Diff for /imach/src/imach.c between versions 1.49 and 1.132

version 1.49, 2002/06/20 14:03:39 version 1.132, 2009/07/06 08:22:05
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.132  2009/07/06 08:22:05  brouard
      Many tings
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.131  2009/06/20 16:22:47  brouard
   first survey ("cross") where individuals from different ages are    Some dimensions resccaled
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.130  2009/05/26 06:44:34  brouard
   second wave of interviews ("longitudinal") which measure each change    (Module): Max Covariate is now set to 20 instead of 8. A
   (if any) in individual health status.  Health expectancies are    lot of cleaning with variables initialized to 0. Trying to make
   computed from the time spent in each health state according to a    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.129  2007/08/31 13:49:27  lievre
   simplest model is the multinomial logistic model where pij is the    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.128  2006/06/30 13:02:05  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Clarifications on computing e.j
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.127  2006/04/28 18:11:50  brouard
   where the markup *Covariates have to be included here again* invites    (Module): Yes the sum of survivors was wrong since
   you to do it.  More covariates you add, slower the    imach-114 because nhstepm was no more computed in the age
   convergence.    loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
   The advantage of this computer programme, compared to a simple    compute health expectancies (without variances) in a first step
   multinomial logistic model, is clear when the delay between waves is not    and then all the health expectancies with variances or standard
   identical for each individual. Also, if a individual missed an    deviation (needs data from the Hessian matrices) which slows the
   intermediate interview, the information is lost, but taken into    computation.
   account using an interpolation or extrapolation.      In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.126  2006/04/28 17:23:28  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    (Module): Yes the sum of survivors was wrong since
   states. This elementary transition (by month or quarter trimester,    imach-114 because nhstepm was no more computed in the age
   semester or year) is model as a multinomial logistic.  The hPx    loop. Now we define nhstepma in the age loop.
   matrix is simply the matrix product of nh*stepm elementary matrices    Version 0.98h
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
   Also this programme outputs the covariance matrix of the parameters but also    Forecasting file added.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.124  2006/03/22 17:13:53  lievre
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Parameters are printed with %lf instead of %f (more numbers after the comma).
            Institut national d'études démographiques, Paris.    The log-likelihood is printed in the log file
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.123  2006/03/20 10:52:43  brouard
   It is copyrighted identically to a GNU software product, ie programme and    * imach.c (Module): <title> changed, corresponds to .htm file
   software can be distributed freely for non commercial use. Latest version    name. <head> headers where missing.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    * imach.c (Module): Weights can have a decimal point as for
      English (a comma might work with a correct LC_NUMERIC environment,
 #include <math.h>    otherwise the weight is truncated).
 #include <stdio.h>    Modification of warning when the covariates values are not 0 or
 #include <stdlib.h>    1.
 #include <unistd.h>    Version 0.98g
   
 #define MAXLINE 256    Revision 1.122  2006/03/20 09:45:41  brouard
 #define GNUPLOTPROGRAM "gnuplot"    (Module): Weights can have a decimal point as for
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    English (a comma might work with a correct LC_NUMERIC environment,
 #define FILENAMELENGTH 80    otherwise the weight is truncated).
 /*#define DEBUG*/    Modification of warning when the covariates values are not 0 or
 #define windows    1.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Version 0.98g
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.121  2006/03/16 17:45:01  lievre
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    * imach.c (Module): Comments concerning covariates added
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     * imach.c (Module): refinements in the computation of lli if
 #define NINTERVMAX 8    status=-2 in order to have more reliable computation if stepm is
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    not 1 month. Version 0.98f
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.120  2006/03/16 15:10:38  lievre
 #define MAXN 20000    (Module): refinements in the computation of lli if
 #define YEARM 12. /* Number of months per year */    status=-2 in order to have more reliable computation if stepm is
 #define AGESUP 130    not 1 month. Version 0.98f
 #define AGEBASE 40  
 #ifdef windows    Revision 1.119  2006/03/15 17:42:26  brouard
 #define DIRSEPARATOR '\\'    (Module): Bug if status = -2, the loglikelihood was
 #else    computed as likelihood omitting the logarithm. Version O.98e
 #define DIRSEPARATOR '/'  
 #endif    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    table of variances if popbased=1 .
 int erreur; /* Error number */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int nvar;    (Module): Function pstamp added
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    (Module): Version 0.98d
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.117  2006/03/14 17:16:22  brouard
 int ndeath=1; /* Number of dead states */    (Module): varevsij Comments added explaining the second
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    table of variances if popbased=1 .
 int popbased=0;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Version 0.98d
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.116  2006/03/06 10:29:27  brouard
 int mle, weightopt;    (Module): Variance-covariance wrong links and
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    varian-covariance of ej. is needed (Saito).
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.115  2006/02/27 12:17:45  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): One freematrix added in mlikeli! 0.98c
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.114  2006/02/26 12:57:58  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    (Module): Some improvements in processing parameter
 FILE *fichtm; /* Html File */    filename with strsep.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.113  2006/02/24 14:20:24  brouard
 FILE  *ficresvij;    (Module): Memory leaks checks with valgrind and:
 char fileresv[FILENAMELENGTH];    datafile was not closed, some imatrix were not freed and on matrix
 FILE  *ficresvpl;    allocation too.
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.112  2006/01/30 09:55:26  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.111  2006/01/25 20:38:18  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 char filerest[FILENAMELENGTH];    can be a simple dot '.'.
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.109  2006/01/24 19:37:15  brouard
 #define NR_END 1    (Module): Comments (lines starting with a #) are allowed in data.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 #define NRANSI    To be fixed
 #define ITMAX 200  
     Revision 1.107  2006/01/19 16:20:37  brouard
 #define TOL 2.0e-4    Test existence of gnuplot in imach path
   
 #define CGOLD 0.3819660    Revision 1.106  2006/01/19 13:24:36  brouard
 #define ZEPS 1.0e-10    Some cleaning and links added in html output
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.105  2006/01/05 20:23:19  lievre
 #define GOLD 1.618034    *** empty log message ***
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 static double maxarg1,maxarg2;    (Module): If the status is missing at the last wave but we know
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    that the person is alive, then we can code his/her status as -2
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (instead of missing=-1 in earlier versions) and his/her
      contributions to the likelihood is 1 - Prob of dying from last
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define rint(a) floor(a+0.5)    the healthy state at last known wave). Version is 0.98
   
 static double sqrarg;    Revision 1.103  2005/09/30 15:54:49  lievre
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): sump fixed, loop imx fixed, and simplifications.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.102  2004/09/15 17:31:30  brouard
 int imx;    Add the possibility to read data file including tab characters.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.99  2004/06/05 08:57:40  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    *** empty log message ***
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 double *weight;    directly from the data i.e. without the need of knowing the health
 int **s; /* Status */    state at each age, but using a Gompertz model: log u =a + b*age .
 double *agedc, **covar, idx;    This is the basic analysis of mortality and should be done before any
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    from other sources like vital statistic data.
 double ftolhess; /* Tolerance for computing hessian */  
     The same imach parameter file can be used but the option for mle should be -3.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Agnès, who wrote this part of the code, tried to keep most of the
 {    former routines in order to include the new code within the former code.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Current limitations:
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    A) Even if you enter covariates, i.e. with the
    if ( s == NULL ) {                   /* no directory, so use current */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #if     defined(__bsd__)                /* get current working directory */    B) There is no computation of Life Expectancy nor Life Table.
       extern char       *getwd( );  
     Revision 1.97  2004/02/20 13:25:42  lievre
       if ( getwd( dirc ) == NULL ) {    Version 0.96d. Population forecasting command line is (temporarily)
 #else    suppressed.
       extern char       *getcwd( );  
     Revision 1.96  2003/07/15 15:38:55  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #endif    rewritten within the same printf. Workaround: many printfs.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.95  2003/07/08 07:54:34  brouard
       strcpy( name, path );             /* we've got it */    * imach.c (Repository):
    } else {                             /* strip direcotry from path */    (Repository): Using imachwizard code to output a more meaningful covariance
       s++;                              /* after this, the filename */    matrix (cov(a12,c31) instead of numbers.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.94  2003/06/27 13:00:02  brouard
       strcpy( name, s );                /* save file name */    Just cleaning
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.93  2003/06/25 16:33:55  brouard
    }    (Module): On windows (cygwin) function asctime_r doesn't
    l1 = strlen( dirc );                 /* length of directory */    exist so I changed back to asctime which exists.
 #ifdef windows    (Module): Version 0.96b
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.92  2003/06/25 16:30:45  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Module): On windows (cygwin) function asctime_r doesn't
 #endif    exist so I changed back to asctime which exists.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.91  2003/06/25 15:30:29  brouard
    strcpy(ext,s);                       /* save extension */    * imach.c (Repository): Duplicated warning errors corrected.
    l1= strlen( name);    (Repository): Elapsed time after each iteration is now output. It
    l2= strlen( s)+1;    helps to forecast when convergence will be reached. Elapsed time
    strncpy( finame, name, l1-l2);    is stamped in powell.  We created a new html file for the graphs
    finame[l1-l2]= 0;    concerning matrix of covariance. It has extension -cov.htm.
    return( 0 );                         /* we're done */  
 }    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /******************************************/    of the covariance matrix to be input.
   
