseij,"%9.4f", eip );
 #endif      }
 #ifdef unix      fprintf(ficreseij,"\n");
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    }
 #endif    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
 for (i=1; i<= nlstate ; i ++) {    fprintf(ficlog,"\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  {
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* Covariances of health expectancies eij and of total life expectancies according
 }     to initial status i, ei. .
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    */
      for (i=1; i<= nlstate ; i ++) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int nhstepma, nstepma; /* Decreasing with age */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double age, agelim, hf;
 }      double ***p3matp, ***p3matm, ***varhe;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    double **dnewm,**doldm;
 #ifdef unix    double *xp, *xm;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    double **gp, **gm;
 #endif    double ***gradg, ***trgradg;
    }    int theta;
   }  
   /*2 eme*/    double eip, vip;
   
   for (k1=1; k1<= m ; k1 ++) {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    xp=vector(1,npar);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    xm=vector(1,npar);
        dnewm=matrix(1,nlstate*nlstate,1,npar);
     for (i=1; i<= nlstate+1 ; i ++) {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       k=2*i;    
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    pstamp(ficresstdeij);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresstdeij,"# Age");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=nlstate;i++){
 }        for(j=1; j<=nlstate;j++)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      fprintf(ficresstdeij," e%1d. ",i);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficresstdeij,"\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    pstamp(ficrescveij);
 }      fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficrescveij,"# Age");
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    for(i=1; i<=nlstate;i++)
       for (j=1; j<= nlstate+1 ; j ++) {      for(j=1; j<=nlstate;j++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        cptj= (j-1)*nlstate+i;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i2=1; i2<=nlstate;i2++)
 }            for(j2=1; j2<=nlstate;j2++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            cptj2= (j2-1)*nlstate+i2;
       else fprintf(ficgp,"\" t\"\" w l 0,");            if(cptj2 <= cptj)
     }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   }          }
        }
   /*3eme*/    fprintf(ficrescveij,"\n");
     
   for (k1=1; k1<= m ; k1 ++) {    if(estepm < stepm){
     for (cpt=1; cpt<= nlstate ; cpt ++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
       k=2+nlstate*(2*cpt-2);    }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    else  hstepm=estepm;   
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    /* We compute the life expectancy from trapezoids spaced every estepm months
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);     * This is mainly to measure the difference between two models: for example
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");     * if stepm=24 months pijx are given only every 2 years and by summing them
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);     * we are calculating an estimate of the Life Expectancy assuming a linear 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);     * progression in between and thus overestimating or underestimating according
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");     * to the curvature of the survival function. If, for the same date, we 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
 */     * hypothesis. A more precise result, taking into account a more precise
       for (i=1; i< nlstate ; i ++) {     * curvature will be obtained if estepm is as small as stepm. */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  
     /* For example we decided to compute the life expectancy with the smallest unit */
       }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     }       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   /* CV preval stat */       and note for a fixed period like estepm months */
     for (k1=1; k1<= m ; k1 ++) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for (cpt=1; cpt<nlstate ; cpt ++) {       survival function given by stepm (the optimization length). Unfortunately it
       k=3;       means that if the survival funtion is printed only each two years of age and if
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);       results. So we changed our mind and took the option of the best precision.
     */
       for (i=1; i< nlstate ; i ++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    /* If stepm=6 months */
          /* nhstepm age range expressed in number of stepm */
       l=3+(nlstate+ndeath)*cpt;    agelim=AGESUP;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       for (i=1; i< nlstate ; i ++) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         l=3+(nlstate+ndeath)*cpt;    /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficgp,"+$%d",l+i+1);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   /* proba elementaires */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
    for(i=1,jk=1; i <=nlstate; i++){    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {    for (age=bage; age<=fage; age ++){ 
         for(j=1; j <=ncovmodel; j++){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           jk++;      /* if (stepm >= YEARM) hstepm=1;*/
           fprintf(ficgp,"\n");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         }  
       }      /* If stepm=6 months */
     }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
    }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      /* Computing  Variances of health expectancies */
        if (ng==2)      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");         decrease memory allocation */
        else      for(theta=1; theta <=npar; theta++){
          fprintf(ficgp,"\nset title \"Probability\"\n");        for(i=1; i<=npar; i++){ 
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        i=1;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
        for(k2=1; k2<=nlstate; k2++) {        }
          k3=i;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
          for(k=1; k<=(nlstate+ndeath); k++) {        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
            if (k != k2){    
              if(ng==2)        for(j=1; j<= nlstate; j++){
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          for(i=1; i<=nlstate; i++){
              else            for(h=0; h<=nhstepm-1; h++){
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
              ij=1;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
              for(j=3; j <=ncovmodel; j++) {            }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
                  ij++;       
                }        for(ij=1; ij<= nlstate*nlstate; ij++)
                else          for(h=0; h<=nhstepm-1; h++){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
              }          }
              fprintf(ficgp,")/(1");      }/* End theta */
                    
              for(k1=1; k1 <=nlstate; k1++){        
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      for(h=0; h<=nhstepm-1; h++)
                ij=1;        for(j=1; j<=nlstate*nlstate;j++)
                for(j=3; j <=ncovmodel; j++){          for(theta=1; theta <=npar; theta++)
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            trgradg[h][j][theta]=gradg[h][theta][j];
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      
                    ij++;  
                  }       for(ij=1;ij<=nlstate*nlstate;ij++)
                  else        for(ji=1;ji<=nlstate*nlstate;ji++)
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          varhe[ij][ji][(int)age] =0.;
                }  
                fprintf(ficgp,")");       printf("%d|",(int)age);fflush(stdout);
              }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);       for(h=0;h<=nhstepm-1;h++){
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        for(k=0;k<=nhstepm-1;k++){
              i=i+ncovmodel;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
            }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
          } /* end k */          for(ij=1;ij<=nlstate*nlstate;ij++)
        } /* end k2 */            for(ji=1;ji<=nlstate*nlstate;ji++)
      } /* end jk */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
    } /* end ng */        }
    fclose(ficgp);      }
 }  /* end gnuplot */  
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 /*************** Moving average **************/      for(i=1; i<=nlstate;i++)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   int i, cpt, cptcod;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            
       for (i=1; i<=nlstate;i++)            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;          }
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      fprintf(ficresstdeij,"%3.0f",age );
       for (i=1; i<=nlstate;i++){      for(i=1; i<=nlstate;i++){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        eip=0.;
           for (cpt=0;cpt<=4;cpt++){        vip=0.;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        for(j=1; j<=nlstate;j++){
           }          eip += eij[i][j][(int)age];
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
         }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
       }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     }        }
            fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 }      }
       fprintf(ficresstdeij,"\n");
   
 /************** Forecasting ******************/      fprintf(ficrescveij,"%3.0f",age );
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          cptj= (j-1)*nlstate+i;
   int *popage;          for(i2=1; i2<=nlstate;i2++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            for(j2=1; j2<=nlstate;j2++){
   double *popeffectif,*popcount;              cptj2= (j2-1)*nlstate+i2;
   double ***p3mat;              if(cptj2 <= cptj)
   char fileresf[FILENAMELENGTH];                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
  agelim=AGESUP;        }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      fprintf(ficrescveij,"\n");
      
