Diff for /imach/src/imach.c between versions 1.6 and 1.128

version 1.6, 2001/05/02 17:47:10 version 1.128, 2006/06/30 13:02:05
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.128  2006/06/30 13:02:05  brouard
   individuals from different ages are interviewed on their health status    (Module): Clarifications on computing e.j
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.127  2006/04/28 18:11:50  brouard
   Health expectancies are computed from the transistions observed between    (Module): Yes the sum of survivors was wrong since
   waves and are computed for each degree of severity of disability (number    imach-114 because nhstepm was no more computed in the age
   of life states). More degrees you consider, more time is necessary to    loop. Now we define nhstepma in the age loop.
   reach the Maximum Likelihood of the parameters involved in the model.    (Module): In order to speed up (in case of numerous covariates) we
   The simplest model is the multinomial logistic model where pij is    compute health expectancies (without variances) in a first step
   the probabibility to be observed in state j at the second wave conditional    and then all the health expectancies with variances or standard
   to be observed in state i at the first wave. Therefore the model is:    deviation (needs data from the Hessian matrices) which slows the
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    computation.
   is a covariate. If you want to have a more complex model than "constant and    In the future we should be able to stop the program is only health
   age", you should modify the program where the markup    expectancies and graph are needed without standard deviations.
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
   The advantage that this computer programme claims, comes from that if the    imach-114 because nhstepm was no more computed in the age
   delay between waves is not identical for each individual, or if some    loop. Now we define nhstepma in the age loop.
   individual missed an interview, the information is not rounded or lost, but    Version 0.98h
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.125  2006/04/04 15:20:31  lievre
   observed in state i at age x+h conditional to the observed state i at age    Errors in calculation of health expectancies. Age was not initialized.
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Forecasting file added.
   unobserved intermediate  states. This elementary transition (by month or  
   quarter trimester, semester or year) is model as a multinomial logistic.    Revision 1.124  2006/03/22 17:13:53  lievre
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Parameters are printed with %lf instead of %f (more numbers after the comma).
   and the contribution of each individual to the likelihood is simply hPijx.    The log-likelihood is printed in the log file
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.123  2006/03/20 10:52:43  brouard
   of the life expectancies. It also computes the prevalence limits.    * imach.c (Module): <title> changed, corresponds to .htm file
      name. <head> headers where missing.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    * imach.c (Module): Weights can have a decimal point as for
   This software have been partly granted by Euro-REVES, a concerted action    English (a comma might work with a correct LC_NUMERIC environment,
   from the European Union.    otherwise the weight is truncated).
   It is copyrighted identically to a GNU software product, ie programme and    Modification of warning when the covariates values are not 0 or
   software can be distributed freely for non commercial use. Latest version    1.
   can be accessed at http://euroreves.ined.fr/imach .    Version 0.98g
   **********************************************************************/  
      Revision 1.122  2006/03/20 09:45:41  brouard
 #include <math.h>    (Module): Weights can have a decimal point as for
 #include <stdio.h>    English (a comma might work with a correct LC_NUMERIC environment,
 #include <stdlib.h>    otherwise the weight is truncated).
 #include <unistd.h>    Modification of warning when the covariates values are not 0 or
     1.
 #define MAXLINE 256    Version 0.98g
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.121  2006/03/16 17:45:01  lievre
 #define windows    * imach.c (Module): Comments concerning covariates added
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    not 1 month. Version 0.98f
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.120  2006/03/16 15:10:38  lievre
 #define NINTERVMAX 8    (Module): refinements in the computation of lli if
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    status=-2 in order to have more reliable computation if stepm is
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    not 1 month. Version 0.98f
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.119  2006/03/15 17:42:26  brouard
 #define YEARM 12. /* Number of months per year */    (Module): Bug if status = -2, the loglikelihood was
 #define AGESUP 130    computed as likelihood omitting the logarithm. Version O.98e
 #define AGEBASE 40  
     Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 int nvar;    table of variances if popbased=1 .
 static int cptcov;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int cptcovn, cptcovage=0;    (Module): Function pstamp added
 int npar=NPARMAX;    (Module): Version 0.98d
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.117  2006/03/14 17:16:22  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int maxwav; /* Maxim number of waves */    (Module): Function pstamp added
 int mle, weightopt;    (Module): Version 0.98d
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.116  2006/03/06 10:29:27  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Variance-covariance wrong links and
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    varian-covariance of ej. is needed (Saito).
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;  
 FILE *ficgp, *fichtm;    Revision 1.115  2006/02/27 12:17:45  brouard
 FILE *ficreseij;    (Module): One freematrix added in mlikeli! 0.98c
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.114  2006/02/26 12:57:58  brouard
   char fileresv[FILENAMELENGTH];    (Module): Some improvements in processing parameter
  FILE  *ficresvpl;    filename with strsep.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.113  2006/02/24 14:20:24  brouard
 #define NR_END 1    (Module): Memory leaks checks with valgrind and:
 #define FREE_ARG char*    datafile was not closed, some imatrix were not freed and on matrix
 #define FTOL 1.0e-10    allocation too.
   
 #define NRANSI    Revision 1.112  2006/01/30 09:55:26  brouard
 #define ITMAX 200    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 #define TOL 2.0e-4    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 #define CGOLD 0.3819660    (Module): Comments can be added in data file. Missing date values
 #define ZEPS 1.0e-10    can be a simple dot '.'.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.110  2006/01/25 00:51:50  brouard
 #define GOLD 1.618034    (Module): Lots of cleaning and bugs added (Gompertz)
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.108  2006/01/19 18:05:42  lievre
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Gnuplot problem appeared...
      To be fixed
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.106  2006/01/19 13:24:36  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Some cleaning and links added in html output
   
 int imx;    Revision 1.105  2006/01/05 20:23:19  lievre
 int stepm;    *** empty log message ***
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.104  2005/09/30 16:11:43  lievre
 int m,nb;    (Module): sump fixed, loop imx fixed, and simplifications.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): If the status is missing at the last wave but we know
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    that the person is alive, then we can code his/her status as -2
 double **pmmij;    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 double *weight;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int **s; /* Status */    the healthy state at last known wave). Version is 0.98
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab;    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
   
 static  int split( char *path, char *dirc, char *name )    Revision 1.101  2004/09/15 10:38:38  brouard
 {    Fix on curr_time
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.99  2004/06/05 08:57:40  brouard
    s = strrchr( path, '\\' );           /* find last / */    *** empty log message ***
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.98  2004/05/16 15:05:56  brouard
       extern char       *getwd( );    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
       if ( getwd( dirc ) == NULL ) {    state at each age, but using a Gompertz model: log u =a + b*age .
 #else    This is the basic analysis of mortality and should be done before any
       extern char       *getcwd( );    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    from other sources like vital statistic data.
 #endif  
          return( GLOCK_ERROR_GETCWD );    The same imach parameter file can be used but the option for mle should be -3.
       }  
       strcpy( name, path );             /* we've got it */    Agnès, who wrote this part of the code, tried to keep most of the
    } else {                             /* strip direcotry from path */    former routines in order to include the new code within the former code.
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    The output is very simple: only an estimate of the intercept and of
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    the slope with 95% confident intervals.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Current limitations:
       dirc[l1-l2] = 0;                  /* add zero */    A) Even if you enter covariates, i.e. with the
    }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
    l1 = strlen( dirc );                 /* length of directory */    B) There is no computation of Life Expectancy nor Life Table.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
    return( 0 );                         /* we're done */    Revision 1.97  2004/02/20 13:25:42  lievre
 }    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   
 /******************************************/    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 void replace(char *s, char*t)    rewritten within the same printf. Workaround: many printfs.
 {  
   int i;    Revision 1.95  2003/07/08 07:54:34  brouard
   int lg=20;    * imach.c (Repository):
   i=0;    (Repository): Using imachwizard code to output a more meaningful covariance
   lg=strlen(t);    matrix (cov(a12,c31) instead of numbers.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.94  2003/06/27 13:00:02  brouard
     if (t[i]== '\\') s[i]='/';    Just cleaning
   }  
 }    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 int nbocc(char *s, char occ)    exist so I changed back to asctime which exists.
 {    (Module): Version 0.96b
   int i,j=0;  
   int lg=20;    Revision 1.92  2003/06/25 16:30:45  brouard
   i=0;    (Module): On windows (cygwin) function asctime_r doesn't
   lg=strlen(s);    exist so I changed back to asctime which exists.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.91  2003/06/25 15:30:29  brouard
   }    * imach.c (Repository): Duplicated warning errors corrected.
   return j;    (Repository): Elapsed time after each iteration is now output. It
 }    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 void cutv(char *u,char *v, char*t, char occ)    concerning matrix of covariance. It has extension -cov.htm.
 {  
   int i,lg,j,p=0;    Revision 1.90  2003/06/24 12:34:15  brouard
   i=0;    (Module): Some bugs corrected for windows. Also, when
   for(j=0; j<=strlen(t)-1; j++) {    mle=-1 a template is output in file "or"mypar.txt with the design
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    of the covariance matrix to be input.
   }  
     Revision 1.89  2003/06/24 12:30:52  brouard
   lg=strlen(t);    (Module): Some bugs corrected for windows. Also, when
   for(j=0; j<p; j++) {    mle=-1 a template is output in file "or"mypar.txt with the design
     (u[j] = t[j]);    of the covariance matrix to be input.
   }  
      u[p]='\0';    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.87  2003/06/18 12:26:01  brouard
   }    Version 0.96
 }  
     Revision 1.86  2003/06/17 20:04:08  brouard
 /********************** nrerror ********************/    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 void nrerror(char error_text[])  
 {    Revision 1.85  2003/06/17 13:12:43  brouard
   fprintf(stderr,"ERREUR ...\n");    * imach.c (Repository): Check when date of death was earlier that
   fprintf(stderr,"%s\n",error_text);    current date of interview. It may happen when the death was just
   exit(1);    prior to the death. In this case, dh was negative and likelihood
 }    was wrong (infinity). We still send an "Error" but patch by
 /*********************** vector *******************/    assuming that the date of death was just one stepm after the
 double *vector(int nl, int nh)    interview.
 {    (Repository): Because some people have very long ID (first column)
   double *v;    we changed int to long in num[] and we added a new lvector for
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    memory allocation. But we also truncated to 8 characters (left
   if (!v) nrerror("allocation failure in vector");    truncation)
   return v-nl+NR_END;    (Repository): No more line truncation errors.
 }  
     Revision 1.84  2003/06/13 21:44:43  brouard
 /************************ free vector ******************/    * imach.c (Repository): Replace "freqsummary" at a correct
 void free_vector(double*v, int nl, int nh)    place. It differs from routine "prevalence" which may be called
 {    many times. Probs is memory consuming and must be used with
   free((FREE_ARG)(v+nl-NR_END));    parcimony.
 }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 /************************ivector *******************************/    Revision 1.83  2003/06/10 13:39:11  lievre
 int *ivector(long nl,long nh)    *** empty log message ***
 {  
   int *v;    Revision 1.82  2003/06/05 15:57:20  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Add log in  imach.c and  fullversion number is now printed.
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  */
 }  /*
      Interpolated Markov Chain
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Short summary of the programme:
 {    
   free((FREE_ARG)(v+nl-NR_END));    This program computes Healthy Life Expectancies from
 }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 /******************* imatrix *******************************/    interviewed on their health status or degree of disability (in the
 int **imatrix(long nrl, long nrh, long ncl, long nch)    case of a health survey which is our main interest) -2- at least a
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    second wave of interviews ("longitudinal") which measure each change
 {    (if any) in individual health status.  Health expectancies are
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    computed from the time spent in each health state according to a
   int **m;    model. More health states you consider, more time is necessary to reach the
      Maximum Likelihood of the parameters involved in the model.  The
   /* allocate pointers to rows */    simplest model is the multinomial logistic model where pij is the
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    probability to be observed in state j at the second wave
   if (!m) nrerror("allocation failure 1 in matrix()");    conditional to be observed in state i at the first wave. Therefore
   m += NR_END;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m -= nrl;    'age' is age and 'sex' is a covariate. If you want to have a more
      complex model than "constant and age", you should modify the program
      where the markup *Covariates have to be included here again* invites
   /* allocate rows and set pointers to them */    you to do it.  More covariates you add, slower the
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    convergence.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    The advantage of this computer programme, compared to a simple
   m[nrl] -= ncl;    multinomial logistic model, is clear when the delay between waves is not
      identical for each individual. Also, if a individual missed an
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    intermediate interview, the information is lost, but taken into
      account using an interpolation or extrapolation.  
   /* return pointer to array of pointers to rows */  
   return m;    hPijx is the probability to be observed in state i at age x+h
 }    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 /****************** free_imatrix *************************/    states. This elementary transition (by month, quarter,
 void free_imatrix(m,nrl,nrh,ncl,nch)    semester or year) is modelled as a multinomial logistic.  The hPx
       int **m;    matrix is simply the matrix product of nh*stepm elementary matrices
       long nch,ncl,nrh,nrl;    and the contribution of each individual to the likelihood is simply
      /* free an int matrix allocated by imatrix() */    hPijx.
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Also this programme outputs the covariance matrix of the parameters but also
   free((FREE_ARG) (m+nrl-NR_END));    of the life expectancies. It also computes the period (stable) prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /******************* matrix *******************************/             Institut national d'études démographiques, Paris.
 double **matrix(long nrl, long nrh, long ncl, long nch)    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    It is copyrighted identically to a GNU software product, ie programme and
   double **m;    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m += NR_END;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   m -= nrl;    
     **********************************************************************/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /*
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    main
   m[nrl] += NR_END;    read parameterfile
   m[nrl] -= ncl;    read datafile
     concatwav
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    freqsummary
   return m;    if (mle >= 1)
 }      mlikeli
     print results files
 /*************************free matrix ************************/    if mle==1 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)       computes hessian
 {    read end of parameter file: agemin, agemax, bage, fage, estepm
   free((FREE_ARG)(m[nrl]+ncl-NR_END));        begin-prev-date,...
   free((FREE_ARG)(m+nrl-NR_END));    open gnuplot file
 }    open html file
     period (stable) prevalence
 /******************* ma3x *******************************/     for age prevalim()
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    h Pij x
 {    variance of p varprob
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    forecasting if prevfcast==1 prevforecast call prevalence()
   double ***m;    health expectancies
     Variance-covariance of DFLE
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    prevalence()
   if (!m) nrerror("allocation failure 1 in matrix()");     movingaverage()
   m += NR_END;    varevsij() 
   m -= nrl;    if popbased==1 varevsij(,popbased)
     total life expectancies
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Variance of period (stable) prevalence
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   end
   m[nrl] += NR_END;  */
   m[nrl] -= ncl;  
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
    