 void replace(char *s, char*t)    Revision 1.89  2003/06/24 12:30:52  brouard
 {    (Module): Some bugs corrected for windows. Also, when
   int i;    mle=-1 a template is output in file "or"mypar.txt with the design
   int lg=20;    of the covariance matrix to be input.
   i=0;  
   lg=strlen(t);    Revision 1.88  2003/06/23 17:54:56  brouard
   for(i=0; i<= lg; i++) {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.87  2003/06/18 12:26:01  brouard
   }    Version 0.96
 }  
     Revision 1.86  2003/06/17 20:04:08  brouard
 int nbocc(char *s, char occ)    (Module): Change position of html and gnuplot routines and added
 {    routine fileappend.
   int i,j=0;  
   int lg=20;    Revision 1.85  2003/06/17 13:12:43  brouard
   i=0;    * imach.c (Repository): Check when date of death was earlier that
   lg=strlen(s);    current date of interview. It may happen when the death was just
   for(i=0; i<= lg; i++) {    prior to the death. In this case, dh was negative and likelihood
   if  (s[i] == occ ) j++;    was wrong (infinity). We still send an "Error" but patch by
   }    assuming that the date of death was just one stepm after the
   return j;    interview.
 }    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 void cutv(char *u,char *v, char*t, char occ)    memory allocation. But we also truncated to 8 characters (left
 {    truncation)
   int i,lg,j,p=0;    (Repository): No more line truncation errors.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.84  2003/06/13 21:44:43  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    * imach.c (Repository): Replace "freqsummary" at a correct
   }    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
   lg=strlen(t);    parcimony.
   for(j=0; j<p; j++) {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     (u[j] = t[j]);  
   }    Revision 1.83  2003/06/10 13:39:11  lievre
      u[p]='\0';    *** empty log message ***
   
    for(j=0; j<= lg; j++) {    Revision 1.82  2003/06/05 15:57:20  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    Add log in  imach.c and  fullversion number is now printed.
   }  
 }  */
   /*
 /********************** nrerror ********************/     Interpolated Markov Chain
   
 void nrerror(char error_text[])    Short summary of the programme:
 {    
   fprintf(stderr,"ERREUR ...\n");    This program computes Healthy Life Expectancies from
   fprintf(stderr,"%s\n",error_text);    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   exit(1);    first survey ("cross") where individuals from different ages are
 }    interviewed on their health status or degree of disability (in the
 /*********************** vector *******************/    case of a health survey which is our main interest) -2- at least a
 double *vector(int nl, int nh)    second wave of interviews ("longitudinal") which measure each change
 {    (if any) in individual health status.  Health expectancies are
   double *v;    computed from the time spent in each health state according to a
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    model. More health states you consider, more time is necessary to reach the
   if (!v) nrerror("allocation failure in vector");    Maximum Likelihood of the parameters involved in the model.  The
   return v-nl+NR_END;    simplest model is the multinomial logistic model where pij is the
 }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /************************ free vector ******************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 void free_vector(double*v, int nl, int nh)    'age' is age and 'sex' is a covariate. If you want to have a more
 {    complex model than "constant and age", you should modify the program
   free((FREE_ARG)(v+nl-NR_END));    where the markup *Covariates have to be included here again* invites
 }    you to do it.  More covariates you add, slower the
     convergence.
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    The advantage of this computer programme, compared to a simple
 {    multinomial logistic model, is clear when the delay between waves is not
   int *v;    identical for each individual. Also, if a individual missed an
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    intermediate interview, the information is lost, but taken into
   if (!v) nrerror("allocation failure in ivector");    account using an interpolation or extrapolation.  
   return v-nl+NR_END;  
 }    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 /******************free ivector **************************/    split into an exact number (nh*stepm) of unobserved intermediate
 void free_ivector(int *v, long nl, long nh)    states. This elementary transition (by month, quarter,
 {    semester or year) is modelled as a multinomial logistic.  The hPx
   free((FREE_ARG)(v+nl-NR_END));    matrix is simply the matrix product of nh*stepm elementary matrices
 }    and the contribution of each individual to the likelihood is simply
     hPijx.
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Also this programme outputs the covariance matrix of the parameters but also
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    of the life expectancies. It also computes the period (stable) prevalence. 
 {    
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   int **m;             Institut national d'études démographiques, Paris.
      This software have been partly granted by Euro-REVES, a concerted action
   /* allocate pointers to rows */    from the European Union.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    It is copyrighted identically to a GNU software product, ie programme and
   if (!m) nrerror("allocation failure 1 in matrix()");    software can be distributed freely for non commercial use. Latest version
   m += NR_END;    can be accessed at http://euroreves.ined.fr/imach .
   m -= nrl;  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
      or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   /* allocate rows and set pointers to them */    
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    **********************************************************************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*
   m[nrl] += NR_END;    main
   m[nrl] -= ncl;    read parameterfile
      read datafile
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    concatwav
      freqsummary
   /* return pointer to array of pointers to rows */    if (mle >= 1)
   return m;      mlikeli
 }    print results files
     if mle==1 
 /****************** free_imatrix *************************/       computes hessian
 void free_imatrix(m,nrl,nrh,ncl,nch)    read end of parameter file: agemin, agemax, bage, fage, estepm
       int **m;        begin-prev-date,...
       long nch,ncl,nrh,nrl;    open gnuplot file
      /* free an int matrix allocated by imatrix() */    open html file
 {    period (stable) prevalence
   free((FREE_ARG) (m[nrl]+ncl-NR_END));     for age prevalim()
   free((FREE_ARG) (m+nrl-NR_END));    h Pij x
 }    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 /******************* matrix *******************************/    health expectancies
 double **matrix(long nrl, long nrh, long ncl, long nch)    Variance-covariance of DFLE
 {    prevalence()
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;     movingaverage()
   double **m;    varevsij() 
     if popbased==1 varevsij(,popbased)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    total life expectancies
   if (!m) nrerror("allocation failure 1 in matrix()");    Variance of period (stable) prevalence
   m += NR_END;   end
   m -= nrl;  */
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;   
   m[nrl] -= ncl;  #include <math.h>
   #include <stdio.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <stdlib.h>
   return m;  #include <string.h>
 }  #include <unistd.h>
   
