Diff for /imach/src/imach.c between versions 1.5 and 1.130

version 1.5, 2001/05/02 17:42:45 version 1.130, 2009/05/26 06:44:34
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.130  2009/05/26 06:44:34  brouard
   individuals from different ages are interviewed on their health status    (Module): Max Covariate is now set to 20 instead of 8. A
   or degree of  disability. At least a second wave of interviews    lot of cleaning with variables initialized to 0. Trying to make
   ("longitudinal") should  measure each new individual health status.    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.129  2007/08/31 13:49:27  lievre
   of life states). More degrees you consider, more time is necessary to    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Revision 1.128  2006/06/30 13:02:05  brouard
   the probabibility to be observed in state j at the second wave conditional    (Module): Clarifications on computing e.j
   to be observed in state i at the first wave. Therefore the model is:  
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Revision 1.127  2006/04/28 18:11:50  brouard
   is a covariate. If you want to have a more complex model than "constant and    (Module): Yes the sum of survivors was wrong since
   age", you should modify the program where the markup    imach-114 because nhstepm was no more computed in the age
     *Covariates have to be included here again* invites you to do it.    loop. Now we define nhstepma in the age loop.
   More covariates you add, less is the speed of the convergence.    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
   The advantage that this computer programme claims, comes from that if the    and then all the health expectancies with variances or standard
   delay between waves is not identical for each individual, or if some    deviation (needs data from the Hessian matrices) which slows the
   individual missed an interview, the information is not rounded or lost, but    computation.
   taken into account using an interpolation or extrapolation.    In the future we should be able to stop the program is only health
   hPijx is the probability to be    expectancies and graph are needed without standard deviations.
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.126  2006/04/28 17:23:28  brouard
   unobserved intermediate  states. This elementary transition (by month or    (Module): Yes the sum of survivors was wrong since
   quarter trimester, semester or year) is model as a multinomial logistic.    imach-114 because nhstepm was no more computed in the age
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    loop. Now we define nhstepma in the age loop.
   and the contribution of each individual to the likelihood is simply hPijx.    Version 0.98h
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.125  2006/04/04 15:20:31  lievre
   of the life expectancies. It also computes the prevalence limits.    Errors in calculation of health expectancies. Age was not initialized.
      Forecasting file added.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.124  2006/03/22 17:13:53  lievre
   This software have been partly granted by Euro-REVES, a concerted action    Parameters are printed with %lf instead of %f (more numbers after the comma).
   from the European Union.    The log-likelihood is printed in the log file
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.123  2006/03/20 10:52:43  brouard
   can be accessed at http://euroreves.ined.fr/imach .    * imach.c (Module): <title> changed, corresponds to .htm file
   **********************************************************************/    name. <head> headers where missing.
    
 #include <math.h>    * imach.c (Module): Weights can have a decimal point as for
 #include <stdio.h>    English (a comma might work with a correct LC_NUMERIC environment,
 #include <stdlib.h>    otherwise the weight is truncated).
 #include <unistd.h>    Modification of warning when the covariates values are not 0 or
     1.
 #define MAXLINE 256    Version 0.98g
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.122  2006/03/20 09:45:41  brouard
 #define windows    (Module): Weights can have a decimal point as for
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    English (a comma might work with a correct LC_NUMERIC environment,
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
     1.
     Version 0.98g
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    * imach.c (Module): refinements in the computation of lli if
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    status=-2 in order to have more reliable computation if stepm is
 #define NCOVMAX 8 /* Maximum number of covariates */    not 1 month. Version 0.98f
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.120  2006/03/16 15:10:38  lievre
 #define AGESUP 130    (Module): refinements in the computation of lli if
 #define AGEBASE 40    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   
 int nvar;    Revision 1.119  2006/03/15 17:42:26  brouard
 static int cptcov;    (Module): Bug if status = -2, the loglikelihood was
 int cptcovn;    computed as likelihood omitting the logarithm. Version O.98e
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.118  2006/03/14 18:20:07  brouard
 int ndeath=1; /* Number of dead states */    (Module): varevsij Comments added explaining the second
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Function pstamp added
 int maxwav; /* Maxim number of waves */    (Module): Version 0.98d
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.117  2006/03/14 17:16:22  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): varevsij Comments added explaining the second
 double **oldm, **newm, **savm; /* Working pointers to matrices */    table of variances if popbased=1 .
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    (Module): Function pstamp added
 FILE *ficgp, *fichtm;    (Module): Version 0.98d
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.116  2006/03/06 10:29:27  brouard
  FILE  *ficresvij;    (Module): Variance-covariance wrong links and
   char fileresv[FILENAMELENGTH];    varian-covariance of ej. is needed (Saito).
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
   
     Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
 #define NR_END 1    filename with strsep.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 #define NRANSI    datafile was not closed, some imatrix were not freed and on matrix
 #define ITMAX 200    allocation too.
   
 #define TOL 2.0e-4    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.111  2006/01/25 20:38:18  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 #define GOLD 1.618034    can be a simple dot '.'.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.109  2006/01/24 19:37:15  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Comments (lines starting with a #) are allowed in data.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.108  2006/01/19 18:05:42  lievre
 #define rint(a) floor(a+0.5)    Gnuplot problem appeared...
     To be fixed
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.107  2006/01/19 16:20:37  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Test existence of gnuplot in imach path
   
 int imx;    Revision 1.106  2006/01/19 13:24:36  brouard
 int stepm;    Some cleaning and links added in html output
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.105  2006/01/05 20:23:19  lievre
 int m,nb;    *** empty log message ***
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.104  2005/09/30 16:11:43  lievre
 double **pmmij;    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 double *weight;    that the person is alive, then we can code his/her status as -2
 int **s; /* Status */    (instead of missing=-1 in earlier versions) and his/her
 double *agedc, **covar, idx;    contributions to the likelihood is 1 - Prob of dying from last
 int **nbcode, *Tcode, *Tvar, **codtab;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   
 static  int split( char *path, char *dirc, char *name )    Revision 1.102  2004/09/15 17:31:30  brouard
 {    Add the possibility to read data file including tab characters.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.100  2004/07/12 18:29:06  brouard
    s = strrchr( path, '\\' );           /* find last / */    Add version for Mac OS X. Just define UNIX in Makefile
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.99  2004/06/05 08:57:40  brouard
       extern char       *getwd( );    *** empty log message ***
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.98  2004/05/16 15:05:56  brouard
 #else    New version 0.97 . First attempt to estimate force of mortality
       extern char       *getcwd( );    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    This is the basic analysis of mortality and should be done before any
 #endif    other analysis, in order to test if the mortality estimated from the
          return( GLOCK_ERROR_GETCWD );    cross-longitudinal survey is different from the mortality estimated
       }    from other sources like vital statistic data.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    The same imach parameter file can be used but the option for mle should be -3.
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Agnès, who wrote this part of the code, tried to keep most of the
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    former routines in order to include the new code within the former code.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    The output is very simple: only an estimate of the intercept and of
       dirc[l1-l2] = 0;                  /* add zero */    the slope with 95% confident intervals.
    }  
    l1 = strlen( dirc );                 /* length of directory */    Current limitations:
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    A) Even if you enter covariates, i.e. with the
    return( 0 );                         /* we're done */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 }    B) There is no computation of Life Expectancy nor Life Table.
   
     Revision 1.97  2004/02/20 13:25:42  lievre
 /******************************************/    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 void replace(char *s, char*t)  
 {    Revision 1.96  2003/07/15 15:38:55  brouard
   int i;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   int lg=20;    rewritten within the same printf. Workaround: many printfs.
   i=0;  
   lg=strlen(t);    Revision 1.95  2003/07/08 07:54:34  brouard
   for(i=0; i<= lg; i++) {    * imach.c (Repository):
     (s[i] = t[i]);    (Repository): Using imachwizard code to output a more meaningful covariance
     if (t[i]== '\\') s[i]='/';    matrix (cov(a12,c31) instead of numbers.
   }  
 }    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 int nbocc(char *s, char occ)  
 {    Revision 1.93  2003/06/25 16:33:55  brouard
   int i,j=0;    (Module): On windows (cygwin) function asctime_r doesn't
   int lg=20;    exist so I changed back to asctime which exists.
   i=0;    (Module): Version 0.96b
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.92  2003/06/25 16:30:45  brouard
   if  (s[i] == occ ) j++;    (Module): On windows (cygwin) function asctime_r doesn't
   }    exist so I changed back to asctime which exists.
   return j;  
 }    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 void cutv(char *u,char *v, char*t, char occ)    (Repository): Elapsed time after each iteration is now output. It
 {    helps to forecast when convergence will be reached. Elapsed time
   int i,lg,j,p;    is stamped in powell.  We created a new html file for the graphs
   i=0;    concerning matrix of covariance. It has extension -cov.htm.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.90  2003/06/24 12:34:15  brouard
   }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
   lg=strlen(t);    of the covariance matrix to be input.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.89  2003/06/24 12:30:52  brouard
     u[p]='\0';    (Module): Some bugs corrected for windows. Also, when
   }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.88  2003/06/23 17:54:56  brouard
   }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 }  
     Revision 1.87  2003/06/18 12:26:01  brouard
 /********************** nrerror ********************/    Version 0.96
   
 void nrerror(char error_text[])    Revision 1.86  2003/06/17 20:04:08  brouard
 {    (Module): Change position of html and gnuplot routines and added
   fprintf(stderr,"ERREUR ...\n");    routine fileappend.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.85  2003/06/17 13:12:43  brouard
 }    * imach.c (Repository): Check when date of death was earlier that
 /*********************** vector *******************/    current date of interview. It may happen when the death was just
 double *vector(int nl, int nh)    prior to the death. In this case, dh was negative and likelihood
 {    was wrong (infinity). We still send an "Error" but patch by
   double *v;    assuming that the date of death was just one stepm after the
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    interview.
   if (!v) nrerror("allocation failure in vector");    (Repository): Because some people have very long ID (first column)
   return v-nl+NR_END;    we changed int to long in num[] and we added a new lvector for
 }    memory allocation. But we also truncated to 8 characters (left
     truncation)
 /************************ free vector ******************/    (Repository): No more line truncation errors.
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.84  2003/06/13 21:44:43  brouard
   free((FREE_ARG)(v+nl-NR_END));    * imach.c (Repository): Replace "freqsummary" at a correct
 }    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 /************************ivector *******************************/    parcimony.
 int *ivector(long nl,long nh)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 {  
   int *v;    Revision 1.83  2003/06/10 13:39:11  lievre
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    *** empty log message ***
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.82  2003/06/05 15:57:20  brouard
 }    Add log in  imach.c and  fullversion number is now printed.
   
 /******************free ivector **************************/  */
 void free_ivector(int *v, long nl, long nh)  /*
 {     Interpolated Markov Chain
   free((FREE_ARG)(v+nl-NR_END));  
 }    Short summary of the programme:
     
 /******************* imatrix *******************************/    This program computes Healthy Life Expectancies from
 int **imatrix(long nrl, long nrh, long ncl, long nch)    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    first survey ("cross") where individuals from different ages are
 {    interviewed on their health status or degree of disability (in the
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    case of a health survey which is our main interest) -2- at least a
   int **m;    second wave of interviews ("longitudinal") which measure each change
      (if any) in individual health status.  Health expectancies are
   /* allocate pointers to rows */    computed from the time spent in each health state according to a
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    model. More health states you consider, more time is necessary to reach the
   if (!m) nrerror("allocation failure 1 in matrix()");    Maximum Likelihood of the parameters involved in the model.  The
   m += NR_END;    simplest model is the multinomial logistic model where pij is the
   m -= nrl;    probability to be observed in state j at the second wave
      conditional to be observed in state i at the first wave. Therefore
      the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   /* allocate rows and set pointers to them */    'age' is age and 'sex' is a covariate. If you want to have a more
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    complex model than "constant and age", you should modify the program
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    where the markup *Covariates have to be included here again* invites
   m[nrl] += NR_END;    you to do it.  More covariates you add, slower the
   m[nrl] -= ncl;    convergence.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    The advantage of this computer programme, compared to a simple
      multinomial logistic model, is clear when the delay between waves is not
   /* return pointer to array of pointers to rows */    identical for each individual. Also, if a individual missed an
   return m;    intermediate interview, the information is lost, but taken into
 }    account using an interpolation or extrapolation.  
   