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #include <math.h>
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #include <stdio.h>
   m[nrl][ncl] += NR_END;  #include <stdlib.h>
   m[nrl][ncl] -= nll;  #include <string.h>
   for (j=ncl+1; j<=nch; j++)  #include <unistd.h>
     m[nrl][j]=m[nrl][j-1]+nlay;  
    #include <limits.h>
   for (i=nrl+1; i<=nrh; i++) {  #include <sys/types.h>
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #include <sys/stat.h>
     for (j=ncl+1; j<=nch; j++)  #include <errno.h>
       m[i][j]=m[i][j-1]+nlay;  extern int errno;
   }  
   return m;  /* #include <sys/time.h> */
 }  #include <time.h>
   #include "timeval.h"
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /* #include <libintl.h> */
 {  /* #define _(String) gettext (String) */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define MAXLINE 256
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /***************** f1dim *************************/  #define FILENAMELENGTH 132
 extern int ncom;  
 extern double *pcom,*xicom;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 extern double (*nrfunc)(double []);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    
 double f1dim(double x)  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   int j;  
   double f;  #define NINTERVMAX 8
   double *xt;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   xt=vector(1,ncom);  #define NCOVMAX 8 /* Maximum number of covariates */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define MAXN 20000
   f=(*nrfunc)(xt);  #define YEARM 12. /* Number of months per year */
   free_vector(xt,1,ncom);  #define AGESUP 130
   return f;  #define AGEBASE 40
 }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 /*****************brent *************************/  #define DIRSEPARATOR '/'
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define CHARSEPARATOR "/"
 {  #define ODIRSEPARATOR '\\'
   int iter;  #else
   double a,b,d,etemp;  #define DIRSEPARATOR '\\'
   double fu,fv,fw,fx;  #define CHARSEPARATOR "\\"
   double ftemp;  #define ODIRSEPARATOR '/'
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #endif
   double e=0.0;  
    /* $Id$ */
   a=(ax < cx ? ax : cx);  /* $State$ */
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
   fw=fv=fx=(*f)(x);  char fullversion[]="$Revision$ $Date$"; 
   for (iter=1;iter<=ITMAX;iter++) {  char strstart[80];
     xm=0.5*(a+b);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int nvar;
     printf(".");fflush(stdout);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 #ifdef DEBUG  int npar=NPARMAX;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int nlstate=2; /* Number of live states */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int ndeath=1; /* Number of dead states */
 #endif  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int popbased=0;
       *xmin=x;  
       return fx;  int *wav; /* Number of waves for this individuual 0 is possible */
     }  int maxwav; /* Maxim number of waves */
     ftemp=fu;  int jmin, jmax; /* min, max spacing between 2 waves */
     if (fabs(e) > tol1) {  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
       r=(x-w)*(fx-fv);  int gipmx, gsw; /* Global variables on the number of contributions 
       q=(x-v)*(fx-fw);                     to the likelihood and the sum of weights (done by funcone)*/
       p=(x-v)*q-(x-w)*r;  int mle, weightopt;
       q=2.0*(q-r);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       if (q > 0.0) p = -p;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       q=fabs(q);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       etemp=e;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       e=d;  double jmean; /* Mean space between 2 waves */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  double **oldm, **newm, **savm; /* Working pointers to matrices */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       else {  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         d=p/q;  FILE *ficlog, *ficrespow;
         u=x+d;  int globpr; /* Global variable for printing or not */
         if (u-a < tol2 || b-u < tol2)  double fretone; /* Only one call to likelihood */
           d=SIGN(tol1,xm-x);  long ipmx; /* Number of contributions */
       }  double sw; /* Sum of weights */
     } else {  char filerespow[FILENAMELENGTH];
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     }  FILE *ficresilk;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     fu=(*f)(u);  FILE *ficresprobmorprev;
     if (fu <= fx) {  FILE *fichtm, *fichtmcov; /* Html File */
       if (u >= x) a=x; else b=x;  FILE *ficreseij;
       SHFT(v,w,x,u)  char filerese[FILENAMELENGTH];
         SHFT(fv,fw,fx,fu)  FILE *ficresstdeij;
         } else {  char fileresstde[FILENAMELENGTH];
           if (u < x) a=u; else b=u;  FILE *ficrescveij;
           if (fu <= fw || w == x) {  char filerescve[FILENAMELENGTH];
             v=w;  FILE  *ficresvij;
             w=u;  char fileresv[FILENAMELENGTH];
             fv=fw;  FILE  *ficresvpl;
             fw=fu;  char fileresvpl[FILENAMELENGTH];
           } else if (fu <= fv || v == x || v == w) {  char title[MAXLINE];
             v=u;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
             fv=fu;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
           }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         }  char command[FILENAMELENGTH];
   }  int  outcmd=0;
   nrerror("Too many iterations in brent");  
   *xmin=x;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   return fx;  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /****************** mnbrak ***********************/  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   double ulim,u,r,q, dum;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   double fu;  struct timezone tzp;
    extern int gettimeofday();
   *fa=(*func)(*ax);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   *fb=(*func)(*bx);  long time_value;
   if (*fb > *fa) {  extern long time();
     SHFT(dum,*ax,*bx,dum)  char strcurr[80], strfor[80];
       SHFT(dum,*fb,*fa,dum)  
       }  char *endptr;
   *cx=(*bx)+GOLD*(*bx-*ax);  long lval;
   *fc=(*func)(*cx);  double dval;
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  #define NR_END 1
     q=(*bx-*cx)*(*fb-*fa);  #define FREE_ARG char*
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define FTOL 1.0e-10
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define NRANSI 
     if ((*bx-u)*(u-*cx) > 0.0) {  #define ITMAX 200 
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define TOL 2.0e-4 
       fu=(*func)(u);  
       if (fu < *fc) {  #define CGOLD 0.3819660 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define ZEPS 1.0e-10 
           SHFT(*fb,*fc,fu,(*func)(u))  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define GOLD 1.618034 
       u=ulim;  #define GLIMIT 100.0 
       fu=(*func)(u);  #define TINY 1.0e-20 
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  static double maxarg1,maxarg2;
       fu=(*func)(u);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     SHFT(*ax,*bx,*cx,u)    
       SHFT(*fa,*fb,*fc,fu)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       }  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
 /*************** linmin ************************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 int ncom;  int agegomp= AGEGOMP;
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  int imx; 
    int stepm=1;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /* Stepm, step in month: minimum step interpolation*/
 {  
   double brent(double ax, double bx, double cx,  int estepm;
                double (*f)(double), double tol, double *xmin);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int m,nb;
               double *fc, double (*func)(double));  long *num;
   int j;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double xx,xmin,bx,ax;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double fx,fb,fa;  double **pmmij, ***probs;
    double *ageexmed,*agecens;
   ncom=n;  double dateintmean=0;
   pcom=vector(1,n);  
   xicom=vector(1,n);  double *weight;
   nrfunc=func;  int **s; /* Status */
   for (j=1;j<=n;j++) {  double *agedc, **covar, idx;
     pcom[j]=p[j];  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     xicom[j]=xi[j];  double *lsurv, *lpop, *tpop;
   }  
   ax=0.0;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   xx=1.0;  double ftolhess; /* Tolerance for computing hessian */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /**************** split *************************/
 #ifdef DEBUG  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  {
 #endif    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   for (j=1;j<=n;j++) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     xi[j] *= xmin;    */ 
     p[j] += xi[j];    char  *ss;                            /* pointer */
   }    int   l1, l2;                         /* length counters */
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /*************** powell ************************/    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      strcpy( name, path );               /* we got the fullname name because no directory */
             double (*func)(double []))      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   void linmin(double p[], double xi[], int n, double *fret,      /* get current working directory */
               double (*func)(double []));      /*    extern  char* getcwd ( char *buf , int len);*/
   int i,ibig,j;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double del,t,*pt,*ptt,*xit;        return( GLOCK_ERROR_GETCWD );
   double fp,fptt;      }
   double *xits;      /* got dirc from getcwd*/
   pt=vector(1,n);      printf(" DIRC = %s \n",dirc);
   ptt=vector(1,n);    } else {                              /* strip direcotry from path */
   xit=vector(1,n);      ss++;                               /* after this, the filename */
   xits=vector(1,n);      l2 = strlen( ss );                  /* length of filename */
   *fret=(*func)(p);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (j=1;j<=n;j++) pt[j]=p[j];      strcpy( name, ss );         /* save file name */
   for (*iter=1;;++(*iter)) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     fp=(*fret);      dirc[l1-l2] = 0;                    /* add zero */
     ibig=0;      printf(" DIRC2 = %s \n",dirc);
     del=0.0;    }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    /* We add a separator at the end of dirc if not exists */
     for (i=1;i<=n;i++)    l1 = strlen( dirc );                  /* length of directory */
       printf(" %d %.12f",i, p[i]);    if( dirc[l1-1] != DIRSEPARATOR ){
     printf("\n");      dirc[l1] =  DIRSEPARATOR;
     for (i=1;i<=n;i++) {      dirc[l1+1] = 0; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      printf(" DIRC3 = %s \n",dirc);
       fptt=(*fret);    }
 #ifdef DEBUG    ss = strrchr( name, '.' );            /* find last / */
       printf("fret=%lf \n",*fret);    if (ss >0){
 #endif      ss++;
       printf("%d",i);fflush(stdout);      strcpy(ext,ss);                     /* save extension */
       linmin(p,xit,n,fret,func);      l1= strlen( name);
       if (fabs(fptt-(*fret)) > del) {      l2= strlen(ss)+1;
         del=fabs(fptt-(*fret));      strncpy( finame, name, l1-l2);
         ibig=i;      finame[l1-l2]= 0;
       }    }
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));    return( 0 );                          /* we're done */
       for (j=1;j<=n;j++) {  }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  /******************************************/
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  void replace_back_to_slash(char *s, char*t)
       printf("\n");  {
 #endif    int i;
     }    int lg=0;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    i=0;
 #ifdef DEBUG    lg=strlen(t);
       int k[2],l;    for(i=0; i<= lg; i++) {
       k[0]=1;      (s[i] = t[i]);
       k[1]=-1;      if (t[i]== '\\') s[i]='/';
       printf("Max: %.12e",(*func)(p));    }
       for (j=1;j<=n;j++)  }
         printf(" %.12e",p[j]);  
       printf("\n");  int nbocc(char *s, char occ)
       for(l=0;l<=1;l++) {  {
         for (j=1;j<=n;j++) {    int i,j=0;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    int lg=20;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    i=0;
         }    lg=strlen(s);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    for(i=0; i<= lg; i++) {
       }    if  (s[i] == occ ) j++;
 #endif    }
     return j;
   }
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  void cutv(char *u,char *v, char*t, char occ)
       free_vector(ptt,1,n);  {
       free_vector(pt,1,n);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       return;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     }       gives u="abcedf" and v="ghi2j" */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    int i,lg,j,p=0;
     for (j=1;j<=n;j++) {    i=0;
       ptt[j]=2.0*p[j]-pt[j];    for(j=0; j<=strlen(t)-1; j++) {
       xit[j]=p[j]-pt[j];      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       pt[j]=p[j];    }
     }  
     fptt=(*func)(ptt);    lg=strlen(t);
     if (fptt < fp) {    for(j=0; j<p; j++) {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      (u[j] = t[j]);
       if (t < 0.0) {    }
         linmin(p,xit,n,fret,func);       u[p]='\0';
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];     for(j=0; j<= lg; j++) {
           xi[j][n]=xit[j];      if (j>=(p+1))(v[j-p-1] = t[j]);
         }    }
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  /********************** nrerror ********************/
           printf(" %.12e",xit[j]);  
         printf("\n");  void nrerror(char error_text[])
 #endif  {
       }    fprintf(stderr,"ERREUR ...\n");
     }    fprintf(stderr,"%s\n",error_text);
   }    exit(EXIT_FAILURE);
 }  }
   /*********************** vector *******************/
 /**** Prevalence limit ****************/  double *vector(int nl, int nh)
   {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double *v;
 {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    if (!v) nrerror("allocation failure in vector");
      matrix by transitions matrix until convergence is reached */    return v-nl+NR_END;
   }
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  /************************ free vector ******************/
   double **matprod2();  void free_vector(double*v, int nl, int nh)
   double **out, cov[NCOVMAX], **pmij();  {
   double **newm;    free((FREE_ARG)(v+nl-NR_END));
   double agefin, delaymax=50 ; /* Max number of years to converge */  }
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  /************************ivector *******************************/
     for (j=1;j<=nlstate+ndeath;j++){  int *ivector(long nl,long nh)
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
     }    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
    cov[1]=1.;    if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  /******************free ivector **************************/
     /* Covariates have to be included here again */  void free_ivector(int *v, long nl, long nh)
      cov[2]=agefin;  {
      free((FREE_ARG)(v+nl-NR_END));
       for (k=1; k<=cptcovn;k++) {  }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];  
   /************************lvector *******************************/
 /*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/  long *lvector(long nl,long nh)
       }  {
       for (k=1; k<=cptcovage;k++)    long *v;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
        if (!v) nrerror("allocation failure in ivector");
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    return v-nl+NR_END;
   }
     savm=oldm;  
     oldm=newm;  /******************free lvector **************************/
     maxmax=0.;  void free_lvector(long *v, long nl, long nh)
     for(j=1;j<=nlstate;j++){  {
       min=1.;    free((FREE_ARG)(v+nl-NR_END));
       max=0.;  }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  /******************* imatrix *******************************/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         prlim[i][j]= newm[i][j]/(1-sumnew);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         max=FMAX(max,prlim[i][j]);  { 
         min=FMIN(min,prlim[i][j]);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       }    int **m; 
       maxmin=max-min;    
       maxmax=FMAX(maxmax,maxmin);    /* allocate pointers to rows */ 
     }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if(maxmax < ftolpl){    if (!m) nrerror("allocation failure 1 in matrix()"); 
       return prlim;    m += NR_END; 
     }    m -= nrl; 
   }    
 }    
     /* allocate rows and set pointers to them */ 
 /*************** transition probabilities **********/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    m[nrl] += NR_END; 
 {    m[nrl] -= ncl; 
   double s1, s2;    
   /*double t34;*/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   int i,j,j1, nc, ii, jj;    
     /* return pointer to array of pointers to rows */ 
     for(i=1; i<= nlstate; i++){    return m; 
     for(j=1; j<i;j++){  } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  /****************** free_imatrix *************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  void free_imatrix(m,nrl,nrh,ncl,nch)
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        int **m;
       }        long nch,ncl,nrh,nrl; 
       ps[i][j]=s2;       /* free an int matrix allocated by imatrix() */ 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     for(j=i+1; j<=nlstate+ndeath;j++){    free((FREE_ARG) (m+nrl-NR_END)); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /******************* matrix *******************************/
       }  double **matrix(long nrl, long nrh, long ncl, long nch)
       ps[i][j]=s2;  {
     }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   }    double **m;
   for(i=1; i<= nlstate; i++){  
      s1=0;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(j=1; j<i; j++)    if (!m) nrerror("allocation failure 1 in matrix()");
       s1+=exp(ps[i][j]);    m += NR_END;
     for(j=i+1; j<=nlstate+ndeath; j++)    m -= nrl;
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(j=1; j<i; j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl] += NR_END;
     for(j=i+1; j<=nlstate+ndeath; j++)    m[nrl] -= ncl;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   } /* end i */    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){     */
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   }  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    free((FREE_ARG)(m+nrl-NR_END));
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
      printf("%lf ",ps[ii][jj]);  
    }  /******************* ma3x *******************************/
     printf("\n ");  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
     printf("\n ");printf("%lf ",cov[2]);*/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 /*    double ***m;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     return ps;    if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
 /**************** Product of 2 matrices ******************/  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 {    m[nrl] += NR_END;
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    m[nrl] -= ncl;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   long i, j, k;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   for(i=nrl; i<= nrh; i++)    m[nrl][ncl] += NR_END;
     for(k=ncolol; k<=ncoloh; k++)    m[nrl][ncl] -= nll;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    for (j=ncl+1; j<=nch; j++) 
         out[i][k] +=in[i][j]*b[j][k];      m[nrl][j]=m[nrl][j-1]+nlay;
     