 /*************************free matrix ************************/  #include <limits.h>
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #include <sys/types.h>
 {  #include <sys/stat.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <errno.h>
   free((FREE_ARG)(m+nrl-NR_END));  extern int errno;
 }  
   /* #include <sys/time.h> */
 /******************* ma3x *******************************/  #include <time.h>
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #include "timeval.h"
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  /* #include <libintl.h> */
   double ***m;  /* #define _(String) gettext (String) */
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define MAXLINE 256
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define GNUPLOTPROGRAM "gnuplot"
   m -= nrl;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   m[nrl] += NR_END;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m[nrl] -= ncl;  
   #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define NINTERVMAX 8
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   m[nrl][ncl] += NR_END;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m[nrl][ncl] -= nll;  #define NCOVMAX 20 /* Maximum number of covariates */
   for (j=ncl+1; j<=nch; j++)  #define MAXN 20000
     m[nrl][j]=m[nrl][j-1]+nlay;  #define YEARM 12. /* Number of months per year */
    #define AGESUP 130
   for (i=nrl+1; i<=nrh; i++) {  #define AGEBASE 40
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
     for (j=ncl+1; j<=nch; j++)  #ifdef UNIX
       m[i][j]=m[i][j-1]+nlay;  #define DIRSEPARATOR '/'
   }  #define CHARSEPARATOR "/"
   return m;  #define ODIRSEPARATOR '\\'
 }  #else
   #define DIRSEPARATOR '\\'
 /*************************free ma3x ************************/  #define CHARSEPARATOR "\\"
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define ODIRSEPARATOR '/'
 {  #endif
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /* $Id$ */
   free((FREE_ARG)(m+nrl-NR_END));  /* $State$ */
 }  
   char version[]="Imach version 0.98k, June 2006, INED-EUROREVES-Institut de longevite ";
 /***************** f1dim *************************/  char fullversion[]="$Revision$ $Date$"; 
 extern int ncom;  char strstart[80];
 extern double *pcom,*xicom;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 extern double (*nrfunc)(double []);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    int nvar=0;
 double f1dim(double x)  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
 {  int npar=NPARMAX;
   int j;  int nlstate=2; /* Number of live states */
   double f;  int ndeath=1; /* Number of dead states */
   double *xt;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    int popbased=0;
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int *wav; /* Number of waves for this individuual 0 is possible */
   f=(*nrfunc)(xt);  int maxwav=0; /* Maxim number of waves */
   free_vector(xt,1,ncom);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   return f;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 }  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
 /*****************brent *************************/  int mle=1, weightopt=0;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int iter;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   double a,b,d,etemp;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double fu,fv,fw,fx;  double jmean=1; /* Mean space between 2 waves */
   double ftemp;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double e=0.0;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    FILE *ficlog, *ficrespow;
   a=(ax < cx ? ax : cx);  int globpr=0; /* Global variable for printing or not */
   b=(ax > cx ? ax : cx);  double fretone; /* Only one call to likelihood */
   x=w=v=bx;  long ipmx=0; /* Number of contributions */
   fw=fv=fx=(*f)(x);  double sw; /* Sum of weights */
   for (iter=1;iter<=ITMAX;iter++) {  char filerespow[FILENAMELENGTH];
     xm=0.5*(a+b);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  FILE *ficresilk;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     printf(".");fflush(stdout);  FILE *ficresprobmorprev;
 #ifdef DEBUG  FILE *fichtm, *fichtmcov; /* Html File */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  FILE *ficreseij;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char filerese[FILENAMELENGTH];
 #endif  FILE *ficresstdeij;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char fileresstde[FILENAMELENGTH];
       *xmin=x;  FILE *ficrescveij;
       return fx;  char filerescve[FILENAMELENGTH];
     }  FILE  *ficresvij;
     ftemp=fu;  char fileresv[FILENAMELENGTH];
     if (fabs(e) > tol1) {  FILE  *ficresvpl;
       r=(x-w)*(fx-fv);  char fileresvpl[FILENAMELENGTH];
       q=(x-v)*(fx-fw);  char title[MAXLINE];
       p=(x-v)*q-(x-w)*r;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       q=2.0*(q-r);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       if (q > 0.0) p = -p;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       q=fabs(q);  char command[FILENAMELENGTH];
       etemp=e;  int  outcmd=0;
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  char filelog[FILENAMELENGTH]; /* Log file */
         d=p/q;  char filerest[FILENAMELENGTH];
         u=x+d;  char fileregp[FILENAMELENGTH];
         if (u-a < tol2 || b-u < tol2)  char popfile[FILENAMELENGTH];
           d=SIGN(tol1,xm-x);  
       }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     }  struct timezone tzp;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  extern int gettimeofday();
     fu=(*f)(u);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     if (fu <= fx) {  long time_value;
       if (u >= x) a=x; else b=x;  extern long time();
       SHFT(v,w,x,u)  char strcurr[80], strfor[80];
         SHFT(fv,fw,fx,fu)  
         } else {  char *endptr;
           if (u < x) a=u; else b=u;  long lval;
           if (fu <= fw || w == x) {  double dval;
             v=w;  
             w=u;  #define NR_END 1
             fv=fw;  #define FREE_ARG char*
             fw=fu;  #define FTOL 1.0e-10
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  #define NRANSI 
             fv=fu;  #define ITMAX 200 
           }  
         }  #define TOL 2.0e-4 
   }  
   nrerror("Too many iterations in brent");  #define CGOLD 0.3819660 
   *xmin=x;  #define ZEPS 1.0e-10 
   return fx;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 }  
   #define GOLD 1.618034 
 /****************** mnbrak ***********************/  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  static double maxarg1,maxarg2;
 {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   double ulim,u,r,q, dum;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double fu;    
    #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   *fa=(*func)(*ax);  #define rint(a) floor(a+0.5)
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  static double sqrarg;
     SHFT(dum,*ax,*bx,dum)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       SHFT(dum,*fb,*fa,dum)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       }  int agegomp= AGEGOMP;
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  int imx; 
   while (*fb > *fc) {  int stepm=1;
     r=(*bx-*ax)*(*fb-*fc);  /* Stepm, step in month: minimum step interpolation*/
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int estepm;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  int m,nb;
       fu=(*func)(u);  long *num;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       fu=(*func)(u);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       if (fu < *fc) {  double **pmmij, ***probs;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  double *ageexmed,*agecens;
           SHFT(*fb,*fc,fu,(*func)(u))  double dateintmean=0;
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  double *weight;
       u=ulim;  int **s; /* Status */
       fu=(*func)(u);  double *agedc, **covar, idx;
     } else {  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       u=(*cx)+GOLD*(*cx-*bx);  double *lsurv, *lpop, *tpop;
       fu=(*func)(u);  
     }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     SHFT(*ax,*bx,*cx,u)  double ftolhess; /* Tolerance for computing hessian */
       SHFT(*fa,*fb,*fc,fu)  
       }  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /*************** linmin ************************/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
 int ncom;    */ 
 double *pcom,*xicom;    char  *ss;                            /* pointer */
 double (*nrfunc)(double []);    int   l1, l2;                         /* length counters */
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double brent(double ax, double bx, double cx,    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
                double (*f)(double), double tol, double *xmin);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double f1dim(double x);      strcpy( name, path );               /* we got the fullname name because no directory */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
               double *fc, double (*func)(double));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   int j;      /* get current working directory */
   double xx,xmin,bx,ax;      /*    extern  char* getcwd ( char *buf , int len);*/
   double fx,fb,fa;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
          return( GLOCK_ERROR_GETCWD );
   ncom=n;      }
   pcom=vector(1,n);      /* got dirc from getcwd*/
   xicom=vector(1,n);      printf(" DIRC = %s \n",dirc);
   nrfunc=func;    } else {                              /* strip direcotry from path */
   for (j=1;j<=n;j++) {      ss++;                               /* after this, the filename */
     pcom[j]=p[j];      l2 = strlen( ss );                  /* length of filename */
     xicom[j]=xi[j];      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   }      strcpy( name, ss );         /* save file name */
   ax=0.0;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   xx=1.0;      dirc[l1-l2] = 0;                    /* add zero */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      printf(" DIRC2 = %s \n",dirc);
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    }
 #ifdef DEBUG    /* We add a separator at the end of dirc if not exists */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    l1 = strlen( dirc );                  /* length of directory */
 #endif    if( dirc[l1-1] != DIRSEPARATOR ){
   for (j=1;j<=n;j++) {      dirc[l1] =  DIRSEPARATOR;
     xi[j] *= xmin;      dirc[l1+1] = 0; 
     p[j] += xi[j];      printf(" DIRC3 = %s \n",dirc);
   }    }
   free_vector(xicom,1,n);    ss = strrchr( name, '.' );            /* find last / */
   free_vector(pcom,1,n);    if (ss >0){
 }      ss++;
       strcpy(ext,ss);                     /* save extension */
 /*************** powell ************************/      l1= strlen( name);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      l2= strlen(ss)+1;
             double (*func)(double []))      strncpy( finame, name, l1-l2);
 {      finame[l1-l2]= 0;
   void linmin(double p[], double xi[], int n, double *fret,    }
               double (*func)(double []));  
   int i,ibig,j;    return( 0 );                          /* we're done */
   double del,t,*pt,*ptt,*xit;  }
   double fp,fptt;  
   double *xits;  
   pt=vector(1,n);  /******************************************/
   ptt=vector(1,n);  
   xit=vector(1,n);  void replace_back_to_slash(char *s, char*t)
   xits=vector(1,n);  {
   *fret=(*func)(p);    int i;
   for (j=1;j<=n;j++) pt[j]=p[j];    int lg=0;
   for (*iter=1;;++(*iter)) {    i=0;
     fp=(*fret);    lg=strlen(t);
     ibig=0;    for(i=0; i<= lg; i++) {
     del=0.0;      (s[i] = t[i]);
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      if (t[i]== '\\') s[i]='/';
     for (i=1;i<=n;i++)    }
       printf(" %d %.12f",i, p[i]);  }
     printf("\n");  
     for (i=1;i<=n;i++) {  char *trimbb(char *out, char *in)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  { /* Trim multiple blanks in line */
       fptt=(*fret);    char *s;
 #ifdef DEBUG    s=out;
       printf("fret=%lf \n",*fret);    while (*in != '\0'){
 #endif      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
       printf("%d",i);fflush(stdout);        in++;
       linmin(p,xit,n,fret,func);      }
       if (fabs(fptt-(*fret)) > del) {      *out++ = *in++;
         del=fabs(fptt-(*fret));    }
         ibig=i;    *out='\0';
       }    return s;
 #ifdef DEBUG  }
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  int nbocc(char *s, char occ)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  {
         printf(" x(%d)=%.12e",j,xit[j]);    int i,j=0;
       }    int lg=20;
       for(j=1;j<=n;j++)    i=0;
         printf(" p=%.12e",p[j]);    lg=strlen(s);
       printf("\n");    for(i=0; i<= lg; i++) {
 #endif    if  (s[i] == occ ) j++;
     }    }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    return j;
 #ifdef DEBUG  }
       int k[2],l;  
       k[0]=1;  void cutv(char *u,char *v, char*t, char occ)
       k[1]=-1;  {
       printf("Max: %.12e",(*func)(p));    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       for (j=1;j<=n;j++)       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         printf(" %.12e",p[j]);       gives u="abcedf" and v="ghi2j" */
       printf("\n");    int i,lg,j,p=0;
       for(l=0;l<=1;l++) {    i=0;
         for (j=1;j<=n;j++) {    for(j=0; j<=strlen(t)-1; j++) {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    lg=strlen(t);
       }    for(j=0; j<p; j++) {
 #endif      (u[j] = t[j]);
     }
        u[p]='\0';
       free_vector(xit,1,n);  
       free_vector(xits,1,n);     for(j=0; j<= lg; j++) {
       free_vector(ptt,1,n);      if (j>=(p+1))(v[j-p-1] = t[j]);
       free_vector(pt,1,n);    }
       return;  }
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /********************** nrerror ********************/
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  void nrerror(char error_text[])
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    fprintf(stderr,"ERREUR ...\n");
     }    fprintf(stderr,"%s\n",error_text);
     fptt=(*func)(ptt);    exit(EXIT_FAILURE);
     if (fptt < fp) {  }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /*********************** vector *******************/
       if (t < 0.0) {  double *vector(int nl, int nh)
         linmin(p,xit,n,fret,func);  {
         for (j=1;j<=n;j++) {    double *v;
           xi[j][ibig]=xi[j][n];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
           xi[j][n]=xit[j];    if (!v) nrerror("allocation failure in vector");
         }    return v-nl+NR_END;
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  /************************ free vector ******************/
           printf(" %.12e",xit[j]);  void free_vector(double*v, int nl, int nh)
         printf("\n");  {
 #endif    free((FREE_ARG)(v+nl-NR_END));
       }  }
     }  
   }  /************************ivector *******************************/
 }  int *ivector(long nl,long nh)
   {
 /**** Prevalence limit ****************/    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    if (!v) nrerror("allocation failure in ivector");
 {    return v-nl+NR_END;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  }
      matrix by transitions matrix until convergence is reached */  
   /******************free ivector **************************/
   int i, ii,j,k;  void free_ivector(int *v, long nl, long nh)
   double min, max, maxmin, maxmax,sumnew=0.;  {
   double **matprod2();    free((FREE_ARG)(v+nl-NR_END));
   double **out, cov[NCOVMAX], **pmij();  }
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /************************lvector *******************************/
   long *lvector(long nl,long nh)
   for (ii=1;ii<=nlstate+ndeath;ii++)  {
     for (j=1;j<=nlstate+ndeath;j++){    long *v;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
    cov[1]=1.;  }
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /******************free lvector **************************/
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  void free_lvector(long *v, long nl, long nh)
     newm=savm;  {
     /* Covariates have to be included here again */    free((FREE_ARG)(v+nl-NR_END));
      cov[2]=agefin;  }
    
