Diff for /imach/src/imach.c between versions 1.12 and 1.113

version 1.12, 2002/02/20 16:57:00 version 1.113, 2006/02/24 14:20:24
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.113  2006/02/24 14:20:24  brouard
   individuals from different ages are interviewed on their health status    (Module): Memory leaks checks with valgrind and:
   or degree of  disability. At least a second wave of interviews    datafile was not closed, some imatrix were not freed and on matrix
   ("longitudinal") should  measure each new individual health status.    allocation too.
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.112  2006/01/30 09:55:26  brouard
   of life states). More degrees you consider, more time is necessary to    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Revision 1.111  2006/01/25 20:38:18  brouard
   the probabibility to be observed in state j at the second wave conditional    (Module): Lots of cleaning and bugs added (Gompertz)
   to be observed in state i at the first wave. Therefore the model is:    (Module): Comments can be added in data file. Missing date values
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    can be a simple dot '.'.
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.110  2006/01/25 00:51:50  brouard
     *Covariates have to be included here again* invites you to do it.    (Module): Lots of cleaning and bugs added (Gompertz)
   More covariates you add, less is the speed of the convergence.  
     Revision 1.109  2006/01/24 19:37:15  brouard
   The advantage that this computer programme claims, comes from that if the    (Module): Comments (lines starting with a #) are allowed in data.
   delay between waves is not identical for each individual, or if some  
   individual missed an interview, the information is not rounded or lost, but    Revision 1.108  2006/01/19 18:05:42  lievre
   taken into account using an interpolation or extrapolation.    Gnuplot problem appeared...
   hPijx is the probability to be    To be fixed
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.107  2006/01/19 16:20:37  brouard
   unobserved intermediate  states. This elementary transition (by month or    Test existence of gnuplot in imach path
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.106  2006/01/19 13:24:36  brouard
   and the contribution of each individual to the likelihood is simply hPijx.    Some cleaning and links added in html output
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.105  2006/01/05 20:23:19  lievre
   of the life expectancies. It also computes the prevalence limits.    *** empty log message ***
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.104  2005/09/30 16:11:43  lievre
            Institut national d'études démographiques, Paris.    (Module): sump fixed, loop imx fixed, and simplifications.
   This software have been partly granted by Euro-REVES, a concerted action    (Module): If the status is missing at the last wave but we know
   from the European Union.    that the person is alive, then we can code his/her status as -2
   It is copyrighted identically to a GNU software product, ie programme and    (instead of missing=-1 in earlier versions) and his/her
   software can be distributed freely for non commercial use. Latest version    contributions to the likelihood is 1 - Prob of dying from last
   can be accessed at http://euroreves.ined.fr/imach .    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   **********************************************************************/    the healthy state at last known wave). Version is 0.98
    
 #include <math.h>    Revision 1.103  2005/09/30 15:54:49  lievre
 #include <stdio.h>    (Module): sump fixed, loop imx fixed, and simplifications.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Revision 1.101  2004/09/15 10:38:38  brouard
 /*#define DEBUG*/    Fix on curr_time
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.100  2004/07/12 18:29:06  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Add version for Mac OS X. Just define UNIX in Makefile
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.99  2004/06/05 08:57:40  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    *** empty log message ***
   
 #define NINTERVMAX 8    Revision 1.98  2004/05/16 15:05:56  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    New version 0.97 . First attempt to estimate force of mortality
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    directly from the data i.e. without the need of knowing the health
 #define NCOVMAX 8 /* Maximum number of covariates */    state at each age, but using a Gompertz model: log u =a + b*age .
 #define MAXN 20000    This is the basic analysis of mortality and should be done before any
 #define YEARM 12. /* Number of months per year */    other analysis, in order to test if the mortality estimated from the
 #define AGESUP 130    cross-longitudinal survey is different from the mortality estimated
 #define AGEBASE 40    from other sources like vital statistic data.
   
     The same imach parameter file can be used but the option for mle should be -3.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Agnès, who wrote this part of the code, tried to keep most of the
 int npar=NPARMAX;    former routines in order to include the new code within the former code.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    The output is very simple: only an estimate of the intercept and of
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    the slope with 95% confident intervals.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Current limitations:
 int maxwav; /* Maxim number of waves */    A) Even if you enter covariates, i.e. with the
 int jmin, jmax; /* min, max spacing between 2 waves */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int mle, weightopt;    B) There is no computation of Life Expectancy nor Life Table.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.97  2004/02/20 13:25:42  lievre
 double jmean; /* Mean space between 2 waves */    Version 0.96d. Population forecasting command line is (temporarily)
 double **oldm, **newm, **savm; /* Working pointers to matrices */    suppressed.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    Revision 1.96  2003/07/15 15:38:55  brouard
 FILE *ficgp, *fichtm;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 FILE *ficreseij;    rewritten within the same printf. Workaround: many printfs.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.95  2003/07/08 07:54:34  brouard
   char fileresv[FILENAMELENGTH];    * imach.c (Repository):
  FILE  *ficresvpl;    (Repository): Using imachwizard code to output a more meaningful covariance
   char fileresvpl[FILENAMELENGTH];    matrix (cov(a12,c31) instead of numbers.
   
 #define NR_END 1    Revision 1.94  2003/06/27 13:00:02  brouard
 #define FREE_ARG char*    Just cleaning
 #define FTOL 1.0e-10  
     Revision 1.93  2003/06/25 16:33:55  brouard
 #define NRANSI    (Module): On windows (cygwin) function asctime_r doesn't
 #define ITMAX 200    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 #define TOL 2.0e-4  
     Revision 1.92  2003/06/25 16:30:45  brouard
 #define CGOLD 0.3819660    (Module): On windows (cygwin) function asctime_r doesn't
 #define ZEPS 1.0e-10    exist so I changed back to asctime which exists.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define GOLD 1.618034    * imach.c (Repository): Duplicated warning errors corrected.
 #define GLIMIT 100.0    (Repository): Elapsed time after each iteration is now output. It
 #define TINY 1.0e-20    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 static double maxarg1,maxarg2;    concerning matrix of covariance. It has extension -cov.htm.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.90  2003/06/24 12:34:15  brouard
      (Module): Some bugs corrected for windows. Also, when
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    mle=-1 a template is output in file "or"mypar.txt with the design
 #define rint(a) floor(a+0.5)    of the covariance matrix to be input.
   
 static double sqrarg;    Revision 1.89  2003/06/24 12:30:52  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Some bugs corrected for windows. Also, when
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int imx;  
 int stepm;    Revision 1.88  2003/06/23 17:54:56  brouard
 /* Stepm, step in month: minimum step interpolation*/    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 int m,nb;    Revision 1.87  2003/06/18 12:26:01  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Version 0.96
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij;    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 double *weight;    routine fileappend.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.85  2003/06/17 13:12:43  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    prior to the death. In this case, dh was negative and likelihood
 double ftolhess; /* Tolerance for computing hessian */    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 /**************** split *************************/    interview.
 static  int split( char *path, char *dirc, char *name )    (Repository): Because some people have very long ID (first column)
 {    we changed int to long in num[] and we added a new lvector for
    char *s;                             /* pointer */    memory allocation. But we also truncated to 8 characters (left
    int  l1, l2;                         /* length counters */    truncation)
     (Repository): No more line truncation errors.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.84  2003/06/13 21:44:43  brouard
    s = strrchr( path, '\\' );           /* find last / */    * imach.c (Repository): Replace "freqsummary" at a correct
    if ( s == NULL ) {                   /* no directory, so use current */    place. It differs from routine "prevalence" which may be called
 #if     defined(__bsd__)                /* get current working directory */    many times. Probs is memory consuming and must be used with
       extern char       *getwd( );    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.83  2003/06/10 13:39:11  lievre
       extern char       *getcwd( );    *** empty log message ***
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.82  2003/06/05 15:57:20  brouard
 #endif    Add log in  imach.c and  fullversion number is now printed.
          return( GLOCK_ERROR_GETCWD );  
       }  */
       strcpy( name, path );             /* we've got it */  /*
    } else {                             /* strip direcotry from path */     Interpolated Markov Chain
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Short summary of the programme:
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    
       strcpy( name, s );                /* save file name */    This program computes Healthy Life Expectancies from
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       dirc[l1-l2] = 0;                  /* add zero */    first survey ("cross") where individuals from different ages are
    }    interviewed on their health status or degree of disability (in the
    l1 = strlen( dirc );                 /* length of directory */    case of a health survey which is our main interest) -2- at least a
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    second wave of interviews ("longitudinal") which measure each change
    return( 0 );                         /* we're done */    (if any) in individual health status.  Health expectancies are
 }    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 /******************************************/    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 void replace(char *s, char*t)    conditional to be observed in state i at the first wave. Therefore
 {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   int i;    'age' is age and 'sex' is a covariate. If you want to have a more
   int lg=20;    complex model than "constant and age", you should modify the program
   i=0;    where the markup *Covariates have to be included here again* invites
   lg=strlen(t);    you to do it.  More covariates you add, slower the
   for(i=0; i<= lg; i++) {    convergence.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    The advantage of this computer programme, compared to a simple
   }    multinomial logistic model, is clear when the delay between waves is not
 }    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 int nbocc(char *s, char occ)    account using an interpolation or extrapolation.  
 {  
   int i,j=0;    hPijx is the probability to be observed in state i at age x+h
   int lg=20;    conditional to the observed state i at age x. The delay 'h' can be
   i=0;    split into an exact number (nh*stepm) of unobserved intermediate
   lg=strlen(s);    states. This elementary transition (by month, quarter,
   for(i=0; i<= lg; i++) {    semester or year) is modelled as a multinomial logistic.  The hPx
   if  (s[i] == occ ) j++;    matrix is simply the matrix product of nh*stepm elementary matrices
   }    and the contribution of each individual to the likelihood is simply
   return j;    hPijx.
 }  
     Also this programme outputs the covariance matrix of the parameters but also
 void cutv(char *u,char *v, char*t, char occ)    of the life expectancies. It also computes the stable prevalence. 
 {    
   int i,lg,j,p=0;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   i=0;             Institut national d'études démographiques, Paris.
   for(j=0; j<=strlen(t)-1; j++) {    This software have been partly granted by Euro-REVES, a concerted action
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    from the European Union.
   }    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
   lg=strlen(t);    can be accessed at http://euroreves.ined.fr/imach .
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      u[p]='\0';    
     **********************************************************************/
    for(j=0; j<= lg; j++) {  /*
     if (j>=(p+1))(v[j-p-1] = t[j]);    main
   }    read parameterfile
 }    read datafile
     concatwav
 /********************** nrerror ********************/    freqsummary
     if (mle >= 1)
 void nrerror(char error_text[])      mlikeli
 {    print results files
   fprintf(stderr,"ERREUR ...\n");    if mle==1 
   fprintf(stderr,"%s\n",error_text);       computes hessian
   exit(1);    read end of parameter file: agemin, agemax, bage, fage, estepm
 }        begin-prev-date,...
 /*********************** vector *******************/    open gnuplot file
 double *vector(int nl, int nh)    open html file
 {    stable prevalence
   double *v;     for age prevalim()
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    h Pij x
   if (!v) nrerror("allocation failure in vector");    variance of p varprob
   return v-nl+NR_END;    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
 /************************ free vector ******************/    prevalence()
 void free_vector(double*v, int nl, int nh)     movingaverage()
 {    varevsij() 
   free((FREE_ARG)(v+nl-NR_END));    if popbased==1 varevsij(,popbased)
 }    total life expectancies
     Variance of stable prevalence
 /************************ivector *******************************/   end
 int *ivector(long nl,long nh)  */
 {  
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");   
   return v-nl+NR_END;  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 /******************free ivector **************************/  #include <string.h>
 void free_ivector(int *v, long nl, long nh)  #include <unistd.h>
 {  
   free((FREE_ARG)(v+nl-NR_END));  #include <limits.h>
 }  #include <sys/types.h>
   #include <sys/stat.h>
 /******************* imatrix *******************************/  #include <errno.h>
 int **imatrix(long nrl, long nrh, long ncl, long nch)  extern int errno;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  /* #include <sys/time.h> */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #include <time.h>
   int **m;  #include "timeval.h"
    