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    }
      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   strcpy(fileresf,"f");    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   strcat(fileresf,fileres);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with forecast resultfile: %s\n", fileresf);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    printf("\n");
   }    fprintf(ficlog,"\n");
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    free_vector(xm,1,npar);
     free_vector(xp,1,npar);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   if (mobilav==1) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   stepsize=(int) (stepm+YEARM-1)/YEARM;  {
   if (stepm<=12) stepsize=1;    /* Variance of health expectancies */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   agelim=AGESUP;    /* double **newm;*/
      double **dnewm,**doldm;
   hstepm=1;    double **dnewmp,**doldmp;
   hstepm=hstepm/stepm;    int i, j, nhstepm, hstepm, h, nstepm ;
   yp1=modf(dateintmean,&yp);    int k, cptcode;
   anprojmean=yp;    double *xp;
   yp2=modf((yp1*12),&yp);    double **gp, **gm;  /* for var eij */
   mprojmean=yp;    double ***gradg, ***trgradg; /*for var eij */
   yp1=modf((yp2*30.5),&yp);    double **gradgp, **trgradgp; /* for var p point j */
   jprojmean=yp;    double *gpp, *gmp; /* for var p point j */
   if(jprojmean==0) jprojmean=1;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   if(mprojmean==0) jprojmean=1;    double ***p3mat;
      double age,agelim, hf;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double ***mobaverage;
      int theta;
   for(cptcov=1;cptcov<=i2;cptcov++){    char digit[4];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    char digitp[25];
       k=k+1;  
       fprintf(ficresf,"\n#******");    char fileresprobmorprev[FILENAMELENGTH];
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if(popbased==1){
       }      if(mobilav!=0)
       fprintf(ficresf,"******\n");        strcpy(digitp,"-populbased-mobilav-");
       fprintf(ficresf,"# StartingAge FinalAge");      else strcpy(digitp,"-populbased-nomobil-");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    }
          else 
            strcpy(digitp,"-stablbased-");
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");    if (mobilav!=0) {
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           nhstepm = nhstepm/hstepm;      }
              }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    strcpy(fileresprobmorprev,"prmorprev"); 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      sprintf(digit,"%-d",ij);
            /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           for (h=0; h<=nhstepm; h++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
             if (h==(int) (calagedate+YEARM*cpt)) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    strcat(fileresprobmorprev,fileres);
             }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             for(j=1; j<=nlstate+ndeath;j++) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
               kk1=0.;kk2=0;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
               for(i=1; i<=nlstate;i++) {                  }
                 if (mobilav==1)    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];   
                 else {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    pstamp(ficresprobmorprev);
                 }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
                    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
               }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficresprobmorprev," p.%-d SE",j);
                 fprintf(ficresf," %.3f", kk1);      for(i=1; i<=nlstate;i++)
                                fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
               }    }  
             }    fprintf(ficresprobmorprev,"\n");
           }    fprintf(ficgp,"\n# Routine varevsij");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     }  /*   } */
   }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            pstamp(ficresvij);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
   fclose(ficresf);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 }    else
 /************** Forecasting ******************/      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      for(j=1; j<=nlstate;j++)
   int *popage;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficresvij,"\n");
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;    xp=vector(1,npar);
   char filerespop[FILENAMELENGTH];    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   agelim=AGESUP;  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      
   strcpy(filerespop,"pop");    if(estepm < stepm){
   strcat(filerespop,fileres);      printf ("Problem %d lower than %d\n",estepm, stepm);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    }
     printf("Problem with forecast resultfile: %s\n", filerespop);    else  hstepm=estepm;   
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   printf("Computing forecasting: result on file '%s' \n", filerespop);       nhstepm is the number of hstepm from age to agelim 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);       nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   if (mobilav==1) {       means that if the survival funtion is printed every two years of age and if
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     movingaverage(agedeb, fage, ageminpar, mobaverage);       results. So we changed our mind and took the option of the best precision.
   }    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   stepsize=(int) (stepm+YEARM-1)/YEARM;    agelim = AGESUP;
   if (stepm<=12) stepsize=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   agelim=AGESUP;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   hstepm=1;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   hstepm=hstepm/stepm;      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);      for(theta=1; theta <=npar; theta++){
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     popage=ivector(0,AGESUP);        }
     popeffectif=vector(0,AGESUP);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     popcount=vector(0,AGESUP);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      
     i=1;          if (popbased==1) {
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          if(mobilav ==0){
                for(i=1; i<=nlstate;i++)
     imx=i;              prlim[i][i]=probs[(int)age][i][ij];
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   for(cptcov=1;cptcov<=i2;cptcov++){          }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
       k=k+1;    
       fprintf(ficrespop,"\n#******");        for(j=1; j<= nlstate; j++){
       for(j=1;j<=cptcoveff;j++) {          for(h=0; h<=nhstepm; h++){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       fprintf(ficrespop,"******\n");          }
       fprintf(ficrespop,"# Age");        }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        /* This for computing probability of death (h=1 means
       if (popforecast==1)  fprintf(ficrespop," [Population]");           computed over hstepm matrices product = hstepm*stepm months) 
                 as a weighted average of prlim.
       for (cpt=0; cpt<=0;cpt++) {        */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(j=nlstate+1;j<=nlstate+ndeath;j++){
                  for(i=1,gpp[j]=0.; i<= nlstate; i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        }    
           nhstepm = nhstepm/hstepm;        /* end probability of death */
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           oldm=oldms;savm=savms;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           for (h=0; h<=nhstepm; h++){   
             if (h==(int) (calagedate+YEARM*cpt)) {        if (popbased==1) {
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          if(mobilav ==0){
             }            for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {              prlim[i][i]=probs[(int)age][i][ij];
               kk1=0.;kk2=0;          }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++) {                          for(i=1; i<=nlstate;i++)
                 if (mobilav==1)              prlim[i][i]=mobaverage[(int)age][i][ij];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          }
                 else {        }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
               }          for(h=0; h<=nhstepm; h++){
               if (h==(int)(calagedate+12*cpt)){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                   /*fprintf(ficrespop," %.3f", kk1);          }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        }
               }        /* This for computing probability of death (h=1 means
             }           computed over hstepm matrices product = hstepm*stepm months) 
             for(i=1; i<=nlstate;i++){           as a weighted average of prlim.
               kk1=0.;        */
                 for(j=1; j<=nlstate;j++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                 }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        }    
             }        /* end probability of death */
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        for(j=1; j<= nlstate; j++) /* vareij */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          for(h=0; h<=nhstepm; h++){
           }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
         }  
       }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   /******/        }
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      } /* End theta */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;      for(h=0; h<=nhstepm; h++) /* veij */
                  for(j=1; j<=nlstate;j++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(theta=1; theta <=npar; theta++)
           oldm=oldms;savm=savms;            trgradg[h][j][theta]=gradg[h][theta][j];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
             if (h==(int) (calagedate+YEARM*cpt)) {        for(theta=1; theta <=npar; theta++)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          trgradgp[j][theta]=gradgp[theta][j];
             }    
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               for(i=1; i<=nlstate;i++) {                    for(i=1;i<=nlstate;i++)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            for(j=1;j<=nlstate;j++)
               }          vareij[i][j][(int)age] =0.;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  
             }      for(h=0;h<=nhstepm;h++){
           }        for(k=0;k<=nhstepm;k++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       }          for(i=1;i<=nlstate;i++)
    }            for(j=1;j<=nlstate;j++)
   }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
     