 /****************** free_imatrix *************************/    hPijx is the probability to be observed in state i at age x+h
 void free_imatrix(m,nrl,nrh,ncl,nch)    conditional to the observed state i at age x. The delay 'h' can be
       int **m;    split into an exact number (nh*stepm) of unobserved intermediate
       long nch,ncl,nrh,nrl;    states. This elementary transition (by month, quarter,
      /* free an int matrix allocated by imatrix() */    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    and the contribution of each individual to the likelihood is simply
   free((FREE_ARG) (m+nrl-NR_END));    hPijx.
 }  
     Also this programme outputs the covariance matrix of the parameters but also
 /******************* matrix *******************************/    of the life expectancies. It also computes the period (stable) prevalence. 
 double **matrix(long nrl, long nrh, long ncl, long nch)    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;             Institut national d'études démographiques, Paris.
   double **m;    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    It is copyrighted identically to a GNU software product, ie programme and
   if (!m) nrerror("allocation failure 1 in matrix()");    software can be distributed freely for non commercial use. Latest version
   m += NR_END;    can be accessed at http://euroreves.ined.fr/imach .
   m -= nrl;  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    
   m[nrl] += NR_END;    **********************************************************************/
   m[nrl] -= ncl;  /*
     main
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    read parameterfile
   return m;    read datafile
 }    concatwav
     freqsummary
 /*************************free matrix ************************/    if (mle >= 1)
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      mlikeli
 {    print results files
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if mle==1 
   free((FREE_ARG)(m+nrl-NR_END));       computes hessian
 }    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 /******************* ma3x *******************************/    open gnuplot file
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    open html file
 {    period (stable) prevalence
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;     for age prevalim()
   double ***m;    h Pij x
     variance of p varprob
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    forecasting if prevfcast==1 prevforecast call prevalence()
   if (!m) nrerror("allocation failure 1 in matrix()");    health expectancies
   m += NR_END;    Variance-covariance of DFLE
   m -= nrl;    prevalence()
      movingaverage()
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    varevsij() 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if popbased==1 varevsij(,popbased)
   m[nrl] += NR_END;    total life expectancies
   m[nrl] -= ncl;    Variance of period (stable) prevalence
    end
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  */
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;   
   m[nrl][ncl] -= nll;  #include <math.h>
   for (j=ncl+1; j<=nch; j++)  #include <stdio.h>
     m[nrl][j]=m[nrl][j-1]+nlay;  #include <stdlib.h>
    #include <string.h>
   for (i=nrl+1; i<=nrh; i++) {  #include <unistd.h>
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #include <limits.h>
       m[i][j]=m[i][j-1]+nlay;  #include <sys/types.h>
   }  #include <sys/stat.h>
   return m;  #include <errno.h>
 }  extern int errno;
   
 /*************************free ma3x ************************/  /* #include <sys/time.h> */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #include <time.h>
 {  #include "timeval.h"
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /* #include <libintl.h> */
   free((FREE_ARG)(m+nrl-NR_END));  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
 /***************** f1dim *************************/  
 extern int ncom;  #define GNUPLOTPROGRAM "gnuplot"
 extern double *pcom,*xicom;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 extern double (*nrfunc)(double []);  #define FILENAMELENGTH 132
    
 double f1dim(double x)  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   int j;  
   double f;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   double *xt;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    
   xt=vector(1,ncom);  #define NINTERVMAX 8
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   f=(*nrfunc)(xt);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   free_vector(xt,1,ncom);  #define NCOVMAX 20 /* Maximum number of covariates */
   return f;  #define MAXN 20000
 }  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 /*****************brent *************************/  #define AGEBASE 40
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 {  #ifdef UNIX
   int iter;  #define DIRSEPARATOR '/'
   double a,b,d,etemp;  #define CHARSEPARATOR "/"
   double fu,fv,fw,fx;  #define ODIRSEPARATOR '\\'
   double ftemp;  #else
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define DIRSEPARATOR '\\'
   double e=0.0;  #define CHARSEPARATOR "\\"
    #define ODIRSEPARATOR '/'
   a=(ax < cx ? ax : cx);  #endif
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  /* $Id$ */
   fw=fv=fx=(*f)(x);  /* $State$ */
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  char fullversion[]="$Revision$ $Date$"; 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char strstart[80];
     printf(".");fflush(stdout);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 #ifdef DEBUG  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int nvar=0;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
 #endif  int npar=NPARMAX;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int nlstate=2; /* Number of live states */
       *xmin=x;  int ndeath=1; /* Number of dead states */
       return fx;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     }  int popbased=0;
     ftemp=fu;  
     if (fabs(e) > tol1) {  int *wav; /* Number of waves for this individuual 0 is possible */
       r=(x-w)*(fx-fv);  int maxwav=0; /* Maxim number of waves */
       q=(x-v)*(fx-fw);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       p=(x-v)*q-(x-w)*r;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       q=2.0*(q-r);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       if (q > 0.0) p = -p;                     to the likelihood and the sum of weights (done by funcone)*/
       q=fabs(q);  int mle=1, weightopt=0;
       etemp=e;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       e=d;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
         d=CGOLD*(e=(x >= xm ? a-x : b-x));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       else {  double jmean=1; /* Mean space between 2 waves */
         d=p/q;  double **oldm, **newm, **savm; /* Working pointers to matrices */
         u=x+d;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
         if (u-a < tol2 || b-u < tol2)  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
           d=SIGN(tol1,xm-x);  FILE *ficlog, *ficrespow;
       }  int globpr=0; /* Global variable for printing or not */
     } else {  double fretone; /* Only one call to likelihood */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  long ipmx=0; /* Number of contributions */
     }  double sw; /* Sum of weights */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char filerespow[FILENAMELENGTH];
     fu=(*f)(u);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     if (fu <= fx) {  FILE *ficresilk;
       if (u >= x) a=x; else b=x;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       SHFT(v,w,x,u)  FILE *ficresprobmorprev;
         SHFT(fv,fw,fx,fu)  FILE *fichtm, *fichtmcov; /* Html File */
         } else {  FILE *ficreseij;
           if (u < x) a=u; else b=u;  char filerese[FILENAMELENGTH];
           if (fu <= fw || w == x) {  FILE *ficresstdeij;
             v=w;  char fileresstde[FILENAMELENGTH];
             w=u;  FILE *ficrescveij;
             fv=fw;  char filerescve[FILENAMELENGTH];
             fw=fu;  FILE  *ficresvij;
           } else if (fu <= fv || v == x || v == w) {  char fileresv[FILENAMELENGTH];
             v=u;  FILE  *ficresvpl;
             fv=fu;  char fileresvpl[FILENAMELENGTH];
           }  char title[MAXLINE];
         }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   nrerror("Too many iterations in brent");  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   *xmin=x;  char command[FILENAMELENGTH];
   return fx;  int  outcmd=0;
 }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /****************** mnbrak ***********************/  
   char filelog[FILENAMELENGTH]; /* Log file */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  char filerest[FILENAMELENGTH];
             double (*func)(double))  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   double ulim,u,r,q, dum;  
   double fu;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
    
   *fa=(*func)(*ax);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   *fb=(*func)(*bx);  struct timezone tzp;
   if (*fb > *fa) {  extern int gettimeofday();
     SHFT(dum,*ax,*bx,dum)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       SHFT(dum,*fb,*fa,dum)  long time_value;
       }  extern long time();
   *cx=(*bx)+GOLD*(*bx-*ax);  char strcurr[80], strfor[80];
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  char *endptr;
     r=(*bx-*ax)*(*fb-*fc);  long lval;
     q=(*bx-*cx)*(*fb-*fa);  double dval;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define NR_END 1
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define FREE_ARG char*
     if ((*bx-u)*(u-*cx) > 0.0) {  #define FTOL 1.0e-10
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define NRANSI 
       fu=(*func)(u);  #define ITMAX 200 
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define TOL 2.0e-4 
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  #define CGOLD 0.3819660 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define ZEPS 1.0e-10 
       u=ulim;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       fu=(*func)(u);  
     } else {  #define GOLD 1.618034 
       u=(*cx)+GOLD*(*cx-*bx);  #define GLIMIT 100.0 
       fu=(*func)(u);  #define TINY 1.0e-20 
     }  
     SHFT(*ax,*bx,*cx,u)  static double maxarg1,maxarg2;
       SHFT(*fa,*fb,*fc,fu)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 /*************** linmin ************************/  #define rint(a) floor(a+0.5)
   
 int ncom;  static double sqrarg;
 double *pcom,*xicom;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 double (*nrfunc)(double []);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
    int agegomp= AGEGOMP;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  int imx; 
   double brent(double ax, double bx, double cx,  int stepm=1;
                double (*f)(double), double tol, double *xmin);  /* Stepm, step in month: minimum step interpolation*/
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int estepm;
               double *fc, double (*func)(double));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   int j;  
   double xx,xmin,bx,ax;  int m,nb;
   double fx,fb,fa;  long *num;
    int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   ncom=n;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   pcom=vector(1,n);  double **pmmij, ***probs;
   xicom=vector(1,n);  double *ageexmed,*agecens;
   nrfunc=func;  double dateintmean=0;
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  double *weight;
     xicom[j]=xi[j];  int **s; /* Status */
   }  double *agedc, **covar, idx;
   ax=0.0;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   xx=1.0;  double *lsurv, *lpop, *tpop;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 #ifdef DEBUG  double ftolhess; /* Tolerance for computing hessian */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  /**************** split *************************/
   for (j=1;j<=n;j++) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     xi[j] *= xmin;  {
     p[j] += xi[j];    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   free_vector(xicom,1,n);    */ 
   free_vector(pcom,1,n);    char  *ss;                            /* pointer */
 }    int   l1, l2;                         /* length counters */
   