   /* allocate pointers to rows */  /* #include <libintl.h> */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  /* #define _(String) gettext (String) */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define MAXLINE 256
   m -= nrl;  
    #define GNUPLOTPROGRAM "gnuplot"
    /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   /* allocate rows and set pointers to them */  #define FILENAMELENGTH 132
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   m[nrl] += NR_END;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m[nrl] -= ncl;  
    #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    
   /* return pointer to array of pointers to rows */  #define NINTERVMAX 8
   return m;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 /****************** free_imatrix *************************/  #define MAXN 20000
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define YEARM 12. /* Number of months per year */
       int **m;  #define AGESUP 130
       long nch,ncl,nrh,nrl;  #define AGEBASE 40
      /* free an int matrix allocated by imatrix() */  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 {  #ifdef UNIX
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define DIRSEPARATOR '/'
   free((FREE_ARG) (m+nrl-NR_END));  #define CHARSEPARATOR "/"
 }  #define ODIRSEPARATOR '\\'
   #else
 /******************* matrix *******************************/  #define DIRSEPARATOR '\\'
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define CHARSEPARATOR "\\"
 {  #define ODIRSEPARATOR '/'
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #endif
   double **m;  
   /* $Id$ */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /* $State$ */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
   m -= nrl;  char fullversion[]="$Revision$ $Date$"; 
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int nvar;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   m[nrl] += NR_END;  int npar=NPARMAX;
   m[nrl] -= ncl;  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   return m;  int popbased=0;
 }  
   int *wav; /* Number of waves for this individuual 0 is possible */
 /*************************free matrix ************************/  int maxwav; /* Maxim number of waves */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int jmin, jmax; /* min, max spacing between 2 waves */
 {  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int gipmx, gsw; /* Global variables on the number of contributions 
   free((FREE_ARG)(m+nrl-NR_END));                     to the likelihood and the sum of weights (done by funcone)*/
 }  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 /******************* ma3x *******************************/  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double jmean; /* Mean space between 2 waves */
   double ***m;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *ficlog, *ficrespow;
   m += NR_END;  int globpr; /* Global variable for printing or not */
   m -= nrl;  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double sw; /* Sum of weights */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char filerespow[FILENAMELENGTH];
   m[nrl] += NR_END;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m[nrl] -= ncl;  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  FILE *ficreseij;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char filerese[FILENAMELENGTH];
   m[nrl][ncl] += NR_END;  FILE  *ficresvij;
   m[nrl][ncl] -= nll;  char fileresv[FILENAMELENGTH];
   for (j=ncl+1; j<=nch; j++)  FILE  *ficresvpl;
     m[nrl][j]=m[nrl][j-1]+nlay;  char fileresvpl[FILENAMELENGTH];
    char title[MAXLINE];
   for (i=nrl+1; i<=nrh; i++) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     for (j=ncl+1; j<=nch; j++)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       m[i][j]=m[i][j-1]+nlay;  char command[FILENAMELENGTH];
   }  int  outcmd=0;
   return m;  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 /*************************free ma3x ************************/  char filelog[FILENAMELENGTH]; /* Log file */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char filerest[FILENAMELENGTH];
 {  char fileregp[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char popfile[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 }  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 /***************** f1dim *************************/  struct timezone tzp;
 extern int ncom;  extern int gettimeofday();
 extern double *pcom,*xicom;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 extern double (*nrfunc)(double []);  long time_value;
    extern long time();
 double f1dim(double x)  char strcurr[80], strfor[80];
 {  
   int j;  char *endptr;
   double f;  long lval;
   double *xt;  
    #define NR_END 1
   xt=vector(1,ncom);  #define FREE_ARG char*
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define FTOL 1.0e-10
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  #define NRANSI 
   return f;  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   int iter;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  #define GOLD 1.618034 
   double ftemp;  #define GLIMIT 100.0 
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define TINY 1.0e-20 
   double e=0.0;  
    static double maxarg1,maxarg2;
   a=(ax < cx ? ax : cx);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   b=(ax > cx ? ax : cx);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   x=w=v=bx;    
   fw=fv=fx=(*f)(x);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   for (iter=1;iter<=ITMAX;iter++) {  #define rint(a) floor(a+0.5)
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  static double sqrarg;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     printf(".");fflush(stdout);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 #ifdef DEBUG  int agegomp= AGEGOMP;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int imx; 
 #endif  int stepm=1;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  /* Stepm, step in month: minimum step interpolation*/
       *xmin=x;  
       return fx;  int estepm;
     }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     ftemp=fu;  
     if (fabs(e) > tol1) {  int m,nb;
       r=(x-w)*(fx-fv);  long *num;
       q=(x-v)*(fx-fw);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       p=(x-v)*q-(x-w)*r;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       q=2.0*(q-r);  double **pmmij, ***probs;
       if (q > 0.0) p = -p;  double *ageexmed,*agecens;
       q=fabs(q);  double dateintmean=0;
       etemp=e;  
       e=d;  double *weight;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int **s; /* Status */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  double *agedc, **covar, idx;
       else {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
         d=p/q;  double *lsurv, *lpop, *tpop;
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
           d=SIGN(tol1,xm-x);  double ftolhess; /* Tolerance for computing hessian */
       }  
     } else {  /**************** split *************************/
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     }  {
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     fu=(*f)(u);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     if (fu <= fx) {    */ 
       if (u >= x) a=x; else b=x;    char  *ss;                            /* pointer */
       SHFT(v,w,x,u)    int   l1, l2;                         /* length counters */
         SHFT(fv,fw,fx,fu)  
         } else {    l1 = strlen(path );                   /* length of path */
           if (u < x) a=u; else b=u;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
           if (fu <= fw || w == x) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
             v=w;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
             w=u;      strcpy( name, path );               /* we got the fullname name because no directory */
             fv=fw;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
             fw=fu;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
           } else if (fu <= fv || v == x || v == w) {      /* get current working directory */
             v=u;      /*    extern  char* getcwd ( char *buf , int len);*/
             fv=fu;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
           }        return( GLOCK_ERROR_GETCWD );
         }      }
   }      /* got dirc from getcwd*/
   nrerror("Too many iterations in brent");      printf(" DIRC = %s \n",dirc);
   *xmin=x;    } else {                              /* strip direcotry from path */
   return fx;      ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 /****************** mnbrak ***********************/      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      dirc[l1-l2] = 0;                    /* add zero */
             double (*func)(double))      printf(" DIRC2 = %s \n",dirc);
 {    }
   double ulim,u,r,q, dum;    /* We add a separator at the end of dirc if not exists */
   double fu;    l1 = strlen( dirc );                  /* length of directory */
      if( dirc[l1-1] != DIRSEPARATOR ){
   *fa=(*func)(*ax);      dirc[l1] =  DIRSEPARATOR;
   *fb=(*func)(*bx);      dirc[l1+1] = 0; 
   if (*fb > *fa) {      printf(" DIRC3 = %s \n",dirc);
     SHFT(dum,*ax,*bx,dum)    }
       SHFT(dum,*fb,*fa,dum)    ss = strrchr( name, '.' );            /* find last / */
       }    if (ss >0){
   *cx=(*bx)+GOLD*(*bx-*ax);      ss++;
   *fc=(*func)(*cx);      strcpy(ext,ss);                     /* save extension */
   while (*fb > *fc) {      l1= strlen( name);
     r=(*bx-*ax)*(*fb-*fc);      l2= strlen(ss)+1;
     q=(*bx-*cx)*(*fb-*fa);      strncpy( finame, name, l1-l2);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      finame[l1-l2]= 0;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    }
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    return( 0 );                          /* we're done */
       fu=(*func)(u);  }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  
       if (fu < *fc) {  /******************************************/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  void replace_back_to_slash(char *s, char*t)
           }  {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    int i;
       u=ulim;    int lg=0;
       fu=(*func)(u);    i=0;
     } else {    lg=strlen(t);
       u=(*cx)+GOLD*(*cx-*bx);    for(i=0; i<= lg; i++) {
       fu=(*func)(u);      (s[i] = t[i]);
     }      if (t[i]== '\\') s[i]='/';
     SHFT(*ax,*bx,*cx,u)    }
       SHFT(*fa,*fb,*fc,fu)  }
       }  
 }  int nbocc(char *s, char occ)
   {
 /*************** linmin ************************/    int i,j=0;
     int lg=20;
 int ncom;    i=0;
 double *pcom,*xicom;    lg=strlen(s);
 double (*nrfunc)(double []);    for(i=0; i<= lg; i++) {
      if  (s[i] == occ ) j++;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    }
 {    return j;
   double brent(double ax, double bx, double cx,  }
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  void cutv(char *u,char *v, char*t, char occ)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   int j;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   double xx,xmin,bx,ax;       gives u="abcedf" and v="ghi2j" */
   double fx,fb,fa;    int i,lg,j,p=0;
      i=0;
   ncom=n;    for(j=0; j<=strlen(t)-1; j++) {
   pcom=vector(1,n);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   xicom=vector(1,n);    }
   nrfunc=func;  
   for (j=1;j<=n;j++) {    lg=strlen(t);
     pcom[j]=p[j];    for(j=0; j<p; j++) {
     xicom[j]=xi[j];      (u[j] = t[j]);
   }    }
   ax=0.0;       u[p]='\0';
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     for(j=0; j<= lg; j++) {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      if (j>=(p+1))(v[j-p-1] = t[j]);
 #ifdef DEBUG    }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  
   for (j=1;j<=n;j++) {  /********************** nrerror ********************/
     xi[j] *= xmin;  
     p[j] += xi[j];  void nrerror(char error_text[])
   }  {
   free_vector(xicom,1,n);    fprintf(stderr,"ERREUR ...\n");
   free_vector(pcom,1,n);    fprintf(stderr,"%s\n",error_text);
 }    exit(EXIT_FAILURE);
   }
 /*************** powell ************************/  /*********************** vector *******************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  double *vector(int nl, int nh)
             double (*func)(double []))  {
 {    double *v;
   void linmin(double p[], double xi[], int n, double *fret,    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
               double (*func)(double []));    if (!v) nrerror("allocation failure in vector");
   int i,ibig,j;    return v-nl+NR_END;
   double del,t,*pt,*ptt,*xit;  }
   double fp,fptt;  
   double *xits;  /************************ free vector ******************/
   pt=vector(1,n);  void free_vector(double*v, int nl, int nh)
   ptt=vector(1,n);  {
   xit=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   xits=vector(1,n);  }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /************************ivector *******************************/
   for (*iter=1;;++(*iter)) {  int *ivector(long nl,long nh)
     fp=(*fret);  {
     ibig=0;    int *v;
     del=0.0;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if (!v) nrerror("allocation failure in ivector");
     for (i=1;i<=n;i++)    return v-nl+NR_END;
       printf(" %d %.12f",i, p[i]);  }
     printf("\n");  
     for (i=1;i<=n;i++) {  /******************free ivector **************************/
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  void free_ivector(int *v, long nl, long nh)
       fptt=(*fret);  {
 #ifdef DEBUG    free((FREE_ARG)(v+nl-NR_END));
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /************************lvector *******************************/
       linmin(p,xit,n,fret,func);  long *lvector(long nl,long nh)
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    long *v;
         ibig=i;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       }    if (!v) nrerror("allocation failure in ivector");
 #ifdef DEBUG    return v-nl+NR_END;
       printf("%d %.12e",i,(*fret));  }
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /******************free lvector **************************/
         printf(" x(%d)=%.12e",j,xit[j]);  void free_lvector(long *v, long nl, long nh)
       }  {
       for(j=1;j<=n;j++)    free((FREE_ARG)(v+nl-NR_END));
         printf(" p=%.12e",p[j]);  }
       printf("\n");  
 #endif  /******************* imatrix *******************************/
     }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 #ifdef DEBUG  { 
       int k[2],l;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       k[0]=1;    int **m; 
       k[1]=-1;    
       printf("Max: %.12e",(*func)(p));    /* allocate pointers to rows */ 
       for (j=1;j<=n;j++)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         printf(" %.12e",p[j]);    if (!m) nrerror("allocation failure 1 in matrix()"); 
       printf("\n");    m += NR_END; 
       for(l=0;l<=1;l++) {    m -= nrl; 
         for (j=1;j<=n;j++) {    
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    /* allocate rows and set pointers to them */ 
         }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       }    m[nrl] += NR_END; 
 #endif    m[nrl] -= ncl; 
     
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       free_vector(xit,1,n);    
       free_vector(xits,1,n);    /* return pointer to array of pointers to rows */ 
       free_vector(ptt,1,n);    return m; 
       free_vector(pt,1,n);  } 
       return;  
     }  /****************** free_imatrix *************************/
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  void free_imatrix(m,nrl,nrh,ncl,nch)
     for (j=1;j<=n;j++) {        int **m;
       ptt[j]=2.0*p[j]-pt[j];        long nch,ncl,nrh,nrl; 
       xit[j]=p[j]-pt[j];       /* free an int matrix allocated by imatrix() */ 
       pt[j]=p[j];  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     fptt=(*func)(ptt);    free((FREE_ARG) (m+nrl-NR_END)); 
     if (fptt < fp) {  } 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  /******************* matrix *******************************/
         linmin(p,xit,n,fret,func);  double **matrix(long nrl, long nrh, long ncl, long nch)
         for (j=1;j<=n;j++) {  {
           xi[j][ibig]=xi[j][n];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
           xi[j][n]=xit[j];    double **m;
         }  
 #ifdef DEBUG    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    if (!m) nrerror("allocation failure 1 in matrix()");
         for(j=1;j<=n;j++)    m += NR_END;
           printf(" %.12e",xit[j]);    m -= nrl;
         printf("\n");  
 #endif    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 /**** Prevalence limit ****************/    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)     */
 {  }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   int i, ii,j,k;  {
   double min, max, maxmin, maxmax,sumnew=0.;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double **matprod2();    free((FREE_ARG)(m+nrl-NR_END));
   double **out, cov[NCOVMAX], **pmij();  }
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   for (ii=1;ii<=nlstate+ndeath;ii++)  {
     for (j=1;j<=nlstate+ndeath;j++){    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double ***m;
     }  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
    cov[1]=1.;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m -= nrl;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     /* Covariates have to be included here again */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      cov[2]=agefin;    m[nrl] += NR_END;
      m[nrl] -= ncl;
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       for (k=1; k<=cptcovage;k++)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m[nrl][ncl] += NR_END;
       for (k=1; k<=cptcovprod;k++)    m[nrl][ncl] -= nll;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
     savm=oldm;    }
     oldm=newm;    return m; 
     maxmax=0.;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for(j=1;j<=nlstate;j++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       min=1.;    */
       max=0.;  }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  /*************************free ma3x ************************/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         prlim[i][j]= newm[i][j]/(1-sumnew);  {
         max=FMAX(max,prlim[i][j]);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         min=FMIN(min,prlim[i][j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       maxmin=max-min;  }
       maxmax=FMAX(maxmax,maxmin);  
     }  /*************** function subdirf ***********/
     if(maxmax < ftolpl){  char *subdirf(char fileres[])
       return prlim;  {
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
 /*************** transition probabilities ***************/    return tmpout;
   }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  /*************** function subdirf2 ***********/
   double s1, s2;  char *subdirf2(char fileres[], char *preop)
   /*double t34;*/  {
   int i,j,j1, nc, ii, jj;    
     /* Caution optionfilefiname is hidden */
     for(i=1; i<= nlstate; i++){    strcpy(tmpout,optionfilefiname);
     for(j=1; j<i;j++){    strcat(tmpout,"/");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcat(tmpout,preop);
         /*s2 += param[i][j][nc]*cov[nc];*/    strcat(tmpout,fileres);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return tmpout;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  }
       }  
       ps[i][j]=s2;  /*************** function subdirf3 ***********/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  char *subdirf3(char fileres[], char *preop, char *preop2)
     }  {
     for(j=i+1; j<=nlstate+ndeath;j++){    
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* Caution optionfilefiname is hidden */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcpy(tmpout,optionfilefiname);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
       ps[i][j]=(s2);    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
   }    return tmpout;
     /*ps[3][2]=1;*/  }
   