   if (popforecast==1) {      /* pptj */
     free_ivector(popage,0,AGESUP);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     free_vector(popeffectif,0,AGESUP);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     free_vector(popcount,0,AGESUP);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          varppt[j][i]=doldmp[j][i];
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* end ppptj */
   fclose(ficrespop);      /*  x centered again */
 }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 /***********************************************/   
 /**************** Main Program *****************/      if (popbased==1) {
 /***********************************************/        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
 int main(int argc, char *argv[])            prlim[i][i]=probs[(int)age][i][ij];
 {        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            prlim[i][i]=mobaverage[(int)age][i][ij];
   double agedeb, agefin,hf;        }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      }
                
   double fret;      /* This for computing probability of death (h=1 means
   double **xi,tmp,delta;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   double dum; /* Dummy variable */      */
   double ***p3mat;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   int *indx;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   char line[MAXLINE], linepar[MAXLINE];          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];      }    
   int firstobs=1, lastobs=10;      /* end probability of death */
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   int ju,jl, mi;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        for(i=1; i<=nlstate;i++){
   int mobilav=0,popforecast=0;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   int hstepm, nhstepm;        }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      } 
       fprintf(ficresprobmorprev,"\n");
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;      fprintf(ficresvij,"%.0f ",age );
   double **prlim;      for(i=1; i<=nlstate;i++)
   double *severity;        for(j=1; j<=nlstate;j++){
   double ***param; /* Matrix of parameters */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   double  *p;        }
   double **matcov; /* Matrix of covariance */      fprintf(ficresvij,"\n");
   double ***delti3; /* Scale */      free_matrix(gp,0,nhstepm,1,nlstate);
   double *delti; /* Scale */      free_matrix(gm,0,nhstepm,1,nlstate);
   double ***eij, ***vareij;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   double **varpl; /* Variances of prevalence limits by age */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   double *epj, vepp;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double kk1, kk2;    } /* End age */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   char z[1]="c", occ;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 #include <sys/time.h>  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 #include <time.h>  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   /* long total_usecs;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   struct timeval start_time, end_time;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   getcwd(pathcd, size);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   printf("\n%s",version);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   if(argc <=1){    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,nlstate);
   else{    free_matrix(dnewm,1,nlstate,1,npar);
     strcpy(pathtot,argv[1]);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /*cygwin_split_path(pathtot,path,optionfile);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    fclose(ficresprobmorprev);
   /* cutv(path,optionfile,pathtot,'\\');*/    fflush(ficgp);
     fflush(fichtm); 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  }  /* end varevsij */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);  /************ Variance of prevlim ******************/
   replace(pathc,path);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
 /*-------- arguments in the command line --------*/    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   /* Log file */    double **newm;
   strcat(filelog, optionfilefiname);    double **dnewm,**doldm;
   strcat(filelog,".log");    /* */    int i, j, nhstepm, hstepm;
   if((ficlog=fopen(filelog,"w"))==NULL)    {    int k, cptcode;
     printf("Problem with logfile %s\n",filelog);    double *xp;
     goto end;    double *gp, *gm;
   }    double **gradg, **trgradg;
   fprintf(ficlog,"Log filename:%s\n",filelog);    double age,agelim;
   fprintf(ficlog,"\n%s",version);    int theta;
   fprintf(ficlog,"\nEnter the parameter file name: ");    
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    pstamp(ficresvpl);
   fflush(ficlog);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
   /* */    for(i=1; i<=nlstate;i++)
   strcpy(fileres,"r");        fprintf(ficresvpl," %1d-%1d",i,i);
   strcat(fileres, optionfilefiname);    fprintf(ficresvpl,"\n");
   strcat(fileres,".txt");    /* Other files have txt extension */  
     xp=vector(1,npar);
   /*---------arguments file --------*/    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    
     printf("Problem with optionfile %s\n",optionfile);    hstepm=1*YEARM; /* Every year of age */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     goto end;    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   strcpy(filereso,"o");      if (stepm >= YEARM) hstepm=1;
   strcat(filereso,fileres);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   if((ficparo=fopen(filereso,"w"))==NULL) {      gradg=matrix(1,npar,1,nlstate);
     printf("Problem with Output resultfile: %s\n", filereso);      gp=vector(1,nlstate);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);      gm=vector(1,nlstate);
     goto end;  
   }      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
   /* Reads comments: lines beginning with '#' */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fgets(line, MAXLINE, ficpar);        for(i=1;i<=nlstate;i++)
     puts(line);          gp[i] = prlim[i][i];
     fputs(line,ficparo);      
   }        for(i=1; i<=npar; i++) /* Computes gradient */
   ungetc(c,ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        for(i=1;i<=nlstate;i++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          gm[i] = prlim[i][i];
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     fgets(line, MAXLINE, ficpar);      } /* End theta */
     puts(line);  
     fputs(line,ficparo);      trgradg =matrix(1,nlstate,1,npar);
   }  
   ungetc(c,ficpar);      for(j=1; j<=nlstate;j++)
          for(theta=1; theta <=npar; theta++)
              trgradg[j][theta]=gradg[theta][j];
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;      for(i=1;i<=nlstate;i++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   ncovmodel=2+cptcovn;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */      fprintf(ficresvpl,"%.0f ",age );
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     fgets(line, MAXLINE, ficpar);      fprintf(ficresvpl,"\n");
     puts(line);      free_vector(gp,1,nlstate);
     fputs(line,ficparo);      free_vector(gm,1,nlstate);
   }      free_matrix(gradg,1,npar,1,nlstate);
   ungetc(c,ficpar);      free_matrix(trgradg,1,nlstate,1,npar);
      } /* End age */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)    free_vector(xp,1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_matrix(doldm,1,nlstate,1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_matrix(dnewm,1,nlstate,1,nlstate);
       fprintf(ficparo,"%1d%1d",i1,j1);  
       if(mle==1)  }
         printf("%1d%1d",i,j);  
       fprintf(ficlog,"%1d%1d",i,j);  /************ Variance of one-step probabilities  ******************/
       for(k=1; k<=ncovmodel;k++){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
         fscanf(ficpar," %lf",&param[i][j][k]);  {
         if(mle==1){    int i, j=0,  i1, k1, l1, t, tj;
           printf(" %lf",param[i][j][k]);    int k2, l2, j1,  z1;
           fprintf(ficlog," %lf",param[i][j][k]);    int k=0,l, cptcode;
         }    int first=1, first1;
         else    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           fprintf(ficlog," %lf",param[i][j][k]);    double **dnewm,**doldm;
         fprintf(ficparo," %lf",param[i][j][k]);    double *xp;
       }    double *gp, *gm;
       fscanf(ficpar,"\n");    double **gradg, **trgradg;
       if(mle==1)    double **mu;
         printf("\n");    double age,agelim, cov[NCOVMAX];
       fprintf(ficlog,"\n");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       fprintf(ficparo,"\n");    int theta;
     }    char fileresprob[FILENAMELENGTH];
      char fileresprobcov[FILENAMELENGTH];
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    char fileresprobcor[FILENAMELENGTH];
   
   p=param[1][1];    double ***varpij;
    