       for (k=1; k<=cptcovn;k++) {  /******************* imatrix *******************************/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       }  { 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       for (k=1; k<=cptcovprod;k++)    int **m; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    
     /* allocate pointers to rows */ 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    if (!m) nrerror("allocation failure 1 in matrix()"); 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    m += NR_END; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    m -= nrl; 
     
     savm=oldm;    
     oldm=newm;    /* allocate rows and set pointers to them */ 
     maxmax=0.;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     for(j=1;j<=nlstate;j++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       min=1.;    m[nrl] += NR_END; 
       max=0.;    m[nrl] -= ncl; 
       for(i=1; i<=nlstate; i++) {    
         sumnew=0;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    
         prlim[i][j]= newm[i][j]/(1-sumnew);    /* return pointer to array of pointers to rows */ 
         max=FMAX(max,prlim[i][j]);    return m; 
         min=FMIN(min,prlim[i][j]);  } 
       }  
       maxmin=max-min;  /****************** free_imatrix *************************/
       maxmax=FMAX(maxmax,maxmin);  void free_imatrix(m,nrl,nrh,ncl,nch)
     }        int **m;
     if(maxmax < ftolpl){        long nch,ncl,nrh,nrl; 
       return prlim;       /* free an int matrix allocated by imatrix() */ 
     }  { 
   }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 }    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
 /*************** transition probabilities ***************/  
   /******************* matrix *******************************/
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  double **matrix(long nrl, long nrh, long ncl, long nch)
 {  {
   double s1, s2;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   /*double t34;*/    double **m;
   int i,j,j1, nc, ii, jj;  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(i=1; i<= nlstate; i++){    if (!m) nrerror("allocation failure 1 in matrix()");
     for(j=1; j<i;j++){    m += NR_END;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m -= nrl;
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
       ps[i][j]=s2;    m[nrl] -= ncl;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for(j=i+1; j<=nlstate+ndeath;j++){    return m;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];     */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  }
       }  
       ps[i][j]=s2;  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   }  {
     /*ps[3][2]=1;*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   for(i=1; i<= nlstate; i++){  }
      s1=0;  
     for(j=1; j<i; j++)  /******************* ma3x *******************************/
       s1+=exp(ps[i][j]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     for(j=i+1; j<=nlstate+ndeath; j++)  {
       s1+=exp(ps[i][j]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     ps[i][i]=1./(s1+1.);    double ***m;
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(j=i+1; j<=nlstate+ndeath; j++)    if (!m) nrerror("allocation failure 1 in matrix()");
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m += NR_END;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    m -= nrl;
   } /* end i */  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for(jj=1; jj<= nlstate+ndeath; jj++){    m[nrl] += NR_END;
       ps[ii][jj]=0;    m[nrl] -= ncl;
       ps[ii][ii]=1;  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   }  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    m[nrl][ncl] += NR_END;
     for(jj=1; jj<= nlstate+ndeath; jj++){    m[nrl][ncl] -= nll;
      printf("%lf ",ps[ii][jj]);    for (j=ncl+1; j<=nch; j++) 
    }      m[nrl][j]=m[nrl][j-1]+nlay;
     printf("\n ");    
     }    for (i=nrl+1; i<=nrh; i++) {
     printf("\n ");printf("%lf ",cov[2]);*/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 /*      for (j=ncl+1; j<=nch; j++) 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        m[i][j]=m[i][j-1]+nlay;
   goto end;*/    }
     return ps;    return m; 
 }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 /**************** Product of 2 matrices ******************/    */
   }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  /*************************free ma3x ************************/
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  {
   /* in, b, out are matrice of pointers which should have been initialized    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      before: only the contents of out is modified. The function returns    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      a pointer to pointers identical to out */    free((FREE_ARG)(m+nrl-NR_END));
   long i, j, k;  }
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  /*************** function subdirf ***********/
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  char *subdirf(char fileres[])
         out[i][k] +=in[i][j]*b[j][k];  {
     /* Caution optionfilefiname is hidden */
   return out;    strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
     return tmpout;
 /************* Higher Matrix Product ***************/  }
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*************** function subdirf2 ***********/
 {  char *subdirf2(char fileres[], char *preop)
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  {
      duration (i.e. until    
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    /* Caution optionfilefiname is hidden */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    strcpy(tmpout,optionfilefiname);
      (typically every 2 years instead of every month which is too big).    strcat(tmpout,"/");
      Model is determined by parameters x and covariates have to be    strcat(tmpout,preop);
      included manually here.    strcat(tmpout,fileres);
     return tmpout;
      */  }
   
   int i, j, d, h, k;  /*************** function subdirf3 ***********/
   double **out, cov[NCOVMAX];  char *subdirf3(char fileres[], char *preop, char *preop2)
   double **newm;  {
     