   return out;    for (i=nrl+1; i<=nrh; i++) {
 }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
 /************* Higher Matrix Product ***************/    }
     return m; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    */
      duration (i.e. until  }
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /*************************free ma3x ************************/
      (typically every 2 years instead of every month which is too big).  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
      Model is determined by parameters x and covariates have to be  {
      included manually here.    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
      */    free((FREE_ARG)(m+nrl-NR_END));
   }
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  /*************** function subdirf ***********/
   double **newm;  char *subdirf(char fileres[])
   {
   /* Hstepm could be zero and should return the unit matrix */    /* Caution optionfilefiname is hidden */
   for (i=1;i<=nlstate+ndeath;i++)    strcpy(tmpout,optionfilefiname);
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,"/"); /* Add to the right */
       oldm[i][j]=(i==j ? 1.0 : 0.0);    strcat(tmpout,fileres);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    return tmpout;
     }  }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /*************** function subdirf2 ***********/
     for(d=1; d <=hstepm; d++){  char *subdirf2(char fileres[], char *preop)
       newm=savm;  {
       /* Covariates have to be included here again */    
       cov[1]=1.;    /* Caution optionfilefiname is hidden */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    strcpy(tmpout,optionfilefiname);
       if (cptcovn>0){    strcat(tmpout,"/");
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    return tmpout;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************** function subdirf3 ***********/
       savm=oldm;  char *subdirf3(char fileres[], char *preop, char *preop2)
       oldm=newm;  {
     }    
     for(i=1; i<=nlstate+ndeath; i++)    /* Caution optionfilefiname is hidden */
       for(j=1;j<=nlstate+ndeath;j++) {    strcpy(tmpout,optionfilefiname);
         po[i][j][h]=newm[i][j];    strcat(tmpout,"/");
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    strcat(tmpout,preop);
          */    strcat(tmpout,preop2);
       }    strcat(tmpout,fileres);
   } /* end h */    return tmpout;
   return po;  }
 }  
   /***************** f1dim *************************/
   extern int ncom; 
 /*************** log-likelihood *************/  extern double *pcom,*xicom;
 double func( double *x)  extern double (*nrfunc)(double []); 
 {   
   int i, ii, j, k, mi, d, kk;  double f1dim(double x) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  { 
   double **out;    int j; 
   double sw; /* Sum of weights */    double f;
   double lli; /* Individual log likelihood */    double *xt; 
   long ipmx;   
   /*extern weight */    xt=vector(1,ncom); 
   /* We are differentiating ll according to initial status */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    f=(*nrfunc)(xt); 
   /*for(i=1;i<imx;i++)    free_vector(xt,1,ncom); 
 printf(" %d\n",s[4][i]);    return f; 
   */  } 
   cov[1]=1.;  
   /*****************brent *************************/
   for(k=1; k<=nlstate; k++) ll[k]=0.;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  { 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    int iter; 
        for(mi=1; mi<= wav[i]-1; mi++){    double a,b,d,etemp;
       for (ii=1;ii<=nlstate+ndeath;ii++)    double fu,fv,fw,fx;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double ftemp;
             for(d=0; d<dh[mi][i]; d++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
               newm=savm;    double e=0.0; 
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;   
               for (kk=1; kk<=cptcovage;kk++) {    a=(ax < cx ? ax : cx); 
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    b=(ax > cx ? ax : cx); 
                  /*printf("%d %d",kk,Tage[kk]);*/    x=w=v=bx; 
               }    fw=fv=fx=(*f)(x); 
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/    for (iter=1;iter<=ITMAX;iter++) { 
               /*cov[3]=pow(cov[2],2)/1000.;*/      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      printf(".");fflush(stdout);
           savm=oldm;      fprintf(ficlog,".");fflush(ficlog);
           oldm=newm;  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       } /* end mult */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      #endif
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        *xmin=x; 
       ipmx +=1;        return fx; 
       sw += weight[i];      } 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      ftemp=fu;
     } /* end of wave */      if (fabs(e) > tol1) { 
   } /* end of individual */        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        p=(x-v)*q-(x-w)*r; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        q=2.0*(q-r); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        if (q > 0.0) p = -p; 
   return -l;        q=fabs(q); 
 }        etemp=e; 
         e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 /*********** Maximum Likelihood Estimation ***************/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          d=p/q; 
 {          u=x+d; 
   int i,j, iter;          if (u-a < tol2 || b-u < tol2) 
   double **xi,*delti;            d=SIGN(tol1,xm-x); 
   double fret;        } 
   xi=matrix(1,npar,1,npar);      } else { 
   for (i=1;i<=npar;i++)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for (j=1;j<=npar;j++)      } 
       xi[i][j]=(i==j ? 1.0 : 0.0);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   printf("Powell\n");      fu=(*f)(u); 
   powell(p,xi,npar,ftol,&iter,&fret,func);      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        SHFT(v,w,x,u) 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));          SHFT(fv,fw,fx,fu) 
           } else { 
 }            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
 /**** Computes Hessian and covariance matrix ***/              v=w; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))              w=u; 
 {              fv=fw; 
   double  **a,**y,*x,pd;              fw=fu; 
   double **hess;            } else if (fu <= fv || v == x || v == w) { 
   int i, j,jk;              v=u; 
   int *indx;              fv=fu; 
             } 
   double hessii(double p[], double delta, int theta, double delti[]);          } 
   double hessij(double p[], double delti[], int i, int j);    } 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    nrerror("Too many iterations in brent"); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    *xmin=x; 
     return fx; 
   } 
   hess=matrix(1,npar,1,npar);  
   /****************** mnbrak ***********************/
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     printf("%d",i);fflush(stdout);              double (*func)(double)) 
     hess[i][i]=hessii(p,ftolhess,i,delti);  { 
     /*printf(" %f ",p[i]);*/    double ulim,u,r,q, dum;
   }    double fu; 
    