   /* Reads comments: lines beginning with '#' */    strcpy(fileresprob,"prob"); 
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileresprob,fileres);
     ungetc(c,ficpar);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     fgets(line, MAXLINE, ficpar);      printf("Problem with resultfile: %s\n", fileresprob);
     puts(line);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     fputs(line,ficparo);    }
   }    strcpy(fileresprobcov,"probcov"); 
   ungetc(c,ficpar);    strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      printf("Problem with resultfile: %s\n", fileresprobcov);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   for(i=1; i <=nlstate; i++){    }
     for(j=1; j <=nlstate+ndeath-1; j++){    strcpy(fileresprobcor,"probcor"); 
       fscanf(ficpar,"%1d%1d",&i1,&j1);    strcat(fileresprobcor,fileres);
       printf("%1d%1d",i,j);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       fprintf(ficparo,"%1d%1d",i1,j1);      printf("Problem with resultfile: %s\n", fileresprobcor);
       for(k=1; k<=ncovmodel;k++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    }
         printf(" %le",delti3[i][j][k]);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fscanf(ficpar,"\n");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       printf("\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fprintf(ficparo,"\n");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     }    pstamp(ficresprob);
   }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   delti=delti3[1][1];    fprintf(ficresprob,"# Age");
      pstamp(ficresprobcov);
   /* Reads comments: lines beginning with '#' */    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprobcov,"# Age");
     ungetc(c,ficpar);    pstamp(ficresprobcor);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     puts(line);    fprintf(ficresprobcor,"# Age");
     fputs(line,ficparo);  
   }  
   ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
        for(j=1; j<=(nlstate+ndeath);j++){
   matcov=matrix(1,npar,1,npar);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   for(i=1; i <=npar; i++){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     fscanf(ficpar,"%s",&str);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     if(mle==1)      }  
       printf("%s",str);   /* fprintf(ficresprob,"\n");
     fprintf(ficlog,"%s",str);    fprintf(ficresprobcov,"\n");
     fprintf(ficparo,"%s",str);    fprintf(ficresprobcor,"\n");
     for(j=1; j <=i; j++){   */
       fscanf(ficpar," %le",&matcov[i][j]);   xp=vector(1,npar);
       if(mle==1){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         printf(" %.5le",matcov[i][j]);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         fprintf(ficlog," %.5le",matcov[i][j]);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       else    first=1;
         fprintf(ficlog," %.5le",matcov[i][j]);    fprintf(ficgp,"\n# Routine varprob");
       fprintf(ficparo," %.5le",matcov[i][j]);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     }    fprintf(fichtm,"\n");
     fscanf(ficpar,"\n");  
     if(mle==1)    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       printf("\n");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     fprintf(ficlog,"\n");    file %s<br>\n",optionfilehtmcov);
     fprintf(ficparo,"\n");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   }  and drawn. It helps understanding how is the covariance between two incidences.\
   for(i=1; i <=npar; i++)   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     for(j=i+1;j<=npar;j++)    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       matcov[i][j]=matcov[j][i];  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
      would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   if(mle==1)  standard deviations wide on each axis. <br>\
     printf("\n");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   fprintf(ficlog,"\n");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     /*-------- Rewriting paramater file ----------*/    cov[1]=1;
      strcpy(rfileres,"r");    /* "Rparameterfile */    tj=cptcoveff;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      strcat(rfileres,".");    /* */    j1=0;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    for(t=1; t<=tj;t++){
     if((ficres =fopen(rfileres,"w"))==NULL) {      for(i1=1; i1<=ncodemax[t];i1++){ 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        j1++;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;        if  (cptcovn>0) {
     }          fprintf(ficresprob, "\n#********** Variable "); 
     fprintf(ficres,"#%s\n",version);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresprob, "**********\n#\n");
     /*-------- data file ----------*/          fprintf(ficresprobcov, "\n#********** Variable "); 
     if((fic=fopen(datafile,"r"))==NULL)    {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("Problem with datafile: %s\n", datafile);goto end;          fprintf(ficresprobcov, "**********\n#\n");
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;          
     }          fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     n= lastobs;          fprintf(ficgp, "**********\n#\n");
     severity = vector(1,maxwav);          
     outcome=imatrix(1,maxwav+1,1,n);          
     num=ivector(1,n);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     moisnais=vector(1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     annais=vector(1,n);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     moisdc=vector(1,n);          
     andc=vector(1,n);          fprintf(ficresprobcor, "\n#********** Variable ");    
     agedc=vector(1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     cod=ivector(1,n);          fprintf(ficresprobcor, "**********\n#");    
     weight=vector(1,n);        }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        
     mint=matrix(1,maxwav,1,n);        for (age=bage; age<=fage; age ++){ 
     anint=matrix(1,maxwav,1,n);          cov[2]=age;
     s=imatrix(1,maxwav+1,1,n);          for (k=1; k<=cptcovn;k++) {
     adl=imatrix(1,maxwav+1,1,n);                cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     tab=ivector(1,NCOVMAX);          }
     ncodemax=ivector(1,8);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
     i=1;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     while (fgets(line, MAXLINE, fic) != NULL)    {          
       if ((i >= firstobs) && (i <=lastobs)) {          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                  trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         for (j=maxwav;j>=1;j--){          gp=vector(1,(nlstate)*(nlstate+ndeath));
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          gm=vector(1,(nlstate)*(nlstate+ndeath));
           strcpy(line,stra);      
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(theta=1; theta <=npar; theta++){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for(i=1; i<=npar; i++)
         }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                    
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            
             k=0;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            for(i=1; i<= (nlstate); i++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);                gp[k]=pmmij[i][j];
         for (j=ncovcol;j>=1;j--){              }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            }
         }            
         num[i]=atol(stra);            for(i=1; i<=npar; i++)
                      xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
         i=i+1;            for(i=1; i<=(nlstate); i++){
       }              for(j=1; j<=(nlstate+ndeath);j++){
     }                k=k+1;
     /* printf("ii=%d", ij);                gm[k]=pmmij[i][j];
        scanf("%d",i);*/              }
   imx=i-1; /* Number of individuals */            }
        