   for(i=1; i<= nlstate; i++){  /***************** f1dim *************************/
      s1=0;  extern int ncom; 
     for(j=1; j<i; j++)  extern double *pcom,*xicom;
       s1+=exp(ps[i][j]);  extern double (*nrfunc)(double []); 
     for(j=i+1; j<=nlstate+ndeath; j++)   
       s1+=exp(ps[i][j]);  double f1dim(double x) 
     ps[i][i]=1./(s1+1.);  { 
     for(j=1; j<i; j++)    int j; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double f;
     for(j=i+1; j<=nlstate+ndeath; j++)    double *xt; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];   
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    xt=vector(1,ncom); 
   } /* end i */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    free_vector(xt,1,ncom); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    return f; 
       ps[ii][jj]=0;  } 
       ps[ii][ii]=1;  
     }  /*****************brent *************************/
   }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
     int iter; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    double a,b,d,etemp;
     for(jj=1; jj<= nlstate+ndeath; jj++){    double fu,fv,fw,fx;
      printf("%lf ",ps[ii][jj]);    double ftemp;
    }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     printf("\n ");    double e=0.0; 
     }   
     printf("\n ");printf("%lf ",cov[2]);*/    a=(ax < cx ? ax : cx); 
 /*    b=(ax > cx ? ax : cx); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    x=w=v=bx; 
   goto end;*/    fw=fv=fx=(*f)(x); 
     return ps;    for (iter=1;iter<=ITMAX;iter++) { 
 }      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 /**************** Product of 2 matrices ******************/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      fprintf(ficlog,".");fflush(ficlog);
 {  #ifdef DEBUG
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   /* in, b, out are matrice of pointers which should have been initialized      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      before: only the contents of out is modified. The function returns  #endif
      a pointer to pointers identical to out */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   long i, j, k;        *xmin=x; 
   for(i=nrl; i<= nrh; i++)        return fx; 
     for(k=ncolol; k<=ncoloh; k++)      } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      ftemp=fu;
         out[i][k] +=in[i][j]*b[j][k];      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
   return out;        q=(x-v)*(fx-fw); 
 }        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
 /************* Higher Matrix Product ***************/        q=fabs(q); 
         etemp=e; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        e=d; 
 {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      duration (i.e. until        else { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          d=p/q; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          u=x+d; 
      (typically every 2 years instead of every month which is too big).          if (u-a < tol2 || b-u < tol2) 
      Model is determined by parameters x and covariates have to be            d=SIGN(tol1,xm-x); 
      included manually here.        } 
       } else { 
      */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
   int i, j, d, h, k;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double **out, cov[NCOVMAX];      fu=(*f)(u); 
   double **newm;      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
   /* Hstepm could be zero and should return the unit matrix */        SHFT(v,w,x,u) 
   for (i=1;i<=nlstate+ndeath;i++)          SHFT(fv,fw,fx,fu) 
     for (j=1;j<=nlstate+ndeath;j++){          } else { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);            if (u < x) a=u; else b=u; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);            if (fu <= fw || w == x) { 
     }              v=w; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */              w=u; 
   for(h=1; h <=nhstepm; h++){              fv=fw; 
     for(d=1; d <=hstepm; d++){              fw=fu; 
       newm=savm;            } else if (fu <= fv || v == x || v == w) { 
       /* Covariates have to be included here again */              v=u; 
       cov[1]=1.;              fv=fu; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;            } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          } 
       for (k=1; k<=cptcovage;k++)    } 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    nrerror("Too many iterations in brent"); 
       for (k=1; k<=cptcovprod;k++)    *xmin=x; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    return fx; 
   } 
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /****************** mnbrak ***********************/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));              double (*func)(double)) 
       savm=oldm;  { 
       oldm=newm;    double ulim,u,r,q, dum;
     }    double fu; 
     for(i=1; i<=nlstate+ndeath; i++)   
       for(j=1;j<=nlstate+ndeath;j++) {    *fa=(*func)(*ax); 
         po[i][j][h]=newm[i][j];    *fb=(*func)(*bx); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    if (*fb > *fa) { 
          */      SHFT(dum,*ax,*bx,dum) 
       }        SHFT(dum,*fb,*fa,dum) 
   } /* end h */        } 
   return po;    *cx=(*bx)+GOLD*(*bx-*ax); 
 }    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 /*************** log-likelihood *************/      q=(*bx-*cx)*(*fb-*fa); 
 double func( double *x)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   int i, ii, j, k, mi, d, kk;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      if ((*bx-u)*(u-*cx) > 0.0) { 
   double **out;        fu=(*func)(u); 
   double sw; /* Sum of weights */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double lli; /* Individual log likelihood */        fu=(*func)(u); 
   long ipmx;        if (fu < *fc) { 
   /*extern weight */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   /* We are differentiating ll according to initial status */            SHFT(*fb,*fc,fu,(*func)(u)) 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/            } 
   /*for(i=1;i<imx;i++)      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     printf(" %d\n",s[4][i]);        u=ulim; 
   */        fu=(*func)(u); 
   cov[1]=1.;      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        fu=(*func)(u); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      } 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      SHFT(*ax,*bx,*cx,u) 
     for(mi=1; mi<= wav[i]-1; mi++){        SHFT(*fa,*fb,*fc,fu) 
       for (ii=1;ii<=nlstate+ndeath;ii++)        } 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  } 
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  /*************** linmin ************************/
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  int ncom; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  double *pcom,*xicom;
         }  double (*nrfunc)(double []); 
           
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  { 
         savm=oldm;    double brent(double ax, double bx, double cx, 
         oldm=newm;                 double (*f)(double), double tol, double *xmin); 
            double f1dim(double x); 
            void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       } /* end mult */                double *fc, double (*func)(double)); 
          int j; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    double xx,xmin,bx,ax; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    double fx,fb,fa;
       ipmx +=1;   
       sw += weight[i];    ncom=n; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    pcom=vector(1,n); 
     } /* end of wave */    xicom=vector(1,n); 
   } /* end of individual */    nrfunc=func; 
     for (j=1;j<=n;j++) { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      pcom[j]=p[j]; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      xicom[j]=xi[j]; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    } 
   return -l;    ax=0.0; 
 }    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 /*********** Maximum Likelihood Estimation ***************/  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 {  #endif
   int i,j, iter;    for (j=1;j<=n;j++) { 
   double **xi,*delti;      xi[j] *= xmin; 
   double fret;      p[j] += xi[j]; 
   xi=matrix(1,npar,1,npar);    } 
   for (i=1;i<=npar;i++)    free_vector(xicom,1,n); 
     for (j=1;j<=npar;j++)    free_vector(pcom,1,n); 
       xi[i][j]=(i==j ? 1.0 : 0.0);  } 
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  char *asc_diff_time(long time_sec, char ascdiff[])
   {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    long sec_left, days, hours, minutes;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
 }    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
 /**** Computes Hessian and covariance matrix ***/    minutes = (sec_left) /60;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    sec_left = (sec_left) % (60);
 {    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   double  **a,**y,*x,pd;    return ascdiff;
   double **hess;  }
   int i, j,jk;  
   int *indx;  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   double hessii(double p[], double delta, int theta, double delti[]);              double (*func)(double [])) 
   double hessij(double p[], double delti[], int i, int j);  { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    void linmin(double p[], double xi[], int n, double *fret, 
   void ludcmp(double **a, int npar, int *indx, double *d) ;                double (*func)(double [])); 
     int i,ibig,j; 
   hess=matrix(1,npar,1,npar);    double del,t,*pt,*ptt,*xit;
     double fp,fptt;
   printf("\nCalculation of the hessian matrix. Wait...\n");    double *xits;
   for (i=1;i<=npar;i++){    int niterf, itmp;
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);    pt=vector(1,n); 
     /*printf(" %f ",p[i]);*/    ptt=vector(1,n); 
     /*printf(" %lf ",hess[i][i]);*/    xit=vector(1,n); 
   }    xits=vector(1,n); 
      *fret=(*func)(p); 
   for (i=1;i<=npar;i++) {    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (j=1;j<=npar;j++)  {    for (*iter=1;;++(*iter)) { 
       if (j>i) {      fp=(*fret); 
         printf(".%d%d",i,j);fflush(stdout);      ibig=0; 
         hess[i][j]=hessij(p,delti,i,j);      del=0.0; 
         hess[j][i]=hess[i][j];          last_time=curr_time;
         /*printf(" %lf ",hess[i][j]);*/      (void) gettimeofday(&curr_time,&tzp);
       }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     }      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   }      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   printf("\n");      */
      for (i=1;i<=n;i++) {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        printf(" %d %.12f",i, p[i]);
          fprintf(ficlog," %d %.12lf",i, p[i]);
   a=matrix(1,npar,1,npar);        fprintf(ficrespow," %.12lf", p[i]);
   y=matrix(1,npar,1,npar);      }
   x=vector(1,npar);      printf("\n");
   indx=ivector(1,npar);      fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++)      fprintf(ficrespow,"\n");fflush(ficrespow);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      if(*iter <=3){
   ludcmp(a,npar,indx,&pd);        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
   for (j=1;j<=npar;j++) {  /*       asctime_r(&tm,strcurr); */
     for (i=1;i<=npar;i++) x[i]=0;        forecast_time=curr_time; 
     x[j]=1;        itmp = strlen(strcurr);
     lubksb(a,npar,indx,x);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     for (i=1;i<=npar;i++){          strcurr[itmp-1]='\0';
       matcov[i][j]=x[i];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   }        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   printf("\n#Hessian matrix#\n");          tmf = *localtime(&forecast_time.tv_sec);
   for (i=1;i<=npar;i++) {  /*      asctime_r(&tmf,strfor); */
     for (j=1;j<=npar;j++) {          strcpy(strfor,asctime(&tmf));
       printf("%.3e ",hess[i][j]);          itmp = strlen(strfor);
     }          if(strfor[itmp-1]=='\n')
     printf("\n");          strfor[itmp-1]='\0';
   }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   /* Recompute Inverse */        }
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      for (i=1;i<=n;i++) { 
   ludcmp(a,npar,indx,&pd);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
   /*  printf("\n#Hessian matrix recomputed#\n");  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
   for (j=1;j<=npar;j++) {        fprintf(ficlog,"fret=%lf \n",*fret);
     for (i=1;i<=npar;i++) x[i]=0;  #endif
     x[j]=1;        printf("%d",i);fflush(stdout);
     lubksb(a,npar,indx,x);        fprintf(ficlog,"%d",i);fflush(ficlog);
     for (i=1;i<=npar;i++){        linmin(p,xit,n,fret,func); 
       y[i][j]=x[i];        if (fabs(fptt-(*fret)) > del) { 
       printf("%.3e ",y[i][j]);          del=fabs(fptt-(*fret)); 
     }          ibig=i; 
     printf("\n");        } 
   }  #ifdef DEBUG
   */        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   free_matrix(a,1,npar,1,npar);        for (j=1;j<=n;j++) {
   free_matrix(y,1,npar,1,npar);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   free_vector(x,1,npar);          printf(" x(%d)=%.12e",j,xit[j]);
   free_ivector(indx,1,npar);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   free_matrix(hess,1,npar,1,npar);        }
         for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
 }          fprintf(ficlog," p=%.12e",p[j]);
         }
 /*************** hessian matrix ****************/        printf("\n");
 double hessii( double x[], double delta, int theta, double delti[])        fprintf(ficlog,"\n");
 {  #endif
   int i;      } 
   int l=1, lmax=20;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double k1,k2;  #ifdef DEBUG
   double p2[NPARMAX+1];        int k[2],l;
   double res;        k[0]=1;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        k[1]=-1;
   double fx;        printf("Max: %.12e",(*func)(p));
   int k=0,kmax=10;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double l1;        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
   fx=func(x);          fprintf(ficlog," %.12e",p[j]);
   for (i=1;i<=npar;i++) p2[i]=x[i];        }
   for(l=0 ; l <=lmax; l++){        printf("\n");
     l1=pow(10,l);        fprintf(ficlog,"\n");
     delts=delt;        for(l=0;l<=1;l++) {
     for(k=1 ; k <kmax; k=k+1){          for (j=1;j<=n;j++) {
       delt = delta*(l1*k);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       p2[theta]=x[theta] +delt;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       k1=func(p2)-fx;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       p2[theta]=x[theta]-delt;          }
       k2=func(p2)-fx;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       /*res= (k1-2.0*fx+k2)/delt/delt; */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        }
        #endif
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif        free_vector(xit,1,n); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        free_vector(xits,1,n); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        free_vector(ptt,1,n); 
         k=kmax;        free_vector(pt,1,n); 
       }        return; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      } 
         k=kmax; l=lmax*10.;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       }      for (j=1;j<=n;j++) { 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        ptt[j]=2.0*p[j]-pt[j]; 
         delts=delt;        xit[j]=p[j]-pt[j]; 
       }        pt[j]=p[j]; 
     }      } 
   }      fptt=(*func)(ptt); 
   delti[theta]=delts;      if (fptt < fp) { 
   return res;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
          if (t < 0.0) { 
 }          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
 double hessij( double x[], double delti[], int thetai,int thetaj)            xi[j][ibig]=xi[j][n]; 
 {            xi[j][n]=xit[j]; 
   int i;          }
   int l=1, l1, lmax=20;  #ifdef DEBUG
   double k1,k2,k3,k4,res,fx;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double p2[NPARMAX+1];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int k;          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   fx=func(x);            fprintf(ficlog," %.12e",xit[j]);
   for (k=1; k<=2; k++) {          }
     for (i=1;i<=npar;i++) p2[i]=x[i];          printf("\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;          fprintf(ficlog,"\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  #endif
     k1=func(p2)-fx;        }
        } 
     p2[thetai]=x[thetai]+delti[thetai]/k;    } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  } 
     k2=func(p2)-fx;  
    /**** Prevalence limit (stable prevalence)  ****************/
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     k3=func(p2)-fx;  {
      /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     p2[thetai]=x[thetai]-delti[thetai]/k;       matrix by transitions matrix until convergence is reached */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;    int i, ii,j,k;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double min, max, maxmin, maxmax,sumnew=0.;
 #ifdef DEBUG    double **matprod2();
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double **out, cov[NCOVMAX], **pmij();
 #endif    double **newm;
   }    double agefin, delaymax=50 ; /* Max number of years to converge */
   return res;  
 }    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
 /************** Inverse of matrix **************/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void ludcmp(double **a, int n, int *indx, double *d)      }
 {  
   int i,imax,j,k;     cov[1]=1.;
   double big,dum,sum,temp;   
   double *vv;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   vv=vector(1,n);      newm=savm;
   *d=1.0;      /* Covariates have to be included here again */
   for (i=1;i<=n;i++) {       cov[2]=agefin;
     big=0.0;    
     for (j=1;j<=n;j++)        for (k=1; k<=cptcovn;k++) {
       if ((temp=fabs(a[i][j])) > big) big=temp;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     vv[i]=1.0/big;        }
   }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for (j=1;j<=n;j++) {        for (k=1; k<=cptcovprod;k++)
     for (i=1;i<j;i++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       a[i][j]=sum;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     big=0.0;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     for (i=j;i<=n;i++) {  
       sum=a[i][j];      savm=oldm;
       for (k=1;k<j;k++)      oldm=newm;
         sum -= a[i][k]*a[k][j];      maxmax=0.;
       a[i][j]=sum;      for(j=1;j<=nlstate;j++){
       if ( (dum=vv[i]*fabs(sum)) >= big) {        min=1.;
         big=dum;        max=0.;
         imax=i;        for(i=1; i<=nlstate; i++) {
       }          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     if (j != imax) {          prlim[i][j]= newm[i][j]/(1-sumnew);
       for (k=1;k<=n;k++) {          max=FMAX(max,prlim[i][j]);
         dum=a[imax][k];          min=FMIN(min,prlim[i][j]);
         a[imax][k]=a[j][k];        }
         a[j][k]=dum;        maxmin=max-min;
       }        maxmax=FMAX(maxmax,maxmin);
       *d = -(*d);      }
       vv[imax]=vv[j];      if(maxmax < ftolpl){
     }        return prlim;
     indx[j]=imax;      }
     if (a[j][j] == 0.0) a[j][j]=TINY;    }
     if (j != n) {  }
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*************** transition probabilities ***************/ 
     }  
   }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   free_vector(vv,1,n);  /* Doesn't work */  {
 ;    double s1, s2;
 }    /*double t34;*/
     int i,j,j1, nc, ii, jj;
 void lubksb(double **a, int n, int *indx, double b[])  
 {      for(i=1; i<= nlstate; i++){
   int i,ii=0,ip,j;        for(j=1; j<i;j++){
   double sum;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              /*s2 += param[i][j][nc]*cov[nc];*/
   for (i=1;i<=n;i++) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     ip=indx[i];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     sum=b[ip];          }
     b[ip]=b[i];          ps[i][j]=s2;
     if (ii)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        }
     else if (sum) ii=i;        for(j=i+1; j<=nlstate+ndeath;j++){
     b[i]=sum;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for (i=n;i>=1;i--) {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     sum=b[i];          }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          ps[i][j]=s2;
     b[i]=sum/a[i][i];        }
   }      }
 }      /*ps[3][2]=1;*/
       