   for (i=1;i<=npar;i++) {    *fa=(*func)(*ax); 
     for (j=1;j<=npar;j++)  {    *fb=(*func)(*bx); 
       if (j>i) {    if (*fb > *fa) { 
         printf(".%d%d",i,j);fflush(stdout);      SHFT(dum,*ax,*bx,dum) 
         hess[i][j]=hessij(p,delti,i,j);        SHFT(dum,*fb,*fa,dum) 
         hess[j][i]=hess[i][j];        } 
       }    *cx=(*bx)+GOLD*(*bx-*ax); 
     }    *fc=(*func)(*cx); 
   }    while (*fb > *fc) { 
   printf("\n");      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
          (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   a=matrix(1,npar,1,npar);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   y=matrix(1,npar,1,npar);      if ((*bx-u)*(u-*cx) > 0.0) { 
   x=vector(1,npar);        fu=(*func)(u); 
   indx=ivector(1,npar);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for (i=1;i<=npar;i++)        fu=(*func)(u); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        if (fu < *fc) { 
   ludcmp(a,npar,indx,&pd);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
   for (j=1;j<=npar;j++) {            } 
     for (i=1;i<=npar;i++) x[i]=0;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     x[j]=1;        u=ulim; 
     lubksb(a,npar,indx,x);        fu=(*func)(u); 
     for (i=1;i<=npar;i++){      } else { 
       matcov[i][j]=x[i];        u=(*cx)+GOLD*(*cx-*bx); 
     }        fu=(*func)(u); 
   }      } 
       SHFT(*ax,*bx,*cx,u) 
   printf("\n#Hessian matrix#\n");        SHFT(*fa,*fb,*fc,fu) 
   for (i=1;i<=npar;i++) {        } 
     for (j=1;j<=npar;j++) {  } 
       printf("%.3e ",hess[i][j]);  
     }  /*************** linmin ************************/
     printf("\n");  
   }  int ncom; 
   double *pcom,*xicom;
   /* Recompute Inverse */  double (*nrfunc)(double []); 
   for (i=1;i<=npar;i++)   
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   ludcmp(a,npar,indx,&pd);  { 
     double brent(double ax, double bx, double cx, 
   /*  printf("\n#Hessian matrix recomputed#\n");                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
   for (j=1;j<=npar;j++) {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     for (i=1;i<=npar;i++) x[i]=0;                double *fc, double (*func)(double)); 
     x[j]=1;    int j; 
     lubksb(a,npar,indx,x);    double xx,xmin,bx,ax; 
     for (i=1;i<=npar;i++){    double fx,fb,fa;
       y[i][j]=x[i];   
       printf("%.3e ",y[i][j]);    ncom=n; 
     }    pcom=vector(1,n); 
     printf("\n");    xicom=vector(1,n); 
   }    nrfunc=func; 
   */    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   free_matrix(a,1,npar,1,npar);      xicom[j]=xi[j]; 
   free_matrix(y,1,npar,1,npar);    } 
   free_vector(x,1,npar);    ax=0.0; 
   free_ivector(indx,1,npar);    xx=1.0; 
   free_matrix(hess,1,npar,1,npar);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
 }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /*************** hessian matrix ****************/  #endif
 double hessii( double x[], double delta, int theta, double delti[])    for (j=1;j<=n;j++) { 
 {      xi[j] *= xmin; 
   int i;      p[j] += xi[j]; 
   int l=1, lmax=20;    } 
   double k1,k2;    free_vector(xicom,1,n); 
   double p2[NPARMAX+1];    free_vector(pcom,1,n); 
   double res;  } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;  char *asc_diff_time(long time_sec, char ascdiff[])
   int k=0,kmax=10;  {
   double l1;    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   fx=func(x);    sec_left = (time_sec) % (60*60*24);
   for (i=1;i<=npar;i++) p2[i]=x[i];    hours = (sec_left) / (60*60) ;
   for(l=0 ; l <=lmax; l++){    sec_left = (sec_left) %(60*60);
     l1=pow(10,l);    minutes = (sec_left) /60;
     delts=delt;    sec_left = (sec_left) % (60);
     for(k=1 ; k <kmax; k=k+1){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       delt = delta*(l1*k);    return ascdiff;
       p2[theta]=x[theta] +delt;  }
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  /*************** powell ************************/
       k2=func(p2)-fx;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       /*res= (k1-2.0*fx+k2)/delt/delt; */              double (*func)(double [])) 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  { 
          void linmin(double p[], double xi[], int n, double *fret, 
 #ifdef DEBUG                double (*func)(double [])); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    int i,ibig,j; 
 #endif    double del,t,*pt,*ptt,*xit;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double fp,fptt;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    double *xits;
         k=kmax;    int niterf, itmp;
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    pt=vector(1,n); 
         k=kmax; l=lmax*10.;    ptt=vector(1,n); 
       }    xit=vector(1,n); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    xits=vector(1,n); 
         delts=delt;    *fret=(*func)(p); 
       }    for (j=1;j<=n;j++) pt[j]=p[j]; 
     }    for (*iter=1;;++(*iter)) { 
   }      fp=(*fret); 
   delti[theta]=delts;      ibig=0; 
   return res;      del=0.0; 
        last_time=curr_time;
 }      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 double hessij( double x[], double delti[], int thetai,int thetaj)      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 {  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   int i;     for (i=1;i<=n;i++) {
   int l=1, l1, lmax=20;        printf(" %d %.12f",i, p[i]);
   double k1,k2,k3,k4,res,fx;        fprintf(ficlog," %d %.12lf",i, p[i]);
   double p2[NPARMAX+1];        fprintf(ficrespow," %.12lf", p[i]);
   int k;      }
       printf("\n");
   fx=func(x);      fprintf(ficlog,"\n");
   for (k=1; k<=2; k++) {      fprintf(ficrespow,"\n");fflush(ficrespow);
     for (i=1;i<=npar;i++) p2[i]=x[i];      if(*iter <=3){
     p2[thetai]=x[thetai]+delti[thetai]/k;        tm = *localtime(&curr_time.tv_sec);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        strcpy(strcurr,asctime(&tm));
     k1=func(p2)-fx;  /*       asctime_r(&tm,strcurr); */
          forecast_time=curr_time; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        itmp = strlen(strcurr);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     k2=func(p2)-fx;          strcurr[itmp-1]='\0';
          printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     p2[thetai]=x[thetai]-delti[thetai]/k;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(niterf=10;niterf<=30;niterf+=10){
     k3=func(p2)-fx;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
            tmf = *localtime(&forecast_time.tv_sec);
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*      asctime_r(&tmf,strfor); */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          strcpy(strfor,asctime(&tmf));
     k4=func(p2)-fx;          itmp = strlen(strfor);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          if(strfor[itmp-1]=='\n')
 #ifdef DEBUG          strfor[itmp-1]='\0';
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 #endif          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   }        }
   return res;      }
 }      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 /************** Inverse of matrix **************/        fptt=(*fret); 
 void ludcmp(double **a, int n, int *indx, double *d)  #ifdef DEBUG
 {        printf("fret=%lf \n",*fret);
   int i,imax,j,k;        fprintf(ficlog,"fret=%lf \n",*fret);
   double big,dum,sum,temp;  #endif
   double *vv;        printf("%d",i);fflush(stdout);
          fprintf(ficlog,"%d",i);fflush(ficlog);
   vv=vector(1,n);        linmin(p,xit,n,fret,func); 
   *d=1.0;        if (fabs(fptt-(*fret)) > del) { 
   for (i=1;i<=n;i++) {          del=fabs(fptt-(*fret)); 
     big=0.0;          ibig=i; 
     for (j=1;j<=n;j++)        } 
       if ((temp=fabs(a[i][j])) > big) big=temp;  #ifdef DEBUG
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        printf("%d %.12e",i,(*fret));
     vv[i]=1.0/big;        fprintf(ficlog,"%d %.12e",i,(*fret));
   }        for (j=1;j<=n;j++) {
   for (j=1;j<=n;j++) {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for (i=1;i<j;i++) {          printf(" x(%d)=%.12e",j,xit[j]);
       sum=a[i][j];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        }
       a[i][j]=sum;        for(j=1;j<=n;j++) {
     }          printf(" p=%.12e",p[j]);
     big=0.0;          fprintf(ficlog," p=%.12e",p[j]);
     for (i=j;i<=n;i++) {        }
       sum=a[i][j];        printf("\n");
       for (k=1;k<j;k++)        fprintf(ficlog,"\n");
         sum -= a[i][k]*a[k][j];  #endif
       a[i][j]=sum;      } 
       if ( (dum=vv[i]*fabs(sum)) >= big) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         big=dum;  #ifdef DEBUG
         imax=i;        int k[2],l;
       }        k[0]=1;
     }        k[1]=-1;
     if (j != imax) {        printf("Max: %.12e",(*func)(p));
       for (k=1;k<=n;k++) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
         dum=a[imax][k];        for (j=1;j<=n;j++) {
         a[imax][k]=a[j][k];          printf(" %.12e",p[j]);
         a[j][k]=dum;          fprintf(ficlog," %.12e",p[j]);
       }        }
       *d = -(*d);        printf("\n");
       vv[imax]=vv[j];        fprintf(ficlog,"\n");
     }        for(l=0;l<=1;l++) {
     indx[j]=imax;          for (j=1;j<=n;j++) {
     if (a[j][j] == 0.0) a[j][j]=TINY;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     if (j != n) {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       dum=1.0/(a[j][j]);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          }
     }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   free_vector(vv,1,n);  /* Doesn't work */        }
 ;  #endif
 }  
   
 void lubksb(double **a, int n, int *indx, double b[])        free_vector(xit,1,n); 
 {        free_vector(xits,1,n); 
   int i,ii=0,ip,j;        free_vector(ptt,1,n); 
   double sum;        free_vector(pt,1,n); 
          return; 
   for (i=1;i<=n;i++) {      } 
     ip=indx[i];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     sum=b[ip];      for (j=1;j<=n;j++) { 
     b[ip]=b[i];        ptt[j]=2.0*p[j]-pt[j]; 
     if (ii)        xit[j]=p[j]-pt[j]; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        pt[j]=p[j]; 
     else if (sum) ii=i;      } 
     b[i]=sum;      fptt=(*func)(ptt); 
   }      if (fptt < fp) { 
   for (i=n;i>=1;i--) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     sum=b[i];        if (t < 0.0) { 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          linmin(p,xit,n,fret,func); 
     b[i]=sum/a[i][i];          for (j=1;j<=n;j++) { 
   }            xi[j][ibig]=xi[j][n]; 
 }            xi[j][n]=xit[j]; 
           }
 /************ Frequencies ********************/  #ifdef DEBUG
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 {  /* Some frequencies */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            for(j=1;j<=n;j++){
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            printf(" %.12e",xit[j]);
   double ***freq; /* Frequencies */            fprintf(ficlog," %.12e",xit[j]);
   double *pp;          }
   double pos;          printf("\n");
   FILE *ficresp;          fprintf(ficlog,"\n");
   char fileresp[FILENAMELENGTH];  #endif
         }
   pp=vector(1,nlstate);      } 
     } 
   strcpy(fileresp,"p");  } 
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  /**** Prevalence limit (stable or period prevalence)  ****************/
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   }  {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   j1=0;       matrix by transitions matrix until convergence is reached */
   
   j=cptcovn;    int i, ii,j,k;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   for(k1=1; k1<=j;k1++){    double **out, cov[NCOVMAX], **pmij();
    for(i1=1; i1<=ncodemax[k1];i1++){    double **newm;
        j1++;    double agefin, delaymax=50 ; /* Max number of years to converge */
   
         for (i=-1; i<=nlstate+ndeath; i++)      for (ii=1;ii<=nlstate+ndeath;ii++)
          for (jk=-1; jk<=nlstate+ndeath; jk++)        for (j=1;j<=nlstate+ndeath;j++){
            for(m=agemin; m <= agemax+3; m++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              freq[i][jk][m]=0;      }
          
        for (i=1; i<=imx; i++) {     cov[1]=1.;
          bool=1;   
          if  (cptcovn>0) {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
            for (z1=1; z1<=cptcovn; z1++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;      newm=savm;
          }      /* Covariates have to be included here again */
           if (bool==1) {       cov[2]=agefin;
            for(m=firstpass; m<=lastpass-1; m++){    
              if(agev[m][i]==0) agev[m][i]=agemax+1;        for (k=1; k<=cptcovn;k++) {
              if(agev[m][i]==1) agev[m][i]=agemax+2;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        }
            }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          }        for (k=1; k<=cptcovprod;k++)
        }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         if  (cptcovn>0) {  
          fprintf(ficresp, "\n#Variable");        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
        }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
        fprintf(ficresp, "\n#");      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
        for(i=1; i<=nlstate;i++)  
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      savm=oldm;
        fprintf(ficresp, "\n");      oldm=newm;
              maxmax=0.;
   for(i=(int)agemin; i <= (int)agemax+3; i++){      for(j=1;j<=nlstate;j++){
     if(i==(int)agemax+3)        min=1.;
       printf("Total");        max=0.;
     else        for(i=1; i<=nlstate; i++) {
       printf("Age %d", i);          sumnew=0;
     for(jk=1; jk <=nlstate ; jk++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          prlim[i][j]= newm[i][j]/(1-sumnew);
         pp[jk] += freq[jk][m][i];          max=FMAX(max,prlim[i][j]);
     }          min=FMIN(min,prlim[i][j]);
     for(jk=1; jk <=nlstate ; jk++){        }
       for(m=-1, pos=0; m <=0 ; m++)        maxmin=max-min;
         pos += freq[jk][m][i];        maxmax=FMAX(maxmax,maxmin);
       if(pp[jk]>=1.e-10)      }
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      if(maxmax < ftolpl){
       else        return prlim;
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      }
     }    }
     for(jk=1; jk <=nlstate ; jk++){  }
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)  
         pp[jk] += freq[jk][m][i];  /*************** transition probabilities ***************/ 
     }  
     for(jk=1,pos=0; jk <=nlstate ; jk++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       pos += pp[jk];  {
     for(jk=1; jk <=nlstate ; jk++){    double s1, s2;
       if(pos>=1.e-5)    /*double t34;*/
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    int i,j,j1, nc, ii, jj;
       else  
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for(i=1; i<= nlstate; i++){
       if( i <= (int) agemax){        for(j=1; j<i;j++){
         if(pos>=1.e-5)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            /*s2 += param[i][j][nc]*cov[nc];*/
       else            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       }          }
     }          ps[i][j]=s2;
     for(jk=-1; jk <=nlstate+ndeath; jk++)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       for(m=-1; m <=nlstate+ndeath; m++)        }
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for(j=i+1; j<=nlstate+ndeath;j++){
     if(i <= (int) agemax)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       fprintf(ficresp,"\n");            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     printf("\n");  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     }          }
     }          ps[i][j]=s2;
  }        }
        }
   fclose(ficresp);      /*ps[3][2]=1;*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      
   free_vector(pp,1,nlstate);      for(i=1; i<= nlstate; i++){
         s1=0;
 }  /* End of Freq */        for(j=1; j<i; j++)
           s1+=exp(ps[i][j]);
 /************* Waves Concatenation ***************/        for(j=i+1; j<=nlstate+ndeath; j++)
           s1+=exp(ps[i][j]);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        ps[i][i]=1./(s1+1.);
 {        for(j=1; j<i; j++)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          ps[i][j]= exp(ps[i][j])*ps[i][i];
      Death is a valid wave (if date is known).        for(j=i+1; j<=nlstate+ndeath; j++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          ps[i][j]= exp(ps[i][j])*ps[i][i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
      and mw[mi+1][i]. dh depends on stepm.      } /* end i */
      */      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   int i, mi, m;        for(jj=1; jj<= nlstate+ndeath; jj++){
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          ps[ii][jj]=0;
 float sum=0.;          ps[ii][ii]=1;
         }
   for(i=1; i<=imx; i++){      }
     mi=0;      
     m=firstpass;  
     while(s[m][i] <= nlstate){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       if(s[m][i]>=1)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         mw[++mi][i]=m;  /*         printf("ddd %lf ",ps[ii][jj]); */
       if(m >=lastpass)  /*       } */
         break;  /*       printf("\n "); */
       else  /*        } */
         m++;  /*        printf("\n ");printf("%lf ",cov[2]); */
     }/* end while */         /*
     if (s[m][i] > nlstate){        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       mi++;     /* Death is another wave */        goto end;*/
       /* if(mi==0)  never been interviewed correctly before death */      return ps;
          /* Only death is a correct wave */  }
       mw[mi][i]=m;  
     }  /**************** Product of 2 matrices ******************/
   