   /* for (i=1; i<=imx; i++){            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
    /*  for (i=1; i<=imx; i++){            for(theta=1; theta <=npar; theta++)
      if (s[4][i]==9)  s[4][i]=-1;              trgradg[j][theta]=gradg[theta][j];
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          
            matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
            matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   /* Calculation of the number of parameter from char model*/          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   Tprod=ivector(1,15);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   Tvaraff=ivector(1,15);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);                pmij(pmmij,cov,ncovmodel,x,nlstate);
              
   if (strlen(model) >1){          k=0;
     j=0, j1=0, k1=1, k2=1;          for(i=1; i<=(nlstate); i++){
     j=nbocc(model,'+');            for(j=1; j<=(nlstate+ndeath);j++){
     j1=nbocc(model,'*');              k=k+1;
     cptcovn=j+1;              mu[k][(int) age]=pmmij[i][j];
     cptcovprod=j1;            }
              }
     strcpy(modelsav,model);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       printf("Error. Non available option model=%s ",model);              varpij[i][j][(int)age] = doldm[i][j];
       fprintf(ficlog,"Error. Non available option model=%s ",model);  
       goto end;          /*printf("\n%d ",(int)age);
     }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     for(i=(j+1); i>=1;i--){            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */            }*/
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          fprintf(ficresprob,"\n%d ",(int)age);
       /*scanf("%d",i);*/          fprintf(ficresprobcov,"\n%d ",(int)age);
       if (strchr(strb,'*')) {  /* Model includes a product */          fprintf(ficresprobcor,"\n%d ",(int)age);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/  
         if (strcmp(strc,"age")==0) { /* Vn*age */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           cptcovprod--;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           cutv(strb,stre,strd,'V');          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           cptcovage++;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
             Tage[cptcovage]=i;          }
             /*printf("stre=%s ", stre);*/          i=0;
         }          for (k=1; k<=(nlstate);k++){
         else if (strcmp(strd,"age")==0) { /* or age*Vn */            for (l=1; l<=(nlstate+ndeath);l++){ 
           cptcovprod--;              i=i++;
           cutv(strb,stre,strc,'V');              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
           Tvar[i]=atoi(stre);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           cptcovage++;              for (j=1; j<=i;j++){
           Tage[cptcovage]=i;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         else {  /* Age is not in the model */              }
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/            }
           Tvar[i]=ncovcol+k1;          }/* end of loop for state */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */        } /* end of loop for age */
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc); /* m*/        /* Confidence intervalle of pij  */
           Tvard[k1][2]=atoi(stre); /* n */        /*
           Tvar[cptcovn+k2]=Tvard[k1][1];          fprintf(ficgp,"\nset noparametric;unset label");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           for (k=1; k<=lastobs;k++)          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           k1++;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           k2=k2+2;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         }          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       }        */
       else { /* no more sum */  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
        /*  scanf("%d",i);*/        first1=1;
       cutv(strd,strc,strb,'V');        for (k2=1; k2<=(nlstate);k2++){
       Tvar[i]=atoi(strc);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       }            if(l2==k2) continue;
       strcpy(modelsav,stra);              j=(k2-1)*(nlstate+ndeath)+l2;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            for (k1=1; k1<=(nlstate);k1++){
         scanf("%d",i);*/              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     } /* end of loop + */                if(l1==k1) continue;
   } /* end model */                i=(k1-1)*(nlstate+ndeath)+l1;
                  if(i<=j) continue;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                for (age=bage; age<=fage; age ++){ 
   printf("cptcovprod=%d ", cptcovprod);                  if ((int)age %5==0){
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   scanf("%d ",i);*/                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fclose(fic);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
     /*  if(mle==1){*/                    mu2=mu[j][(int) age]/stepm*YEARM;
     if (weightopt != 1) { /* Maximisation without weights*/                    c12=cv12/sqrt(v1*v2);
       for(i=1;i<=n;i++) weight[i]=1.0;                    /* Computing eigen value of matrix of covariance */
     }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     /*-calculation of age at interview from date of interview and age at death -*/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     agev=matrix(1,maxwav,1,imx);                    /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     for (i=1; i<=imx; i++) {                    /*v21=sqrt(1.-v11*v11); *//* error */
       for(m=2; (m<= maxwav); m++) {                    v21=(lc1-v1)/cv12*v11;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                    v12=-v21;
          anint[m][i]=9999;                    v22=v11;
          s[m][i]=-1;                    tnalp=v21/v11;
        }                    if(first1==1){
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                      first1=0;
       }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     }                    }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     for (i=1; i<=imx; i++)  {                    /*printf(fignu*/
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       for(m=1; (m<= maxwav); m++){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         if(s[m][i] >0){                    if(first==1){
           if (s[m][i] >= nlstate+1) {                      first=0;
             if(agedc[i]>0)                      fprintf(ficgp,"\nset parametric;unset label");
               if(moisdc[i]!=99 && andc[i]!=9999)                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                 agev[m][i]=agedc[i];                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
            else {   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
               if (andc[i]!=9999){  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               agev[m][i]=-1;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
             }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           else if(s[m][i] !=9){ /* Should no more exist */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             if(mint[m][i]==99 || anint[m][i]==9999)                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
               agev[m][i]=1;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             else if(agev[m][i] <agemin){                    }else{
               agemin=agev[m][i];                      first=0;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
             }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             else if(agev[m][i] >agemax){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               agemax=agev[m][i];                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
             }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             /*agev[m][i]=anint[m][i]-annais[i];*/                    }/* if first */
             /*   agev[m][i] = age[i]+2*m;*/                  } /* age mod 5 */
           }                } /* end loop age */
           else { /* =9 */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             agev[m][i]=1;                first=1;
             s[m][i]=-1;              } /*l12 */
           }            } /* k12 */
         }          } /*l1 */
         else /*= 0 Unknown */        }/* k1 */
           agev[m][i]=1;      } /* loop covariates */
       }    }
        free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     for (i=1; i<=imx; i++)  {    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       for(m=1; (m<= maxwav); m++){    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
         if (s[m][i] > (nlstate+ndeath)) {    free_vector(xp,1,npar);
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      fclose(ficresprob);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      fclose(ficresprobcov);
           goto end;    fclose(ficresprobcor);
         }    fflush(ficgp);
       }    fflush(fichtmcov);
     }  }
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     free_vector(severity,1,maxwav);                    int lastpass, int stepm, int weightopt, char model[],\
     free_imatrix(outcome,1,maxwav+1,1,n);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     free_vector(moisnais,1,n);                    int popforecast, int estepm ,\
     free_vector(annais,1,n);                    double jprev1, double mprev1,double anprev1, \
     /* free_matrix(mint,1,maxwav,1,n);                    double jprev2, double mprev2,double anprev2){
        free_matrix(anint,1,maxwav,1,n);*/    int jj1, k1, i1, cpt;
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
      </ul>");
     wav=ivector(1,imx);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     mw=imatrix(1,lastpass-firstpass+1,1,imx);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
         fprintf(fichtm,"\
     /* Concatenates waves */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       Tcode=ivector(1,100);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     fprintf(fichtm,"\
       ncodemax[1]=1;   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);     <a href=\"%s\">%s</a> <br>\n",
                   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
    codtab=imatrix(1,100,1,10);     fprintf(fichtm,"\
    h=0;   - Population projections by age and states: \
    m=pow(2,cptcoveff);     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
    