 /************ Frequencies ********************/      for(i=1; i<= nlstate; i++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)        s1=0;
 {  /* Some frequencies */        for(j=1; j<i; j++)
            s1+=exp(ps[i][j]);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        for(j=i+1; j<=nlstate+ndeath; j++)
   double ***freq; /* Frequencies */          s1+=exp(ps[i][j]);
   double *pp;        ps[i][i]=1./(s1+1.);
   double pos;        for(j=1; j<i; j++)
   FILE *ficresp;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   char fileresp[FILENAMELENGTH];        for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
   pp=vector(1,nlstate);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       } /* end i */
   strcpy(fileresp,"p");      
   strcat(fileresp,fileres);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for(jj=1; jj<= nlstate+ndeath; jj++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);          ps[ii][jj]=0;
     exit(0);          ps[ii][ii]=1;
   }        }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      }
   j1=0;      
   
   j=cptcoveff;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
   for(k1=1; k1<=j;k1++){  /*       } */
    for(i1=1; i1<=ncodemax[k1];i1++){  /*       printf("\n "); */
        j1++;  /*        } */
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  /*        printf("\n ");printf("%lf ",cov[2]); */
          scanf("%d", i);*/         /*
         for (i=-1; i<=nlstate+ndeath; i++)          for(i=1; i<= npar; i++) printf("%f ",x[i]);
          for (jk=-1; jk<=nlstate+ndeath; jk++)          goto end;*/
            for(m=agemin; m <= agemax+3; m++)      return ps;
              freq[i][jk][m]=0;  }
          
        for (i=1; i<=imx; i++) {  /**************** Product of 2 matrices ******************/
          bool=1;  
          if  (cptcovn>0) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
            for (z1=1; z1<=cptcoveff; z1++)  {
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
                bool=0;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
          }    /* in, b, out are matrice of pointers which should have been initialized 
           if (bool==1) {       before: only the contents of out is modified. The function returns
            for(m=firstpass; m<=lastpass-1; m++){       a pointer to pointers identical to out */
              if(agev[m][i]==0) agev[m][i]=agemax+1;    long i, j, k;
              if(agev[m][i]==1) agev[m][i]=agemax+2;    for(i=nrl; i<= nrh; i++)
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for(k=ncolol; k<=ncoloh; k++)
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
            }          out[i][k] +=in[i][j]*b[j][k];
          }  
        }    return out;
         if  (cptcovn>0) {  }
          fprintf(ficresp, "\n#********** Variable ");  
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
        fprintf(ficresp, "**********\n#");  /************* Higher Matrix Product ***************/
         }  
        for(i=1; i<=nlstate;i++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  {
        fprintf(ficresp, "\n");    /* Computes the transition matrix starting at age 'age' over 
               'nhstepm*hstepm*stepm' months (i.e. until
   for(i=(int)agemin; i <= (int)agemax+3; i++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     if(i==(int)agemax+3)       nhstepm*hstepm matrices. 
       printf("Total");       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     else       (typically every 2 years instead of every month which is too big 
       printf("Age %d", i);       for the memory).
     for(jk=1; jk <=nlstate ; jk++){       Model is determined by parameters x and covariates have to be 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)       included manually here. 
         pp[jk] += freq[jk][m][i];  
     }       */
     for(jk=1; jk <=nlstate ; jk++){  
       for(m=-1, pos=0; m <=0 ; m++)    int i, j, d, h, k;
         pos += freq[jk][m][i];    double **out, cov[NCOVMAX];
       if(pp[jk]>=1.e-10)    double **newm;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
       else    /* Hstepm could be zero and should return the unit matrix */
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for (i=1;i<=nlstate+ndeath;i++)
     }      for (j=1;j<=nlstate+ndeath;j++){
     for(jk=1; jk <=nlstate ; jk++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
         pp[jk] += freq[jk][m][i];      }
     }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(jk=1,pos=0; jk <=nlstate ; jk++)    for(h=1; h <=nhstepm; h++){
       pos += pp[jk];      for(d=1; d <=hstepm; d++){
     for(jk=1; jk <=nlstate ; jk++){        newm=savm;
       if(pos>=1.e-5)        /* Covariates have to be included here again */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        cov[1]=1.;
       else        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       if( i <= (int) agemax){        for (k=1; k<=cptcovage;k++)
         if(pos>=1.e-5)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        for (k=1; k<=cptcovprod;k++)
       else          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
       }  
     }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     for(jk=-1; jk <=nlstate+ndeath; jk++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       for(m=-1; m <=nlstate+ndeath; m++)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     if(i <= (int) agemax)        savm=oldm;
       fprintf(ficresp,"\n");        oldm=newm;
     printf("\n");      }
     }      for(i=1; i<=nlstate+ndeath; i++)
     }        for(j=1;j<=nlstate+ndeath;j++) {
  }          po[i][j][h]=newm[i][j];
            /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   fclose(ficresp);           */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        }
   free_vector(pp,1,nlstate);    } /* end h */
     return po;
 }  /* End of Freq */  }
   
 /************* Waves Concatenation ***************/  
   /*************** log-likelihood *************/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  double func( double *x)
 {  {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    int i, ii, j, k, mi, d, kk;
      Death is a valid wave (if date is known).    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double **out;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    double sw; /* Sum of weights */
      and mw[mi+1][i]. dh depends on stepm.    double lli; /* Individual log likelihood */
      */    int s1, s2;
     double bbh, survp;
   int i, mi, m;    long ipmx;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /*extern weight */
      double sum=0., jmean=0.;*/    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int j, k=0,jk, ju, jl;    /*for(i=1;i<imx;i++) 
   double sum=0.;      printf(" %d\n",s[4][i]);
   jmin=1e+5;    */
   jmax=-1;    cov[1]=1.;
   jmean=0.;  
   for(i=1; i<=imx; i++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
     mi=0;  
     m=firstpass;    if(mle==1){
     while(s[m][i] <= nlstate){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(s[m][i]>=1)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         mw[++mi][i]=m;        for(mi=1; mi<= wav[i]-1; mi++){
       if(m >=lastpass)          for (ii=1;ii<=nlstate+ndeath;ii++)
         break;            for (j=1;j<=nlstate+ndeath;j++){
       else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         m++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }/* end while */            }
     if (s[m][i] > nlstate){          for(d=0; d<dh[mi][i]; d++){
       mi++;     /* Death is another wave */            newm=savm;
       /* if(mi==0)  never been interviewed correctly before death */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          /* Only death is a correct wave */            for (kk=1; kk<=cptcovage;kk++) {
       mw[mi][i]=m;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     wav[i]=mi;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if(mi==0)            savm=oldm;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            oldm=newm;
   }          } /* end mult */
         
   for(i=1; i<=imx; i++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     for(mi=1; mi<wav[i];mi++){          /* But now since version 0.9 we anticipate for bias at large stepm.
       if (stepm <=0)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         dh[mi][i]=1;           * (in months) between two waves is not a multiple of stepm, we rounded to 
       else{           * the nearest (and in case of equal distance, to the lowest) interval but now
         if (s[mw[mi+1][i]][i] > nlstate) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           if (agedc[i] < 2*AGESUP) {           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);           * probability in order to take into account the bias as a fraction of the way
           if(j==0) j=1;  /* Survives at least one month after exam */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           k=k+1;           * -stepm/2 to stepm/2 .
           if (j >= jmax) jmax=j;           * For stepm=1 the results are the same as for previous versions of Imach.
           if (j <= jmin) jmin=j;           * For stepm > 1 the results are less biased than in previous versions. 
           sum=sum+j;           */
           /* if (j<10) printf("j=%d num=%d ",j,i); */          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
         else{          /* bias bh is positive if real duration
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));           * is higher than the multiple of stepm and negative otherwise.
           k=k+1;           */
           if (j >= jmax) jmax=j;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           else if (j <= jmin)jmin=j;          if( s2 > nlstate){ 
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            /* i.e. if s2 is a death state and if the date of death is known 
           sum=sum+j;               then the contribution to the likelihood is the probability to 
         }               die between last step unit time and current  step unit time, 
         jk= j/stepm;               which is also equal to probability to die before dh 
         jl= j -jk*stepm;               minus probability to die before dh-stepm . 
         ju= j -(jk+1)*stepm;               In version up to 0.92 likelihood was computed
         if(jl <= -ju)          as if date of death was unknown. Death was treated as any other
           dh[mi][i]=jk;          health state: the date of the interview describes the actual state
         else          and not the date of a change in health state. The former idea was
           dh[mi][i]=jk+1;          to consider that at each interview the state was recorded
         if(dh[mi][i]==0)          (healthy, disable or death) and IMaCh was corrected; but when we
           dh[mi][i]=1; /* At least one step */          introduced the exact date of death then we should have modified
       }          the contribution of an exact death to the likelihood. This new
     }          contribution is smaller and very dependent of the step unit
   }          stepm. It is no more the probability to die between last interview
   jmean=sum/k;          and month of death but the probability to survive from last
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          interview up to one month before death multiplied by the
  }          probability to die within a month. Thanks to Chris
 /*********** Tricode ****************************/          Jackson for correcting this bug.  Former versions increased
 void tricode(int *Tvar, int **nbcode, int imx)          mortality artificially. The bad side is that we add another loop
 {          which slows down the processing. The difference can be up to 10%
   int Ndum[20],ij=1, k, j, i;          lower mortality.
   int cptcode=0;            */
   cptcoveff=0;            lli=log(out[s1][s2] - savm[s1][s2]);
    