     wav[i]=mi;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     if(mi==0)  {
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
   for(i=1; i<=imx; i++){       before: only the contents of out is modified. The function returns
     for(mi=1; mi<wav[i];mi++){       a pointer to pointers identical to out */
       if (stepm <=0)    long i, j, k;
         dh[mi][i]=1;    for(i=nrl; i<= nrh; i++)
       else{      for(k=ncolol; k<=ncoloh; k++)
         if (s[mw[mi+1][i]][i] > nlstate) {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          out[i][k] +=in[i][j]*b[j][k];
           if(j=0) j=1;  /* Survives at least one month after exam */  
         }    return out;
         else{  }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;  
           if (j >= jmax) jmax=j;  /************* Higher Matrix Product ***************/
           else if (j <= jmin)jmin=j;  
           sum=sum+j;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         }  {
         jk= j/stepm;    /* Computes the transition matrix starting at age 'age' over 
         jl= j -jk*stepm;       'nhstepm*hstepm*stepm' months (i.e. until
         ju= j -(jk+1)*stepm;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         if(jl <= -ju)       nhstepm*hstepm matrices. 
           dh[mi][i]=jk;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         else       (typically every 2 years instead of every month which is too big 
           dh[mi][i]=jk+1;       for the memory).
         if(dh[mi][i]==0)       Model is determined by parameters x and covariates have to be 
           dh[mi][i]=1; /* At least one step */       included manually here. 
       }  
     }       */
   }  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);    int i, j, d, h, k;
 }    double **out, cov[NCOVMAX];
 /*********** Tricode ****************************/    double **newm;
 void tricode(int *Tvar, int **nbcode, int imx)  
 {    /* Hstepm could be zero and should return the unit matrix */
   int Ndum[80],ij=1, k, j, i, Ntvar[20];    for (i=1;i<=nlstate+ndeath;i++)
   int cptcode=0;      for (j=1;j<=nlstate+ndeath;j++){
   for (k=0; k<79; k++) Ndum[k]=0;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   for (k=1; k<=7; k++) ncodemax[k]=0;        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
   for (j=1; j<=cptcovn; j++) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for (i=1; i<=imx; i++) {    for(h=1; h <=nhstepm; h++){
       ij=(int)(covar[Tvar[j]][i]);      for(d=1; d <=hstepm; d++){
       Ndum[ij]++;        newm=savm;
       if (ij > cptcode) cptcode=ij;        /* Covariates have to be included here again */
     }        cov[1]=1.;
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for (i=0; i<=cptcode; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       if(Ndum[i]!=0) ncodemax[j]++;        for (k=1; k<=cptcovage;k++)
     }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++)
     ij=1;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=79; k++) {  
         if (Ndum[k] != 0) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           nbcode[Tvar[j]][ij]=k;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           ij++;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         if (ij > ncodemax[j]) break;        savm=oldm;
       }          oldm=newm;
     }      }
   }        for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
 }          po[i][j][h]=newm[i][j];
           /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 /*********** Health Expectancies ****************/        }
       /*printf("h=%d ",h);*/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    } /* end h */
 {  /*     printf("\n H=%d \n",h); */
   /* Health expectancies */    return po;
   int i, j, nhstepm, hstepm, h;  }
   double age, agelim,hf;  
   double ***p3mat;  
    /*************** log-likelihood *************/
   fprintf(ficreseij,"# Health expectancies\n");  double func( double *x)
   fprintf(ficreseij,"# Age");  {
   for(i=1; i<=nlstate;i++)    int i, ii, j, k, mi, d, kk;
     for(j=1; j<=nlstate;j++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       fprintf(ficreseij," %1d-%1d",i,j);    double **out;
   fprintf(ficreseij,"\n");    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
   hstepm=1*YEARM; /*  Every j years of age (in month) */    int s1, s2;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double bbh, survp;
     long ipmx;
   agelim=AGESUP;    /*extern weight */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* We are differentiating ll according to initial status */
     /* nhstepm age range expressed in number of stepm */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    /*for(i=1;i<imx;i++) 
     /* Typically if 20 years = 20*12/6=40 stepm */      printf(" %d\n",s[4][i]);
     if (stepm >= YEARM) hstepm=1;    */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    cov[1]=1.;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    for(k=1; k<=nlstate; k++) ll[k]=0.;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<=nlstate;j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){            for (j=1;j<=nlstate+ndeath;j++){
           eij[i][j][(int)age] +=p3mat[i][j][h];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                }
     hf=1;          for(d=0; d<dh[mi][i]; d++){
     if (stepm >= YEARM) hf=stepm/YEARM;            newm=savm;
     fprintf(ficreseij,"%.0f",age );            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<=nlstate;j++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficreseij,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            savm=oldm;
   }            oldm=newm;
 }          } /* end mult */
         
 /************ Variance ******************/          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          /* But now since version 0.9 we anticipate for bias at large stepm.
 {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   /* Variance of health expectancies */           * (in months) between two waves is not a multiple of stepm, we rounded to 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/           * the nearest (and in case of equal distance, to the lowest) interval but now
   double **newm;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double **dnewm,**doldm;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   int i, j, nhstepm, hstepm, h;           * probability in order to take into account the bias as a fraction of the way
   int k, cptcode;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
    double *xp;           * -stepm/2 to stepm/2 .
   double **gp, **gm;           * For stepm=1 the results are the same as for previous versions of Imach.
   double ***gradg, ***trgradg;           * For stepm > 1 the results are less biased than in previous versions. 
   double ***p3mat;           */
   double age,agelim;          s1=s[mw[mi][i]][i];
   int theta;          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
    fprintf(ficresvij,"# Covariances of life expectancies\n");          /* bias bh is positive if real duration
   fprintf(ficresvij,"# Age");           * is higher than the multiple of stepm and negative otherwise.
   for(i=1; i<=nlstate;i++)           */
     for(j=1; j<=nlstate;j++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          if( s2 > nlstate){ 
   fprintf(ficresvij,"\n");            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
   xp=vector(1,npar);               die between last step unit time and current  step unit time, 
   dnewm=matrix(1,nlstate,1,npar);               which is also equal to probability to die before dh 
   doldm=matrix(1,nlstate,1,nlstate);               minus probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
   hstepm=1*YEARM; /* Every year of age */          as if date of death was unknown. Death was treated as any other
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          health state: the date of the interview describes the actual state
   agelim = AGESUP;          and not the date of a change in health state. The former idea was
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          to consider that at each interview the state was recorded
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          (healthy, disable or death) and IMaCh was corrected; but when we
     if (stepm >= YEARM) hstepm=1;          introduced the exact date of death then we should have modified
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          the contribution of an exact death to the likelihood. This new
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          contribution is smaller and very dependent of the step unit
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          stepm. It is no more the probability to die between last interview
     gp=matrix(0,nhstepm,1,nlstate);          and month of death but the probability to survive from last
     gm=matrix(0,nhstepm,1,nlstate);          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
     for(theta=1; theta <=npar; theta++){          Jackson for correcting this bug.  Former versions increased
       for(i=1; i<=npar; i++){ /* Computes gradient */          mortality artificially. The bad side is that we add another loop
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          which slows down the processing. The difference can be up to 10%
       }          lower mortality.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            lli=log(out[s1][s2] - savm[s1][s2]);
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          } else if  (s2==-2) {
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            for (j=1,survp=0. ; j<=nlstate; j++) 
         }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }            /*survp += out[s1][j]; */
                lli= log(survp);
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            else if  (s2==-4) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for (j=3,survp=0. ; j<=nlstate; j++)  
       for(j=1; j<= nlstate; j++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for(h=0; h<=nhstepm; h++){            lli= log(survp); 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          } 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }          else if  (s2==-5) { 
       }            for (j=1,survp=0. ; j<=2; j++)  
       for(j=1; j<= nlstate; j++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for(h=0; h<=nhstepm; h++){            lli= log(survp); 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          } 
         }          
     } /* End theta */          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
     for(h=0; h<=nhstepm; h++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       for(j=1; j<=nlstate;j++)          /*if(lli ==000.0)*/
         for(theta=1; theta <=npar; theta++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           trgradg[h][j][theta]=gradg[h][theta][j];          ipmx +=1;
           sw += weight[i];
     for(i=1;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1;j<=nlstate;j++)        } /* end of wave */
         vareij[i][j][(int)age] =0.;      } /* end of individual */
     for(h=0;h<=nhstepm;h++){    }  else if(mle==2){
       for(k=0;k<=nhstepm;k++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        for(mi=1; mi<= wav[i]-1; mi++){
         for(i=1;i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(j=1;j<=nlstate;j++)            for (j=1;j<=nlstate+ndeath;j++){
             vareij[i][j][(int)age] += doldm[i][j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
     h=1;          for(d=0; d<=dh[mi][i]; d++){
     if (stepm >= YEARM) h=stepm/YEARM;            newm=savm;
     fprintf(ficresvij,"%.0f ",age );            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<=nlstate;j++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficresvij,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_matrix(gp,0,nhstepm,1,nlstate);            savm=oldm;
     free_matrix(gm,0,nhstepm,1,nlstate);            oldm=newm;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          } /* end mult */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          s1=s[mw[mi][i]][i];
   } /* End age */          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   free_vector(xp,1,npar);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   free_matrix(doldm,1,nlstate,1,npar);          ipmx +=1;
   free_matrix(dnewm,1,nlstate,1,nlstate);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        } /* end of wave */
       } /* end of individual */
 /************ Variance of prevlim ******************/    }  else if(mle==3){  /* exponential inter-extrapolation */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Variance of prevalence limit */        for(mi=1; mi<= wav[i]-1; mi++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          for (ii=1;ii<=nlstate+ndeath;ii++)
   double **newm;            for (j=1;j<=nlstate+ndeath;j++){
   double **dnewm,**doldm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k, cptcode;            }
   double *xp;          for(d=0; d<dh[mi][i]; d++){
   double *gp, *gm;            newm=savm;
   double **gradg, **trgradg;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double age,agelim;            for (kk=1; kk<=cptcovage;kk++) {
   int theta;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                }
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficresvpl,"# Age");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=nlstate;i++)            savm=oldm;
       fprintf(ficresvpl," %1d-%1d",i,i);            oldm=newm;
   fprintf(ficresvpl,"\n");          } /* end mult */
         
   xp=vector(1,npar);          s1=s[mw[mi][i]][i];
   dnewm=matrix(1,nlstate,1,npar);          s2=s[mw[mi+1][i]][i];
   doldm=matrix(1,nlstate,1,nlstate);          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   hstepm=1*YEARM; /* Every year of age */          ipmx +=1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          sw += weight[i];
   agelim = AGESUP;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        } /* end of wave */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      } /* end of individual */
     if (stepm >= YEARM) hstepm=1;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gradg=matrix(1,npar,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     gp=vector(1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
     gm=vector(1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     for(theta=1; theta <=npar; theta++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++){ /* Computes gradient */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            }
       }          for(d=0; d<dh[mi][i]; d++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            newm=savm;
       for(i=1;i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         gp[i] = prlim[i][i];            for (kk=1; kk<=cptcovage;kk++) {
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1; i<=npar; i++) /* Computes gradient */            }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1;i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         gm[i] = prlim[i][i];            savm=oldm;
             oldm=newm;
       for(i=1;i<=nlstate;i++)          } /* end mult */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        
     } /* End theta */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     trgradg =matrix(1,nlstate,1,npar);          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
     for(j=1; j<=nlstate;j++)          }else{
       for(theta=1; theta <=npar; theta++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         trgradg[j][theta]=gradg[theta][j];          }
           ipmx +=1;
     for(i=1;i<=nlstate;i++)          sw += weight[i];
       varpl[i][(int)age] =0.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        } /* end of wave */
     for(i=1;i<=nlstate;i++)      } /* end of individual */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficresvpl,"%.0f ",age );        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficresvpl,"\n");            for (j=1;j<=nlstate+ndeath;j++){
     free_vector(gp,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_vector(gm,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(gradg,1,npar,1,nlstate);            }
     free_matrix(trgradg,1,nlstate,1,npar);          for(d=0; d<dh[mi][i]; d++){
   } /* End age */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_vector(xp,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   free_matrix(doldm,1,nlstate,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_matrix(dnewm,1,nlstate,1,nlstate);            }
           