    for(k=1;k<=cptcoveff; k++){  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){   m=cptcoveff;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;   jj1=0;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/   for(k1=1; k1<=m;k1++){
          }     for(i1=1; i1<=ncodemax[k1];i1++){
        }       jj1++;
      }       if (cptcovn > 0) {
    }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
       codtab[1][2]=1;codtab[2][2]=2; */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    /* for(i=1; i <=m ;i++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       for(k=1; k <=cptcovn; k++){       }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);       /* Pij */
       }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
       printf("\n");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       }       /* Quasi-incidences */
       scanf("%d",i);*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
    /* Calculates basic frequencies. Computes observed prevalence at single age  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
        and prints on file fileres'p'. */         /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
               fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
      <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       for(cpt=1; cpt<=nlstate;cpt++) {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       }
           } /* end i1 */
     /* For Powell, parameters are in a vector p[] starting at p[1]   }/* End k1 */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */   fprintf(fichtm,"</ul>");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
   
     if(mle==1){   fprintf(fichtm,"\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
      
     /*--------- results files --------------*/   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    jk=1;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   fprintf(fichtm,"\
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    for(i=1,jk=1; i <=nlstate; i++){           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
      for(k=1; k <=(nlstate+ndeath); k++){   fprintf(fichtm,"\
        if (k != i)   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
          {     <a href=\"%s\">%s</a> <br>\n</li>",
            printf("%d%d ",i,k);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
            fprintf(ficlog,"%d%d ",i,k);   fprintf(fichtm,"\
            fprintf(ficres,"%1d%1d ",i,k);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
            for(j=1; j <=ncovmodel; j++){     <a href=\"%s\">%s</a> <br>\n</li>",
              printf("%f ",p[jk]);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
              fprintf(ficlog,"%f ",p[jk]);   fprintf(fichtm,"\
              fprintf(ficres,"%f ",p[jk]);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
              jk++;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
            }   fprintf(fichtm,"\
            printf("\n");   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            fprintf(ficlog,"\n");           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
            fprintf(ficres,"\n");   fprintf(fichtm,"\
          }   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
      }           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
    }  
    if(mle==1){  /*  if(popforecast==1) fprintf(fichtm,"\n */
      /* Computing hessian and covariance matrix */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
      ftolhess=ftol; /* Usually correct */  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
      hesscov(matcov, p, npar, delti, ftolhess, func);  /*      <br>",fileres,fileres,fileres,fileres); */
    }  /*  else  */
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    printf("# Scales (for hessian or gradient estimation)\n");   fflush(fichtm);
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
    for(i=1,jk=1; i <=nlstate; i++){  
      for(j=1; j <=nlstate+ndeath; j++){   m=cptcoveff;
        if (j!=i) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
          fprintf(ficres,"%1d%1d",i,j);  
          printf("%1d%1d",i,j);   jj1=0;
          fprintf(ficlog,"%1d%1d",i,j);   for(k1=1; k1<=m;k1++){
          for(k=1; k<=ncovmodel;k++){     for(i1=1; i1<=ncodemax[k1];i1++){
            printf(" %.5e",delti[jk]);       jj1++;
            fprintf(ficlog," %.5e",delti[jk]);       if (cptcovn > 0) {
            fprintf(ficres," %.5e",delti[jk]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
            jk++;         for (cpt=1; cpt<=cptcoveff;cpt++) 
          }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          printf("\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
          fprintf(ficlog,"\n");       }
          fprintf(ficres,"\n");       for(cpt=1; cpt<=nlstate;cpt++) {
        }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
      }  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
    }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
           }
    k=1;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
    if(mle==1)  true period expectancies (those weighted with period prevalences are also\
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   drawn in addition to the population based expectancies computed using\
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   observed and cahotic prevalences: %s%d.png<br>\
    for(i=1;i<=npar;i++){  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      /*  if (k>nlstate) k=1;     } /* end i1 */
          i1=(i-1)/(ncovmodel*nlstate)+1;   }/* End k1 */
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   fprintf(fichtm,"</ul>");
          printf("%s%d%d",alph[k],i1,tab[i]);*/   fflush(fichtm);
      fprintf(ficres,"%3d",i);  }
      if(mle==1)  
        printf("%3d",i);  /******************* Gnuplot file **************/
      fprintf(ficlog,"%3d",i);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
      for(j=1; j<=i;j++){  
        fprintf(ficres," %.5e",matcov[i][j]);    char dirfileres[132],optfileres[132];
        if(mle==1)    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
          printf(" %.5e",matcov[i][j]);    int ng;
        fprintf(ficlog," %.5e",matcov[i][j]);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
      }  /*     printf("Problem with file %s",optionfilegnuplot); */
      fprintf(ficres,"\n");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
      if(mle==1)  /*   } */
        printf("\n");  
      fprintf(ficlog,"\n");    /*#ifdef windows */
      k++;    fprintf(ficgp,"cd \"%s\" \n",pathc);
    }      /*#endif */
        m=pow(2,cptcoveff);
    while((c=getc(ficpar))=='#' && c!= EOF){  
      ungetc(c,ficpar);    strcpy(dirfileres,optionfilefiname);
      fgets(line, MAXLINE, ficpar);    strcpy(optfileres,"vpl");
      puts(line);   /* 1eme*/
      fputs(line,ficparo);    for (cpt=1; cpt<= nlstate ; cpt ++) {
    }     for (k1=1; k1<= m ; k1 ++) {
    ungetc(c,ficpar);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
    estepm=0;       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);       fprintf(ficgp,"set xlabel \"Age\" \n\
    if (estepm==0 || estepm < stepm) estepm=stepm;  set ylabel \"Probability\" \n\
    if (fage <= 2) {  set ter png small\n\
      bage = ageminpar;  set size 0.65,0.65\n\
      fage = agemaxpar;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
    }  
           for (i=1; i<= nlstate ; i ++) {
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);         else fprintf(ficgp," \%%*lf (\%%*lf)");
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       }
           fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
    while((c=getc(ficpar))=='#' && c!= EOF){       for (i=1; i<= nlstate ; i ++) {
      ungetc(c,ficpar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      fgets(line, MAXLINE, ficpar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
      puts(line);       } 
      fputs(line,ficparo);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
    }       for (i=1; i<= nlstate ; i ++) {
    ungetc(c,ficpar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);       }  
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     }
        }
    while((c=getc(ficpar))=='#' && c!= EOF){    /*2 eme*/
      ungetc(c,ficpar);    
      fgets(line, MAXLINE, ficpar);    for (k1=1; k1<= m ; k1 ++) { 
      puts(line);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
      fputs(line,ficparo);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
    }      
    ungetc(c,ficpar);      for (i=1; i<= nlstate+1 ; i ++) {
          k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        for (j=1; j<= nlstate+1 ; j ++) {
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   fscanf(ficpar,"pop_based=%d\n",&popbased);        }   
   fprintf(ficparo,"pop_based=%d\n",popbased);          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   fprintf(ficres,"pop_based=%d\n",popbased);          else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   while((c=getc(ficpar))=='#' && c!= EOF){        for (j=1; j<= nlstate+1 ; j ++) {
     ungetc(c,ficpar);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     fgets(line, MAXLINE, ficpar);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     puts(line);        }   
     fputs(line,ficparo);        fprintf(ficgp,"\" t\"\" w l 0,");
   }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   ungetc(c,ficpar);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          else fprintf(ficgp," \%%*lf (\%%*lf)");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        }   
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
 while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    /*3eme*/
     puts(line);    
     fputs(line,ficparo);    for (k1=1; k1<= m ; k1 ++) { 
   }      for (cpt=1; cpt<= nlstate ; cpt ++) {
   ungetc(c,ficpar);        /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        fprintf(ficgp,"set ter png small\n\
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 /*------------ gnuplot -------------*/          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   strcpy(optionfilegnuplot,optionfilefiname);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   strcat(optionfilegnuplot,".gp");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     printf("Problem with file %s",optionfilegnuplot);          
   }        */
   fclose(ficgp);        for (i=1; i< nlstate ; i ++) {
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 /*--------- index.htm --------*/          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
   strcpy(optionfilehtm,optionfile);        } 
   strcat(optionfilehtm,".htm");        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      }
     printf("Problem with %s \n",optionfilehtm), exit(0);    }
   }    
     /* CV preval stable (period) */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    for (k1=1; k1<= m ; k1 ++) { 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      for (cpt=1; cpt<=nlstate ; cpt ++) {
 \n        k=3;
 Total number of observations=%d <br>\n        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 <hr  size=\"2\" color=\"#EC5E5E\">  set ter png small\nset size 0.65,0.65\n\
  <ul><li><h4>Parameter files</h4>\n  unset log y\n\
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n        
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);        for (i=1; i< nlstate ; i ++)
   fclose(fichtm);          fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        
          l=3+(nlstate+ndeath)*cpt;
 /*------------ free_vector  -------------*/        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
  chdir(path);        for (i=1; i< nlstate ; i ++) {
            l=3+(nlstate+ndeath)*cpt;
  free_ivector(wav,1,imx);          fprintf(ficgp,"+$%d",l+i+1);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