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              survp += out[s1][j];
     for (i=1; i<=imx; i++) {            lli= survp;
       ij=(int)(covar[Tvar[j]][i]);          }
       Ndum[ij]++;          
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          else if  (s2==-4) {
       if (ij > cptcode) cptcode=ij;            for (j=3,survp=0. ; j<=nlstate; j++) 
     }              survp += out[s1][j];
             lli= survp;
     for (i=0; i<=cptcode; i++) {          }
       if(Ndum[i]!=0) ncodemax[j]++;          
     }          else if  (s2==-5) {
     ij=1;            for (j=1,survp=0. ; j<=2; j++) 
               survp += out[s1][j];
             lli= survp;
     for (i=1; i<=ncodemax[j]; i++) {          }
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;          else{
           ij++;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         if (ij > ncodemax[j]) break;          } 
       }            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
   }            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
  for (k=0; k<19; k++) Ndum[k]=0;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  for (i=1; i<=ncovmodel-2; i++) {        } /* end of wave */
       ij=Tvar[i];      } /* end of individual */
       Ndum[ij]++;    }  else if(mle==2){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  ij=1;        for(mi=1; mi<= wav[i]-1; mi++){
  for (i=1; i<=10; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
    if((Ndum[i]!=0) && (i<=ncov)){            for (j=1;j<=nlstate+ndeath;j++){
      Tvaraff[ij]=i;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      ij++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    }            }
  }          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
     cptcoveff=ij-1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /*********** Health Expectancies ****************/            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   /* Health expectancies */            oldm=newm;
   int i, j, nhstepm, hstepm, h;          } /* end mult */
   double age, agelim,hf;        
   double ***p3mat;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   fprintf(ficreseij,"# Health expectancies\n");          bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficreseij,"# Age");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for(i=1; i<=nlstate;i++)          ipmx +=1;
     for(j=1; j<=nlstate;j++)          sw += weight[i];
       fprintf(ficreseij," %1d-%1d",i,j);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficreseij,"\n");        } /* end of wave */
       } /* end of individual */
   hstepm=1*YEARM; /*  Every j years of age (in month) */    }  else if(mle==3){  /* exponential inter-extrapolation */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   agelim=AGESUP;        for(mi=1; mi<= wav[i]-1; mi++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for (ii=1;ii<=nlstate+ndeath;ii++)
     /* nhstepm age range expressed in number of stepm */            for (j=1;j<=nlstate+ndeath;j++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* Typically if 20 years = 20*12/6=40 stepm */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) hstepm=1;            }
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          for(d=0; d<dh[mi][i]; d++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            newm=savm;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            for (kk=1; kk<=cptcovage;kk++) {
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(i=1; i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<=nlstate;j++)            savm=oldm;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){            oldm=newm;
           eij[i][j][(int)age] +=p3mat[i][j][h];          } /* end mult */
         }        
              s1=s[mw[mi][i]][i];
     hf=1;          s2=s[mw[mi+1][i]][i];
     if (stepm >= YEARM) hf=stepm/YEARM;          bbh=(double)bh[mi][i]/(double)stepm; 
     fprintf(ficreseij,"%.0f",age );          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for(i=1; i<=nlstate;i++)          ipmx +=1;
       for(j=1; j<=nlstate;j++){          sw += weight[i];
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     fprintf(ficreseij,"\n");      } /* end of individual */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************ Variance ******************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Variance of health expectancies */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            }
   double **newm;          for(d=0; d<dh[mi][i]; d++){
   double **dnewm,**doldm;            newm=savm;
   int i, j, nhstepm, hstepm, h;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int k, cptcode;            for (kk=1; kk<=cptcovage;kk++) {
   double *xp;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **gp, **gm;            }
   double ***gradg, ***trgradg;          
   double ***p3mat;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double age,agelim;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int theta;            savm=oldm;
             oldm=newm;
    fprintf(ficresvij,"# Covariances of life expectancies\n");          } /* end mult */
   fprintf(ficresvij,"# Age");        
   for(i=1; i<=nlstate;i++)          s1=s[mw[mi][i]][i];
     for(j=1; j<=nlstate;j++)          s2=s[mw[mi+1][i]][i];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          if( s2 > nlstate){ 
   fprintf(ficresvij,"\n");            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
   xp=vector(1,npar);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   dnewm=matrix(1,nlstate,1,npar);          }
   doldm=matrix(1,nlstate,1,nlstate);          ipmx +=1;
            sw += weight[i];
   hstepm=1*YEARM; /* Every year of age */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   agelim = AGESUP;        } /* end of wave */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } /* end of individual */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     if (stepm >= YEARM) hstepm=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(mi=1; mi<= wav[i]-1; mi++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
     gp=matrix(0,nhstepm,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
     gm=matrix(0,nhstepm,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++){ /* Computes gradient */          for(d=0; d<dh[mi][i]; d++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              for (kk=1; kk<=cptcovage;kk++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<= nlstate; j++){            }
         for(h=0; h<=nhstepm; h++){          
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
       }            oldm=newm;
              } /* end mult */
       for(i=1; i<=npar; i++) /* Computes gradient */        
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          s1=s[mw[mi][i]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            s2=s[mw[mi+1][i]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(j=1; j<= nlstate; j++){          ipmx +=1;
         for(h=0; h<=nhstepm; h++){          sw += weight[i];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         }        } /* end of wave */
       }      } /* end of individual */
       for(j=1; j<= nlstate; j++)    } /* End of if */
         for(h=0; h<=nhstepm; h++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     } /* End theta */    return -l;
   }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
   /*************** log-likelihood *************/
     for(h=0; h<=nhstepm; h++)  double funcone( double *x)
       for(j=1; j<=nlstate;j++)  {
         for(theta=1; theta <=npar; theta++)    /* Same as likeli but slower because of a lot of printf and if */
           trgradg[h][j][theta]=gradg[h][theta][j];    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
     for(i=1;i<=nlstate;i++)    double **out;
       for(j=1;j<=nlstate;j++)    double lli; /* Individual log likelihood */
         vareij[i][j][(int)age] =0.;    double llt;
     for(h=0;h<=nhstepm;h++){    int s1, s2;
       for(k=0;k<=nhstepm;k++){    double bbh, survp;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    /*extern weight */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    /* We are differentiating ll according to initial status */
         for(i=1;i<=nlstate;i++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for(j=1;j<=nlstate;j++)    /*for(i=1;i<imx;i++) 
             vareij[i][j][(int)age] += doldm[i][j];      printf(" %d\n",s[4][i]);
       }    */
     }    cov[1]=1.;
     h=1;  
     if (stepm >= YEARM) h=stepm/YEARM;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<=nlstate;j++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);      for(mi=1; mi<= wav[i]-1; mi++){
       }        for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficresvij,"\n");          for (j=1;j<=nlstate+ndeath;j++){
     free_matrix(gp,0,nhstepm,1,nlstate);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(gm,0,nhstepm,1,nlstate);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        for(d=0; d<dh[mi][i]; d++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          newm=savm;
   } /* End age */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            for (kk=1; kk<=cptcovage;kk++) {
   free_vector(xp,1,npar);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_matrix(doldm,1,nlstate,1,npar);          }
   free_matrix(dnewm,1,nlstate,1,nlstate);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }          savm=oldm;
           oldm=newm;
 /************ Variance of prevlim ******************/        } /* end mult */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        
 {        s1=s[mw[mi][i]][i];
   /* Variance of prevalence limit */        s2=s[mw[mi+1][i]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        bbh=(double)bh[mi][i]/(double)stepm; 
   double **newm;        /* bias is positive if real duration
   double **dnewm,**doldm;         * is higher than the multiple of stepm and negative otherwise.
   int i, j, nhstepm, hstepm;         */
   int k, cptcode;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   double *xp;          lli=log(out[s1][s2] - savm[s1][s2]);
   double *gp, *gm;        } else if (mle==1){
   double **gradg, **trgradg;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double age,agelim;        } else if(mle==2){
   int theta;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            } else if(mle==3){  /* exponential inter-extrapolation */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   fprintf(ficresvpl,"# Age");        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   for(i=1; i<=nlstate;i++)          lli=log(out[s1][s2]); /* Original formula */
       fprintf(ficresvpl," %1d-%1d",i,i);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   fprintf(ficresvpl,"\n");          lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
   xp=vector(1,npar);        ipmx +=1;
   dnewm=matrix(1,nlstate,1,npar);        sw += weight[i];
   doldm=matrix(1,nlstate,1,nlstate);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   hstepm=1*YEARM; /* Every year of age */        if(globpr){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   agelim = AGESUP;   %10.6f %10.6f %10.6f ", \
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     if (stepm >= YEARM) hstepm=1;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            llt +=ll[k]*gipmx/gsw;
     gradg=matrix(1,npar,1,nlstate);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     gp=vector(1,nlstate);          }
     gm=vector(1,nlstate);          fprintf(ficresilk," %10.6f\n", -llt);
         }
     for(theta=1; theta <=npar; theta++){      } /* end of wave */
       for(i=1; i<=npar; i++){ /* Computes gradient */    } /* end of individual */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(i=1;i<=nlstate;i++)    if(globpr==0){ /* First time we count the contributions and weights */
         gp[i] = prlim[i][i];      gipmx=ipmx;
          gsw=sw;
       for(i=1; i<=npar; i++) /* Computes gradient */    }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    return -l;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];  
   /*************** function likelione ***********/
       for(i=1;i<=nlstate;i++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  {
     } /* End theta */    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
     trgradg =matrix(1,nlstate,1,npar);       to check the exact contribution to the likelihood.
        Plotting could be done.
     for(j=1; j<=nlstate;j++)     */
       for(theta=1; theta <=npar; theta++)    int k;
         trgradg[j][theta]=gradg[theta][j];  
     if(*globpri !=0){ /* Just counts and sums, no printings */
     for(i=1;i<=nlstate;i++)      strcpy(fileresilk,"ilk"); 
       varpl[i][(int)age] =0.;      strcat(fileresilk,fileres);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        printf("Problem with resultfile: %s\n", fileresilk);
     for(i=1;i<=nlstate;i++)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     fprintf(ficresvpl,"%.0f ",age );      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     for(i=1; i<=nlstate;i++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      for(k=1; k<=nlstate; k++) 
     fprintf(ficresvpl,"\n");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     free_vector(gp,1,nlstate);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     free_vector(gm,1,nlstate);    }
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    *fretone=(*funcone)(p);
   } /* End age */    if(*globpri !=0){
       fclose(ficresilk);
   free_vector(xp,1,npar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   free_matrix(doldm,1,nlstate,1,npar);      fflush(fichtm); 
   free_matrix(dnewm,1,nlstate,1,nlstate);    } 
     return;
 }  }
   
   
   /*********** Maximum Likelihood Estimation ***************/
 /***********************************************/  
 /**************** Main Program *****************/  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 /***********************************************/  {
     int i,j, iter;
 /*int main(int argc, char *argv[])*/    double **xi;
 int main()    double fret;
 {    double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    xi=matrix(1,npar,1,npar);
   double agedeb, agefin,hf;    for (i=1;i<=npar;i++)
   double agemin=1.e20, agemax=-1.e20;      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
   double fret;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   double **xi,tmp,delta;    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
   double dum; /* Dummy variable */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   double ***p3mat;      printf("Problem with resultfile: %s\n", filerespow);
   int *indx;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   char line[MAXLINE], linepar[MAXLINE];    }
   char title[MAXLINE];    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    for (i=1;i<=nlstate;i++)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];      for(j=1;j<=nlstate+ndeath;j++)
   char filerest[FILENAMELENGTH];        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   char fileregp[FILENAMELENGTH];    fprintf(ficrespow,"\n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;    powell(p,xi,npar,ftol,&iter,&fret,func);
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;    fclose(ficrespow);
   int ju,jl, mi;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    
   int hstepm, nhstepm;  }
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;  /**** Computes Hessian and covariance matrix ***/
   double **prlim;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double *severity;  {
   double ***param; /* Matrix of parameters */    double  **a,**y,*x,pd;
   double  *p;    double **hess;
   double **matcov; /* Matrix of covariance */    int i, j,jk;
   double ***delti3; /* Scale */    int *indx;
   double *delti; /* Scale */  
   double ***eij, ***vareij;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   double **varpl; /* Variances of prevalence limits by age */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   double *epj, vepp;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";    void ludcmp(double **a, int npar, int *indx, double *d) ;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
   char z[1]="c", occ;  
 #include <sys/time.h>    printf("\nCalculation of the hessian matrix. Wait...\n");
 #include <time.h>    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    for (i=1;i<=npar;i++){
   /* long total_usecs;      printf("%d",i);fflush(stdout);
   struct timeval start_time, end_time;      fprintf(ficlog,"%d",i);fflush(ficlog);
       
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
       /*  printf(" %f ",p[i]);
   printf("\nIMACH, Version 0.64b");          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   printf("\nEnter the parameter file name: ");    }
     