   /* Hstepm could be zero and should return the unit matrix */    /* Caution optionfilefiname is hidden */
   for (i=1;i<=nlstate+ndeath;i++)    strcpy(tmpout,optionfilefiname);
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,"/");
       oldm[i][j]=(i==j ? 1.0 : 0.0);    strcat(tmpout,preop);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    return tmpout;
   for(h=1; h <=nhstepm; h++){  }
     for(d=1; d <=hstepm; d++){  
       newm=savm;  /***************** f1dim *************************/
       /* Covariates have to be included here again */  extern int ncom; 
       cov[1]=1.;  extern double *pcom,*xicom;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  extern double (*nrfunc)(double []); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];   
       for (k=1; k<=cptcovage;k++)  double f1dim(double x) 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  { 
       for (k=1; k<=cptcovprod;k++)    int j; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double f;
     double *xt; 
    
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    xt=vector(1,ncom); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    f=(*nrfunc)(xt); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    free_vector(xt,1,ncom); 
       savm=oldm;    return f; 
       oldm=newm;  } 
     }  
     for(i=1; i<=nlstate+ndeath; i++)  /*****************brent *************************/
       for(j=1;j<=nlstate+ndeath;j++) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         po[i][j][h]=newm[i][j];  { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    int iter; 
          */    double a,b,d,etemp;
       }    double fu,fv,fw,fx;
   } /* end h */    double ftemp;
   return po;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 }    double e=0.0; 
    
     a=(ax < cx ? ax : cx); 
 /*************** log-likelihood *************/    b=(ax > cx ? ax : cx); 
 double func( double *x)    x=w=v=bx; 
 {    fw=fv=fx=(*f)(x); 
   int i, ii, j, k, mi, d, kk;    for (iter=1;iter<=ITMAX;iter++) { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      xm=0.5*(a+b); 
   double **out;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double sw; /* Sum of weights */      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   double lli; /* Individual log likelihood */      printf(".");fflush(stdout);
   long ipmx;      fprintf(ficlog,".");fflush(ficlog);
   /*extern weight */  #ifdef DEBUG
   /* We are differentiating ll according to initial status */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   /*for(i=1;i<imx;i++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     printf(" %d\n",s[4][i]);  #endif
   */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   cov[1]=1.;        *xmin=x; 
         return fx; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      } 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      ftemp=fu;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      if (fabs(e) > tol1) { 
     for(mi=1; mi<= wav[i]-1; mi++){        r=(x-w)*(fx-fv); 
       for (ii=1;ii<=nlstate+ndeath;ii++)        q=(x-v)*(fx-fw); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        p=(x-v)*q-(x-w)*r; 
       for(d=0; d<dh[mi][i]; d++){        q=2.0*(q-r); 
         newm=savm;        if (q > 0.0) p = -p; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        q=fabs(q); 
         for (kk=1; kk<=cptcovage;kk++) {        etemp=e; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        e=d; 
         }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
                  d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        else { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          d=p/q; 
         savm=oldm;          u=x+d; 
         oldm=newm;          if (u-a < tol2 || b-u < tol2) 
                    d=SIGN(tol1,xm-x); 
                } 
       } /* end mult */      } else { 
              d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       ipmx +=1;      fu=(*f)(u); 
       sw += weight[i];      if (fu <= fx) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        if (u >= x) a=x; else b=x; 
     } /* end of wave */        SHFT(v,w,x,u) 
   } /* end of individual */          SHFT(fv,fw,fx,fu) 
           } else { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            if (u < x) a=u; else b=u; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            if (fu <= fw || w == x) { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */              v=w; 
   return -l;              w=u; 
 }              fv=fw; 
               fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
 /*********** Maximum Likelihood Estimation ***************/              v=u; 
               fv=fu; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))            } 
 {          } 
   int i,j, iter;    } 
   double **xi,*delti;    nrerror("Too many iterations in brent"); 
   double fret;    *xmin=x; 
   xi=matrix(1,npar,1,npar);    return fx; 
   for (i=1;i<=npar;i++)  } 
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  /****************** mnbrak ***********************/
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    double ulim,u,r,q, dum;
     double fu; 
 }   
     *fa=(*func)(*ax); 
 /**** Computes Hessian and covariance matrix ***/    *fb=(*func)(*bx); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    if (*fb > *fa) { 
 {      SHFT(dum,*ax,*bx,dum) 
   double  **a,**y,*x,pd;        SHFT(dum,*fb,*fa,dum) 
   double **hess;        } 
   int i, j,jk;    *cx=(*bx)+GOLD*(*bx-*ax); 
   int *indx;    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
   double hessii(double p[], double delta, int theta, double delti[]);      r=(*bx-*ax)*(*fb-*fc); 
   double hessij(double p[], double delti[], int i, int j);      q=(*bx-*cx)*(*fb-*fa); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   hess=matrix(1,npar,1,npar);      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
   printf("\nCalculation of the hessian matrix. Wait...\n");      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for (i=1;i<=npar;i++){        fu=(*func)(u); 
     printf("%d",i);fflush(stdout);        if (fu < *fc) { 
     hess[i][i]=hessii(p,ftolhess,i,delti);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     /*printf(" %f ",p[i]);*/            SHFT(*fb,*fc,fu,(*func)(u)) 
     /*printf(" %lf ",hess[i][i]);*/            } 
   }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
          u=ulim; 
   for (i=1;i<=npar;i++) {        fu=(*func)(u); 
     for (j=1;j<=npar;j++)  {      } else { 
       if (j>i) {        u=(*cx)+GOLD*(*cx-*bx); 
         printf(".%d%d",i,j);fflush(stdout);        fu=(*func)(u); 
         hess[i][j]=hessij(p,delti,i,j);      } 
         hess[j][i]=hess[i][j];          SHFT(*ax,*bx,*cx,u) 
         /*printf(" %lf ",hess[i][j]);*/        SHFT(*fa,*fb,*fc,fu) 
       }        } 
     }  } 
   }  
   printf("\n");  /*************** linmin ************************/
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  int ncom; 
    double *pcom,*xicom;
   a=matrix(1,npar,1,npar);  double (*nrfunc)(double []); 
   y=matrix(1,npar,1,npar);   
   x=vector(1,npar);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   indx=ivector(1,npar);  { 
   for (i=1;i<=npar;i++)    double brent(double ax, double bx, double cx, 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];                 double (*f)(double), double tol, double *xmin); 
   ludcmp(a,npar,indx,&pd);    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for (j=1;j<=npar;j++) {                double *fc, double (*func)(double)); 
     for (i=1;i<=npar;i++) x[i]=0;    int j; 
     x[j]=1;    double xx,xmin,bx,ax; 
     lubksb(a,npar,indx,x);    double fx,fb,fa;
     for (i=1;i<=npar;i++){   
       matcov[i][j]=x[i];    ncom=n; 
     }    pcom=vector(1,n); 
   }    xicom=vector(1,n); 
     nrfunc=func; 
   printf("\n#Hessian matrix#\n");    for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++) {      pcom[j]=p[j]; 
     for (j=1;j<=npar;j++) {      xicom[j]=xi[j]; 
       printf("%.3e ",hess[i][j]);    } 
     }    ax=0.0; 
     printf("\n");    xx=1.0; 
   }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   /* Recompute Inverse */  #ifdef DEBUG
   for (i=1;i<=npar;i++)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   ludcmp(a,npar,indx,&pd);  #endif
     for (j=1;j<=n;j++) { 
   /*  printf("\n#Hessian matrix recomputed#\n");      xi[j] *= xmin; 
       p[j] += xi[j]; 
   for (j=1;j<=npar;j++) {    } 
     for (i=1;i<=npar;i++) x[i]=0;    free_vector(xicom,1,n); 
     x[j]=1;    free_vector(pcom,1,n); 
     lubksb(a,npar,indx,x);  } 
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  char *asc_diff_time(long time_sec, char ascdiff[])
       printf("%.3e ",y[i][j]);  {
     }    long sec_left, days, hours, minutes;
     printf("\n");    days = (time_sec) / (60*60*24);
   }    sec_left = (time_sec) % (60*60*24);
   */    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   free_matrix(a,1,npar,1,npar);    minutes = (sec_left) /60;
   free_matrix(y,1,npar,1,npar);    sec_left = (sec_left) % (60);
   free_vector(x,1,npar);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   free_ivector(indx,1,npar);    return ascdiff;
   free_matrix(hess,1,npar,1,npar);  }
   