 /*************** powell ************************/    l1 = strlen(path );                   /* length of path */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
             double (*func)(double []))    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   void linmin(double p[], double xi[], int n, double *fret,      strcpy( name, path );               /* we got the fullname name because no directory */
               double (*func)(double []));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   int i,ibig,j;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double del,t,*pt,*ptt,*xit;      /* get current working directory */
   double fp,fptt;      /*    extern  char* getcwd ( char *buf , int len);*/
   double *xits;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   pt=vector(1,n);        return( GLOCK_ERROR_GETCWD );
   ptt=vector(1,n);      }
   xit=vector(1,n);      /* got dirc from getcwd*/
   xits=vector(1,n);      printf(" DIRC = %s \n",dirc);
   *fret=(*func)(p);    } else {                              /* strip direcotry from path */
   for (j=1;j<=n;j++) pt[j]=p[j];      ss++;                               /* after this, the filename */
   for (*iter=1;;++(*iter)) {      l2 = strlen( ss );                  /* length of filename */
     fp=(*fret);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     ibig=0;      strcpy( name, ss );         /* save file name */
     del=0.0;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      dirc[l1-l2] = 0;                    /* add zero */
     for (i=1;i<=n;i++)      printf(" DIRC2 = %s \n",dirc);
       printf(" %d %.12f",i, p[i]);    }
     printf("\n");    /* We add a separator at the end of dirc if not exists */
     for (i=1;i<=n;i++) {    l1 = strlen( dirc );                  /* length of directory */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    if( dirc[l1-1] != DIRSEPARATOR ){
       fptt=(*fret);      dirc[l1] =  DIRSEPARATOR;
 #ifdef DEBUG      dirc[l1+1] = 0; 
       printf("fret=%lf \n",*fret);      printf(" DIRC3 = %s \n",dirc);
 #endif    }
       printf("%d",i);fflush(stdout);    ss = strrchr( name, '.' );            /* find last / */
       linmin(p,xit,n,fret,func);    if (ss >0){
       if (fabs(fptt-(*fret)) > del) {      ss++;
         del=fabs(fptt-(*fret));      strcpy(ext,ss);                     /* save extension */
         ibig=i;      l1= strlen( name);
       }      l2= strlen(ss)+1;
 #ifdef DEBUG      strncpy( finame, name, l1-l2);
       printf("%d %.12e",i,(*fret));      finame[l1-l2]= 0;
       for (j=1;j<=n;j++) {    }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);    return( 0 );                          /* we're done */
       }  }
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  
       printf("\n");  /******************************************/
 #endif  
     }  void replace_back_to_slash(char *s, char*t)
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  {
 #ifdef DEBUG    int i;
       int k[2],l;    int lg=0;
       k[0]=1;    i=0;
       k[1]=-1;    lg=strlen(t);
       printf("Max: %.12e",(*func)(p));    for(i=0; i<= lg; i++) {
       for (j=1;j<=n;j++)      (s[i] = t[i]);
         printf(" %.12e",p[j]);      if (t[i]== '\\') s[i]='/';
       printf("\n");    }
       for(l=0;l<=1;l++) {  }
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  int nbocc(char *s, char occ)
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  {
         }    int i,j=0;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    int lg=20;
       }    i=0;
 #endif    lg=strlen(s);
     for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
       free_vector(xit,1,n);    }
       free_vector(xits,1,n);    return j;
       free_vector(ptt,1,n);  }
       free_vector(pt,1,n);  
       return;  void cutv(char *u,char *v, char*t, char occ)
     }  {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     for (j=1;j<=n;j++) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       ptt[j]=2.0*p[j]-pt[j];       gives u="abcedf" and v="ghi2j" */
       xit[j]=p[j]-pt[j];    int i,lg,j,p=0;
       pt[j]=p[j];    i=0;
     }    for(j=0; j<=strlen(t)-1; j++) {
     fptt=(*func)(ptt);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     if (fptt < fp) {    }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {    lg=strlen(t);
         linmin(p,xit,n,fret,func);    for(j=0; j<p; j++) {
         for (j=1;j<=n;j++) {      (u[j] = t[j]);
           xi[j][ibig]=xi[j][n];    }
           xi[j][n]=xit[j];       u[p]='\0';
         }  
 #ifdef DEBUG     for(j=0; j<= lg; j++) {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      if (j>=(p+1))(v[j-p-1] = t[j]);
         for(j=1;j<=n;j++)    }
           printf(" %.12e",xit[j]);  }
         printf("\n");  
 #endif  /********************** nrerror ********************/
       }  
     }  void nrerror(char error_text[])
   }  {
 }    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
 /**** Prevalence limit ****************/    exit(EXIT_FAILURE);
   }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /*********************** vector *******************/
 {  double *vector(int nl, int nh)
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  {
      matrix by transitions matrix until convergence is reached */    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   int i, ii,j,k;    if (!v) nrerror("allocation failure in vector");
   double min, max, maxmin, maxmax,sumnew=0.;    return v-nl+NR_END;
   double **matprod2();  }
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /************************ free vector ******************/
   double agefin, delaymax=50 ; /* Max number of years to converge */  void free_vector(double*v, int nl, int nh)
   {
   for (ii=1;ii<=nlstate+ndeath;ii++)    free((FREE_ARG)(v+nl-NR_END));
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /************************ivector *******************************/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  int *ivector(long nl,long nh)
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  {
     newm=savm;    int *v;
     /* Covariates have to be included here again */    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     cov[1]=1.;    if (!v) nrerror("allocation failure in ivector");
     cov[2]=agefin;    return v-nl+NR_END;
     if (cptcovn>0){  }
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}  
     }  /******************free ivector **************************/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  void free_ivector(int *v, long nl, long nh)
   {
     savm=oldm;    free((FREE_ARG)(v+nl-NR_END));
     oldm=newm;  }
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /************************lvector *******************************/
       min=1.;  long *lvector(long nl,long nh)
       max=0.;  {
       for(i=1; i<=nlstate; i++) {    long *v;
         sumnew=0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    if (!v) nrerror("allocation failure in ivector");
         prlim[i][j]= newm[i][j]/(1-sumnew);    return v-nl+NR_END;
         max=FMAX(max,prlim[i][j]);  }
         min=FMIN(min,prlim[i][j]);  
       }  /******************free lvector **************************/
       maxmin=max-min;  void free_lvector(long *v, long nl, long nh)
       maxmax=FMAX(maxmax,maxmin);  {
     }    free((FREE_ARG)(v+nl-NR_END));
     if(maxmax < ftolpl){  }
       return prlim;  
     }  /******************* imatrix *******************************/
   }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 /*************** transition probabilities **********/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    
 {    /* allocate pointers to rows */ 
   double s1, s2;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   /*double t34;*/    if (!m) nrerror("allocation failure 1 in matrix()"); 
   int i,j,j1, nc, ii, jj;    m += NR_END; 
     m -= nrl; 
     for(i=1; i<= nlstate; i++){    
     for(j=1; j<i;j++){    
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* allocate rows and set pointers to them */ 
         /*s2 += param[i][j][nc]*cov[nc];*/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    m[nrl] += NR_END; 
       }    m[nrl] -= ncl; 
       ps[i][j]=s2;    
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     }    
     for(j=i+1; j<=nlstate+ndeath;j++){    /* return pointer to array of pointers to rows */ 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return m; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  /****************** free_imatrix *************************/
       ps[i][j]=s2;  void free_imatrix(m,nrl,nrh,ncl,nch)
     }        int **m;
   }        long nch,ncl,nrh,nrl; 
   for(i=1; i<= nlstate; i++){       /* free an int matrix allocated by imatrix() */ 
      s1=0;  { 
     for(j=1; j<i; j++)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       s1+=exp(ps[i][j]);    free((FREE_ARG) (m+nrl-NR_END)); 
     for(j=i+1; j<=nlstate+ndeath; j++)  } 
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  /******************* matrix *******************************/
     for(j=1; j<i; j++)  double **matrix(long nrl, long nrh, long ncl, long nch)
       ps[i][j]= exp(ps[i][j])*ps[i][i];  {
     for(j=i+1; j<=nlstate+ndeath; j++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double **m;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    m += NR_END;
     for(jj=1; jj<= nlstate+ndeath; jj++){    m -= nrl;
       ps[ii][jj]=0;  
       ps[ii][ii]=1;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   }    m[nrl] += NR_END;
     m[nrl] -= ncl;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      printf("%lf ",ps[ii][jj]);    return m;
    }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     printf("\n ");     */
     }  }
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  /*************************free matrix ************************/
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   goto end;*/  {
     return ps;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 }    free((FREE_ARG)(m+nrl-NR_END));
   }
 /**************** Product of 2 matrices ******************/  
   /******************* ma3x *******************************/
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 {  {
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double ***m;
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      a pointer to pointers identical to out */    if (!m) nrerror("allocation failure 1 in matrix()");
   long i, j, k;    m += NR_END;
   for(i=nrl; i<= nrh; i++)    m -= nrl;
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         out[i][k] +=in[i][j]*b[j][k];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
   return out;    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
 /************* Higher Matrix Product ***************/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    m[nrl][ncl] += NR_END;
 {    m[nrl][ncl] -= nll;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    for (j=ncl+1; j<=nch; j++) 
      duration (i.e. until      m[nrl][j]=m[nrl][j-1]+nlay;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    for (i=nrl+1; i<=nrh; i++) {
      (typically every 2 years instead of every month which is too big).      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
      Model is determined by parameters x and covariates have to be      for (j=ncl+1; j<=nch; j++) 
      included manually here.        m[i][j]=m[i][j-1]+nlay;
     }
      */    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   int i, j, d, h, k;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double **out, cov[NCOVMAX];    */
   double **newm;  }
   
   /* Hstepm could be zero and should return the unit matrix */  /*************************free ma3x ************************/
   for (i=1;i<=nlstate+ndeath;i++)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[i][j]=(i==j ? 1.0 : 0.0);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       po[i][j][0]=(i==j ? 1.0 : 0.0);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  }
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  /*************** function subdirf ***********/
       newm=savm;  char *subdirf(char fileres[])
       /* Covariates have to be included here again */  {
       cov[1]=1.;    /* Caution optionfilefiname is hidden */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    strcpy(tmpout,optionfilefiname);
       if (cptcovn>0){    strcat(tmpout,"/"); /* Add to the right */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    strcat(tmpout,fileres);
     }    return tmpout;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /*************** function subdirf2 ***********/
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  char *subdirf2(char fileres[], char *preop)
       savm=oldm;  {
       oldm=newm;    
     }    /* Caution optionfilefiname is hidden */
     for(i=1; i<=nlstate+ndeath; i++)    strcpy(tmpout,optionfilefiname);
       for(j=1;j<=nlstate+ndeath;j++) {    strcat(tmpout,"/");
         po[i][j][h]=newm[i][j];    strcat(tmpout,preop);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    strcat(tmpout,fileres);
          */    return tmpout;
       }  }
   } /* end h */  
   return po;  /*************** function subdirf3 ***********/
 }  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
     