 #ifdef windows    for (i=1;i<=npar;i++) {
   scanf("%s",pathtot);      for (j=1;j<=npar;j++)  {
   getcwd(pathcd, size);        if (j>i) { 
   /*cygwin_split_path(pathtot,path,optionfile);          printf(".%d%d",i,j);fflush(stdout);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   /* cutv(path,optionfile,pathtot,'\\');*/          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
 split(pathtot, path,optionfile);          hess[j][i]=hess[i][j];    
   chdir(path);          /*printf(" %lf ",hess[i][j]);*/
   replace(pathc,path);        }
 #endif      }
 #ifdef unix    }
   scanf("%s",optionfile);    printf("\n");
 #endif    fprintf(ficlog,"\n");
   
 /*-------- arguments in the command line --------*/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   strcpy(fileres,"r");    
   strcat(fileres, optionfile);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   /*---------arguments file --------*/    x=vector(1,npar);
     indx=ivector(1,npar);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    for (i=1;i<=npar;i++)
     printf("Problem with optionfile %s\n",optionfile);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     goto end;    ludcmp(a,npar,indx,&pd);
   }  
     for (j=1;j<=npar;j++) {
   strcpy(filereso,"o");      for (i=1;i<=npar;i++) x[i]=0;
   strcat(filereso,fileres);      x[j]=1;
   if((ficparo=fopen(filereso,"w"))==NULL) {      lubksb(a,npar,indx,x);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      for (i=1;i<=npar;i++){ 
   }        matcov[i][j]=x[i];
       }
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    printf("\n#Hessian matrix#\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"\n#Hessian matrix#\n");
     puts(line);    for (i=1;i<=npar;i++) { 
     fputs(line,ficparo);      for (j=1;j<=npar;j++) { 
   }        printf("%.3e ",hess[i][j]);
   ungetc(c,ficpar);        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      printf("\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      fprintf(ficlog,"\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    }
   
   covar=matrix(0,NCOVMAX,1,n);    /* Recompute Inverse */
   cptcovn=0;    for (i=1;i<=npar;i++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /*  printf("\n#Hessian matrix recomputed#\n");
    
   /* Read guess parameters */    for (j=1;j<=npar;j++) {
   /* Reads comments: lines beginning with '#' */      for (i=1;i<=npar;i++) x[i]=0;
   while((c=getc(ficpar))=='#' && c!= EOF){      x[j]=1;
     ungetc(c,ficpar);      lubksb(a,npar,indx,x);
     fgets(line, MAXLINE, ficpar);      for (i=1;i<=npar;i++){ 
     puts(line);        y[i][j]=x[i];
     fputs(line,ficparo);        printf("%.3e ",y[i][j]);
   }        fprintf(ficlog,"%.3e ",y[i][j]);
   ungetc(c,ficpar);      }
        printf("\n");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(ficlog,"\n");
     for(i=1; i <=nlstate; i++)    }
     for(j=1; j <=nlstate+ndeath-1; j++){    */
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);    free_matrix(a,1,npar,1,npar);
       printf("%1d%1d",i,j);    free_matrix(y,1,npar,1,npar);
       for(k=1; k<=ncovmodel;k++){    free_vector(x,1,npar);
         fscanf(ficpar," %lf",&param[i][j][k]);    free_ivector(indx,1,npar);
         printf(" %lf",param[i][j][k]);    free_matrix(hess,1,npar,1,npar);
         fprintf(ficparo," %lf",param[i][j][k]);  
       }  
       fscanf(ficpar,"\n");  }
       printf("\n");  
       fprintf(ficparo,"\n");  /*************** hessian matrix ****************/
     }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
    {
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    int i;
     int l=1, lmax=20;
   p=param[1][1];    double k1,k2;
      double p2[NPARMAX+1];
   /* Reads comments: lines beginning with '#' */    double res;
   while((c=getc(ficpar))=='#' && c!= EOF){    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     ungetc(c,ficpar);    double fx;
     fgets(line, MAXLINE, ficpar);    int k=0,kmax=10;
     puts(line);    double l1;
     fputs(line,ficparo);  
   }    fx=func(x);
   ungetc(c,ficpar);    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      l1=pow(10,l);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      delts=delt;
   for(i=1; i <=nlstate; i++){      for(k=1 ; k <kmax; k=k+1){
     for(j=1; j <=nlstate+ndeath-1; j++){        delt = delta*(l1*k);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        p2[theta]=x[theta] +delt;
       printf("%1d%1d",i,j);        k1=func(p2)-fx;
       fprintf(ficparo,"%1d%1d",i1,j1);        p2[theta]=x[theta]-delt;
       for(k=1; k<=ncovmodel;k++){        k2=func(p2)-fx;
         fscanf(ficpar,"%le",&delti3[i][j][k]);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         printf(" %le",delti3[i][j][k]);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         fprintf(ficparo," %le",delti3[i][j][k]);        
       }  #ifdef DEBUG
       fscanf(ficpar,"\n");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       printf("\n");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       fprintf(ficparo,"\n");  #endif
     }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   delti=delti3[1][1];          k=kmax;
          }
   /* Reads comments: lines beginning with '#' */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   while((c=getc(ficpar))=='#' && c!= EOF){          k=kmax; l=lmax*10.;
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     puts(line);          delts=delt;
     fputs(line,ficparo);        }
   }      }
   ungetc(c,ficpar);    }
      delti[theta]=delts;
   matcov=matrix(1,npar,1,npar);    return res; 
   for(i=1; i <=npar; i++){    
     fscanf(ficpar,"%s",&str);  }
     printf("%s",str);  
     fprintf(ficparo,"%s",str);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     for(j=1; j <=i; j++){  {
       fscanf(ficpar," %le",&matcov[i][j]);    int i;
       printf(" %.5le",matcov[i][j]);    int l=1, l1, lmax=20;
       fprintf(ficparo," %.5le",matcov[i][j]);    double k1,k2,k3,k4,res,fx;
     }    double p2[NPARMAX+1];
     fscanf(ficpar,"\n");    int k;
     printf("\n");  
     fprintf(ficparo,"\n");    fx=func(x);
   }    for (k=1; k<=2; k++) {
   for(i=1; i <=npar; i++)      for (i=1;i<=npar;i++) p2[i]=x[i];
     for(j=i+1;j<=npar;j++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       matcov[i][j]=matcov[j][i];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k1=func(p2)-fx;
   printf("\n");    
       p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     /*-------- data file ----------*/      k2=func(p2)-fx;
     if((ficres =fopen(fileres,"w"))==NULL) {    
       printf("Problem with resultfile: %s\n", fileres);goto end;      p2[thetai]=x[thetai]-delti[thetai]/k;
     }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fprintf(ficres,"#%s\n",version);      k3=func(p2)-fx;
        
     if((fic=fopen(datafile,"r"))==NULL)    {      p2[thetai]=x[thetai]-delti[thetai]/k;
       printf("Problem with datafile: %s\n", datafile);goto end;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     }      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     n= lastobs;  #ifdef DEBUG
     severity = vector(1,maxwav);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     outcome=imatrix(1,maxwav+1,1,n);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     num=ivector(1,n);  #endif
     moisnais=vector(1,n);    }
     annais=vector(1,n);    return res;
     moisdc=vector(1,n);  }
     andc=vector(1,n);  
     agedc=vector(1,n);  /************** Inverse of matrix **************/
     cod=ivector(1,n);  void ludcmp(double **a, int n, int *indx, double *d) 
     weight=vector(1,n);  { 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    int i,imax,j,k; 
     mint=matrix(1,maxwav,1,n);    double big,dum,sum,temp; 
     anint=matrix(1,maxwav,1,n);    double *vv; 
     s=imatrix(1,maxwav+1,1,n);   
     adl=imatrix(1,maxwav+1,1,n);        vv=vector(1,n); 
     tab=ivector(1,NCOVMAX);    *d=1.0; 
     ncodemax=ivector(1,8);    for (i=1;i<=n;i++) { 
       big=0.0; 
     i=1;      for (j=1;j<=n;j++) 
     while (fgets(line, MAXLINE, fic) != NULL)    {        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if ((i >= firstobs) && (i <=lastobs)) {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
              vv[i]=1.0/big; 
         for (j=maxwav;j>=1;j--){    } 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    for (j=1;j<=n;j++) { 
           strcpy(line,stra);      for (i=1;i<j;i++) { 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        sum=a[i][j]; 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         }        a[i][j]=sum; 
              } 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      big=0.0; 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        for (k=1;k<j;k++) 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         for (j=ncov;j>=1;j--){          big=dum; 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          imax=i; 
         }        } 
         num[i]=atol(stra);      } 
              if (j != imax) { 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        for (k=1;k<=n;k++) { 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
         i=i+1;          a[j][k]=dum; 
       }        } 
     }        *d = -(*d); 
     /* printf("ii=%d", ij);        vv[imax]=vv[j]; 
        scanf("%d",i);*/      } 
   imx=i-1; /* Number of individuals */      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
   /* for (i=1; i<=imx; i++){      if (j != n) { 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        dum=1.0/(a[j][j]); 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      } 
   }    } 
   for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    free_vector(vv,1,n);  /* Doesn't work */
   ;
   /* Calculation of the number of parameter from char model*/  } 
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);  void lubksb(double **a, int n, int *indx, double b[]) 
   Tvaraff=ivector(1,15);  { 
   Tvard=imatrix(1,15,1,2);    int i,ii=0,ip,j; 
   Tage=ivector(1,15);          double sum; 
       
   if (strlen(model) >1){    for (i=1;i<=n;i++) { 
     j=0, j1=0, k1=1, k2=1;      ip=indx[i]; 
     j=nbocc(model,'+');      sum=b[ip]; 
     j1=nbocc(model,'*');      b[ip]=b[i]; 
     cptcovn=j+1;      if (ii) 
     cptcovprod=j1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
          else if (sum) ii=i; 
          b[i]=sum; 
     strcpy(modelsav,model);    } 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    for (i=n;i>=1;i--) { 
       printf("Error. Non available option model=%s ",model);      sum=b[i]; 
       goto end;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     }      b[i]=sum/a[i][i]; 
        } 
     for(i=(j+1); i>=1;i--){  } 
       cutv(stra,strb,modelsav,'+');  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  /************ Frequencies ********************/
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       /*scanf("%d",i);*/  {  /* Some frequencies */
       if (strchr(strb,'*')) {    
         cutv(strd,strc,strb,'*');    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         if (strcmp(strc,"age")==0) {    int first;
           cptcovprod--;    double ***freq; /* Frequencies */
           cutv(strb,stre,strd,'V');    double *pp, **prop;
           Tvar[i]=atoi(stre);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           cptcovage++;    FILE *ficresp;
             Tage[cptcovage]=i;    char fileresp[FILENAMELENGTH];
             /*printf("stre=%s ", stre);*/    
         }    pp=vector(1,nlstate);
         else if (strcmp(strd,"age")==0) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
           cptcovprod--;    strcpy(fileresp,"p");
           cutv(strb,stre,strc,'V');    strcat(fileresp,fileres);
           Tvar[i]=atoi(stre);    if((ficresp=fopen(fileresp,"w"))==NULL) {
           cptcovage++;      printf("Problem with prevalence resultfile: %s\n", fileresp);
           Tage[cptcovage]=i;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         }      exit(0);
         else {    }
           cutv(strb,stre,strc,'V');    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           Tvar[i]=ncov+k1;    j1=0;
           cutv(strb,strc,strd,'V');    
           Tprod[k1]=i;    j=cptcoveff;
           Tvard[k1][1]=atoi(strc);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           Tvard[k1][2]=atoi(stre);  
           Tvar[cptcovn+k2]=Tvard[k1][1];    first=1;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)    for(k1=1; k1<=j;k1++){
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for(i1=1; i1<=ncodemax[k1];i1++){
           k1++;        j1++;
           k2=k2+2;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         }          scanf("%d", i);*/
       }        for (i=-5; i<=nlstate+ndeath; i++)  
       else {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            for(m=iagemin; m <= iagemax+3; m++)
        /*  scanf("%d",i);*/              freq[i][jk][m]=0;
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);      for (i=1; i<=nlstate; i++)  
       }        for(m=iagemin; m <= iagemax+3; m++)
       strcpy(modelsav,stra);            prop[i][m]=0;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        
         scanf("%d",i);*/        dateintsum=0;
     }        k2cpt=0;
 }        for (i=1; i<=imx; i++) {
            bool=1;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          if  (cptcovn>0) {
   printf("cptcovprod=%d ", cptcovprod);            for (z1=1; z1<=cptcoveff; z1++) 
   scanf("%d ",i);*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     fclose(fic);                bool=0;
           }
     /*  if(mle==1){*/          if (bool==1){
     if (weightopt != 1) { /* Maximisation without weights*/            for(m=firstpass; m<=lastpass; m++){
       for(i=1;i<=n;i++) weight[i]=1.0;              k2=anint[m][i]+(mint[m][i]/12.);
     }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     /*-calculation of age at interview from date of interview and age at death -*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     agev=matrix(1,maxwav,1,imx);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
    for (i=1; i<=imx; i++)                if (m<lastpass) {
      for(m=2; (m<= maxwav); m++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
          anint[m][i]=9999;                }
          s[m][i]=-1;                
        }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                      dateintsum=dateintsum+k2;
     for (i=1; i<=imx; i++)  {                  k2cpt++;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                }
       for(m=1; (m<= maxwav); m++){                /*}*/
         if(s[m][i] >0){            }
           if (s[m][i] == nlstate+1) {          }
             if(agedc[i]>0)        }
               if(moisdc[i]!=99 && andc[i]!=9999)         
               agev[m][i]=agedc[i];        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             else {  fprintf(ficresp, "#Local time at start: %s", strstart);
               if (andc[i]!=9999){        if  (cptcovn>0) {
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          fprintf(ficresp, "\n#********** Variable "); 
               agev[m][i]=-1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               }          fprintf(ficresp, "**********\n#");
             }        }
           }        for(i=1; i<=nlstate;i++) 
           else if(s[m][i] !=9){ /* Should no more exist */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        fprintf(ficresp, "\n");
             if(mint[m][i]==99 || anint[m][i]==9999)        
               agev[m][i]=1;        for(i=iagemin; i <= iagemax+3; i++){
             else if(agev[m][i] <agemin){          if(i==iagemax+3){
               agemin=agev[m][i];            fprintf(ficlog,"Total");
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          }else{
             }            if(first==1){
             else if(agev[m][i] >agemax){              first=0;
               agemax=agev[m][i];              printf("See log file for details...\n");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            }
             }            fprintf(ficlog,"Age %d", i);
             /*agev[m][i]=anint[m][i]-annais[i];*/          }
             /*   agev[m][i] = age[i]+2*m;*/          for(jk=1; jk <=nlstate ; jk++){
           }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           else { /* =9 */              pp[jk] += freq[jk][m][i]; 
             agev[m][i]=1;          }
             s[m][i]=-1;          for(jk=1; jk <=nlstate ; jk++){
           }            for(m=-1, pos=0; m <=0 ; m++)
         }              pos += freq[jk][m][i];
         else /*= 0 Unknown */            if(pp[jk]>=1.e-10){
           agev[m][i]=1;              if(first==1){
       }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                  }
     }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for (i=1; i<=imx; i++)  {            }else{
       for(m=1; (m<= maxwav); m++){              if(first==1)
         if (s[m][i] > (nlstate+ndeath)) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           printf("Error: Wrong value in nlstate or ndeath\n");                fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           goto end;            }
         }          }
       }  
     }          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);              pp[jk] += freq[jk][m][i];
           }       
     free_vector(severity,1,maxwav);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     free_imatrix(outcome,1,maxwav+1,1,n);            pos += pp[jk];
     free_vector(moisnais,1,n);            posprop += prop[jk][i];
     free_vector(annais,1,n);          }
     free_matrix(mint,1,maxwav,1,n);          for(jk=1; jk <=nlstate ; jk++){
     free_matrix(anint,1,maxwav,1,n);            if(pos>=1.e-5){
     free_vector(moisdc,1,n);              if(first==1)
     free_vector(andc,1,n);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                }else{
     wav=ivector(1,imx);              if(first==1)
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                }
     /* Concatenates waves */            if( i <= iagemax){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
       Tcode=ivector(1,100);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);              }
       ncodemax[1]=1;              else
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                  }
    codtab=imatrix(1,100,1,10);          }
    h=0;          
    m=pow(2,cptcoveff);          for(jk=-1; jk <=nlstate+ndeath; jk++)
              for(m=-1; m <=nlstate+ndeath; m++)
    for(k=1;k<=cptcoveff; k++){              if(freq[jk][m][i] !=0 ) {
      for(i=1; i <=(m/pow(2,k));i++){              if(first==1)
        for(j=1; j <= ncodemax[k]; j++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
            h++;              }
            if (h>m) h=1;codtab[h][k]=j;          if(i <= iagemax)
          }            fprintf(ficresp,"\n");
        }          if(first==1)
      }            printf("Others in log...\n");
    }          fprintf(ficlog,"\n");
         }
       }
    /*for(i=1; i <=m ;i++){    }
      for(k=1; k <=cptcovn; k++){    dateintmean=dateintsum/k2cpt; 
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);   
      }    fclose(ficresp);
      printf("\n");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
    }    free_vector(pp,1,nlstate);
    scanf("%d",i);*/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
        /* End of Freq */
    /* Calculates basic frequencies. Computes observed prevalence at single age  }
        and prints on file fileres'p'. */  
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       in each health status at the date of interview (if between dateprev1 and dateprev2).
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       We still use firstpass and lastpass as another selection.
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    */
         