  free_ivector(num,1,n);      } 
  free_vector(agedc,1,n);    }  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    
  fclose(ficparo);    /* proba elementaires */
  fclose(ficres);    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
   /*--------------- Prevalence limit --------------*/          for(j=1; j <=ncovmodel; j++){
              fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   strcpy(filerespl,"pl");            jk++; 
   strcat(filerespl,fileres);            fprintf(ficgp,"\n");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        }
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;      }
   }     }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   fprintf(ficrespl,"#Prevalence limit\n");       for(jk=1; jk <=m; jk++) {
   fprintf(ficrespl,"#Age ");         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);         if (ng==2)
   fprintf(ficrespl,"\n");           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           else
   prlim=matrix(1,nlstate,1,nlstate);           fprintf(ficgp,"\nset title \"Probability\"\n");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         i=1;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         for(k2=1; k2<=nlstate; k2++) {
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           k3=i;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */           for(k=1; k<=(nlstate+ndeath); k++) {
   k=0;             if (k != k2){
   agebase=ageminpar;               if(ng==2)
   agelim=agemaxpar;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   ftolpl=1.e-10;               else
   i1=cptcoveff;                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   if (cptcovn < 1){i1=1;}               ij=1;
                for(j=3; j <=ncovmodel; j++) {
   for(cptcov=1;cptcov<=i1;cptcov++){                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         k=k+1;                   ij++;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                 }
         fprintf(ficrespl,"\n#******");                 else
         printf("\n#******");                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         fprintf(ficlog,"\n#******");               }
         for(j=1;j<=cptcoveff;j++) {               fprintf(ficgp,")/(1");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               for(k1=1; k1 <=nlstate; k1++){   
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
         }                 ij=1;
         fprintf(ficrespl,"******\n");                 for(j=3; j <=ncovmodel; j++){
         printf("******\n");                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         fprintf(ficlog,"******\n");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                             ij++;
         for (age=agebase; age<=agelim; age++){                   }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                   else
           fprintf(ficrespl,"%.0f",age );                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           for(i=1; i<=nlstate;i++)                 }
           fprintf(ficrespl," %.5f", prlim[i][i]);                 fprintf(ficgp,")");
           fprintf(ficrespl,"\n");               }
         }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       }               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     }               i=i+ncovmodel;
   fclose(ficrespl);             }
            } /* end k */
   /*------------- h Pij x at various ages ------------*/         } /* end k2 */
         } /* end jk */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);     } /* end ng */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {     fflush(ficgp); 
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  }  /* end gnuplot */
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);  /*************** Moving average **************/
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int i, cpt, cptcod;
   /*if (stepm<=24) stepsize=2;*/    int modcovmax =1;
     int mobilavrange, mob;
   agelim=AGESUP;    double age;
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
   /* hstepm=1;   aff par mois*/    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
   k=0;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   for(cptcov=1;cptcov<=i1;cptcov++){      if(mobilav==1) mobilavrange=5; /* default */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      else mobilavrange=mobilav;
       k=k+1;      for (age=bage; age<=fage; age++)
         fprintf(ficrespij,"\n#****** ");        for (i=1; i<=nlstate;i++)
         for(j=1;j<=cptcoveff;j++)          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
         fprintf(ficrespij,"******\n");      /* We keep the original values on the extreme ages bage, fage and for 
                 fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */         we use a 5 terms etc. until the borders are no more concerned. 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           /*      nhstepm=nhstepm*YEARM; aff par mois*/          for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           oldm=oldms;savm=savms;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                    mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           fprintf(ficrespij,"# Age");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
           for(i=1; i<=nlstate;i++)                }
             for(j=1; j<=nlstate+ndeath;j++)              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
               fprintf(ficrespij," %1d-%1d",i,j);            }
           fprintf(ficrespij,"\n");          }
            for (h=0; h<=nhstepm; h++){        }/* end age */
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      }/* end mob */
             for(i=1; i<=nlstate;i++)    }else return -1;
               for(j=1; j<=nlstate+ndeath;j++)    return 0;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  }/* End movingaverage */
             fprintf(ficrespij,"\n");  
              }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /************** Forecasting ******************/
           fprintf(ficrespij,"\n");  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
         }    /* proj1, year, month, day of starting projection 
     }       agemin, agemax range of age
   }       dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   fclose(ficrespij);    int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   /*---------- Forecasting ------------------*/    double *popeffectif,*popcount;
   if((stepm == 1) && (strcmp(model,".")==0)){    double ***p3mat;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    double ***mobaverage;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    char fileresf[FILENAMELENGTH];
   }  
   else{    agelim=AGESUP;
     erreur=108;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    strcpy(fileresf,"f"); 
   }    strcat(fileresf,fileres);
      if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
   /*---------- Health expectancies and variances ------------*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
   strcpy(filerest,"t");    printf("Computing forecasting: result on file '%s' \n", fileresf);
   strcat(filerest,fileres);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;  
   }    if (mobilav!=0) {
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcpy(filerese,"e");      }
   strcat(filerese,fileres);    }
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    if (stepm<=12) stepsize=1;
   }    if(estepm < stepm){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    }
     else  hstepm=estepm;   
   strcpy(fileresv,"v");  
   strcat(fileresv,fileres);    hstepm=hstepm/stepm; 
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                                 fractional in yp1 */
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    anprojmean=yp;
   }    yp2=modf((yp1*12),&yp);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    mprojmean=yp;
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    yp1=modf((yp2*30.5),&yp);
   calagedate=-1;    jprojmean=yp;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    i1=cptcoveff;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if (cptcovn < 1){i1=1;}
       k=k+1;    
       fprintf(ficrest,"\n#****** ");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresf,"#****** Routine prevforecast **\n");
       fprintf(ficrest,"******\n");  
   /*            if (h==(int)(YEARM*yearp)){ */
       fprintf(ficreseij,"\n#****** ");    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(j=1;j<=cptcoveff;j++)      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        k=k+1;
       fprintf(ficreseij,"******\n");        fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
       fprintf(ficresvij,"\n#****** ");          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       for(j=1;j<=cptcoveff;j++)        }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficresf,"******\n");
       fprintf(ficresvij,"******\n");        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for(i=1; i<=nlstate;i++)              
       oldm=oldms;savm=savms;            fprintf(ficresf," p%d%d",i,j);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            fprintf(ficresf," p.%d",j);
          }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
       oldm=oldms;savm=savms;          fprintf(ficresf,"\n");
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
       if(popbased==1){  
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
        }            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            oldm=oldms;savm=savms;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       fprintf(ficrest,"\n");          
             for (h=0; h<=nhstepm; h++){
       epj=vector(1,nlstate+1);              if (h*hstepm/YEARM*stepm ==yearp) {
       for(age=bage; age <=fage ;age++){                fprintf(ficresf,"\n");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                for(j=1;j<=cptcoveff;j++) 
         if (popbased==1) {                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
             prlim[i][i]=probs[(int)age][i][k];              } 
         }              for(j=1; j<=nlstate+ndeath;j++) {
                        ppij=0.;
         fprintf(ficrest," %4.0f",age);                for(i=1; i<=nlstate;i++) {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                  if (mobilav==1) 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                  else {
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
           }                  }
           epj[nlstate+1] +=epj[j];                  if (h*hstepm/YEARM*stepm== yearp) {
         }                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
         for(i=1, vepp=0.;i <=nlstate;i++)                } /* end i */
           for(j=1;j <=nlstate;j++)                if (h*hstepm/YEARM*stepm==yearp) {
             vepp += vareij[i][j][(int)age];                  fprintf(ficresf," %.3f", ppij);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                }
         for(j=1;j <=nlstate;j++){              }/* end j */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));            } /* end h */
         }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrest,"\n");          } /* end agec */
       }        } /* end yearp */
     }      } /* end cptcod */
   }    } /* end  cptcov */
 free_matrix(mint,1,maxwav,1,n);         
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_vector(weight,1,n);  
   fclose(ficreseij);    fclose(ficresf);
   fclose(ficresvij);  }
   fclose(ficrest);  
   fclose(ficpar);  /************** Forecasting *****not tested NB*************/
   free_vector(epj,1,nlstate+1);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
      