 /*************** log-likelihood *************/    /* Caution optionfilefiname is hidden */
 double func( double *x)    strcpy(tmpout,optionfilefiname);
 {    strcat(tmpout,"/");
   int i, ii, j, k, mi, d;    strcat(tmpout,preop);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    strcat(tmpout,preop2);
   double **out;    strcat(tmpout,fileres);
   double sw; /* Sum of weights */    return tmpout;
   double lli; /* Individual log likelihood */  }
   long ipmx;  
   /*extern weight */  /***************** f1dim *************************/
   /* We are differentiating ll according to initial status */  extern int ncom; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  extern double *pcom,*xicom;
   /*for(i=1;i<imx;i++)  extern double (*nrfunc)(double []); 
 printf(" %d\n",s[4][i]);   
   */  double f1dim(double x) 
   { 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    int j; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double f;
        for(mi=1; mi<= wav[i]-1; mi++){    double *xt; 
       for (ii=1;ii<=nlstate+ndeath;ii++)   
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    xt=vector(1,ncom); 
             for(d=0; d<dh[mi][i]; d++){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         newm=savm;    f=(*nrfunc)(xt); 
           cov[1]=1.;    free_vector(xt,1,ncom); 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    return f; 
           if (cptcovn>0){  } 
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];  
             }  /*****************brent *************************/
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  { 
           savm=oldm;    int iter; 
           oldm=newm;    double a,b,d,etemp;
     double fu,fv,fw,fx;
     double ftemp;
       } /* end mult */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
        double e=0.0; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);   
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    a=(ax < cx ? ax : cx); 
       ipmx +=1;    b=(ax > cx ? ax : cx); 
       sw += weight[i];    x=w=v=bx; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    fw=fv=fx=(*f)(x); 
     } /* end of wave */    for (iter=1;iter<=ITMAX;iter++) { 
   } /* end of individual */      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      printf(".");fflush(stdout);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      fprintf(ficlog,".");fflush(ficlog);
   return -l;  #ifdef DEBUG
 }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 /*********** Maximum Likelihood Estimation ***************/  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        *xmin=x; 
 {        return fx; 
   int i,j, iter;      } 
   double **xi,*delti;      ftemp=fu;
   double fret;      if (fabs(e) > tol1) { 
   xi=matrix(1,npar,1,npar);        r=(x-w)*(fx-fv); 
   for (i=1;i<=npar;i++)        q=(x-v)*(fx-fw); 
     for (j=1;j<=npar;j++)        p=(x-v)*q-(x-w)*r; 
       xi[i][j]=(i==j ? 1.0 : 0.0);        q=2.0*(q-r); 
   printf("Powell\n");        if (q > 0.0) p = -p; 
   powell(p,xi,npar,ftol,&iter,&fret,func);        q=fabs(q); 
         etemp=e; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        e=d; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 }        else { 
           d=p/q; 
 /**** Computes Hessian and covariance matrix ***/          u=x+d; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          if (u-a < tol2 || b-u < tol2) 
 {            d=SIGN(tol1,xm-x); 
   double  **a,**y,*x,pd;        } 
   double **hess;      } else { 
   int i, j,jk;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   int *indx;      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double hessii(double p[], double delta, int theta, double delti[]);      fu=(*f)(u); 
   double hessij(double p[], double delti[], int i, int j);      if (fu <= fx) { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        if (u >= x) a=x; else b=x; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
           } else { 
   hess=matrix(1,npar,1,npar);            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
   printf("\nCalculation of the hessian matrix. Wait...\n");              v=w; 
   for (i=1;i<=npar;i++){              w=u; 
     printf("%d",i);fflush(stdout);              fv=fw; 
     hess[i][i]=hessii(p,ftolhess,i,delti);              fw=fu; 
     /*printf(" %f ",p[i]);*/            } else if (fu <= fv || v == x || v == w) { 
   }              v=u; 
               fv=fu; 
   for (i=1;i<=npar;i++) {            } 
     for (j=1;j<=npar;j++)  {          } 
       if (j>i) {    } 
         printf(".%d%d",i,j);fflush(stdout);    nrerror("Too many iterations in brent"); 
         hess[i][j]=hessij(p,delti,i,j);    *xmin=x; 
         hess[j][i]=hess[i][j];    return fx; 
       }  } 
     }  
   }  /****************** mnbrak ***********************/
   printf("\n");  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");              double (*func)(double)) 
    { 
   a=matrix(1,npar,1,npar);    double ulim,u,r,q, dum;
   y=matrix(1,npar,1,npar);    double fu; 
   x=vector(1,npar);   
   indx=ivector(1,npar);    *fa=(*func)(*ax); 
   for (i=1;i<=npar;i++)    *fb=(*func)(*bx); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    if (*fb > *fa) { 
   ludcmp(a,npar,indx,&pd);      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
   for (j=1;j<=npar;j++) {        } 
     for (i=1;i<=npar;i++) x[i]=0;    *cx=(*bx)+GOLD*(*bx-*ax); 
     x[j]=1;    *fc=(*func)(*cx); 
     lubksb(a,npar,indx,x);    while (*fb > *fc) { 
     for (i=1;i<=npar;i++){      r=(*bx-*ax)*(*fb-*fc); 
       matcov[i][j]=x[i];      q=(*bx-*cx)*(*fb-*fa); 
     }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   printf("\n#Hessian matrix#\n");      if ((*bx-u)*(u-*cx) > 0.0) { 
   for (i=1;i<=npar;i++) {        fu=(*func)(u); 
     for (j=1;j<=npar;j++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       printf("%.3e ",hess[i][j]);        fu=(*func)(u); 
     }        if (fu < *fc) { 
     printf("\n");          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   }            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
   /* Recompute Inverse */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   for (i=1;i<=npar;i++)        u=ulim; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        fu=(*func)(u); 
   ludcmp(a,npar,indx,&pd);      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
   /*  printf("\n#Hessian matrix recomputed#\n");        fu=(*func)(u); 
       } 
   for (j=1;j<=npar;j++) {      SHFT(*ax,*bx,*cx,u) 
     for (i=1;i<=npar;i++) x[i]=0;        SHFT(*fa,*fb,*fc,fu) 
     x[j]=1;        } 
     lubksb(a,npar,indx,x);  } 
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  /*************** linmin ************************/
       printf("%.3e ",y[i][j]);  
     }  int ncom; 
     printf("\n");  double *pcom,*xicom;
   }  double (*nrfunc)(double []); 
   */   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   free_matrix(a,1,npar,1,npar);  { 
   free_matrix(y,1,npar,1,npar);    double brent(double ax, double bx, double cx, 
   free_vector(x,1,npar);                 double (*f)(double), double tol, double *xmin); 
   free_ivector(indx,1,npar);    double f1dim(double x); 
   free_matrix(hess,1,npar,1,npar);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
     int j; 
 }    double xx,xmin,bx,ax; 
     double fx,fb,fa;
 /*************** hessian matrix ****************/   
 double hessii( double x[], double delta, int theta, double delti[])    ncom=n; 
 {    pcom=vector(1,n); 
   int i;    xicom=vector(1,n); 
   int l=1, lmax=20;    nrfunc=func; 
   double k1,k2;    for (j=1;j<=n;j++) { 
   double p2[NPARMAX+1];      pcom[j]=p[j]; 
   double res;      xicom[j]=xi[j]; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    } 
   double fx;    ax=0.0; 
   int k=0,kmax=10;    xx=1.0; 
   double l1;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   fx=func(x);  #ifdef DEBUG
   for (i=1;i<=npar;i++) p2[i]=x[i];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for(l=0 ; l <=lmax; l++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     l1=pow(10,l);  #endif
     delts=delt;    for (j=1;j<=n;j++) { 
     for(k=1 ; k <kmax; k=k+1){      xi[j] *= xmin; 
       delt = delta*(l1*k);      p[j] += xi[j]; 
       p2[theta]=x[theta] +delt;    } 
       k1=func(p2)-fx;    free_vector(xicom,1,n); 
       p2[theta]=x[theta]-delt;    free_vector(pcom,1,n); 
       k2=func(p2)-fx;  } 
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  char *asc_diff_time(long time_sec, char ascdiff[])
        {
 #ifdef DEBUG    long sec_left, days, hours, minutes;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    days = (time_sec) / (60*60*24);
 #endif    sec_left = (time_sec) % (60*60*24);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    hours = (sec_left) / (60*60) ;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    sec_left = (sec_left) %(60*60);
         k=kmax;    minutes = (sec_left) /60;
       }    sec_left = (sec_left) % (60);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         k=kmax; l=lmax*10.;    return ascdiff;
       }  }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;  /*************** powell ************************/
       }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     }              double (*func)(double [])) 
   }  { 
   delti[theta]=delts;    void linmin(double p[], double xi[], int n, double *fret, 
   return res;                double (*func)(double [])); 
      int i,ibig,j; 
 }    double del,t,*pt,*ptt,*xit;
     double fp,fptt;
 double hessij( double x[], double delti[], int thetai,int thetaj)    double *xits;
 {    int niterf, itmp;
   int i;  
   int l=1, l1, lmax=20;    pt=vector(1,n); 
   double k1,k2,k3,k4,res,fx;    ptt=vector(1,n); 
   double p2[NPARMAX+1];    xit=vector(1,n); 
   int k;    xits=vector(1,n); 
     *fret=(*func)(p); 
   fx=func(x);    for (j=1;j<=n;j++) pt[j]=p[j]; 
   for (k=1; k<=2; k++) {    for (*iter=1;;++(*iter)) { 
     for (i=1;i<=npar;i++) p2[i]=x[i];      fp=(*fret); 
     p2[thetai]=x[thetai]+delti[thetai]/k;      ibig=0; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      del=0.0; 
     k1=func(p2)-fx;      last_time=curr_time;
        (void) gettimeofday(&curr_time,&tzp);
     p2[thetai]=x[thetai]+delti[thetai]/k;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     k2=func(p2)-fx;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       for (i=1;i<=n;i++) {
     p2[thetai]=x[thetai]-delti[thetai]/k;        printf(" %d %.12f",i, p[i]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fprintf(ficlog," %d %.12lf",i, p[i]);
     k3=func(p2)-fx;        fprintf(ficrespow," %.12lf", p[i]);
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;      printf("\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      fprintf(ficlog,"\n");
     k4=func(p2)-fx;      fprintf(ficrespow,"\n");fflush(ficrespow);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      if(*iter <=3){
 #ifdef DEBUG        tm = *localtime(&curr_time.tv_sec);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        strcpy(strcurr,asctime(&tm));
 #endif  /*       asctime_r(&tm,strcurr); */
   }        forecast_time=curr_time; 
   return res;        itmp = strlen(strcurr);
 }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
 /************** Inverse of matrix **************/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 void ludcmp(double **a, int n, int *indx, double *d)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 {        for(niterf=10;niterf<=30;niterf+=10){
   int i,imax,j,k;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   double big,dum,sum,temp;          tmf = *localtime(&forecast_time.tv_sec);
   double *vv;  /*      asctime_r(&tmf,strfor); */
            strcpy(strfor,asctime(&tmf));
   vv=vector(1,n);          itmp = strlen(strfor);
   *d=1.0;          if(strfor[itmp-1]=='\n')
   for (i=1;i<=n;i++) {          strfor[itmp-1]='\0';
     big=0.0;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (j=1;j<=n;j++)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       if ((temp=fabs(a[i][j])) > big) big=temp;        }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      }
     vv[i]=1.0/big;      for (i=1;i<=n;i++) { 
   }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for (j=1;j<=n;j++) {        fptt=(*fret); 
     for (i=1;i<j;i++) {  #ifdef DEBUG
       sum=a[i][j];        printf("fret=%lf \n",*fret);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        fprintf(ficlog,"fret=%lf \n",*fret);
       a[i][j]=sum;  #endif
     }        printf("%d",i);fflush(stdout);
     big=0.0;        fprintf(ficlog,"%d",i);fflush(ficlog);
     for (i=j;i<=n;i++) {        linmin(p,xit,n,fret,func); 
       sum=a[i][j];        if (fabs(fptt-(*fret)) > del) { 
       for (k=1;k<j;k++)          del=fabs(fptt-(*fret)); 
         sum -= a[i][k]*a[k][j];          ibig=i; 
       a[i][j]=sum;        } 
       if ( (dum=vv[i]*fabs(sum)) >= big) {  #ifdef DEBUG
         big=dum;        printf("%d %.12e",i,(*fret));
         imax=i;        fprintf(ficlog,"%d %.12e",i,(*fret));
       }        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     if (j != imax) {          printf(" x(%d)=%.12e",j,xit[j]);
       for (k=1;k<=n;k++) {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         dum=a[imax][k];        }
         a[imax][k]=a[j][k];        for(j=1;j<=n;j++) {
         a[j][k]=dum;          printf(" p=%.12e",p[j]);
       }          fprintf(ficlog," p=%.12e",p[j]);
       *d = -(*d);        }
       vv[imax]=vv[j];        printf("\n");
     }        fprintf(ficlog,"\n");
     indx[j]=imax;  #endif
     if (a[j][j] == 0.0) a[j][j]=TINY;      } 
     if (j != n) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       dum=1.0/(a[j][j]);  #ifdef DEBUG
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        int k[2],l;
     }        k[0]=1;
   }        k[1]=-1;
   free_vector(vv,1,n);  /* Doesn't work */        printf("Max: %.12e",(*func)(p));
 ;        fprintf(ficlog,"Max: %.12e",(*func)(p));
 }        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
 void lubksb(double **a, int n, int *indx, double b[])          fprintf(ficlog," %.12e",p[j]);
 {        }
   int i,ii=0,ip,j;        printf("\n");
   double sum;        fprintf(ficlog,"\n");
          for(l=0;l<=1;l++) {
   for (i=1;i<=n;i++) {          for (j=1;j<=n;j++) {
     ip=indx[i];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     sum=b[ip];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     b[ip]=b[i];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     if (ii)          }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     else if (sum) ii=i;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     b[i]=sum;        }
   }  #endif
   for (i=n;i>=1;i--) {  
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        free_vector(xit,1,n); 
     b[i]=sum/a[i][i];        free_vector(xits,1,n); 
   }        free_vector(ptt,1,n); 
 }        free_vector(pt,1,n); 
         return; 
 /************ Frequencies ********************/      } 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 {  /* Some frequencies */      for (j=1;j<=n;j++) { 
          ptt[j]=2.0*p[j]-pt[j]; 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        xit[j]=p[j]-pt[j]; 
   double ***freq; /* Frequencies */        pt[j]=p[j]; 
   double *pp;      } 
   double pos;      fptt=(*func)(ptt); 
   FILE *ficresp;      if (fptt < fp) { 
   char fileresp[FILENAMELENGTH];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
   pp=vector(1,nlstate);          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
   strcpy(fileresp,"p");            xi[j][ibig]=xi[j][n]; 
   strcat(fileresp,fileres);            xi[j][n]=xit[j]; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {          }
     printf("Problem with prevalence resultfile: %s\n", fileresp);  #ifdef DEBUG
     exit(0);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          for(j=1;j<=n;j++){
   j1=0;            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   j=cptcovn;          }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          printf("\n");
           fprintf(ficlog,"\n");
   for(k1=1; k1<=j;k1++){  #endif
    for(i1=1; i1<=ncodemax[k1];i1++){        }
        j1++;      } 
     } 
         for (i=-1; i<=nlstate+ndeath; i++)    } 
          for (jk=-1; jk<=nlstate+ndeath; jk++)    
            for(m=agemin; m <= agemax+3; m++)  /**** Prevalence limit (stable or period prevalence)  ****************/
              freq[i][jk][m]=0;  
          double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
        for (i=1; i<=imx; i++) {  {
          bool=1;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
          if  (cptcovn>0) {       matrix by transitions matrix until convergence is reached */
            for (z1=1; z1<=cptcovn; z1++)  
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;    int i, ii,j,k;
          }    double min, max, maxmin, maxmax,sumnew=0.;
           if (bool==1) {    double **matprod2();
            for(m=firstpass; m<=lastpass-1; m++){    double **out, cov[NCOVMAX], **pmij();
              if(agev[m][i]==0) agev[m][i]=agemax+1;    double **newm;
              if(agev[m][i]==1) agev[m][i]=agemax+2;    double agefin, delaymax=50 ; /* Max number of years to converge */
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    for (ii=1;ii<=nlstate+ndeath;ii++)
            }      for (j=1;j<=nlstate+ndeath;j++){
          }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        }      }
         if  (cptcovn>0) {  
          fprintf(ficresp, "\n#Variable");     cov[1]=1.;
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);   
        }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
        fprintf(ficresp, "\n#");    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
        for(i=1; i<=nlstate;i++)      newm=savm;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      /* Covariates have to be included here again */
        fprintf(ficresp, "\n");       cov[2]=agefin;
            
   for(i=(int)agemin; i <= (int)agemax+3; i++){        for (k=1; k<=cptcovn;k++) {
     if(i==(int)agemax+3)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       printf("Total");          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     else        }
       printf("Age %d", i);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovprod;k++)
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         pp[jk] += freq[jk][m][i];  
     }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for(jk=1; jk <=nlstate ; jk++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       for(m=-1, pos=0; m <=0 ; m++)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         pos += freq[jk][m][i];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       if(pp[jk]>=1.e-10)  
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      savm=oldm;
       else      oldm=newm;
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      maxmax=0.;
     }      for(j=1;j<=nlstate;j++){
     for(jk=1; jk <=nlstate ; jk++){        min=1.;
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)        max=0.;
         pp[jk] += freq[jk][m][i];        for(i=1; i<=nlstate; i++) {
     }          sumnew=0;
     for(jk=1,pos=0; jk <=nlstate ; jk++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       pos += pp[jk];          prlim[i][j]= newm[i][j]/(1-sumnew);
     for(jk=1; jk <=nlstate ; jk++){          max=FMAX(max,prlim[i][j]);
       if(pos>=1.e-5)          min=FMIN(min,prlim[i][j]);
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        }
       else        maxmin=max-min;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        maxmax=FMAX(maxmax,maxmin);
       if( i <= (int) agemax){      }
         if(pos>=1.e-5)      if(maxmax < ftolpl){
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        return prlim;
       else      }
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    }
       }  }
     }  
     for(jk=-1; jk <=nlstate+ndeath; jk++)  /*************** transition probabilities ***************/ 
       for(m=-1; m <=nlstate+ndeath; m++)  
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     if(i <= (int) agemax)  {
       fprintf(ficresp,"\n");    double s1, s2;
     printf("\n");    /*double t34;*/
     }    int i,j,j1, nc, ii, jj;
     }  
  }      for(i=1; i<= nlstate; i++){
          for(j=1; j<i;j++){
   fclose(ficresp);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            /*s2 += param[i][j][nc]*cov[nc];*/
   free_vector(pp,1,nlstate);            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 }  /* End of Freq */          }
           ps[i][j]=s2;
 /************* Waves Concatenation ***************/  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for(j=i+1; j<=nlstate+ndeath;j++){
 {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
      Death is a valid wave (if date is known).  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          ps[i][j]=s2;
      and mw[mi+1][i]. dh depends on stepm.        }
      */      }
       /*ps[3][2]=1;*/
   int i, mi, m;      
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      for(i=1; i<= nlstate; i++){
 float sum=0.;        s1=0;
         for(j=1; j<i; j++)
   for(i=1; i<=imx; i++){          s1+=exp(ps[i][j]);
     mi=0;        for(j=i+1; j<=nlstate+ndeath; j++)
     m=firstpass;          s1+=exp(ps[i][j]);
     while(s[m][i] <= nlstate){        ps[i][i]=1./(s1+1.);
       if(s[m][i]>=1)        for(j=1; j<i; j++)
         mw[++mi][i]=m;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       if(m >=lastpass)        for(j=i+1; j<=nlstate+ndeath; j++)
         break;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       else        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         m++;      } /* end i */
     }/* end while */      
     if (s[m][i] > nlstate){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       mi++;     /* Death is another wave */        for(jj=1; jj<= nlstate+ndeath; jj++){
       /* if(mi==0)  never been interviewed correctly before death */          ps[ii][jj]=0;
          /* Only death is a correct wave */          ps[ii][ii]=1;
       mw[mi][i]=m;        }
     }      }
       