   /*************** powell ************************/
 }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
 /*************** hessian matrix ****************/  { 
 double hessii( double x[], double delta, int theta, double delti[])    void linmin(double p[], double xi[], int n, double *fret, 
 {                double (*func)(double [])); 
   int i;    int i,ibig,j; 
   int l=1, lmax=20;    double del,t,*pt,*ptt,*xit;
   double k1,k2;    double fp,fptt;
   double p2[NPARMAX+1];    double *xits;
   double res;    int niterf, itmp;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;    pt=vector(1,n); 
   int k=0,kmax=10;    ptt=vector(1,n); 
   double l1;    xit=vector(1,n); 
     xits=vector(1,n); 
   fx=func(x);    *fret=(*func)(p); 
   for (i=1;i<=npar;i++) p2[i]=x[i];    for (j=1;j<=n;j++) pt[j]=p[j]; 
   for(l=0 ; l <=lmax; l++){    for (*iter=1;;++(*iter)) { 
     l1=pow(10,l);      fp=(*fret); 
     delts=delt;      ibig=0; 
     for(k=1 ; k <kmax; k=k+1){      del=0.0; 
       delt = delta*(l1*k);      last_time=curr_time;
       p2[theta]=x[theta] +delt;      (void) gettimeofday(&curr_time,&tzp);
       k1=func(p2)-fx;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       p2[theta]=x[theta]-delt;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       k2=func(p2)-fx;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       /*res= (k1-2.0*fx+k2)/delt/delt; */     for (i=1;i<=n;i++) {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        printf(" %d %.12f",i, p[i]);
              fprintf(ficlog," %d %.12lf",i, p[i]);
 #ifdef DEBUG        fprintf(ficrespow," %.12lf", p[i]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      }
 #endif      printf("\n");
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      fprintf(ficlog,"\n");
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      fprintf(ficrespow,"\n");fflush(ficrespow);
         k=kmax;      if(*iter <=3){
       }        tm = *localtime(&curr_time.tv_sec);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        strcpy(strcurr,asctime(&tm));
         k=kmax; l=lmax*10.;  /*       asctime_r(&tm,strcurr); */
       }        forecast_time=curr_time; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        itmp = strlen(strcurr);
         delts=delt;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       }          strcurr[itmp-1]='\0';
     }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   delti[theta]=delts;        for(niterf=10;niterf<=30;niterf+=10){
   return res;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
            tmf = *localtime(&forecast_time.tv_sec);
 }  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
 double hessij( double x[], double delti[], int thetai,int thetaj)          itmp = strlen(strfor);
 {          if(strfor[itmp-1]=='\n')
   int i;          strfor[itmp-1]='\0';
   int l=1, l1, lmax=20;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double k1,k2,k3,k4,res,fx;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double p2[NPARMAX+1];        }
   int k;      }
       for (i=1;i<=n;i++) { 
   fx=func(x);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for (k=1; k<=2; k++) {        fptt=(*fret); 
     for (i=1;i<=npar;i++) p2[i]=x[i];  #ifdef DEBUG
     p2[thetai]=x[thetai]+delti[thetai]/k;        printf("fret=%lf \n",*fret);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fprintf(ficlog,"fret=%lf \n",*fret);
     k1=func(p2)-fx;  #endif
          printf("%d",i);fflush(stdout);
     p2[thetai]=x[thetai]+delti[thetai]/k;        fprintf(ficlog,"%d",i);fflush(ficlog);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        linmin(p,xit,n,fret,func); 
     k2=func(p2)-fx;        if (fabs(fptt-(*fret)) > del) { 
            del=fabs(fptt-(*fret)); 
     p2[thetai]=x[thetai]-delti[thetai]/k;          ibig=i; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        } 
     k3=func(p2)-fx;  #ifdef DEBUG
          printf("%d %.12e",i,(*fret));
     p2[thetai]=x[thetai]-delti[thetai]/k;        fprintf(ficlog,"%d %.12e",i,(*fret));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for (j=1;j<=n;j++) {
     k4=func(p2)-fx;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          printf(" x(%d)=%.12e",j,xit[j]);
 #ifdef DEBUG          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        }
 #endif        for(j=1;j<=n;j++) {
   }          printf(" p=%.12e",p[j]);
   return res;          fprintf(ficlog," p=%.12e",p[j]);
 }        }
         printf("\n");
 /************** Inverse of matrix **************/        fprintf(ficlog,"\n");
 void ludcmp(double **a, int n, int *indx, double *d)  #endif
 {      } 
   int i,imax,j,k;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double big,dum,sum,temp;  #ifdef DEBUG
   double *vv;        int k[2],l;
          k[0]=1;
   vv=vector(1,n);        k[1]=-1;
   *d=1.0;        printf("Max: %.12e",(*func)(p));
   for (i=1;i<=n;i++) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
     big=0.0;        for (j=1;j<=n;j++) {
     for (j=1;j<=n;j++)          printf(" %.12e",p[j]);
       if ((temp=fabs(a[i][j])) > big) big=temp;          fprintf(ficlog," %.12e",p[j]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        }
     vv[i]=1.0/big;        printf("\n");
   }        fprintf(ficlog,"\n");
   for (j=1;j<=n;j++) {        for(l=0;l<=1;l++) {
     for (i=1;i<j;i++) {          for (j=1;j<=n;j++) {
       sum=a[i][j];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       a[i][j]=sum;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }          }
     big=0.0;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (i=j;i<=n;i++) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       sum=a[i][j];        }
       for (k=1;k<j;k++)  #endif
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {        free_vector(xit,1,n); 
         big=dum;        free_vector(xits,1,n); 
         imax=i;        free_vector(ptt,1,n); 
       }        free_vector(pt,1,n); 
     }        return; 
     if (j != imax) {      } 
       for (k=1;k<=n;k++) {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         dum=a[imax][k];      for (j=1;j<=n;j++) { 
         a[imax][k]=a[j][k];        ptt[j]=2.0*p[j]-pt[j]; 
         a[j][k]=dum;        xit[j]=p[j]-pt[j]; 
       }        pt[j]=p[j]; 
       *d = -(*d);      } 
       vv[imax]=vv[j];      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
     indx[j]=imax;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     if (a[j][j] == 0.0) a[j][j]=TINY;        if (t < 0.0) { 
     if (j != n) {          linmin(p,xit,n,fret,func); 
       dum=1.0/(a[j][j]);          for (j=1;j<=n;j++) { 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            xi[j][ibig]=xi[j][n]; 
     }            xi[j][n]=xit[j]; 
   }          }
   free_vector(vv,1,n);  /* Doesn't work */  #ifdef DEBUG
 ;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
 void lubksb(double **a, int n, int *indx, double b[])            printf(" %.12e",xit[j]);
 {            fprintf(ficlog," %.12e",xit[j]);
   int i,ii=0,ip,j;          }
   double sum;          printf("\n");
            fprintf(ficlog,"\n");
   for (i=1;i<=n;i++) {  #endif
     ip=indx[i];        }
     sum=b[ip];      } 
     b[ip]=b[i];    } 
     if (ii)  } 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;  /**** Prevalence limit (stable or period prevalence)  ****************/
     b[i]=sum;  
   }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for (i=n;i>=1;i--) {  {
     sum=b[i];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       matrix by transitions matrix until convergence is reached */
     b[i]=sum/a[i][i];  
   }    int i, ii,j,k;
 }    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
 /************ Frequencies ********************/    double **out, cov[NCOVMAX+1], **pmij();
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    double **newm;
 {  /* Some frequencies */    double agefin, delaymax=50 ; /* Max number of years to converge */
    