     /* For Powell, parameters are in a vector p[] starting at p[1]    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double ***freq; /* Frequencies */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    double *pp, **prop;
     double pos,posprop; 
     if(mle==1){    double  y2; /* in fractional years */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    int iagemin, iagemax;
     }  
        iagemin= (int) agemin;
     /*--------- results files --------------*/    iagemax= (int) agemax;
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    /*pp=vector(1,nlstate);*/
        prop=matrix(1,nlstate,iagemin,iagemax+3); 
    jk=1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
    fprintf(ficres,"# Parameters\n");    j1=0;
    printf("# Parameters\n");    
    for(i=1,jk=1; i <=nlstate; i++){    j=cptcoveff;
      for(k=1; k <=(nlstate+ndeath); k++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        if (k != i)    
          {    for(k1=1; k1<=j;k1++){
            printf("%d%d ",i,k);      for(i1=1; i1<=ncodemax[k1];i1++){
            fprintf(ficres,"%1d%1d ",i,k);        j1++;
            for(j=1; j <=ncovmodel; j++){        
              printf("%f ",p[jk]);        for (i=1; i<=nlstate; i++)  
              fprintf(ficres,"%f ",p[jk]);          for(m=iagemin; m <= iagemax+3; m++)
              jk++;            prop[i][m]=0.0;
            }       
            printf("\n");        for (i=1; i<=imx; i++) { /* Each individual */
            fprintf(ficres,"\n");          bool=1;
          }          if  (cptcovn>0) {
      }            for (z1=1; z1<=cptcoveff; z1++) 
    }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  if(mle==1){                bool=0;
     /* Computing hessian and covariance matrix */          } 
     ftolhess=ftol; /* Usually correct */          if (bool==1) { 
     hesscov(matcov, p, npar, delti, ftolhess, func);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
  }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     fprintf(ficres,"# Scales\n");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     printf("# Scales\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      for(i=1,jk=1; i <=nlstate; i++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(j=1; j <=nlstate+ndeath; j++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         if (j!=i) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           fprintf(ficres,"%1d%1d",i,j);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           printf("%1d%1d",i,j);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           for(k=1; k<=ncovmodel;k++){                  prop[s[m][i]][iagemax+3] += weight[i]; 
             printf(" %.5e",delti[jk]);                } 
             fprintf(ficres," %.5e",delti[jk]);              }
             jk++;            } /* end selection of waves */
           }          }
           printf("\n");        }
           fprintf(ficres,"\n");        for(i=iagemin; i <= iagemax+3; i++){  
         }          
       }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       }            posprop += prop[jk][i]; 
              } 
     k=1;  
     fprintf(ficres,"# Covariance\n");          for(jk=1; jk <=nlstate ; jk++){     
     printf("# Covariance\n");            if( i <=  iagemax){ 
     for(i=1;i<=npar;i++){              if(posprop>=1.e-5){ 
       /*  if (k>nlstate) k=1;                probs[i][jk][j1]= prop[jk][i]/posprop;
       i1=(i-1)/(ncovmodel*nlstate)+1;              } 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            } 
       printf("%s%d%d",alph[k],i1,tab[i]);*/          }/* end jk */ 
       fprintf(ficres,"%3d",i);        }/* end i */ 
       printf("%3d",i);      } /* end i1 */
       for(j=1; j<=i;j++){    } /* end k1 */
         fprintf(ficres," %.5e",matcov[i][j]);    
         printf(" %.5e",matcov[i][j]);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       }    /*free_vector(pp,1,nlstate);*/
       fprintf(ficres,"\n");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       printf("\n");  }  /* End of prevalence */
       k++;  
     }  /************* Waves Concatenation ***************/
      
     while((c=getc(ficpar))=='#' && c!= EOF){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       ungetc(c,ficpar);  {
       fgets(line, MAXLINE, ficpar);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       puts(line);       Death is a valid wave (if date is known).
       fputs(line,ficparo);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     ungetc(c,ficpar);       and mw[mi+1][i]. dh depends on stepm.
         */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
        int i, mi, m;
     if (fage <= 2) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       bage = agemin;       double sum=0., jmean=0.;*/
       fage = agemax;    int first;
     }    int j, k=0,jk, ju, jl;
     double sum=0.;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    first=0;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    jmin=1e+5;
     jmax=-1;
        jmean=0.;
 /*------------ gnuplot -------------*/    for(i=1; i<=imx; i++){
 chdir(pathcd);      mi=0;
   if((ficgp=fopen("graph.plt","w"))==NULL) {      m=firstpass;
     printf("Problem with file graph.gp");goto end;      while(s[m][i] <= nlstate){
   }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 #ifdef windows          mw[++mi][i]=m;
   fprintf(ficgp,"cd \"%s\" \n",pathc);        if(m >=lastpass)
 #endif          break;
 m=pow(2,cptcoveff);        else
            m++;
  /* 1eme*/      }/* end while */
   for (cpt=1; cpt<= nlstate ; cpt ++) {      if (s[m][i] > nlstate){
    for (k1=1; k1<= m ; k1 ++) {        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
 #ifdef windows           /* Only death is a correct wave */
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);        mw[mi][i]=m;
 #endif      }
 #ifdef unix  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      wav[i]=mi;
 #endif      if(mi==0){
         nbwarn++;
 for (i=1; i<= nlstate ; i ++) {        if(first==0){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          first=1;
 }        }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        if(first==1){
     for (i=1; i<= nlstate ; i ++) {          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      } /* end mi==0 */
 }    } /* End individuals */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {    for(i=1; i<=imx; i++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(mi=1; mi<wav[i];mi++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if (stepm <=0)
 }            dh[mi][i]=1;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        else{
 #ifdef unix          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 fprintf(ficgp,"\nset ter gif small size 400,300");            if (agedc[i] < 2*AGESUP) {
 #endif              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              if(j==0) j=1;  /* Survives at least one month after exam */
    }              else if(j<0){
   }                nberr++;
   /*2 eme*/                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
   for (k1=1; k1<= m ; k1 ++) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                    fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     for (i=1; i<= nlstate+1 ; i ++) {              }
       k=2*i;              k=k+1;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              if (j >= jmax){
       for (j=1; j<= nlstate+1 ; j ++) {                jmax=j;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                ijmax=i;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }                if (j <= jmin){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                jmin=j;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                ijmin=i;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              }
       for (j=1; j<= nlstate+1 ; j ++) {              sum=sum+j;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         else fprintf(ficgp," \%%*lf (\%%*lf)");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 }              }
       fprintf(ficgp,"\" t\"\" w l 0,");          }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          else{
       for (j=1; j<= nlstate+1 ; j ++) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }              k=k+1;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            if (j >= jmax) {
       else fprintf(ficgp,"\" t\"\" w l 0,");              jmax=j;
     }              ijmax=i;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            }
   }            else if (j <= jmin){
                jmin=j;
   /*3eme*/              ijmin=i;
             }
   for (k1=1; k1<= m ; k1 ++) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     for (cpt=1; cpt<= nlstate ; cpt ++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       k=2+nlstate*(cpt-1);            if(j<0){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);              nberr++;
       for (i=1; i< nlstate ; i ++) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }            }
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            sum=sum+j;
     }          }
   }          jk= j/stepm;
            jl= j -jk*stepm;
   /* CV preval stat */          ju= j -(jk+1)*stepm;
   for (k1=1; k1<= m ; k1 ++) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     for (cpt=1; cpt<nlstate ; cpt ++) {            if(jl==0){
       k=3;              dh[mi][i]=jk;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);              bh[mi][i]=0;
       for (i=1; i< nlstate ; i ++)            }else{ /* We want a negative bias in order to only have interpolation ie
         fprintf(ficgp,"+$%d",k+i+1);                    * at the price of an extra matrix product in likelihood */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              dh[mi][i]=jk+1;
                    bh[mi][i]=ju;
       l=3+(nlstate+ndeath)*cpt;            }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          }else{
       for (i=1; i< nlstate ; i ++) {            if(jl <= -ju){
         l=3+(nlstate+ndeath)*cpt;              dh[mi][i]=jk;
         fprintf(ficgp,"+$%d",l+i+1);              bh[mi][i]=jl;       /* bias is positive if real duration
       }                                   * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                                     */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            }
     }            else{
   }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   /* proba elementaires */            }
    for(i=1,jk=1; i <=nlstate; i++){            if(dh[mi][i]==0){
     for(k=1; k <=(nlstate+ndeath); k++){              dh[mi][i]=1; /* At least one step */
       if (k != i) {              bh[mi][i]=ju; /* At least one step */
         for(j=1; j <=ncovmodel; j++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/            }
           /*fprintf(ficgp,"%s",alph[1]);*/          } /* end if mle */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        }
           jk++;      } /* end wave */
           fprintf(ficgp,"\n");    }
         }    jmean=sum/k;
       }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }   }
   
   for(jk=1; jk <=m; jk++) {  /*********** Tricode ****************************/
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);  void tricode(int *Tvar, int **nbcode, int imx)
    i=1;  {
    for(k2=1; k2<=nlstate; k2++) {    
      k3=i;    int Ndum[20],ij=1, k, j, i, maxncov=19;
      for(k=1; k<=(nlstate+ndeath); k++) {    int cptcode=0;
        if (k != k2){    cptcoveff=0; 
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);   
 ij=1;    for (k=0; k<maxncov; k++) Ndum[k]=0;
         for(j=3; j <=ncovmodel; j++) {    for (k=1; k<=7; k++) ncodemax[k]=0;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
             ij++;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
           }                                 modality*/ 
           else        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        Ndum[ij]++; /*store the modality */
         }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           fprintf(ficgp,")/(1");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                                 Tvar[j]. If V=sex and male is 0 and 
         for(k1=1; k1 <=nlstate; k1++){                                           female is 1, then  cptcode=1.*/
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      }
 ij=1;  
           for(j=3; j <=ncovmodel; j++){      for (i=0; i<=cptcode; i++) {
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      }
             ij++;  
           }      ij=1; 
           else      for (i=1; i<=ncodemax[j]; i++) {
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for (k=0; k<= maxncov; k++) {
           }          if (Ndum[k] != 0) {
           fprintf(ficgp,")");            nbcode[Tvar[j]][ij]=k; 
         }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            ij++;
         i=i+ncovmodel;          }
        }          if (ij > ncodemax[j]) break; 
      }        }  
    }      } 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    }  
   }  
       for (k=0; k< maxncov; k++) Ndum[k]=0;
   fclose(ficgp);  
       for (i=1; i<=ncovmodel-2; i++) { 
 chdir(path);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     free_matrix(agev,1,maxwav,1,imx);     ij=Tvar[i];
     free_ivector(wav,1,imx);     Ndum[ij]++;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);   }
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       ij=1;
     free_imatrix(s,1,maxwav+1,1,n);   for (i=1; i<= maxncov; i++) {
         if((Ndum[i]!=0) && (i<=ncovcol)){
           Tvaraff[ij]=i; /*For printing */
     free_ivector(num,1,n);       ij++;
     free_vector(agedc,1,n);     }
     free_vector(weight,1,n);   }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/   
     fclose(ficparo);   cptcoveff=ij-1; /*Number of simple covariates*/
     fclose(ficres);  }
     /*  }*/  
      /*********** Health Expectancies ****************/
    /*________fin mle=1_________*/  
      void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
   