     wav[i]=mi;  
     if(mi==0)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   }  /*         printf("ddd %lf ",ps[ii][jj]); */
   /*       } */
   for(i=1; i<=imx; i++){  /*       printf("\n "); */
     for(mi=1; mi<wav[i];mi++){  /*        } */
       if (stepm <=0)  /*        printf("\n ");printf("%lf ",cov[2]); */
         dh[mi][i]=1;         /*
       else{        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         if (s[mw[mi+1][i]][i] > nlstate) {        goto end;*/
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      return ps;
           if(j=0) j=1;  /* Survives at least one month after exam */  }
         }  
         else{  /**************** Product of 2 matrices ******************/
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           if (j >= jmax) jmax=j;  {
           else if (j <= jmin)jmin=j;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           sum=sum+j;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         }    /* in, b, out are matrice of pointers which should have been initialized 
         jk= j/stepm;       before: only the contents of out is modified. The function returns
         jl= j -jk*stepm;       a pointer to pointers identical to out */
         ju= j -(jk+1)*stepm;    long i, j, k;
         if(jl <= -ju)    for(i=nrl; i<= nrh; i++)
           dh[mi][i]=jk;      for(k=ncolol; k<=ncoloh; k++)
         else        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           dh[mi][i]=jk+1;          out[i][k] +=in[i][j]*b[j][k];
         if(dh[mi][i]==0)  
           dh[mi][i]=1; /* At least one step */    return out;
       }  }
     }  
   }  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);  /************* Higher Matrix Product ***************/
 }  
 /*********** Tricode ****************************/  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 void tricode(int *Tvar, int **nbcode, int imx)  {
 {    /* Computes the transition matrix starting at age 'age' over 
   int Ndum[80],ij, k, j, i;       'nhstepm*hstepm*stepm' months (i.e. until
   int cptcode=0;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   for (k=0; k<79; k++) Ndum[k]=0;       nhstepm*hstepm matrices. 
   for (k=1; k<=7; k++) ncodemax[k]=0;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         (typically every 2 years instead of every month which is too big 
   for (j=1; j<=cptcovn; j++) {       for the memory).
     for (i=1; i<=imx; i++) {       Model is determined by parameters x and covariates have to be 
       ij=(int)(covar[Tvar[j]][i]);       included manually here. 
       Ndum[ij]++;  
       if (ij > cptcode) cptcode=ij;       */
     }  
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/    int i, j, d, h, k;
     for (i=0; i<=cptcode; i++) {    double **out, cov[NCOVMAX];
       if(Ndum[i]!=0) ncodemax[j]++;    double **newm;
     }  
      /* Hstepm could be zero and should return the unit matrix */
     ij=1;    for (i=1;i<=nlstate+ndeath;i++)
     for (i=1; i<=ncodemax[j]; i++) {      for (j=1;j<=nlstate+ndeath;j++){
       for (k=0; k<=79; k++) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
         if (Ndum[k] != 0) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
           nbcode[Tvar[j]][ij]=k;      }
           ij++;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         }    for(h=1; h <=nhstepm; h++){
         if (ij > ncodemax[j]) break;      for(d=1; d <=hstepm; d++){
       }          newm=savm;
     }        /* Covariates have to be included here again */
   }          cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
 /*********** Health Expectancies ****************/          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 {  
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   double age, agelim,hf;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   double ***p3mat;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                       pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficreseij,"# Health expectancies\n");        savm=oldm;
   fprintf(ficreseij,"# Age");        oldm=newm;
   for(i=1; i<=nlstate;i++)      }
     for(j=1; j<=nlstate;j++)      for(i=1; i<=nlstate+ndeath; i++)
       fprintf(ficreseij," %1d-%1d",i,j);        for(j=1;j<=nlstate+ndeath;j++) {
   fprintf(ficreseij,"\n");          po[i][j][h]=newm[i][j];
           /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   hstepm=1*YEARM; /*  Every j years of age (in month) */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      /*printf("h=%d ",h);*/
     } /* end h */
   agelim=AGESUP;  /*     printf("\n H=%d \n",h); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    return po;
     /* nhstepm age range expressed in number of stepm */  }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years = 20*12/6=40 stepm */  
     if (stepm >= YEARM) hstepm=1;  /*************** log-likelihood *************/
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */  double func( double *x)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    int i, ii, j, k, mi, d, kk;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      double **out;
     double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
     for(i=1; i<=nlstate;i++)    int s1, s2;
       for(j=1; j<=nlstate;j++)    double bbh, survp;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    long ipmx;
           eij[i][j][(int)age] +=p3mat[i][j][h];    /*extern weight */
         }    /* We are differentiating ll according to initial status */
        /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     hf=1;    /*for(i=1;i<imx;i++) 
     if (stepm >= YEARM) hf=stepm/YEARM;      printf(" %d\n",s[4][i]);
     fprintf(ficreseij,"%.0f",age );    */
     for(i=1; i<=nlstate;i++)    cov[1]=1.;
       for(j=1; j<=nlstate;j++){  
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }  
     fprintf(ficreseij,"\n");    if(mle==1){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /************ Variance ******************/            for (j=1;j<=nlstate+ndeath;j++){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Variance of health expectancies */            }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          for(d=0; d<dh[mi][i]; d++){
   double **newm;            newm=savm;
   double **dnewm,**doldm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i, j, nhstepm, hstepm, h;            for (kk=1; kk<=cptcovage;kk++) {
   int k, cptcode;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    double *xp;            }
   double **gp, **gm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double ***gradg, ***trgradg;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***p3mat;            savm=oldm;
   double age,agelim;            oldm=newm;
   int theta;          } /* end mult */
         
    fprintf(ficresvij,"# Covariances of life expectancies\n");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   fprintf(ficresvij,"# Age");          /* But now since version 0.9 we anticipate for bias at large stepm.
   for(i=1; i<=nlstate;i++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(j=1; j<=nlstate;j++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);           * the nearest (and in case of equal distance, to the lowest) interval but now
   fprintf(ficresvij,"\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   xp=vector(1,npar);           * probability in order to take into account the bias as a fraction of the way
   dnewm=matrix(1,nlstate,1,npar);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   doldm=matrix(1,nlstate,1,nlstate);           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
   hstepm=1*YEARM; /* Every year of age */           * For stepm > 1 the results are less biased than in previous versions. 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */           */
   agelim = AGESUP;          s1=s[mw[mi][i]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          s2=s[mw[mi+1][i]][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          bbh=(double)bh[mi][i]/(double)stepm; 
     if (stepm >= YEARM) hstepm=1;          /* bias bh is positive if real duration
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */           * is higher than the multiple of stepm and negative otherwise.
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     gp=matrix(0,nhstepm,1,nlstate);          if( s2 > nlstate){ 
     gm=matrix(0,nhstepm,1,nlstate);            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
     for(theta=1; theta <=npar; theta++){               die between last step unit time and current  step unit time, 
       for(i=1; i<=npar; i++){ /* Computes gradient */               which is also equal to probability to die before dh 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);               minus probability to die before dh-stepm . 
       }               In version up to 0.92 likelihood was computed
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            as if date of death was unknown. Death was treated as any other
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          health state: the date of the interview describes the actual state
       for(j=1; j<= nlstate; j++){          and not the date of a change in health state. The former idea was
         for(h=0; h<=nhstepm; h++){          to consider that at each interview the state was recorded
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          (healthy, disable or death) and IMaCh was corrected; but when we
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          introduced the exact date of death then we should have modified
         }          the contribution of an exact death to the likelihood. This new
       }          contribution is smaller and very dependent of the step unit
              stepm. It is no more the probability to die between last interview
       for(i=1; i<=npar; i++) /* Computes gradient */          and month of death but the probability to survive from last
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          interview up to one month before death multiplied by the
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            probability to die within a month. Thanks to Chris
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          Jackson for correcting this bug.  Former versions increased
       for(j=1; j<= nlstate; j++){          mortality artificially. The bad side is that we add another loop
         for(h=0; h<=nhstepm; h++){          which slows down the processing. The difference can be up to 10%
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          lower mortality.
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            */
         }            lli=log(out[s1][s2] - savm[s1][s2]);
       }  
       for(j=1; j<= nlstate; j++)  
         for(h=0; h<=nhstepm; h++){          } else if  (s2==-2) {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            for (j=1,survp=0. ; j<=nlstate; j++) 
         }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     } /* End theta */            /*survp += out[s1][j]; */
             lli= log(survp);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          }
           
     for(h=0; h<=nhstepm; h++)          else if  (s2==-4) { 
       for(j=1; j<=nlstate;j++)            for (j=3,survp=0. ; j<=nlstate; j++)  
         for(theta=1; theta <=npar; theta++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           trgradg[h][j][theta]=gradg[h][theta][j];            lli= log(survp); 
           } 
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)          else if  (s2==-5) { 
         vareij[i][j][(int)age] =0.;            for (j=1,survp=0. ; j<=2; j++)  
     for(h=0;h<=nhstepm;h++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(k=0;k<=nhstepm;k++){            lli= log(survp); 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          } 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          
         for(i=1;i<=nlstate;i++)          else{
           for(j=1;j<=nlstate;j++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             vareij[i][j][(int)age] += doldm[i][j];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       }          } 
     }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     h=1;          /*if(lli ==000.0)*/
     if (stepm >= YEARM) h=stepm/YEARM;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     fprintf(ficresvij,"%.0f ",age );          ipmx +=1;
     for(i=1; i<=nlstate;i++)          sw += weight[i];
       for(j=1; j<=nlstate;j++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);        } /* end of wave */
       }      } /* end of individual */
     fprintf(ficresvij,"\n");    }  else if(mle==2){
     free_matrix(gp,0,nhstepm,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_matrix(gm,0,nhstepm,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (j=1;j<=nlstate+ndeath;j++){
   } /* End age */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(xp,1,npar);            }
   free_matrix(doldm,1,nlstate,1,npar);          for(d=0; d<=dh[mi][i]; d++){
   free_matrix(dnewm,1,nlstate,1,nlstate);            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************ Variance of prevlim ******************/            }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* Variance of prevalence limit */            savm=oldm;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            oldm=newm;
   double **newm;          } /* end mult */
   double **dnewm,**doldm;        
   int i, j, nhstepm, hstepm;          s1=s[mw[mi][i]][i];
   int k, cptcode;          s2=s[mw[mi+1][i]][i];
   double *xp;          bbh=(double)bh[mi][i]/(double)stepm; 
   double *gp, *gm;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double **gradg, **trgradg;          ipmx +=1;
   double age,agelim;          sw += weight[i];
   int theta;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            } /* end of wave */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      } /* end of individual */
   fprintf(ficresvpl,"# Age");    }  else if(mle==3){  /* exponential inter-extrapolation */
   for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficresvpl," %1d-%1d",i,i);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficresvpl,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   xp=vector(1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   dnewm=matrix(1,nlstate,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   hstepm=1*YEARM; /* Every year of age */          for(d=0; d<dh[mi][i]; d++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            newm=savm;
   agelim = AGESUP;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (kk=1; kk<=cptcovage;kk++) {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (stepm >= YEARM) hstepm=1;            }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     gradg=matrix(1,npar,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gp=vector(1,nlstate);            savm=oldm;
     gm=vector(1,nlstate);            oldm=newm;
           } /* end mult */
     for(theta=1; theta <=npar; theta++){        
       for(i=1; i<=npar; i++){ /* Computes gradient */          s1=s[mw[mi][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(i=1;i<=nlstate;i++)          ipmx +=1;
         gp[i] = prlim[i][i];          sw += weight[i];
              ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1; i<=npar; i++) /* Computes gradient */        } /* end of wave */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      } /* end of individual */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for(i=1;i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         gm[i] = prlim[i][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
       for(i=1;i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            for (j=1;j<=nlstate+ndeath;j++){
     } /* End theta */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     trgradg =matrix(1,nlstate,1,npar);            }
           for(d=0; d<dh[mi][i]; d++){
     for(j=1; j<=nlstate;j++)            newm=savm;
       for(theta=1; theta <=npar; theta++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         trgradg[j][theta]=gradg[theta][j];            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i=1;i<=nlstate;i++)            }
       varpl[i][(int)age] =0.;          
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(i=1;i<=nlstate;i++)            savm=oldm;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            oldm=newm;
           } /* end mult */
     fprintf(ficresvpl,"%.0f ",age );        
     for(i=1; i<=nlstate;i++)          s1=s[mw[mi][i]][i];
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          s2=s[mw[mi+1][i]][i];
     fprintf(ficresvpl,"\n");          if( s2 > nlstate){ 
     free_vector(gp,1,nlstate);            lli=log(out[s1][s2] - savm[s1][s2]);
     free_vector(gm,1,nlstate);          }else{
     free_matrix(gradg,1,npar,1,nlstate);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     free_matrix(trgradg,1,nlstate,1,npar);          }
   } /* End age */          ipmx +=1;
           sw += weight[i];
   free_vector(xp,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_matrix(doldm,1,nlstate,1,npar);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   free_matrix(dnewm,1,nlstate,1,nlstate);        } /* end of wave */
       } /* end of individual */
 }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /***********************************************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 /**************** Main Program *****************/            for (j=1;j<=nlstate+ndeath;j++){
 /***********************************************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*int main(int argc, char *argv[])*/            }
 int main()          for(d=0; d<dh[mi][i]; d++){
 {            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;            for (kk=1; kk<=cptcovage;kk++) {
   double agedeb, agefin,hf;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double agemin=1.e20, agemax=-1.e20;            }
           