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***freq; /* Frequencies */      for (j=1;j<=nlstate+ndeath;j++){
   double *pp;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double pos, k2, dateintsum=0,k2cpt=0;      }
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];     cov[1]=1.;
     
   pp=vector(1,nlstate);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   strcpy(fileresp,"p");      newm=savm;
   strcat(fileresp,fileres);      /* Covariates have to be included here again */
   if((ficresp=fopen(fileresp,"w"))==NULL) {       cov[2]=agefin;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    
     exit(0);        for (k=1; k<=cptcovn;k++) {
   }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   j1=0;        }
          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   j=cptcoveff;        for (k=1; k<=cptcovprod;k++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
   for(k1=1; k1<=j;k1++){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for(i1=1; i1<=ncodemax[k1];i1++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       j1++;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         scanf("%d", i);*/  
       for (i=-1; i<=nlstate+ndeath; i++)        savm=oldm;
         for (jk=-1; jk<=nlstate+ndeath; jk++)        oldm=newm;
           for(m=agemin; m <= agemax+3; m++)      maxmax=0.;
             freq[i][jk][m]=0;      for(j=1;j<=nlstate;j++){
              min=1.;
       dateintsum=0;        max=0.;
       k2cpt=0;        for(i=1; i<=nlstate; i++) {
       for (i=1; i<=imx; i++) {          sumnew=0;
         bool=1;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         if  (cptcovn>0) {          prlim[i][j]= newm[i][j]/(1-sumnew);
           for (z1=1; z1<=cptcoveff; z1++)          max=FMAX(max,prlim[i][j]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          min=FMIN(min,prlim[i][j]);
               bool=0;        }
         }        maxmin=max-min;
         if (bool==1) {        maxmax=FMAX(maxmax,maxmin);
           for(m=firstpass; m<=lastpass; m++){      }
             k2=anint[m][i]+(mint[m][i]/12.);      if(maxmax < ftolpl){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        return prlim;
               if(agev[m][i]==0) agev[m][i]=agemax+1;      }
               if(agev[m][i]==1) agev[m][i]=agemax+2;    }
               if (m<lastpass) {  }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  /*************** transition probabilities ***************/ 
               }  
                double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  {
                 dateintsum=dateintsum+k2;    double s1, s2;
                 k2cpt++;    /*double t34;*/
               }    int i,j,j1, nc, ii, jj;
             }  
           }      for(i=1; i<= nlstate; i++){
         }        for(j=1; j<i;j++){
       }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                    /*s2 += param[i][j][nc]*cov[nc];*/
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       if  (cptcovn>0) {          }
         fprintf(ficresp, "\n#********** Variable ");          ps[i][j]=s2;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         fprintf(ficresp, "**********\n#");        }
       }        for(j=i+1; j<=nlstate+ndeath;j++){
       for(i=1; i<=nlstate;i++)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       fprintf(ficresp, "\n");  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
                }
       for(i=(int)agemin; i <= (int)agemax+3; i++){          ps[i][j]=s2;
         if(i==(int)agemax+3)        }
           printf("Total");      }
         else      /*ps[3][2]=1;*/
           printf("Age %d", i);      
         for(jk=1; jk <=nlstate ; jk++){      for(i=1; i<= nlstate; i++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        s1=0;
             pp[jk] += freq[jk][m][i];        for(j=1; j<i; j++){
         }          s1+=exp(ps[i][j]);
         for(jk=1; jk <=nlstate ; jk++){          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           for(m=-1, pos=0; m <=0 ; m++)        }
             pos += freq[jk][m][i];        for(j=i+1; j<=nlstate+ndeath; j++){
           if(pp[jk]>=1.e-10)          s1+=exp(ps[i][j]);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           else        }
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        ps[i][i]=1./(s1+1.);
         }        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(jk=1; jk <=nlstate ; jk++){        for(j=i+1; j<=nlstate+ndeath; j++)
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
             pp[jk] += freq[jk][m][i];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         }      } /* end i */
       
         for(jk=1,pos=0; jk <=nlstate ; jk++)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           pos += pp[jk];        for(jj=1; jj<= nlstate+ndeath; jj++){
         for(jk=1; jk <=nlstate ; jk++){          ps[ii][jj]=0;
           if(pos>=1.e-5)          ps[ii][ii]=1;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        }
           else      }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
               probs[i][jk][j1]= pp[jk]/pos;  /*         printf("ddd %lf ",ps[ii][jj]); */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  /*       } */
             }  /*       printf("\n "); */
             else  /*        } */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  /*        printf("\n ");printf("%lf ",cov[2]); */
           }         /*
         }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
                goto end;*/
         for(jk=-1; jk <=nlstate+ndeath; jk++)      return ps;
           for(m=-1; m <=nlstate+ndeath; m++)  }
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
         if(i <= (int) agemax)  /**************** Product of 2 matrices ******************/
           fprintf(ficresp,"\n");  
         printf("\n");  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       }  {
     }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   dateintmean=dateintsum/k2cpt;    /* in, b, out are matrice of pointers which should have been initialized 
         before: only the contents of out is modified. The function returns
   fclose(ficresp);       a pointer to pointers identical to out */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    long i, j, k;
   free_vector(pp,1,nlstate);    for(i=nrl; i<= nrh; i++)
        for(k=ncolol; k<=ncoloh; k++)
   /* End of Freq */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
 }          out[i][k] +=in[i][j]*b[j][k];
   
 /************ Prevalence ********************/    return out;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  }
 {  /* Some frequencies */  
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /************* Higher Matrix Product ***************/
   double ***freq; /* Frequencies */  
   double *pp;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double pos, k2;  {
     /* Computes the transition matrix starting at age 'age' over 
   pp=vector(1,nlstate);       'nhstepm*hstepm*stepm' months (i.e. until
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         nhstepm*hstepm matrices. 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   j1=0;       (typically every 2 years instead of every month which is too big 
         for the memory).
   j=cptcoveff;       Model is determined by parameters x and covariates have to be 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       included manually here. 
    