    {
     /* No more information from the sample is required now */    /* Health expectancies */
   /* Reads comments: lines beginning with '#' */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   while((c=getc(ficpar))=='#' && c!= EOF){    double age, agelim, hf;
     ungetc(c,ficpar);    double ***p3mat,***varhe;
     fgets(line, MAXLINE, ficpar);    double **dnewm,**doldm;
     puts(line);    double *xp;
     fputs(line,ficparo);    double **gp, **gm;
   }    double ***gradg, ***trgradg;
   ungetc(c,ficpar);    int theta;
    
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    xp=vector(1,npar);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    dnewm=matrix(1,nlstate*nlstate,1,npar);
 /*--------- index.htm --------*/    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
   strcpy(optionfilehtm,optionfile);    fprintf(ficreseij,"# Local time at start: %s", strstart);
   strcat(optionfilehtm,".htm");    fprintf(ficreseij,"# Health expectancies\n");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    fprintf(ficreseij,"# Age");
     printf("Problem with %s \n",optionfilehtm);goto end;    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++)
         fprintf(ficreseij," %1d-%1d (SE)",i,j);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64b </font> <hr size=\"2\" color=\"#EC5E5E\">    fprintf(ficreseij,"\n");
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>  
 Total number of observations=%d <br>    if(estepm < stepm){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>      printf ("Problem %d lower than %d\n",estepm, stepm);
 <hr  size=\"2\" color=\"#EC5E5E\">    }
 <li>Outputs files<br><br>\n    else  hstepm=estepm;   
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    /* We compute the life expectancy from trapezoids spaced every estepm months
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>     * This is mainly to measure the difference between two models: for example
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>     * if stepm=24 months pijx are given only every 2 years and by summing them
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>     * we are calculating an estimate of the Life Expectancy assuming a linear 
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>     * progression in between and thus overestimating or underestimating according
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>     * to the curvature of the survival function. If, for the same date, we 
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>     * to compare the new estimate of Life expectancy with the same linear 
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
  fprintf(fichtm," <li>Graphs</li><p>");  
     /* For example we decided to compute the life expectancy with the smallest unit */
  m=cptcoveff;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
  j1=0;       Look at hpijx to understand the reason of that which relies in memory size
  for(k1=1; k1<=m;k1++){       and note for a fixed period like estepm months */
    for(i1=1; i1<=ncodemax[k1];i1++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        j1++;       survival function given by stepm (the optimization length). Unfortunately it
        if (cptcovn > 0) {       means that if the survival funtion is printed only each two years of age and if
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
          for (cpt=1; cpt<=cptcoveff;cpt++)       results. So we changed our mind and took the option of the best precision.
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);    */
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    agelim=AGESUP;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        for(cpt=1; cpt<nlstate;cpt++){      /* nhstepm age range expressed in number of stepm */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        }      /* if (stepm >= YEARM) hstepm=1;*/
     for(cpt=1; cpt<=nlstate;cpt++) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 interval) in state (%d): v%s%d%d.gif <br>      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        gp=matrix(0,nhstepm,1,nlstate*nlstate);
      }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and   
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 fprintf(fichtm,"\n</body>");  
    }      /* Computing  Variances of health expectancies */
  }  
 fclose(fichtm);       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
   /*--------------- Prevalence limit --------------*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   strcpy(filerespl,"pl");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcat(filerespl,fileres);    
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        cptj=0;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        for(j=1; j<= nlstate; j++){
   }          for(i=1; i<=nlstate; i++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            cptj=cptj+1;
   fprintf(ficrespl,"#Prevalence limit\n");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   fprintf(ficrespl,"#Age ");              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            }
   fprintf(ficrespl,"\n");          }
          }
   prlim=matrix(1,nlstate,1,nlstate);       
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1; i<=npar; i++) 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        
   k=0;        cptj=0;
   agebase=agemin;        for(j=1; j<= nlstate; j++){
   agelim=agemax;          for(i=1;i<=nlstate;i++){
   ftolpl=1.e-10;            cptj=cptj+1;
   i1=cptcoveff;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   if (cptcovn < 1){i1=1;}  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   for(cptcov=1;cptcov<=i1;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }
         k=k+1;        }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        for(j=1; j<= nlstate*nlstate; j++)
         fprintf(ficrespl,"\n#******");          for(h=0; h<=nhstepm-1; h++){
         for(j=1;j<=cptcoveff;j++)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
         fprintf(ficrespl,"******\n");       } 
             
         for (age=agebase; age<=agelim; age++){  /* End theta */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);       for(h=0; h<=nhstepm-1; h++)
           fprintf(ficrespl,"\n");        for(j=1; j<=nlstate*nlstate;j++)
         }          for(theta=1; theta <=npar; theta++)
       }            trgradg[h][j][theta]=gradg[h][theta][j];
     }       
   fclose(ficrespl);  
   /*------------- h Pij x at various ages ------------*/       for(i=1;i<=nlstate*nlstate;i++)
          for(j=1;j<=nlstate*nlstate;j++)
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          varhe[i][j][(int)age] =0.;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;       printf("%d|",(int)age);fflush(stdout);
   }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   printf("Computing pij: result on file '%s' \n", filerespij);       for(h=0;h<=nhstepm-1;h++){
          for(k=0;k<=nhstepm-1;k++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   if (stepm<=24) stepsize=2;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
   agelim=AGESUP;            for(j=1;j<=nlstate*nlstate;j++)
   hstepm=stepsize*YEARM; /* Every year of age */              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        }
        }
   k=0;      /* Computing expectancies */
   for(cptcov=1;cptcov<=i1;cptcov++){      for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=1; j<=nlstate;j++)
       k=k+1;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         fprintf(ficrespij,"\n#****** ");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         for(j=1;j<=cptcoveff;j++)            
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         fprintf(ficrespij,"******\n");  
                  }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficreseij,"%3.0f",age );
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      cptj=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate;i++)
           oldm=oldms;savm=savms;        for(j=1; j<=nlstate;j++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            cptj++;
           fprintf(ficrespij,"# Age");          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
           for(i=1; i<=nlstate;i++)        }
             for(j=1; j<=nlstate+ndeath;j++)      fprintf(ficreseij,"\n");
               fprintf(ficrespij," %1d-%1d",i,j);     
           fprintf(ficrespij,"\n");      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           for (h=0; h<=nhstepm; h++){      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             for(i=1; i<=nlstate;i++)      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
               for(j=1; j<=nlstate+ndeath;j++)      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    }
             fprintf(ficrespij,"\n");    printf("\n");
           }    fprintf(ficlog,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");    free_vector(xp,1,npar);
         }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   fclose(ficrespij);  
   /************ Variance ******************/
   /*---------- Health expectancies and variances ------------*/  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
   strcpy(filerest,"t");    /* Variance of health expectancies */
   strcat(filerest,fileres);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   if((ficrest=fopen(filerest,"w"))==NULL) {    /* double **newm;*/
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    double **dnewm,**doldm;
   }    double **dnewmp,**doldmp;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
   strcpy(filerese,"e");    double **gp, **gm;  /* for var eij */
   strcat(filerese,fileres);    double ***gradg, ***trgradg; /*for var eij */
   if((ficreseij=fopen(filerese,"w"))==NULL) {    double **gradgp, **trgradgp; /* for var p point j */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double *gpp, *gmp; /* for var p point j */
   }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double ***p3mat;
     double age,agelim, hf;
  strcpy(fileresv,"v");    double ***mobaverage;
   strcat(fileresv,fileres);    int theta;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    char digit[4];
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    char digitp[25];
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    char fileresprobmorprev[FILENAMELENGTH];
   
   k=0;    if(popbased==1){
   for(cptcov=1;cptcov<=i1;cptcov++){      if(mobilav!=0)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        strcpy(digitp,"-populbased-mobilav-");
       k=k+1;      else strcpy(digitp,"-populbased-nomobil-");
       fprintf(ficrest,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    else 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcpy(digitp,"-stablbased-");
       fprintf(ficrest,"******\n");  
     if (mobilav!=0) {
       fprintf(ficreseij,"\n#****** ");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(j=1;j<=cptcoveff;j++)      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficreseij,"******\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
       fprintf(ficresvij,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    strcpy(fileresprobmorprev,"prmorprev"); 
       fprintf(ficresvij,"******\n");    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       oldm=oldms;savm=savms;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      strcat(fileresprobmorprev,fileres);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       oldm=oldms;savm=savms;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
          }
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);   
       fprintf(ficrest,"\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
            fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
       hf=1;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       if (stepm >= YEARM) hf=stepm/YEARM;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       epj=vector(1,nlstate+1);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       for(age=bage; age <=fage ;age++){      fprintf(ficresprobmorprev," p.%-d SE",j);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for(i=1; i<=nlstate;i++)
         fprintf(ficrest," %.0f",age);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    }  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    fprintf(ficresprobmorprev,"\n");
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    fprintf(ficgp,"\n# Routine varevsij");
           }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
           epj[nlstate+1] +=epj[j];    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         for(i=1, vepp=0.;i <=nlstate;i++)  /*   } */
           for(j=1;j <=nlstate;j++)    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             vepp += vareij[i][j][(int)age];   fprintf(ficresvij, "#Local time at start: %s", strstart);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
         for(j=1;j <=nlstate;j++){    fprintf(ficresvij,"# Age");
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    for(i=1; i<=nlstate;i++)
         }      for(j=1; j<=nlstate;j++)
         fprintf(ficrest,"\n");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       }    fprintf(ficresvij,"\n");
     }  
   }    xp=vector(1,npar);
            dnewm=matrix(1,nlstate,1,npar);
  fclose(ficreseij);    doldm=matrix(1,nlstate,1,nlstate);
  fclose(ficresvij);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   fclose(ficrest);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   /*  scanf("%d ",i); */    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   /*------- Variance limit prevalence------*/      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
 strcpy(fileresvpl,"vpl");    if(estepm < stepm){
   strcat(fileresvpl,fileres);      printf ("Problem %d lower than %d\n",estepm, stepm);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    else  hstepm=estepm;   
     exit(0);    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
  k=0;       Look at hpijx to understand the reason of that which relies in memory size
  for(cptcov=1;cptcov<=i1;cptcov++){       and note for a fixed period like k years */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      k=k+1;       survival function given by stepm (the optimization length). Unfortunately it
      fprintf(ficresvpl,"\n#****** ");       means that if the survival funtion is printed every two years of age and if
      for(j=1;j<=cptcoveff;j++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       results. So we changed our mind and took the option of the best precision.
      fprintf(ficresvpl,"******\n");    */
          hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    agelim = AGESUP;
      oldm=oldms;savm=savms;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   fclose(ficresvpl);      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
        for(theta=1; theta <=npar; theta++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        if (popbased==1) {
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
   free_matrix(matcov,1,npar,1,npar);              prlim[i][i]=probs[(int)age][i][ij];
   free_vector(delti,1,npar);          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   printf("End of Imach\n");        }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    
          for(j=1; j<= nlstate; j++){
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          for(h=0; h<=nhstepm; h++){
   /*printf("Total time was %d uSec.\n", total_usecs);*/            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   /*------ End -----------*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
  end:        /* This for computing probability of death (h=1 means
 #ifdef windows           computed over hstepm matrices product = hstepm*stepm months) 
  chdir(pathcd);           as a weighted average of prlim.
 #endif        */
  /*system("wgnuplot graph.plt");*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  /*system("../gp37mgw/wgnuplot graph.plt");*/          for(i=1,gpp[j]=0.; i<= nlstate; i++)
  /*system("cd ../gp37mgw");*/            gpp[j] += prlim[i][i]*p3mat[i][j][1];
  system("..\\gp37mgw\\wgnuplot graph.plt");        }    
         /* end probability of death */
 #ifdef windows  
   while (z[0] != 'q') {        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     chdir(pathcd);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     scanf("%s",z);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     if (z[0] == 'c') system("./imach");   
     else if (z[0] == 'e') {        if (popbased==1) {
       chdir(path);          if(mobilav ==0){
       system(optionfilehtm);            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
     else if (z[0] == 'q') exit(0);          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
 #endif              prlim[i][i]=mobaverage[(int)age][i][ij];
 }          }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficresprob, "#Local time at start: %s", strstart);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.12  
changed lines
  Added in v.1.113


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>