   double fret;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **xi,tmp,delta;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   double dum; /* Dummy variable */            oldm=newm;
   double ***p3mat;          } /* end mult */
   int *indx;        
   char line[MAXLINE], linepar[MAXLINE];          s1=s[mw[mi][i]][i];
   char title[MAXLINE];          s2=s[mw[mi+1][i]][i];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];          ipmx +=1;
   char filerest[FILENAMELENGTH];          sw += weight[i];
   char fileregp[FILENAMELENGTH];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   int firstobs=1, lastobs=10;        } /* end of wave */
   int sdeb, sfin; /* Status at beginning and end */      } /* end of individual */
   int c,  h , cpt,l;    } /* End of if */
   int ju,jl, mi;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      return -l;
   int hstepm, nhstepm;  }
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;  /*************** log-likelihood *************/
   double **prlim;  double funcone( double *x)
   double *severity;  {
   double ***param; /* Matrix of parameters */    /* Same as likeli but slower because of a lot of printf and if */
   double  *p;    int i, ii, j, k, mi, d, kk;
   double **matcov; /* Matrix of covariance */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double ***delti3; /* Scale */    double **out;
   double *delti; /* Scale */    double lli; /* Individual log likelihood */
   double ***eij, ***vareij;    double llt;
   double **varpl; /* Variances of prevalence limits by age */    int s1, s2;
   double *epj, vepp;    double bbh, survp;
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";    /*extern weight */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   char z[1]="c", occ;    /*for(i=1;i<imx;i++) 
 #include <sys/time.h>      printf(" %d\n",s[4][i]);
 #include <time.h>    */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    cov[1]=1.;
   /* long total_usecs;  
   struct timeval start_time, end_time;    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
   printf("\nIMACH, Version 0.64a");        for (ii=1;ii<=nlstate+ndeath;ii++)
   printf("\nEnter the parameter file name: ");          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 #ifdef windows            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   scanf("%s",pathtot);          }
   getcwd(pathcd, size);        for(d=0; d<dh[mi][i]; d++){
   /*cygwin_split_path(pathtot,path,optionfile);          newm=savm;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* cutv(path,optionfile,pathtot,'\\');*/          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 split(pathtot, path,optionfile);          }
   chdir(path);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   replace(pathc,path);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 #endif          savm=oldm;
 #ifdef unix          oldm=newm;
   scanf("%s",optionfile);        } /* end mult */
 #endif        
         s1=s[mw[mi][i]][i];
 /*-------- arguments in the command line --------*/        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
   strcpy(fileres,"r");        /* bias is positive if real duration
   strcat(fileres, optionfile);         * is higher than the multiple of stepm and negative otherwise.
          */
   /*---------arguments file --------*/        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        } else if  (s2==-2) {
     printf("Problem with optionfile %s\n",optionfile);          for (j=1,survp=0. ; j<=nlstate; j++) 
     goto end;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   }          lli= log(survp);
         }else if (mle==1){
   strcpy(filereso,"o");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   strcat(filereso,fileres);        } else if(mle==2){
   if((ficparo=fopen(filereso,"w"))==NULL) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        } else if(mle==3){  /* exponential inter-extrapolation */
   }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
   /* Reads comments: lines beginning with '#' */          lli=log(out[s1][s2]); /* Original formula */
   while((c=getc(ficpar))=='#' && c!= EOF){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     ungetc(c,ficpar);          lli=log(out[s1][s2]); /* Original formula */
     fgets(line, MAXLINE, ficpar);        } /* End of if */
     puts(line);        ipmx +=1;
     fputs(line,ficparo);        sw += weight[i];
   }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   ungetc(c,ficpar);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);   %11.6f %11.6f %11.6f ", \
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   covar=matrix(1,NCOVMAX,1,n);              for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   if (strlen(model)<=1) cptcovn=0;            llt +=ll[k]*gipmx/gsw;
   else {            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     j=0;          }
     j=nbocc(model,'+');          fprintf(ficresilk," %10.6f\n", -llt);
     cptcovn=j+1;        }
   }      } /* end of wave */
     } /* end of individual */
   ncovmodel=2+cptcovn;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /* Read guess parameters */    if(globpr==0){ /* First time we count the contributions and weights */
   /* Reads comments: lines beginning with '#' */      gipmx=ipmx;
   while((c=getc(ficpar))=='#' && c!= EOF){      gsw=sw;
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    return -l;
     puts(line);  }
     fputs(line,ficparo);  
   }  
   ungetc(c,ficpar);  /*************** function likelione ***********/
    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  {
     for(i=1; i <=nlstate; i++)    /* This routine should help understanding what is done with 
     for(j=1; j <=nlstate+ndeath-1; j++){       the selection of individuals/waves and
       fscanf(ficpar,"%1d%1d",&i1,&j1);       to check the exact contribution to the likelihood.
       fprintf(ficparo,"%1d%1d",i1,j1);       Plotting could be done.
       printf("%1d%1d",i,j);     */
       for(k=1; k<=ncovmodel;k++){    int k;
         fscanf(ficpar," %lf",&param[i][j][k]);  
         printf(" %lf",param[i][j][k]);    if(*globpri !=0){ /* Just counts and sums, no printings */
         fprintf(ficparo," %lf",param[i][j][k]);      strcpy(fileresilk,"ilk"); 
       }      strcat(fileresilk,fileres);
       fscanf(ficpar,"\n");      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       printf("\n");        printf("Problem with resultfile: %s\n", fileresilk);
       fprintf(ficparo,"\n");        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     }      }
        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   p=param[1][1];      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
        for(k=1; k<=nlstate; k++) 
   /* Reads comments: lines beginning with '#' */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);  
     puts(line);    *fretone=(*funcone)(p);
     fputs(line,ficparo);    if(*globpri !=0){
   }      fclose(ficresilk);
   ungetc(c,ficpar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    } 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    return;
   for(i=1; i <=nlstate; i++){  }
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);  /*********** Maximum Likelihood Estimation ***************/
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         fscanf(ficpar,"%le",&delti3[i][j][k]);  {
         printf(" %le",delti3[i][j][k]);    int i,j, iter;
         fprintf(ficparo," %le",delti3[i][j][k]);    double **xi;
       }    double fret;
       fscanf(ficpar,"\n");    double fretone; /* Only one call to likelihood */
       printf("\n");    /*  char filerespow[FILENAMELENGTH];*/
       fprintf(ficparo,"\n");    xi=matrix(1,npar,1,npar);
     }    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++)
   delti=delti3[1][1];        xi[i][j]=(i==j ? 1.0 : 0.0);
      printf("Powell\n");  fprintf(ficlog,"Powell\n");
   /* Reads comments: lines beginning with '#' */    strcpy(filerespow,"pow"); 
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(filerespow,fileres);
     ungetc(c,ficpar);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     fgets(line, MAXLINE, ficpar);      printf("Problem with resultfile: %s\n", filerespow);
     puts(line);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     fputs(line,ficparo);    }
   }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   ungetc(c,ficpar);    for (i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate+ndeath;j++)
   matcov=matrix(1,npar,1,npar);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   for(i=1; i <=npar; i++){    fprintf(ficrespow,"\n");
     fscanf(ficpar,"%s",&str);  
     printf("%s",str);    powell(p,xi,npar,ftol,&iter,&fret,func);
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){    free_matrix(xi,1,npar,1,npar);
       fscanf(ficpar," %le",&matcov[i][j]);    fclose(ficrespow);
       printf(" %.5le",matcov[i][j]);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       fprintf(ficparo," %.5le",matcov[i][j]);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fscanf(ficpar,"\n");  
     printf("\n");  }
     fprintf(ficparo,"\n");  
   }  /**** Computes Hessian and covariance matrix ***/
   for(i=1; i <=npar; i++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     for(j=i+1;j<=npar;j++)  {
       matcov[i][j]=matcov[j][i];    double  **a,**y,*x,pd;
        double **hess;
   printf("\n");    int i, j,jk;
     int *indx;
   
    if(mle==1){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     /*-------- data file ----------*/    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     if((ficres =fopen(fileres,"w"))==NULL) {    void lubksb(double **a, int npar, int *indx, double b[]) ;
       printf("Problem with resultfile: %s\n", fileres);goto end;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     }    double gompertz(double p[]);
     fprintf(ficres,"#%s\n",version);    hess=matrix(1,npar,1,npar);
      
     if((fic=fopen(datafile,"r"))==NULL)    {    printf("\nCalculation of the hessian matrix. Wait...\n");
       printf("Problem with datafile: %s\n", datafile);goto end;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     }    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
     n= lastobs;      fprintf(ficlog,"%d",i);fflush(ficlog);
     severity = vector(1,maxwav);     
     outcome=imatrix(1,maxwav+1,1,n);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     num=ivector(1,n);      
     moisnais=vector(1,n);      /*  printf(" %f ",p[i]);
     annais=vector(1,n);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     moisdc=vector(1,n);    }
     andc=vector(1,n);    
     agedc=vector(1,n);    for (i=1;i<=npar;i++) {
     cod=ivector(1,n);      for (j=1;j<=npar;j++)  {
     weight=vector(1,n);        if (j>i) { 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          printf(".%d%d",i,j);fflush(stdout);
     mint=matrix(1,maxwav,1,n);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     anint=matrix(1,maxwav,1,n);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     s=imatrix(1,maxwav+1,1,n);          
     adl=imatrix(1,maxwav+1,1,n);              hess[j][i]=hess[i][j];    
     tab=ivector(1,NCOVMAX);          /*printf(" %lf ",hess[i][j]);*/
     ncodemax=ivector(1,8);        }
       }
     i=1;    }
     while (fgets(line, MAXLINE, fic) != NULL)    {    printf("\n");
       if ((i >= firstobs) && (i <=lastobs)) {    fprintf(ficlog,"\n");
          
         for (j=maxwav;j>=1;j--){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           strcpy(line,stra);    
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    a=matrix(1,npar,1,npar);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    y=matrix(1,npar,1,npar);
         }    x=vector(1,npar);
            indx=ivector(1,npar);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1;i<=npar;i++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      x[j]=1;
         for (j=ncov;j>=1;j--){      lubksb(a,npar,indx,x);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=1;i<=npar;i++){ 
         }        matcov[i][j]=x[i];
         num[i]=atol(stra);      }
     }
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  
     printf("\n#Hessian matrix#\n");
         i=i+1;    fprintf(ficlog,"\n#Hessian matrix#\n");
       }    for (i=1;i<=npar;i++) { 
     }      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
     /*scanf("%d",i);*/        fprintf(ficlog,"%.3e ",hess[i][j]);
   imx=i-1; /* Number of individuals */      }
       printf("\n");
   /* Calculation of the number of parameter from char model*/      fprintf(ficlog,"\n");
   Tvar=ivector(1,8);        }
      
   if (strlen(model) >1){    /* Recompute Inverse */
     j=0;    for (i=1;i<=npar;i++)
     j=nbocc(model,'+');      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     cptcovn=j+1;    ludcmp(a,npar,indx,&pd);
      
     strcpy(modelsav,model);    /*  printf("\n#Hessian matrix recomputed#\n");
     if (j==0) {  
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);    for (j=1;j<=npar;j++) {
     }      for (i=1;i<=npar;i++) x[i]=0;
     else {      x[j]=1;
       for(i=j; i>=1;i--){      lubksb(a,npar,indx,x);
         cutv(stra,strb,modelsav,'+');      for (i=1;i<=npar;i++){ 
         if (strchr(strb,'*')) {        y[i][j]=x[i];
           cutv(strd,strc,strb,'*');        printf("%.3e ",y[i][j]);
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;        fprintf(ficlog,"%.3e ",y[i][j]);
           cutv(strb,strc,strd,'V');      }
           for (k=1; k<=lastobs;k++)      printf("\n");
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      fprintf(ficlog,"\n");
         }    }
         else {cutv(strd,strc,strb,'V');    */
         Tvar[i+1]=atoi(strc);  
         }    free_matrix(a,1,npar,1,npar);
         strcpy(modelsav,stra);      free_matrix(y,1,npar,1,npar);
       }    free_vector(x,1,npar);
       cutv(strd,strc,stra,'V');    free_ivector(indx,1,npar);
       Tvar[1]=atoi(strc);    free_matrix(hess,1,npar,1,npar);
     }  
   }  
   /*printf("tvar=%d ",Tvar[1]);  }
   scanf("%d ",i);*/  
     fclose(fic);  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     if (weightopt != 1) { /* Maximisation without weights*/  {
       for(i=1;i<=n;i++) weight[i]=1.0;    int i;
     }    int l=1, lmax=20;
     /*-calculation of age at interview from date of interview and age at death -*/    double k1,k2;
     agev=matrix(1,maxwav,1,imx);    double p2[NPARMAX+1];
        double res;
     for (i=1; i<=imx; i++)  {    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    double fx;
       for(m=1; (m<= maxwav); m++){    int k=0,kmax=10;
         if(s[m][i] >0){    double l1;
           if (s[m][i] == nlstate+1) {  
             if(agedc[i]>0)    fx=func(x);
               if(moisdc[i]!=99 && andc[i]!=9999)    for (i=1;i<=npar;i++) p2[i]=x[i];
               agev[m][i]=agedc[i];    for(l=0 ; l <=lmax; l++){
             else{      l1=pow(10,l);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      delts=delt;
               agev[m][i]=-1;      for(k=1 ; k <kmax; k=k+1){
             }        delt = delta*(l1*k);
           }        p2[theta]=x[theta] +delt;
           else if(s[m][i] !=9){ /* Should no more exist */        k1=func(p2)-fx;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        p2[theta]=x[theta]-delt;
             if(mint[m][i]==99 || anint[m][i]==9999)        k2=func(p2)-fx;
               agev[m][i]=1;        /*res= (k1-2.0*fx+k2)/delt/delt; */
             else if(agev[m][i] <agemin){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
               agemin=agev[m][i];        
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  #ifdef DEBUG
             }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             else if(agev[m][i] >agemax){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
               agemax=agev[m][i];  #endif
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
             }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
             /*agev[m][i]=anint[m][i]-annais[i];*/          k=kmax;
             /*   agev[m][i] = age[i]+2*m;*/        }
           }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           else { /* =9 */          k=kmax; l=lmax*10.;
             agev[m][i]=1;        }
             s[m][i]=-1;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           }          delts=delt;
         }        }
         else /*= 0 Unknown */      }
           agev[m][i]=1;    }
       }    delti[theta]=delts;
        return res; 
     }    
     for (i=1; i<=imx; i++)  {  }
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           printf("Error: Wrong value in nlstate or ndeath\n");    {
           goto end;    int i;
         }    int l=1, l1, lmax=20;
       }    double k1,k2,k3,k4,res,fx;
     }    double p2[NPARMAX+1];
     int k;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
     fx=func(x);
     free_vector(severity,1,maxwav);    for (k=1; k<=2; k++) {
     free_imatrix(outcome,1,maxwav+1,1,n);      for (i=1;i<=npar;i++) p2[i]=x[i];
     free_vector(moisnais,1,n);      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_vector(annais,1,n);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     free_matrix(mint,1,maxwav,1,n);      k1=func(p2)-fx;
     free_matrix(anint,1,maxwav,1,n);    
     free_vector(moisdc,1,n);      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_vector(andc,1,n);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
        