   /*------- Variance limit prevalence------*/      int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
   strcpy(fileresvpl,"vpl");    double calagedatem, agelim, kk1, kk2;
   strcat(fileresvpl,fileres);    double *popeffectif,*popcount;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    double ***p3mat,***tabpop,***tabpopprev;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    double ***mobaverage;
     exit(0);    char filerespop[FILENAMELENGTH];
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   k=0;    agelim=AGESUP;
   for(cptcov=1;cptcov<=i1;cptcov++){    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       fprintf(ficresvpl,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(filerespop,"pop"); 
       fprintf(ficresvpl,"******\n");    strcat(filerespop,fileres);
          if((ficrespop=fopen(filerespop,"w"))==NULL) {
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      printf("Problem with forecast resultfile: %s\n", filerespop);
       oldm=oldms;savm=savms;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    }
     }    printf("Computing forecasting: result on file '%s' \n", filerespop);
  }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
   fclose(ficresvpl);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   /*---------- End : free ----------------*/    if (mobilav!=0) {
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }
      }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    if (stepm<=12) stepsize=1;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    
      agelim=AGESUP;
   free_matrix(matcov,1,npar,1,npar);    
   free_vector(delti,1,npar);    hstepm=1;
   free_matrix(agev,1,maxwav,1,imx);    hstepm=hstepm/stepm; 
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    
     if (popforecast==1) {
   fprintf(fichtm,"\n</body>");      if((ficpop=fopen(popfile,"r"))==NULL) {
   fclose(fichtm);        printf("Problem with population file : %s\n",popfile);exit(0);
   fclose(ficgp);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
        } 
       popage=ivector(0,AGESUP);
   if(erreur >0){      popeffectif=vector(0,AGESUP);
     printf("End of Imach with error or warning %d\n",erreur);      popcount=vector(0,AGESUP);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);      
   }else{      i=1;   
    printf("End of Imach\n");      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
    fprintf(ficlog,"End of Imach\n");     
   }      imx=i;
   printf("See log file on %s\n",filelog);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   fclose(ficlog);    }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
      for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   /*printf("Total time was %d uSec.\n", total_usecs);*/        k=k+1;
   /*------ End -----------*/        fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  end:        }
 #ifdef windows        fprintf(ficrespop,"******\n");
   /* chdir(pathcd);*/        fprintf(ficrespop,"# Age");
 #endif        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
  /*system("wgnuplot graph.plt");*/        if (popforecast==1)  fprintf(ficrespop," [Population]");
  /*system("../gp37mgw/wgnuplot graph.plt");*/        
  /*system("cd ../gp37mgw");*/        for (cpt=0; cpt<=0;cpt++) { 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
  strcpy(plotcmd,GNUPLOTPROGRAM);          
  strcat(plotcmd," ");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
  strcat(plotcmd,optionfilegnuplot);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
  system(plotcmd);            nhstepm = nhstepm/hstepm; 
             
 #ifdef windows            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   while (z[0] != 'q') {            oldm=oldms;savm=savms;
     /* chdir(path); */            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          
     scanf("%s",z);            for (h=0; h<=nhstepm; h++){
     if (z[0] == 'c') system("./imach");              if (h==(int) (calagedatem+YEARM*cpt)) {
     else if (z[0] == 'e') system(optionfilehtm);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     else if (z[0] == 'g') system(plotcmd);              } 
     else if (z[0] == 'q') exit(0);              for(j=1; j<=nlstate+ndeath;j++) {
   }                kk1=0.;kk2=0;
 #endif                for(i=1; i<=nlstate;i++) {              
 }                  if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.128


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>