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
 /***********************************************/          } /* end mult */
 /**************** Main Program *****************/        
 /***********************************************/          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /*int main(int argc, char *argv[])*/          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 int main()          ipmx +=1;
 {          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double agedeb, agefin,hf;        } /* end of wave */
   double agemin=1.e20, agemax=-1.e20;      } /* end of individual */
     } /* End of if */
   double fret;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double **xi,tmp,delta;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double dum; /* Dummy variable */    return -l;
   double ***p3mat;  }
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];  /*************** log-likelihood *************/
   char title[MAXLINE];  double funcone( double *x)
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  {
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    /* Same as likeli but slower because of a lot of printf and if */
   char filerest[FILENAMELENGTH];    int i, ii, j, k, mi, d, kk;
   char fileregp[FILENAMELENGTH];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    double **out;
   int firstobs=1, lastobs=10;    double lli; /* Individual log likelihood */
   int sdeb, sfin; /* Status at beginning and end */    double llt;
   int c,  h , cpt,l;    int s1, s2;
   int ju,jl, mi;    double bbh, survp;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;    /*extern weight */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int hstepm, nhstepm;    /*for(i=1;i<imx;i++) 
   double bage, fage, age, agelim, agebase;      printf(" %d\n",s[4][i]);
   double ftolpl=FTOL;    */
   double **prlim;    cov[1]=1.;
   double *severity;  
   double ***param; /* Matrix of parameters */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double  *p;  
   double **matcov; /* Matrix of covariance */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***delti3; /* Scale */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double *delti; /* Scale */      for(mi=1; mi<= wav[i]-1; mi++){
   double ***eij, ***vareij;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double **varpl; /* Variances of prevalence limits by age */          for (j=1;j<=nlstate+ndeath;j++){
   double *epj, vepp;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   char *alph[]={"a","a","b","c","d","e"}, str[4];          }
         for(d=0; d<dh[mi][i]; d++){
   char z[1]="c", occ;          newm=savm;
 #include <sys/time.h>          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 #include <time.h>          for (kk=1; kk<=cptcovage;kk++) {
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* long total_usecs;          }
   struct timeval start_time, end_time;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          savm=oldm;
           oldm=newm;
         } /* end mult */
   printf("\nIMACH, Version 0.64a");        
   printf("\nEnter the parameter file name: ");        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
 #ifdef windows        bbh=(double)bh[mi][i]/(double)stepm; 
   scanf("%s",pathtot);        /* bias is positive if real duration
   getcwd(pathcd, size);         * is higher than the multiple of stepm and negative otherwise.
   /*cygwin_split_path(pathtot,path,optionfile);         */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   /* cutv(path,optionfile,pathtot,'\\');*/          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
 split(pathtot, path,optionfile);          for (j=1,survp=0. ; j<=nlstate; j++) 
   chdir(path);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   replace(pathc,path);          lli= log(survp);
 #endif        }else if (mle==1){
 #ifdef unix          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   scanf("%s",optionfile);        } else if(mle==2){
 #endif          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
 /*-------- arguments in the command line --------*/          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
   strcpy(fileres,"r");          lli=log(out[s1][s2]); /* Original formula */
   strcat(fileres, optionfile);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
   /*---------arguments file --------*/        } /* End of if */
         ipmx +=1;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        sw += weight[i];
     printf("Problem with optionfile %s\n",optionfile);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     goto end;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   }        if(globpr){
           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   strcpy(filereso,"o");   %11.6f %11.6f %11.6f ", \
   strcat(filereso,fileres);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   if((ficparo=fopen(filereso,"w"))==NULL) {                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   }            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   /* Reads comments: lines beginning with '#' */          }
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresilk," %10.6f\n", -llt);
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      } /* end of wave */
     puts(line);    } /* end of individual */
     fputs(line,ficparo);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   ungetc(c,ficpar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      gipmx=ipmx;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      gsw=sw;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    }
     return -l;
   covar=matrix(0,NCOVMAX,1,n);      }
   if (strlen(model)<=1) cptcovn=0;  
   else {  
     j=0;  /*************** function likelione ***********/
     j=nbocc(model,'+');  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     cptcovn=j+1;  {
   }    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
   ncovmodel=2+cptcovn;       to check the exact contribution to the likelihood.
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */       Plotting could be done.
       */
   /* Read guess parameters */    int k;
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    if(*globpri !=0){ /* Just counts and sums, no printings */
     ungetc(c,ficpar);      strcpy(fileresilk,"ilk"); 
     fgets(line, MAXLINE, ficpar);      strcat(fileresilk,fileres);
     puts(line);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     fputs(line,ficparo);        printf("Problem with resultfile: %s\n", fileresilk);
   }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   ungetc(c,ficpar);      }
        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     for(i=1; i <=nlstate; i++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     for(j=1; j <=nlstate+ndeath-1; j++){      for(k=1; k<=nlstate; k++) 
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficparo,"%1d%1d",i1,j1);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       printf("%1d%1d",i,j);    }
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    *fretone=(*funcone)(p);
         printf(" %lf",param[i][j][k]);    if(*globpri !=0){
         fprintf(ficparo," %lf",param[i][j][k]);      fclose(ficresilk);
       }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fscanf(ficpar,"\n");      fflush(fichtm); 
       printf("\n");    } 
       fprintf(ficparo,"\n");    return;
     }  }
    
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
   p=param[1][1];  /*********** Maximum Likelihood Estimation ***************/
    
   /* Reads comments: lines beginning with '#' */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   while((c=getc(ficpar))=='#' && c!= EOF){  {
     ungetc(c,ficpar);    int i,j, iter;
     fgets(line, MAXLINE, ficpar);    double **xi;
     puts(line);    double fret;
     fputs(line,ficparo);    double fretone; /* Only one call to likelihood */
   }    /*  char filerespow[FILENAMELENGTH];*/
   ungetc(c,ficpar);    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for (j=1;j<=npar;j++)
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        xi[i][j]=(i==j ? 1.0 : 0.0);
   for(i=1; i <=nlstate; i++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     for(j=1; j <=nlstate+ndeath-1; j++){    strcpy(filerespow,"pow"); 
       fscanf(ficpar,"%1d%1d",&i1,&j1);    strcat(filerespow,fileres);
       printf("%1d%1d",i,j);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       fprintf(ficparo,"%1d%1d",i1,j1);      printf("Problem with resultfile: %s\n", filerespow);
       for(k=1; k<=ncovmodel;k++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    }
         printf(" %le",delti3[i][j][k]);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         fprintf(ficparo," %le",delti3[i][j][k]);    for (i=1;i<=nlstate;i++)
       }      for(j=1;j<=nlstate+ndeath;j++)
       fscanf(ficpar,"\n");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       printf("\n");    fprintf(ficrespow,"\n");
       fprintf(ficparo,"\n");  
     }    powell(p,xi,npar,ftol,&iter,&fret,func);
   }  
   delti=delti3[1][1];    free_matrix(xi,1,npar,1,npar);
      fclose(ficrespow);
   /* Reads comments: lines beginning with '#' */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     ungetc(c,ficpar);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fgets(line, MAXLINE, ficpar);  
     puts(line);  }
     fputs(line,ficparo);  
   }  /**** Computes Hessian and covariance matrix ***/
   ungetc(c,ficpar);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    {
   matcov=matrix(1,npar,1,npar);    double  **a,**y,*x,pd;
   for(i=1; i <=npar; i++){    double **hess;
     fscanf(ficpar,"%s",&str);    int i, j,jk;
     printf("%s",str);    int *indx;
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       fscanf(ficpar," %le",&matcov[i][j]);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       printf(" %.5le",matcov[i][j]);    void lubksb(double **a, int npar, int *indx, double b[]) ;
       fprintf(ficparo," %.5le",matcov[i][j]);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     }    double gompertz(double p[]);
     fscanf(ficpar,"\n");    hess=matrix(1,npar,1,npar);
     printf("\n");  
     fprintf(ficparo,"\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
   }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   for(i=1; i <=npar; i++)    for (i=1;i<=npar;i++){
     for(j=i+1;j<=npar;j++)      printf("%d",i);fflush(stdout);
       matcov[i][j]=matcov[j][i];      fprintf(ficlog,"%d",i);fflush(ficlog);
         
   printf("\n");       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
       /*  printf(" %f ",p[i]);
     /*-------- data file ----------*/          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     if((ficres =fopen(fileres,"w"))==NULL) {    }
       printf("Problem with resultfile: %s\n", fileres);goto end;    
     }    for (i=1;i<=npar;i++) {
     fprintf(ficres,"#%s\n",version);      for (j=1;j<=npar;j++)  {
            if (j>i) { 
     if((fic=fopen(datafile,"r"))==NULL)    {          printf(".%d%d",i,j);fflush(stdout);
       printf("Problem with datafile: %s\n", datafile);goto end;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     }          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
     n= lastobs;          hess[j][i]=hess[i][j];    
     severity = vector(1,maxwav);          /*printf(" %lf ",hess[i][j]);*/
     outcome=imatrix(1,maxwav+1,1,n);        }
     num=ivector(1,n);      }
     moisnais=vector(1,n);    }
     annais=vector(1,n);    printf("\n");
     moisdc=vector(1,n);    fprintf(ficlog,"\n");
     andc=vector(1,n);  
     agedc=vector(1,n);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     cod=ivector(1,n);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     weight=vector(1,n);    
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    a=matrix(1,npar,1,npar);
     mint=matrix(1,maxwav,1,n);    y=matrix(1,npar,1,npar);
     anint=matrix(1,maxwav,1,n);    x=vector(1,npar);
     s=imatrix(1,maxwav+1,1,n);    indx=ivector(1,npar);
     adl=imatrix(1,maxwav+1,1,n);        for (i=1;i<=npar;i++)
     tab=ivector(1,NCOVMAX);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ncodemax=ivector(1,8);    ludcmp(a,npar,indx,&pd);
   
     i=1;    for (j=1;j<=npar;j++) {
     while (fgets(line, MAXLINE, fic) != NULL)    {      for (i=1;i<=npar;i++) x[i]=0;
       if ((i >= firstobs) && (i <=lastobs)) {      x[j]=1;
              lubksb(a,npar,indx,x);
         for (j=maxwav;j>=1;j--){      for (i=1;i<=npar;i++){ 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        matcov[i][j]=x[i];
           strcpy(line,stra);      }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    printf("\n#Hessian matrix#\n");
            fprintf(ficlog,"\n#Hessian matrix#\n");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1;i<=npar;i++) { 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficlog,"%.3e ",hess[i][j]);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      }
       printf("\n");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"\n");
         for (j=ncov;j>=1;j--){    }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    /* Recompute Inverse */
         num[i]=atol(stra);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    ludcmp(a,npar,indx,&pd);
   
         i=i+1;    /*  printf("\n#Hessian matrix recomputed#\n");
       }  
     }    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     /*scanf("%d",i);*/      x[j]=1;
   imx=i-1; /* Number of individuals */      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   /* Calculation of the number of parameter from char model*/        y[i][j]=x[i];
   Tvar=ivector(1,15);            printf("%.3e ",y[i][j]);
   Tage=ivector(1,15);              fprintf(ficlog,"%.3e ",y[i][j]);
          }
   if (strlen(model) >1){      printf("\n");
     j=0, j1=0;      fprintf(ficlog,"\n");
     j=nbocc(model,'+');    }
     j1=nbocc(model,'*');    */
     cptcovn=j+1;  
        free_matrix(a,1,npar,1,npar);
     strcpy(modelsav,model);    free_matrix(y,1,npar,1,npar);
     if (j==0) {    free_vector(x,1,npar);
       if (j1==0){    free_ivector(indx,1,npar);
        cutv(stra,strb,modelsav,'V');    free_matrix(hess,1,npar,1,npar);
        Tvar[1]=atoi(strb);  
       }  
       else if (j1==1) {  }
        cutv(stra,strb,modelsav,'*');  
        /*      printf("stra=%s strb=%s modelsav=%s ",stra,strb,modelsav);*/  /*************** hessian matrix ****************/
        Tage[1]=1; cptcovage++;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
        if (strcmp(stra,"age")==0) {  {
          cutv(strd,strc,strb,'V');    int i;
          Tvar[1]=atoi(strc);    int l=1, lmax=20;
        }    double k1,k2;
        else if (strcmp(strb,"age")==0) {    double p2[NPARMAX+1];
          cutv(strd,strc,stra,'V');    double res;
          Tvar[1]=atoi(strc);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
        }    double fx;
        else {printf("Error"); exit(0);}    int k=0,kmax=10;
       }    double l1;
     }  
     else {    fx=func(x);
       for(i=j; i>=1;i--){    for (i=1;i<=npar;i++) p2[i]=x[i];
         cutv(stra,strb,modelsav,'+');    for(l=0 ; l <=lmax; l++){
         /*printf("%s %s %s\n", stra,strb,modelsav);*/      l1=pow(10,l);
         if (strchr(strb,'*')) {      delts=delt;
           cutv(strd,strc,strb,'*');      for(k=1 ; k <kmax; k=k+1){
           if (strcmp(strc,"age")==0) {        delt = delta*(l1*k);
             cutv(strb,stre,strd,'V');        p2[theta]=x[theta] +delt;
             Tvar[i+1]=atoi(stre);        k1=func(p2)-fx;
             cptcovage++;        p2[theta]=x[theta]-delt;
             Tage[cptcovage]=i+1;        k2=func(p2)-fx;
             printf("stre=%s ", stre);        /*res= (k1-2.0*fx+k2)/delt/delt; */
           }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           else if (strcmp(strd,"age")==0) {        
             cutv(strb,stre,strc,'V');  #ifdef DEBUG
             Tvar[i+1]=atoi(stre);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             cptcovage++;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             Tage[cptcovage]=i+1;  #endif
           }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           else {        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
             cutv(strb,stre,strc,'V');          k=kmax;
             Tvar[i+1]=ncov+1;        }
             cutv(strb,strc,strd,'V');        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
             for (k=1; k<=lastobs;k++)          k=kmax; l=lmax*10.;
               covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        }
           }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         }          delts=delt;
         else {        }
           cutv(strd,strc,strb,'V');      }
           /* printf("%s %s %s", strd,strc,strb);*/    }
     delti[theta]=delts;
         Tvar[i+1]=atoi(strc);    return res; 
         }    
         strcpy(modelsav,stra);    }
       }  
       cutv(strd,strc,stra,'V');  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       Tvar[1]=atoi(strc);  {
     }    int i;
   }    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);    double p2[NPARMAX+1];
      scanf("%d ",i);*/    int k;
     fclose(fic);  
     fx=func(x);
    if(mle==1){    for (k=1; k<=2; k++) {
     if (weightopt != 1) { /* Maximisation without weights*/      for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1;i<=n;i++) weight[i]=1.0;      p2[thetai]=x[thetai]+delti[thetai]/k;
     }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     /*-calculation of age at interview from date of interview and age at death -*/      k1=func(p2)-fx;
     agev=matrix(1,maxwav,1,imx);    
          p2[thetai]=x[thetai]+delti[thetai]/k;
     for (i=1; i<=imx; i++)  {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      k2=func(p2)-fx;
       for(m=1; (m<= maxwav); m++){    
         if(s[m][i] >0){      p2[thetai]=x[thetai]-delti[thetai]/k;
           if (s[m][i] == nlstate+1) {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             if(agedc[i]>0)      k3=func(p2)-fx;
               if(moisdc[i]!=99 && andc[i]!=9999)    
               agev[m][i]=agedc[i];      p2[thetai]=x[thetai]-delti[thetai]/k;
             else{      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      k4=func(p2)-fx;
               agev[m][i]=-1;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
             }  #ifdef DEBUG
           }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           else if(s[m][i] !=9){ /* Should no more exist */      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  #endif
             if(mint[m][i]==99 || anint[m][i]==9999)    }
               agev[m][i]=1;    return res;
             else if(agev[m][i] <agemin){  }
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  /************** Inverse of matrix **************/
             }  void ludcmp(double **a, int n, int *indx, double *d) 
             else if(agev[m][i] >agemax){  { 
               agemax=agev[m][i];    int i,imax,j,k; 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    double big,dum,sum,temp; 
             }    double *vv; 
             /*agev[m][i]=anint[m][i]-annais[i];*/   
             /*   agev[m][i] = age[i]+2*m;*/    vv=vector(1,n); 
           }    *d=1.0; 
           else { /* =9 */    for (i=1;i<=n;i++) { 
             agev[m][i]=1;      big=0.0; 
             s[m][i]=-1;      for (j=1;j<=n;j++) 
           }        if ((temp=fabs(a[i][j])) > big) big=temp; 
         }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         else /*= 0 Unknown */      vv[i]=1.0/big; 
           agev[m][i]=1;    } 
       }    for (j=1;j<=n;j++) { 
          for (i=1;i<j;i++) { 
     }        sum=a[i][j]; 
     for (i=1; i<=imx; i++)  {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       for(m=1; (m<= maxwav); m++){        a[i][j]=sum; 
         if (s[m][i] > (nlstate+ndeath)) {      } 
           printf("Error: Wrong value in nlstate or ndeath\n");        big=0.0; 
           goto end;      for (i=j;i<=n;i++) { 
         }        sum=a[i][j]; 
       }        for (k=1;k<j;k++) 
     }          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
     free_vector(severity,1,maxwav);          imax=i; 
     free_imatrix(outcome,1,maxwav+1,1,n);        } 
     free_vector(moisnais,1,n);      } 
     free_vector(annais,1,n);      if (j != imax) { 
     free_matrix(mint,1,maxwav,1,n);        for (k=1;k<=n;k++) { 
     free_matrix(anint,1,maxwav,1,n);          dum=a[imax][k]; 
     free_vector(moisdc,1,n);          a[imax][k]=a[j][k]; 
     free_vector(andc,1,n);          a[j][k]=dum; 
         } 
            *d = -(*d); 
     wav=ivector(1,imx);        vv[imax]=vv[j]; 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      } 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      indx[j]=imax; 
          if (a[j][j] == 0.0) a[j][j]=TINY; 
     /* Concatenates waves */      if (j != n) { 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
       Tcode=ivector(1,100);    } 
    nbcode=imatrix(1,nvar,1,8);      free_vector(vv,1,n);  /* Doesn't work */
    ncodemax[1]=1;  ;
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);  } 
    