     wav=ivector(1,imx);      p2[thetai]=x[thetai]-delti[thetai]/k;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      k3=func(p2)-fx;
        
     /* Concatenates waves */      p2[thetai]=x[thetai]-delti[thetai]/k;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 Tcode=ivector(1,100);  #ifdef DEBUG
    nbcode=imatrix(1,nvar,1,8);        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    ncodemax[1]=1;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);  #endif
      }
    codtab=imatrix(1,100,1,10);    return res;
    h=0;  }
    m=pow(2,cptcovn);  
    /************** Inverse of matrix **************/
    for(k=1;k<=cptcovn; k++){  void ludcmp(double **a, int n, int *indx, double *d) 
      for(i=1; i <=(m/pow(2,k));i++){  { 
        for(j=1; j <= ncodemax[k]; j++){    int i,imax,j,k; 
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){    double big,dum,sum,temp; 
            h++;    double *vv; 
            if (h>m) h=1;codtab[h][k]=j;   
          }    vv=vector(1,n); 
        }    *d=1.0; 
      }    for (i=1;i<=n;i++) { 
    }      big=0.0; 
       for (j=1;j<=n;j++) 
    /*for(i=1; i <=m ;i++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
      for(k=1; k <=cptcovn; k++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);      vv[i]=1.0/big; 
      }    } 
      printf("\n");    for (j=1;j<=n;j++) { 
    }*/      for (i=1;i<j;i++) { 
    /*scanf("%d",i);*/        sum=a[i][j]; 
            for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
    /* Calculates basic frequencies. Computes observed prevalence at single age        a[i][j]=sum; 
        and prints on file fileres'p'. */      } 
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);      big=0.0; 
       for (i=j;i<=n;i++) { 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        sum=a[i][j]; 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (k=1;k<j;k++) 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          sum -= a[i][k]*a[k][j]; 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        a[i][j]=sum; 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
              big=dum; 
     /* For Powell, parameters are in a vector p[] starting at p[1]          imax=i; 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        } 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      } 
          if (j != imax) { 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
              a[imax][k]=a[j][k]; 
     /*--------- results files --------------*/          a[j][k]=dum; 
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);        } 
            *d = -(*d); 
    jk=1;        vv[imax]=vv[j]; 
    fprintf(ficres,"# Parameters\n");      } 
    printf("# Parameters\n");      indx[j]=imax; 
    for(i=1,jk=1; i <=nlstate; i++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
      for(k=1; k <=(nlstate+ndeath); k++){      if (j != n) { 
        if (k != i)        dum=1.0/(a[j][j]); 
          {        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
            printf("%d%d ",i,k);      } 
            fprintf(ficres,"%1d%1d ",i,k);    } 
            for(j=1; j <=ncovmodel; j++){    free_vector(vv,1,n);  /* Doesn't work */
              printf("%f ",p[jk]);  ;
              fprintf(ficres,"%f ",p[jk]);  } 
              jk++;  
            }  void lubksb(double **a, int n, int *indx, double b[]) 
            printf("\n");  { 
            fprintf(ficres,"\n");    int i,ii=0,ip,j; 
          }    double sum; 
      }   
    }    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
     /* Computing hessian and covariance matrix */      sum=b[ip]; 
     ftolhess=ftol; /* Usually correct */      b[ip]=b[i]; 
     hesscov(matcov, p, npar, delti, ftolhess, func);      if (ii) 
     fprintf(ficres,"# Scales\n");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     printf("# Scales\n");      else if (sum) ii=i; 
      for(i=1,jk=1; i <=nlstate; i++){      b[i]=sum; 
       for(j=1; j <=nlstate+ndeath; j++){    } 
         if (j!=i) {    for (i=n;i>=1;i--) { 
           fprintf(ficres,"%1d%1d",i,j);      sum=b[i]; 
           printf("%1d%1d",i,j);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           for(k=1; k<=ncovmodel;k++){      b[i]=sum/a[i][i]; 
             printf(" %.5e",delti[jk]);    } 
             fprintf(ficres," %.5e",delti[jk]);  } 
             jk++;  
           }  void pstamp(FILE *fichier)
           printf("\n");  {
           fprintf(ficres,"\n");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         }  }
       }  
       }  /************ Frequencies ********************/
      void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     k=1;  {  /* Some frequencies */
     fprintf(ficres,"# Covariance\n");    
     printf("# Covariance\n");    int i, m, jk, k1,i1, j1, bool, z1,j;
     for(i=1;i<=npar;i++){    int first;
       /*  if (k>nlstate) k=1;    double ***freq; /* Frequencies */
       i1=(i-1)/(ncovmodel*nlstate)+1;    double *pp, **prop;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       printf("%s%d%d",alph[k],i1,tab[i]);*/    char fileresp[FILENAMELENGTH];
       fprintf(ficres,"%3d",i);    
       printf("%3d",i);    pp=vector(1,nlstate);
       for(j=1; j<=i;j++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
         fprintf(ficres," %.5e",matcov[i][j]);    strcpy(fileresp,"p");
         printf(" %.5e",matcov[i][j]);    strcat(fileresp,fileres);
       }    if((ficresp=fopen(fileresp,"w"))==NULL) {
       fprintf(ficres,"\n");      printf("Problem with prevalence resultfile: %s\n", fileresp);
       printf("\n");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       k++;      exit(0);
     }    }
        freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     while((c=getc(ficpar))=='#' && c!= EOF){    j1=0;
       ungetc(c,ficpar);    
       fgets(line, MAXLINE, ficpar);    j=cptcoveff;
       puts(line);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fputs(line,ficparo);  
     }    first=1;
     ungetc(c,ficpar);  
      for(k1=1; k1<=j;k1++){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
     if (fage <= 2) {        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       bage = agemin;          scanf("%d", i);*/
       fage = agemax;        for (i=-5; i<=nlstate+ndeath; i++)  
     }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              freq[i][jk][m]=0;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
 /*------------ gnuplot -------------*/      for (i=1; i<=nlstate; i++)  
 chdir(pathcd);        for(m=iagemin; m <= iagemax+3; m++)
   if((ficgp=fopen("graph.plt","w"))==NULL) {          prop[i][m]=0;
     printf("Problem with file graph.gp");goto end;        
   }        dateintsum=0;
 #ifdef windows        k2cpt=0;
   fprintf(ficgp,"cd \"%s\" \n",pathc);        for (i=1; i<=imx; i++) {
 #endif          bool=1;
 m=pow(2,cptcovn);          if  (cptcovn>0) {
              for (z1=1; z1<=cptcoveff; z1++) 
  /* 1eme*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   for (cpt=1; cpt<= nlstate ; cpt ++) {                bool=0;
    for (k1=1; k1<= m ; k1 ++) {          }
           if (bool==1){
 #ifdef windows            for(m=firstpass; m<=lastpass; m++){
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);              k2=anint[m][i]+(mint[m][i]/12.);
 #endif              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 #ifdef unix                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 #endif                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
 for (i=1; i<= nlstate ; i ++) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");                }
 }                
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     for (i=1; i<= nlstate ; i ++) {                  dateintsum=dateintsum+k2;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                  k2cpt++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                }
 }                /*}*/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            }
      for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");         
 }          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        pstamp(ficresp);
 #ifdef unix        if  (cptcovn>0) {
 fprintf(ficgp,"\nset ter gif small size 400,300");          fprintf(ficresp, "\n#********** Variable "); 
 #endif          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          fprintf(ficresp, "**********\n#");
    }        }
   }        for(i=1; i<=nlstate;i++) 
   /*2 eme*/          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
   for (k1=1; k1<= m ; k1 ++) {        
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);        for(i=iagemin; i <= iagemax+3; i++){
              if(i==iagemax+3){
     for (i=1; i<= nlstate+1 ; i ++) {            fprintf(ficlog,"Total");
       k=2*i;          }else{
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            if(first==1){
       for (j=1; j<= nlstate+1 ; j ++) {              first=0;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              printf("See log file for details...\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }              fprintf(ficlog,"Age %d", i);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       for (j=1; j<= nlstate+1 ; j ++) {              pp[jk] += freq[jk][m][i]; 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=1; jk <=nlstate ; jk++){
 }              for(m=-1, pos=0; m <=0 ; m++)
       fprintf(ficgp,"\" t\"\" w l 0,");              pos += freq[jk][m][i];
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            if(pp[jk]>=1.e-10){
       for (j=1; j<= nlstate+1 ; j ++) {              if(first==1){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }                fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            }else{
       else fprintf(ficgp,"\" t\"\" w l 0,");              if(first==1)
     }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   }            }
            }
   /*3eme*/  
           for(jk=1; jk <=nlstate ; jk++){
   for (k1=1; k1<= m ; k1 ++) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     for (cpt=1; cpt<= nlstate ; cpt ++) {              pp[jk] += freq[jk][m][i];
       k=2+nlstate*(cpt-1);          }       
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       for (i=1; i< nlstate ; i ++) {            pos += pp[jk];
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);            posprop += prop[jk][i];
       }          }
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          for(jk=1; jk <=nlstate ; jk++){
     }            if(pos>=1.e-5){
   }              if(first==1)
                  printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /* CV preval stat */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   for (k1=1; k1<= m ; k1 ++) {            }else{
     for (cpt=1; cpt<nlstate ; cpt ++) {              if(first==1)
       k=3;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for (i=1; i< nlstate ; i ++)            }
         fprintf(ficgp,"+$%d",k+i+1);            if( i <= iagemax){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              if(pos>=1.e-5){
                      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       l=3+(nlstate+ndeath)*cpt;                /*probs[i][jk][j1]= pp[jk]/pos;*/
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       for (i=1; i< nlstate ; i ++) {              }
         l=3+(nlstate+ndeath)*cpt;              else
         fprintf(ficgp,"+$%d",l+i+1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       }            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            }
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          
     }          for(jk=-1; jk <=nlstate+ndeath; jk++)
   }            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
   /* proba elementaires */              if(first==1)
    for(i=1,jk=1; i <=nlstate; i++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(k=1; k <=(nlstate+ndeath); k++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       if (k != i) {              }
         for(j=1; j <=ncovmodel; j++){          if(i <= iagemax)
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/            fprintf(ficresp,"\n");
           /*fprintf(ficgp,"%s",alph[1]);*/          if(first==1)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            printf("Others in log...\n");
           jk++;          fprintf(ficlog,"\n");
           fprintf(ficgp,"\n");        }
         }      }
       }    }
     }    dateintmean=dateintsum/k2cpt; 
     }   
     fclose(ficresp);
   for(jk=1; jk <=m; jk++) {    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    free_vector(pp,1,nlstate);
    i=1;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
    for(k2=1; k2<=nlstate; k2++) {    /* End of Freq */
      k3=i;  }
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){  /************ Prevalence ********************/
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
         for(j=3; j <=ncovmodel; j++)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           fprintf(ficgp,"+p%d*%d",k2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       in each health status at the date of interview (if between dateprev1 and dateprev2).
         fprintf(ficgp,")/(1");       We still use firstpass and lastpass as another selection.
     */
         for(k1=1; k1 <=nlstate+1; k1=k1+2){     
             fprintf(ficgp,"+exp(p%d+p%d*x",k1+k3-1,k1+k3);    int i, m, jk, k1, i1, j1, bool, z1,j;
     double ***freq; /* Frequencies */
             for(j=3; j <=ncovmodel; j++)    double *pp, **prop;
               fprintf(ficgp,"+p%d*%d",k2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double pos,posprop; 
             fprintf(ficgp,")");    double  y2; /* in fractional years */
         }    int iagemin, iagemax;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    iagemin= (int) agemin;
     i=i+ncovmodel;    iagemax= (int) agemax;
        }    /*pp=vector(1,nlstate);*/
      }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
    }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    j1=0;
    }    
        j=cptcoveff;
   fclose(ficgp);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        
 chdir(path);    for(k1=1; k1<=j;k1++){
     free_matrix(agev,1,maxwav,1,imx);      for(i1=1; i1<=ncodemax[k1];i1++){
     free_ivector(wav,1,imx);        j1++;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        for (i=1; i<=nlstate; i++)  
              for(m=iagemin; m <= iagemax+3; m++)
     free_imatrix(s,1,maxwav+1,1,n);            prop[i][m]=0.0;
           