    codtab=imatrix(1,100,1,10);  void lubksb(double **a, int n, int *indx, double b[]) 
    h=0;  { 
    m=pow(2,cptcovn);    int i,ii=0,ip,j; 
      double sum; 
    for(k=1;k<=cptcovn; k++){   
      for(i=1; i <=(m/pow(2,k));i++){    for (i=1;i<=n;i++) { 
        for(j=1; j <= ncodemax[k]; j++){      ip=indx[i]; 
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){      sum=b[ip]; 
            h++;      b[ip]=b[i]; 
            if (h>m) h=1;codtab[h][k]=j;      if (ii) 
          }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
        }      else if (sum) ii=i; 
      }      b[i]=sum; 
    }    } 
     for (i=n;i>=1;i--) { 
    /* for(i=1; i <=m ;i++){      sum=b[i]; 
      for(k=1; k <=cptcovn; k++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);      b[i]=sum/a[i][i]; 
      }    } 
      printf("\n");  } 
    }  
    scanf("%d",i);*/  void pstamp(FILE *fichier)
      {
    /* Calculates basic frequencies. Computes observed prevalence at single age    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
        and prints on file fileres'p'. */  }
    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);  
   /************ Frequencies ********************/
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {  /* Some frequencies */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    int first;
        double ***freq; /* Frequencies */
     /* For Powell, parameters are in a vector p[] starting at p[1]    double *pp, **prop;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    char fileresp[FILENAMELENGTH];
        
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
        strcpy(fileresp,"p");
     /*--------- results files --------------*/    strcat(fileresp,fileres);
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    if((ficresp=fopen(fileresp,"w"))==NULL) {
          printf("Problem with prevalence resultfile: %s\n", fileresp);
    jk=1;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
    fprintf(ficres,"# Parameters\n");      exit(0);
    printf("# Parameters\n");    }
    for(i=1,jk=1; i <=nlstate; i++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
      for(k=1; k <=(nlstate+ndeath); k++){    j1=0;
        if (k != i)    
          {    j=cptcoveff;
            printf("%d%d ",i,k);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){    first=1;
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);    for(k1=1; k1<=j;k1++){
              jk++;      for(i1=1; i1<=ncodemax[k1];i1++){
            }        j1++;
            printf("\n");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
            fprintf(ficres,"\n");          scanf("%d", i);*/
          }        for (i=-5; i<=nlstate+ndeath; i++)  
      }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
    }            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */      for (i=1; i<=nlstate; i++)  
     hesscov(matcov, p, npar, delti, ftolhess, func);        for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficres,"# Scales\n");          prop[i][m]=0;
     printf("# Scales\n");        
      for(i=1,jk=1; i <=nlstate; i++){        dateintsum=0;
       for(j=1; j <=nlstate+ndeath; j++){        k2cpt=0;
         if (j!=i) {        for (i=1; i<=imx; i++) {
           fprintf(ficres,"%1d%1d",i,j);          bool=1;
           printf("%1d%1d",i,j);          if  (cptcovn>0) {
           for(k=1; k<=ncovmodel;k++){            for (z1=1; z1<=cptcoveff; z1++) 
             printf(" %.5e",delti[jk]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             fprintf(ficres," %.5e",delti[jk]);                bool=0;
             jk++;          }
           }          if (bool==1){
           printf("\n");            for(m=firstpass; m<=lastpass; m++){
           fprintf(ficres,"\n");              k2=anint[m][i]+(mint[m][i]/12.);
         }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     k=1;                if (m<lastpass) {
     fprintf(ficres,"# Covariance\n");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     printf("# Covariance\n");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     for(i=1;i<=npar;i++){                }
       /*  if (k>nlstate) k=1;                
       i1=(i-1)/(ncovmodel*nlstate)+1;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                  dateintsum=dateintsum+k2;
       printf("%s%d%d",alph[k],i1,tab[i]);*/                  k2cpt++;
       fprintf(ficres,"%3d",i);                }
       printf("%3d",i);                /*}*/
       for(j=1; j<=i;j++){            }
         fprintf(ficres," %.5e",matcov[i][j]);          }
         printf(" %.5e",matcov[i][j]);        }
       }         
       fprintf(ficres,"\n");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       printf("\n");        pstamp(ficresp);
       k++;        if  (cptcovn>0) {
     }          fprintf(ficresp, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresp, "**********\n#");
       ungetc(c,ficpar);        }
       fgets(line, MAXLINE, ficpar);        for(i=1; i<=nlstate;i++) 
       puts(line);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fputs(line,ficparo);        fprintf(ficresp, "\n");
     }        
     ungetc(c,ficpar);        for(i=iagemin; i <= iagemax+3; i++){
            if(i==iagemax+3){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);            fprintf(ficlog,"Total");
              }else{
     if (fage <= 2) {            if(first==1){
       bage = agemin;              first=0;
       fage = agemax;              printf("See log file for details...\n");
     }            }
             fprintf(ficlog,"Age %d", i);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          for(jk=1; jk <=nlstate ; jk++){
 /*------------ gnuplot -------------*/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 chdir(pathcd);              pp[jk] += freq[jk][m][i]; 
   if((ficgp=fopen("graph.plt","w"))==NULL) {          }
     printf("Problem with file graph.gp");goto end;          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=-1, pos=0; m <=0 ; m++)
 #ifdef windows              pos += freq[jk][m][i];
   fprintf(ficgp,"cd \"%s\" \n",pathc);            if(pp[jk]>=1.e-10){
 #endif              if(first==1){
 m=pow(2,cptcovn);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }
  /* 1eme*/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   for (cpt=1; cpt<= nlstate ; cpt ++) {            }else{
    for (k1=1; k1<= m ; k1 ++) {              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 #ifdef windows              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);            }
 #endif          }
 #ifdef unix  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);          for(jk=1; jk <=nlstate ; jk++){
 #endif            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
 for (i=1; i<= nlstate ; i ++) {          }       
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            pos += pp[jk];
 }            posprop += prop[jk][i];
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          }
     for (i=1; i<= nlstate ; i ++) {          for(jk=1; jk <=nlstate ; jk++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if(pos>=1.e-5){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if(first==1)
 }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      for (i=1; i<= nlstate ; i ++) {            }else{
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if(first==1)
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 }                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            }
 #ifdef unix            if( i <= iagemax){
 fprintf(ficgp,"\nset ter gif small size 400,300");              if(pos>=1.e-5){
 #endif                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
    }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   }              }
   /*2 eme*/              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   for (k1=1; k1<= m ; k1 ++) {            }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);          }
              
     for (i=1; i<= nlstate+1 ; i ++) {          for(jk=-1; jk <=nlstate+ndeath; jk++)
       k=2*i;            for(m=-1; m <=nlstate+ndeath; m++)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              if(freq[jk][m][i] !=0 ) {
       for (j=1; j<= nlstate+1 ; j ++) {              if(first==1)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 }                }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          if(i <= iagemax)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            fprintf(ficresp,"\n");
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          if(first==1)
       for (j=1; j<= nlstate+1 ; j ++) {            printf("Others in log...\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficlog,"\n");
         else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }        }
       fprintf(ficgp,"\" t\"\" w l 0,");    }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    dateintmean=dateintsum/k2cpt; 
       for (j=1; j<= nlstate+1 ; j ++) {   
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fclose(ficresp);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 }      free_vector(pp,1,nlstate);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       else fprintf(ficgp,"\" t\"\" w l 0,");    /* End of Freq */
     }  }
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  
   }  /************ Prevalence ********************/
    void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   /*3eme*/  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   for (k1=1; k1<= m ; k1 ++) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
     for (cpt=1; cpt<= nlstate ; cpt ++) {       We still use firstpass and lastpass as another selection.
       k=2+nlstate*(cpt-1);    */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);   
       for (i=1; i< nlstate ; i ++) {    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    double ***freq; /* Frequencies */
       }    double *pp, **prop;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    double pos,posprop; 
     }    double  y2; /* in fractional years */
   }    int iagemin, iagemax;
    