            for (i=1; i<=imx; i++) { /* Each individual */
     free_ivector(num,1,n);          bool=1;
     free_vector(agedc,1,n);          if  (cptcovn>0) {
     free_vector(weight,1,n);            for (z1=1; z1<=cptcoveff; z1++) 
     /*free_matrix(covar,1,NCOVMAX,1,n);*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     fclose(ficparo);                bool=0;
     fclose(ficres);          } 
    }          if (bool==1) { 
                for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
    /*________fin mle=1_________*/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                  if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
     /* No more information from the sample is required now */                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   /* Reads comments: lines beginning with '#' */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   while((c=getc(ficpar))=='#' && c!= EOF){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     ungetc(c,ficpar);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fgets(line, MAXLINE, ficpar);                  prop[s[m][i]][iagemax+3] += weight[i]; 
     puts(line);                } 
     fputs(line,ficparo);              }
   }            } /* end selection of waves */
   ungetc(c,ficpar);          }
          }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        for(i=iagemin; i <= iagemax+3; i++){  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 /*--------- index.htm --------*/            posprop += prop[jk][i]; 
           } 
   if((fichtm=fopen("index.htm","w"))==NULL)    {  
     printf("Problem with index.htm \n");goto end;          for(jk=1; jk <=nlstate ; jk++){     
   }            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n                probs[i][jk][j1]= prop[jk][i]/posprop;
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              } else
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>            } 
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>          }/* end jk */ 
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        }/* end i */ 
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      } /* end i1 */
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    } /* end k1 */
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
  fprintf(fichtm," <li>Graphs</li>\n<p>");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
  m=cptcovn;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  /************* Waves Concatenation ***************/
   
  j1=0;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  for(k1=1; k1<=m;k1++){  {
    for(i1=1; i1<=ncodemax[k1];i1++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        j1++;       Death is a valid wave (if date is known).
        if (cptcovn > 0) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
          fprintf(fichtm,"<hr>************ Results for covariates");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
          for (cpt=1; cpt<=cptcovn;cpt++)       and mw[mi+1][i]. dh depends on stepm.
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);       */
          fprintf(fichtm," ************\n<hr>");  
        }    int i, mi, m;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);           double sum=0., jmean=0.;*/
        for(cpt=1; cpt<nlstate;cpt++){    int first;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    int j, k=0,jk, ju, jl;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    double sum=0.;
        }    first=0;
     for(cpt=1; cpt<=nlstate;cpt++) {    jmin=1e+5;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    jmax=-1;
 interval) in state (%d): v%s%d%d.gif <br>    jmean=0.;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      for(i=1; i<=imx; i++){
      }      mi=0;
      for(cpt=1; cpt<=nlstate;cpt++) {      m=firstpass;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      while(s[m][i] <= nlstate){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
      }          mw[++mi][i]=m;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        if(m >=lastpass)
 health expectancies in states (1) and (2): e%s%d.gif<br>          break;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        else
 fprintf(fichtm,"\n</body>");          m++;
    }      }/* end while */
  }      if (s[m][i] > nlstate){
 fclose(fichtm);        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
   /*--------------- Prevalence limit --------------*/           /* Only death is a correct wave */
          mw[mi][i]=m;
   strcpy(filerespl,"pl");      }
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      wav[i]=mi;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      if(mi==0){
   }        nbwarn++;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        if(first==0){
   fprintf(ficrespl,"#Prevalence limit\n");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   fprintf(ficrespl,"#Age ");          first=1;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        }
   fprintf(ficrespl,"\n");        if(first==1){
            fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   prlim=matrix(1,nlstate,1,nlstate);        }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } /* end mi==0 */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    } /* End individuals */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(i=1; i<=imx; i++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      for(mi=1; mi<wav[i];mi++){
   k=0;        if (stepm <=0)
   agebase=agemin;          dh[mi][i]=1;
   agelim=agemax;        else{
   ftolpl=1.e-10;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   i1=cptcovn;            if (agedc[i] < 2*AGESUP) {
   if (cptcovn < 1){i1=1;}              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
   for(cptcov=1;cptcov<=i1;cptcov++){              else if(j<0){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                nberr++;
         k=k+1;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                j=1; /* Temporary Dangerous patch */
         fprintf(ficrespl,"\n#****** ");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         for(j=1;j<=cptcovn;j++)                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         fprintf(ficrespl,"******\n");              }
                      k=k+1;
         for (age=agebase; age<=agelim; age++){              if (j >= jmax){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                jmax=j;
           fprintf(ficrespl,"%.0f",age );                ijmax=i;
           for(i=1; i<=nlstate;i++)              }
           fprintf(ficrespl," %.5f", prlim[i][i]);              if (j <= jmin){
           fprintf(ficrespl,"\n");                jmin=j;
         }                ijmin=i;
       }              }
     }              sum=sum+j;
   fclose(ficrespl);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   /*------------- h Pij x at various ages ------------*/              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
              }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          else{
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   printf("Computing pij: result on file '%s' \n", filerespij);  
              k=k+1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;            if (j >= jmax) {
   if (stepm<=24) stepsize=2;              jmax=j;
               ijmax=i;
   agelim=AGESUP;            }
   hstepm=stepsize*YEARM; /* Every year of age */            else if (j <= jmin){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */              jmin=j;
                ijmin=i;
   k=0;            }
   for(cptcov=1;cptcov<=i1;cptcov++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       k=k+1;            if(j<0){
         fprintf(ficrespij,"\n#****** ");              nberr++;
         for(j=1;j<=cptcovn;j++)              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficrespij,"******\n");            }
                    sum=sum+j;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          jk= j/stepm;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          jl= j -jk*stepm;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          ju= j -(jk+1)*stepm;
           oldm=oldms;savm=savms;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              if(jl==0){
           fprintf(ficrespij,"# Age");              dh[mi][i]=jk;
           for(i=1; i<=nlstate;i++)              bh[mi][i]=0;
             for(j=1; j<=nlstate+ndeath;j++)            }else{ /* We want a negative bias in order to only have interpolation ie
               fprintf(ficrespij," %1d-%1d",i,j);                    * at the price of an extra matrix product in likelihood */
           fprintf(ficrespij,"\n");              dh[mi][i]=jk+1;
           for (h=0; h<=nhstepm; h++){              bh[mi][i]=ju;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            }
             for(i=1; i<=nlstate;i++)          }else{
               for(j=1; j<=nlstate+ndeath;j++)            if(jl <= -ju){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              dh[mi][i]=jk;
             fprintf(ficrespij,"\n");              bh[mi][i]=jl;       /* bias is positive if real duration
           }                                   * is higher than the multiple of stepm and negative otherwise.
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                                   */
           fprintf(ficrespij,"\n");            }
         }            else{
     }              dh[mi][i]=jk+1;
   }              bh[mi][i]=ju;
             }
   fclose(ficrespij);            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
   /*---------- Health expectancies and variances ------------*/              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   strcpy(filerest,"t");            }
   strcat(filerest,fileres);          } /* end if mle */
   if((ficrest=fopen(filerest,"w"))==NULL) {        }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      } /* end wave */
   }    }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   strcpy(filerese,"e");   }
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {  /*********** Tricode ****************************/
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  void tricode(int *Tvar, int **nbcode, int imx)
   }  {
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    
     /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=19;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    int cptcode=0;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    cptcoveff=0; 
   }   
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       k=k+1;                                 modality*/ 
       fprintf(ficrest,"\n#****** ");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       for(j=1;j<=cptcovn;j++)        Ndum[ij]++; /*store the modality */
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       fprintf(ficrest,"******\n");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
       fprintf(ficreseij,"\n#****** ");                                         female is 1, then  cptcode=1.*/
       for(j=1;j<=cptcovn;j++)      }
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       fprintf(ficresvij,"\n#****** ");      }
       for(j=1;j<=cptcovn;j++)  
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      ij=1; 
       fprintf(ficresvij,"******\n");      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          if (Ndum[k] != 0) {
       oldm=oldms;savm=savms;            nbcode[Tvar[j]][ij]=k; 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);              /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            
       oldm=oldms;savm=savms;            ij++;
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          }
                if (ij > ncodemax[j]) break; 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        }  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      } 
       fprintf(ficrest,"\n");    }  
          
       hf=1;   for (k=0; k< maxncov; k++) Ndum[k]=0;
       if (stepm >= YEARM) hf=stepm/YEARM;  
       epj=vector(1,nlstate+1);   for (i=1; i<=ncovmodel-2; i++) { 
       for(age=bage; age <=fage ;age++){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     ij=Tvar[i];
         fprintf(ficrest," %.0f",age);     Ndum[ij]++;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];   ij=1;
           }   for (i=1; i<= maxncov; i++) {
           epj[nlstate+1] +=epj[j];     if((Ndum[i]!=0) && (i<=ncovcol)){
         }       Tvaraff[ij]=i; /*For printing */
         for(i=1, vepp=0.;i <=nlstate;i++)       ij++;
           for(j=1;j <=nlstate;j++)     }
             vepp += vareij[i][j][(int)age];   }
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));   
         for(j=1;j <=nlstate;j++){   cptcoveff=ij-1; /*Number of simple covariates*/
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  }
         }  
         fprintf(ficrest,"\n");  /*********** Health Expectancies ****************/
       }  
     }  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   }  
          {
  fclose(ficreseij);    /* Health expectancies, no variances */
  fclose(ficresvij);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   fclose(ficrest);    int nhstepma, nstepma; /* Decreasing with age */
   fclose(ficpar);    double age, agelim, hf;
   free_vector(epj,1,nlstate+1);    double ***p3mat;
   /*  scanf("%d ",i); */    double eip;
   
   /*------- Variance limit prevalence------*/      pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 strcpy(fileresvpl,"vpl");    fprintf(ficreseij,"# Age");
   strcat(fileresvpl,fileres);    for(i=1; i<=nlstate;i++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      for(j=1; j<=nlstate;j++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        fprintf(ficreseij," e%1d%1d ",i,j);
     exit(0);      }
   }      fprintf(ficreseij," e%1d. ",i);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    }
     fprintf(ficreseij,"\n");
  k=0;  
  for(cptcov=1;cptcov<=i1;cptcov++){    
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if(estepm < stepm){
      k=k+1;      printf ("Problem %d lower than %d\n",estepm, stepm);
      fprintf(ficresvpl,"\n#****** ");    }
      for(j=1;j<=cptcovn;j++)    else  hstepm=estepm;   
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    /* We compute the life expectancy from trapezoids spaced every estepm months
      fprintf(ficresvpl,"******\n");     * This is mainly to measure the difference between two models: for example
           * if stepm=24 months pijx are given only every 2 years and by summing them
      varpl=matrix(1,nlstate,(int) bage, (int) fage);     * we are calculating an estimate of the Life Expectancy assuming a linear 
      oldm=oldms;savm=savms;     * progression in between and thus overestimating or underestimating according
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);     * to the curvature of the survival function. If, for the same date, we 
    }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
  }     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   fclose(ficresvpl);     * curvature will be obtained if estepm is as small as stepm. */
   
   /*---------- End : free ----------------*/    /* For example we decided to compute the life expectancy with the smallest unit */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       nstepm is the number of stepm from age to agelin. 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like estepm months */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       survival function given by stepm (the optimization length). Unfortunately it
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       means that if the survival funtion is printed only each two years of age and if
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       results. So we changed our mind and took the option of the best precision.
      */
   free_matrix(matcov,1,npar,1,npar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   free_vector(delti,1,npar);  
      agelim=AGESUP;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   printf("End of Imach\n");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      
    /* nhstepm age range expressed in number of stepm */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /*printf("Total time was %d uSec.\n", total_usecs);*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   /*------ End -----------*/    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  end:    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #ifdef windows  
  chdir(pathcd);    for (age=bage; age<=fage; age ++){ 
 #endif      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
  system("wgnuplot graph.plt");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
 #ifdef windows      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   while (z[0] != 'q') {  
     chdir(pathcd);      /* If stepm=6 months */
     printf("\nType e to edit output files, c to start again, and q for exiting: ");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     scanf("%s",z);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     if (z[0] == 'c') system("./imach");      
     else if (z[0] == 'e') {      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       chdir(path);      
       system("index.htm");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     }      
     else if (z[0] == 'q') exit(0);      printf("%d|",(int)age);fflush(stdout);
   }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 #endif      
 }      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sum the number of covariates including ages as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.5  
changed lines
  Added in v.1.130


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>