   /* CV preval stat */    iagemin= (int) agemin;
   for (k1=1; k1<= m ; k1 ++) {    iagemax= (int) agemax;
     for (cpt=1; cpt<nlstate ; cpt ++) {    /*pp=vector(1,nlstate);*/
       k=3;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       for (i=1; i< nlstate ; i ++)    j1=0;
         fprintf(ficgp,"+$%d",k+i+1);    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    j=cptcoveff;
          if (cptcovn<1) {j=1;ncodemax[1]=1;}
       l=3+(nlstate+ndeath)*cpt;    
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    for(k1=1; k1<=j;k1++){
       for (i=1; i< nlstate ; i ++) {      for(i1=1; i1<=ncodemax[k1];i1++){
         l=3+(nlstate+ndeath)*cpt;        j1++;
         fprintf(ficgp,"+$%d",l+i+1);        
       }        for (i=1; i<=nlstate; i++)  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            prop[i][m]=0.0;
     }       
   }        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
   /* proba elementaires */          if  (cptcovn>0) {
    for(i=1,jk=1; i <=nlstate; i++){            for (z1=1; z1<=cptcoveff; z1++) 
     for(k=1; k <=(nlstate+ndeath); k++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       if (k != i) {                bool=0;
         for(j=1; j <=ncovmodel; j++){          } 
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/          if (bool==1) { 
           /*fprintf(ficgp,"%s",alph[1]);*/            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           jk++;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           fprintf(ficgp,"\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
   for(jk=1; jk <=m; jk++) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);                } 
    i=1;              }
    for(k2=1; k2<=nlstate; k2++) {            } /* end selection of waves */
      k3=i;          }
      for(k=1; k<=(nlstate+ndeath); k++) {        }
        if (k != k2){        for(i=iagemin; i <= iagemax+3; i++){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         for(j=3; j <=ncovmodel; j++)            posprop += prop[jk][i]; 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          } 
         fprintf(ficgp,")/(1");  
                  for(jk=1; jk <=nlstate ; jk++){     
         for(k1=1; k1 <=nlstate; k1++){              if( i <=  iagemax){ 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              if(posprop>=1.e-5){ 
           for(j=3; j <=ncovmodel; j++)                probs[i][jk][j1]= prop[jk][i]/posprop;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              } else
           fprintf(ficgp,")");                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
         }            } 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          }/* end jk */ 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        }/* end i */ 
         i=i+ncovmodel;      } /* end i1 */
        }    } /* end k1 */
      }    
    }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    /*free_vector(pp,1,nlstate);*/
   }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      }  /* End of prevalence */
   fclose(ficgp);  
      /************* Waves Concatenation ***************/
 chdir(path);  
     free_matrix(agev,1,maxwav,1,imx);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     free_ivector(wav,1,imx);  {
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       Death is a valid wave (if date is known).
           mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     free_imatrix(s,1,maxwav+1,1,n);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           and mw[mi+1][i]. dh depends on stepm.
           */
     free_ivector(num,1,n);  
     free_vector(agedc,1,n);    int i, mi, m;
     free_vector(weight,1,n);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/       double sum=0., jmean=0.;*/
     fclose(ficparo);    int first;
     fclose(ficres);    int j, k=0,jk, ju, jl;
    }    double sum=0.;
        first=0;
    /*________fin mle=1_________*/    jmin=1e+5;
        jmax=-1;
     jmean=0.;
      for(i=1; i<=imx; i++){
     /* No more information from the sample is required now */      mi=0;
   /* Reads comments: lines beginning with '#' */      m=firstpass;
   while((c=getc(ficpar))=='#' && c!= EOF){      while(s[m][i] <= nlstate){
     ungetc(c,ficpar);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     fgets(line, MAXLINE, ficpar);          mw[++mi][i]=m;
     puts(line);        if(m >=lastpass)
     fputs(line,ficparo);          break;
   }        else
   ungetc(c,ficpar);          m++;
        }/* end while */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      if (s[m][i] > nlstate){
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);        mi++;     /* Death is another wave */
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        /* if(mi==0)  never been interviewed correctly before death */
 /*--------- index.htm --------*/           /* Only death is a correct wave */
         mw[mi][i]=m;
   if((fichtm=fopen("index.htm","w"))==NULL)    {      }
     printf("Problem with index.htm \n");goto end;  
   }      wav[i]=mi;
       if(mi==0){
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n        nbwarn++;
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        if(first==0){
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>          first=1;
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>        }
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        if(first==1){
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        }
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>      } /* end mi==0 */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    } /* End individuals */
   
  fprintf(fichtm," <li>Graphs</li>\n<p>");    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
  m=cptcovn;        if (stepm <=0)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          dh[mi][i]=1;
         else{
  j1=0;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
  for(k1=1; k1<=m;k1++){            if (agedc[i] < 2*AGESUP) {
    for(i1=1; i1<=ncodemax[k1];i1++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
        j1++;              if(j==0) j=1;  /* Survives at least one month after exam */
        if (cptcovn > 0) {              else if(j<0){
          fprintf(fichtm,"<hr>************ Results for covariates");                nberr++;
          for (cpt=1; cpt<=cptcovn;cpt++)                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);                j=1; /* Temporary Dangerous patch */
          fprintf(fichtm," ************\n<hr>");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
        }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                  }
        for(cpt=1; cpt<nlstate;cpt++){              k=k+1;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              if (j >= jmax){
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);                jmax=j;
        }                ijmax=i;
     for(cpt=1; cpt<=nlstate;cpt++) {              }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              if (j <= jmin){
 interval) in state (%d): v%s%d%d.gif <br>                jmin=j;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);                  ijmin=i;
      }              }
      for(cpt=1; cpt<=nlstate;cpt++) {              sum=sum+j;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      }            }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          }
 health expectancies in states (1) and (2): e%s%d.gif<br>          else{
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 fprintf(fichtm,"\n</body>");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
    }  
  }            k=k+1;
 fclose(fichtm);            if (j >= jmax) {
               jmax=j;
   /*--------------- Prevalence limit --------------*/              ijmax=i;
              }
   strcpy(filerespl,"pl");            else if (j <= jmin){
   strcat(filerespl,fileres);              jmin=j;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              ijmin=i;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            }
   }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   fprintf(ficrespl,"#Prevalence limit\n");            if(j<0){
   fprintf(ficrespl,"#Age ");              nberr++;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficrespl,"\n");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              }
   prlim=matrix(1,nlstate,1,nlstate);            sum=sum+j;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          jk= j/stepm;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          jl= j -jk*stepm;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          ju= j -(jk+1)*stepm;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   k=0;            if(jl==0){
   agebase=agemin;              dh[mi][i]=jk;
   agelim=agemax;              bh[mi][i]=0;
   ftolpl=1.e-10;            }else{ /* We want a negative bias in order to only have interpolation ie
   i1=cptcovn;                    * at the price of an extra matrix product in likelihood */
   if (cptcovn < 1){i1=1;}              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   for(cptcov=1;cptcov<=i1;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }else{
         k=k+1;            if(jl <= -ju){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              dh[mi][i]=jk;
         fprintf(ficrespl,"\n#******");              bh[mi][i]=jl;       /* bias is positive if real duration
         for(j=1;j<=cptcovn;j++)                                   * is higher than the multiple of stepm and negative otherwise.
           fprintf(ficrespl," V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);                                   */
         fprintf(ficrespl,"******\n");            }
                    else{
         for (age=agebase; age<=agelim; age++){              dh[mi][i]=jk+1;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              bh[mi][i]=ju;
           fprintf(ficrespl,"%.0f",age );            }
           for(i=1; i<=nlstate;i++)            if(dh[mi][i]==0){
           fprintf(ficrespl," %.5f", prlim[i][i]);              dh[mi][i]=1; /* At least one step */
           fprintf(ficrespl,"\n");              bh[mi][i]=ju; /* At least one step */
         }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       }            }
     }          } /* end if mle */
   fclose(ficrespl);        }
   /*------------- h Pij x at various ages ------------*/      } /* end wave */
      }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    jmean=sum/k;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   }   }
   printf("Computing pij: result on file '%s' \n", filerespij);  
    /*********** Tricode ****************************/
   stepsize=(int) (stepm+YEARM-1)/YEARM;  void tricode(int *Tvar, int **nbcode, int imx)
   if (stepm<=24) stepsize=2;  {
     
   agelim=AGESUP;    int Ndum[20],ij=1, k, j, i, maxncov=19;
   hstepm=stepsize*YEARM; /* Every year of age */    int cptcode=0;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    cptcoveff=0; 
     
   k=0;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   for(cptcov=1;cptcov<=i1;cptcov++){    for (k=1; k<=7; k++) ncodemax[k]=0;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         fprintf(ficrespij,"\n#****** ");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         for(j=1;j<=cptcovn;j++)                                 modality*/ 
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         fprintf(ficrespij,"******\n");        Ndum[ij]++; /*store the modality */
                /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                                         Tvar[j]. If V=sex and male is 0 and 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                                         female is 1, then  cptcode=1.*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for (i=0; i<=cptcode; i++) {
           fprintf(ficrespij,"# Age");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           for(i=1; i<=nlstate;i++)      }
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);      ij=1; 
           fprintf(ficrespij,"\n");      for (i=1; i<=ncodemax[j]; i++) {
           for (h=0; h<=nhstepm; h++){        for (k=0; k<= maxncov; k++) {
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          if (Ndum[k] != 0) {
             for(i=1; i<=nlstate;i++)            nbcode[Tvar[j]][ij]=k; 
               for(j=1; j<=nlstate+ndeath;j++)            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            
             fprintf(ficrespij,"\n");            ij++;
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (ij > ncodemax[j]) break; 
           fprintf(ficrespij,"\n");        }  
         }      } 
     }    }  
   }  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
   fclose(ficrespij);  
    for (i=1; i<=ncovmodel-2; i++) { 
   /*---------- Health expectancies and variances ------------*/     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
   strcpy(filerest,"t");     Ndum[ij]++;
   strcat(filerest,fileres);   }
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   ij=1;
   }   for (i=1; i<= maxncov; i++) {
   printf("Computing Total LEs with variances: file '%s' \n", filerest);     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
        ij++;
   strcpy(filerese,"e");     }
   strcat(filerese,fileres);   }
   if((ficreseij=fopen(filerese,"w"))==NULL) {   
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   cptcoveff=ij-1; /*Number of simple covariates*/
   }  }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   /*********** Health Expectancies ****************/
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  {
   }    /* Health expectancies, no variances */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     int nhstepma, nstepma; /* Decreasing with age */
   k=0;    double age, agelim, hf;
   for(cptcov=1;cptcov<=i1;cptcov++){    double ***p3mat;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double eip;
       k=k+1;  
       fprintf(ficrest,"\n#****** ");    pstamp(ficreseij);
       for(j=1;j<=cptcovn;j++)    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    fprintf(ficreseij,"# Age");
       fprintf(ficrest,"******\n");    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
       fprintf(ficreseij,"\n#****** ");        fprintf(ficreseij," e%1d%1d ",i,j);
       for(j=1;j<=cptcovn;j++)      }
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      fprintf(ficreseij," e%1d. ",i);
       fprintf(ficreseij,"******\n");    }
     fprintf(ficreseij,"\n");
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcovn;j++)    
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    if(estepm < stepm){
       fprintf(ficresvij,"******\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    else  hstepm=estepm;   
       oldm=oldms;savm=savms;    /* We compute the life expectancy from trapezoids spaced every estepm months
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);       * This is mainly to measure the difference between two models: for example
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     * if stepm=24 months pijx are given only every 2 years and by summing them
       oldm=oldms;savm=savms;     * we are calculating an estimate of the Life Expectancy assuming a linear 
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);     * progression in between and thus overestimating or underestimating according
           * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficrest,"\n");     * hypothesis. A more precise result, taking into account a more precise
             * curvature will be obtained if estepm is as small as stepm. */
       hf=1;  
       if (stepm >= YEARM) hf=stepm/YEARM;    /* For example we decided to compute the life expectancy with the smallest unit */
       epj=vector(1,nlstate+1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       for(age=bage; age <=fage ;age++){       nhstepm is the number of hstepm from age to agelim 
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       nstepm is the number of stepm from age to agelin. 
         fprintf(ficrest," %.0f",age);       Look at hpijx to understand the reason of that which relies in memory size
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){       and note for a fixed period like estepm months */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];       survival function given by stepm (the optimization length). Unfortunately it
           }       means that if the survival funtion is printed only each two years of age and if
           epj[nlstate+1] +=epj[j];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         }       results. So we changed our mind and took the option of the best precision.
         for(i=1, vepp=0.;i <=nlstate;i++)    */
           for(j=1;j <=nlstate;j++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    agelim=AGESUP;
         for(j=1;j <=nlstate;j++){    /* If stepm=6 months */
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficrest,"\n");      
       }  /* nhstepm age range expressed in number of stepm */
     }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
            /* if (stepm >= YEARM) hstepm=1;*/
  fclose(ficreseij);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  fclose(ficresvij);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficrest);  
   fclose(ficpar);    for (age=bage; age<=fage; age ++){ 
   free_vector(epj,1,nlstate+1);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /*  scanf("%d ",i); */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
   /*------- Variance limit prevalence------*/        nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
 strcpy(fileresvpl,"vpl");      /* If stepm=6 months */
   strcat(fileresvpl,fileres);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      
     exit(0);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   }      
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
  k=0;      printf("%d|",(int)age);fflush(stdout);
  for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      
      k=k+1;      /* Computing expectancies */
      fprintf(ficresvpl,"\n#****** ");      for(i=1; i<=nlstate;i++)
      for(j=1;j<=cptcovn;j++)        for(j=1; j<=nlstate;j++)
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      fprintf(ficresvpl,"******\n");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                  
      varpl=matrix(1,nlstate,(int) bage, (int) fage);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          }
    }  
  }      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   fclose(ficresvpl);        eip=0;
         for(j=1; j<=nlstate;j++){
   /*---------- End : free ----------------*/          eip +=eij[i][j][(int)age];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
          }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficreseij,"%9.4f", eip );
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      }
        fprintf(ficreseij,"\n");
        
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    printf("\n");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficlog,"\n");
      
   free_matrix(matcov,1,npar,1,npar);  }
   free_vector(delti,1,npar);  
    void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
   {
   printf("End of Imach\n");    /* Covariances of health expectancies eij and of total life expectancies according
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */     to initial status i, ei. .
      */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   /*printf("Total time was %d uSec.\n", total_usecs);*/    int nhstepma, nstepma; /* Decreasing with age */
   /*------ End -----------*/    double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
  end:    double **dnewm,**doldm;
 #ifdef windows    double *xp, *xm;
  chdir(pathcd);    double **gp, **gm;
 #endif    double ***gradg, ***trgradg;
  system("wgnuplot graph.plt");    int theta;
   
 #ifdef windows    double eip, vip;
   while (z[0] != 'q') {  
     chdir(pathcd);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    xp=vector(1,npar);
     scanf("%s",z);    xm=vector(1,npar);
     if (z[0] == 'c') system("./imach");    dnewm=matrix(1,nlstate*nlstate,1,npar);
     else if (z[0] == 'e') {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       chdir(path);    
       system("index.htm");    pstamp(ficresstdeij);
     }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     else if (z[0] == 'q') exit(0);    fprintf(ficresstdeij,"# Age");
   }    for(i=1; i<=nlstate;i++){
 #endif      for(j=1; j<=nlstate;j++)
 }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.6  
changed lines
  Added in v.1.128


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>