   for(k1=1; k1<=j;k1++){       */
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;    int i, j, d, h, k;
          double **out, cov[NCOVMAX+1];
       for (i=-1; i<=nlstate+ndeath; i++)      double **newm;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)    /* Hstepm could be zero and should return the unit matrix */
             freq[i][jk][m]=0;    for (i=1;i<=nlstate+ndeath;i++)
            for (j=1;j<=nlstate+ndeath;j++){
       for (i=1; i<=imx; i++) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
         bool=1;        po[i][j][0]=(i==j ? 1.0 : 0.0);
         if  (cptcovn>0) {      }
           for (z1=1; z1<=cptcoveff; z1++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    for(h=1; h <=nhstepm; h++){
               bool=0;      for(d=1; d <=hstepm; d++){
         }        newm=savm;
         if (bool==1) {        /* Covariates have to be included here again */
           for(m=firstpass; m<=lastpass; m++){        cov[1]=1.;
             k2=anint[m][i]+(mint[m][i]/12.);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for (k=1; k<=cptcovn;k++) 
               if(agev[m][i]==0) agev[m][i]=agemax+1;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for (k=1; k<=cptcovage;k++)
               if (m<lastpass) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                 if (calagedate>0)        for (k=1; k<=cptcovprod;k++)
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                 else  
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
               }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
             }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         }        savm=oldm;
       }        oldm=newm;
       for(i=(int)agemin; i <= (int)agemax+3; i++){      }
         for(jk=1; jk <=nlstate ; jk++){      for(i=1; i<=nlstate+ndeath; i++)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for(j=1;j<=nlstate+ndeath;j++) {
             pp[jk] += freq[jk][m][i];          po[i][j][h]=newm[i][j];
         }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=-1, pos=0; m <=0 ; m++)      /*printf("h=%d ",h);*/
             pos += freq[jk][m][i];    } /* end h */
         }  /*     printf("\n H=%d \n",h); */
            return po;
         for(jk=1; jk <=nlstate ; jk++){  }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];  
         }  /*************** log-likelihood *************/
          double func( double *x)
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  {
            int i, ii, j, k, mi, d, kk;
         for(jk=1; jk <=nlstate ; jk++){        double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           if( i <= (int) agemax){    double **out;
             if(pos>=1.e-5){    double sw; /* Sum of weights */
               probs[i][jk][j1]= pp[jk]/pos;    double lli; /* Individual log likelihood */
             }    int s1, s2;
           }    double bbh, survp;
         }    long ipmx;
            /*extern weight */
       }    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
      */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    cov[1]=1.;
   free_vector(pp,1,nlstate);  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
 }  /* End of Freq */  
     if(mle==1){
 /************* Waves Concatenation ***************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for(mi=1; mi<= wav[i]-1; mi++){
 {          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            for (j=1;j<=nlstate+ndeath;j++){
      Death is a valid wave (if date is known).              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            }
      and mw[mi+1][i]. dh depends on stepm.          for(d=0; d<dh[mi][i]; d++){
      */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i, mi, m;            for (kk=1; kk<=cptcovage;kk++) {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      double sum=0., jmean=0.;*/            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int j, k=0,jk, ju, jl;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double sum=0.;            savm=oldm;
   jmin=1e+5;            oldm=newm;
   jmax=-1;          } /* end mult */
   jmean=0.;        
   for(i=1; i<=imx; i++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     mi=0;          /* But now since version 0.9 we anticipate for bias at large stepm.
     m=firstpass;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     while(s[m][i] <= nlstate){           * (in months) between two waves is not a multiple of stepm, we rounded to 
       if(s[m][i]>=1)           * the nearest (and in case of equal distance, to the lowest) interval but now
         mw[++mi][i]=m;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       if(m >=lastpass)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         break;           * probability in order to take into account the bias as a fraction of the way
       else           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         m++;           * -stepm/2 to stepm/2 .
     }/* end while */           * For stepm=1 the results are the same as for previous versions of Imach.
     if (s[m][i] > nlstate){           * For stepm > 1 the results are less biased than in previous versions. 
       mi++;     /* Death is another wave */           */
       /* if(mi==0)  never been interviewed correctly before death */          s1=s[mw[mi][i]][i];
          /* Only death is a correct wave */          s2=s[mw[mi+1][i]][i];
       mw[mi][i]=m;          bbh=(double)bh[mi][i]/(double)stepm; 
     }          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
     wav[i]=mi;           */
     if(mi==0)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          if( s2 > nlstate){ 
   }            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
   for(i=1; i<=imx; i++){               die between last step unit time and current  step unit time, 
     for(mi=1; mi<wav[i];mi++){               which is also equal to probability to die before dh 
       if (stepm <=0)               minus probability to die before dh-stepm . 
         dh[mi][i]=1;               In version up to 0.92 likelihood was computed
       else{          as if date of death was unknown. Death was treated as any other
         if (s[mw[mi+1][i]][i] > nlstate) {          health state: the date of the interview describes the actual state
           if (agedc[i] < 2*AGESUP) {          and not the date of a change in health state. The former idea was
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          to consider that at each interview the state was recorded
           if(j==0) j=1;  /* Survives at least one month after exam */          (healthy, disable or death) and IMaCh was corrected; but when we
           k=k+1;          introduced the exact date of death then we should have modified
           if (j >= jmax) jmax=j;          the contribution of an exact death to the likelihood. This new
           if (j <= jmin) jmin=j;          contribution is smaller and very dependent of the step unit
           sum=sum+j;          stepm. It is no more the probability to die between last interview
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          and month of death but the probability to survive from last
           }          interview up to one month before death multiplied by the
         }          probability to die within a month. Thanks to Chris
         else{          Jackson for correcting this bug.  Former versions increased
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          mortality artificially. The bad side is that we add another loop
           k=k+1;          which slows down the processing. The difference can be up to 10%
           if (j >= jmax) jmax=j;          lower mortality.
           else if (j <= jmin)jmin=j;            */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            lli=log(out[s1][s2] - savm[s1][s2]);
           sum=sum+j;  
         }  
         jk= j/stepm;          } else if  (s2==-2) {
         jl= j -jk*stepm;            for (j=1,survp=0. ; j<=nlstate; j++) 
         ju= j -(jk+1)*stepm;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         if(jl <= -ju)            /*survp += out[s1][j]; */
           dh[mi][i]=jk;            lli= log(survp);
         else          }
           dh[mi][i]=jk+1;          
         if(dh[mi][i]==0)          else if  (s2==-4) { 
           dh[mi][i]=1; /* At least one step */            for (j=3,survp=0. ; j<=nlstate; j++)  
       }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     }            lli= log(survp); 
   }          } 
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          else if  (s2==-5) { 
  }            for (j=1,survp=0. ; j<=2; j++)  
 /*********** Tricode ****************************/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 void tricode(int *Tvar, int **nbcode, int imx)            lli= log(survp); 
 {          } 
   int Ndum[20],ij=1, k, j, i;          
   int cptcode=0;          else{
   cptcoveff=0;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   for (k=0; k<19; k++) Ndum[k]=0;          } 
   for (k=1; k<=7; k++) ncodemax[k]=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for (i=1; i<=imx; i++) {          ipmx +=1;
       ij=(int)(covar[Tvar[j]][i]);          sw += weight[i];
       Ndum[ij]++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        } /* end of wave */
       if (ij > cptcode) cptcode=ij;      } /* end of individual */
     }    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=0; i<=cptcode; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if(Ndum[i]!=0) ncodemax[j]++;        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
     ij=1;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=ncodemax[j]; i++) {            }
       for (k=0; k<=19; k++) {          for(d=0; d<=dh[mi][i]; d++){
         if (Ndum[k] != 0) {            newm=savm;
           nbcode[Tvar[j]][ij]=k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                      for (kk=1; kk<=cptcovage;kk++) {
           ij++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
         if (ij > ncodemax[j]) break;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
   }              oldm=newm;
           } /* end mult */
  for (k=0; k<19; k++) Ndum[k]=0;        
           s1=s[mw[mi][i]][i];
  for (i=1; i<=ncovmodel-2; i++) {          s2=s[mw[mi+1][i]][i];
       ij=Tvar[i];          bbh=(double)bh[mi][i]/(double)stepm; 
       Ndum[ij]++;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     }          ipmx +=1;
           sw += weight[i];
  ij=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  for (i=1; i<=10; i++) {        } /* end of wave */
    if((Ndum[i]!=0) && (i<=ncovcol)){      } /* end of individual */
      Tvaraff[ij]=i;    }  else if(mle==3){  /* exponential inter-extrapolation */
      ij++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  }        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
     cptcoveff=ij-1;            for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*********** Health Expectancies ****************/            }
           for(d=0; d<dh[mi][i]; d++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   /* Health expectancies */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            }
   double age, agelim, hf;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double ***p3mat,***varhe;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **dnewm,**doldm;            savm=oldm;
   double *xp;            oldm=newm;
   double **gp, **gm;          } /* end mult */
   double ***gradg, ***trgradg;        
   int theta;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          bbh=(double)bh[mi][i]/(double)stepm; 
   xp=vector(1,npar);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   dnewm=matrix(1,nlstate*2,1,npar);          ipmx +=1;
   doldm=matrix(1,nlstate*2,1,nlstate*2);          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficreseij,"# Health expectancies\n");        } /* end of wave */
   fprintf(ficreseij,"# Age");      } /* end of individual */
   for(i=1; i<=nlstate;i++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     for(j=1; j<=nlstate;j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficreseij,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   if(estepm < stepm){            for (j=1;j<=nlstate+ndeath;j++){
     printf ("Problem %d lower than %d\n",estepm, stepm);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   else  hstepm=estepm;              }
   /* We compute the life expectancy from trapezoids spaced every estepm months          for(d=0; d<dh[mi][i]; d++){
    * This is mainly to measure the difference between two models: for example            newm=savm;
    * if stepm=24 months pijx are given only every 2 years and by summing them            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    * we are calculating an estimate of the Life Expectancy assuming a linear            for (kk=1; kk<=cptcovage;kk++) {
    * progression inbetween and thus overestimating or underestimating according              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    * to the curvature of the survival function. If, for the same date, we            }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          
    * to compare the new estimate of Life expectancy with the same linear            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    * hypothesis. A more precise result, taking into account a more precise                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    * curvature will be obtained if estepm is as small as stepm. */            savm=oldm;
             oldm=newm;
   /* For example we decided to compute the life expectancy with the smallest unit */          } /* end mult */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        
      nhstepm is the number of hstepm from age to agelim          s1=s[mw[mi][i]][i];
      nstepm is the number of stepm from age to agelin.          s2=s[mw[mi+1][i]][i];
      Look at hpijx to understand the reason of that which relies in memory size          if( s2 > nlstate){ 
      and note for a fixed period like estepm months */            lli=log(out[s1][s2] - savm[s1][s2]);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          }else{
      survival function given by stepm (the optimization length). Unfortunately it            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      means that if the survival funtion is printed only each two years of age and if          }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          ipmx +=1;
      results. So we changed our mind and took the option of the best precision.          sw += weight[i];
   */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
   agelim=AGESUP;      } /* end of individual */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     /* nhstepm age range expressed in number of stepm */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        for(mi=1; mi<= wav[i]-1; mi++){
     /* if (stepm >= YEARM) hstepm=1;*/          for (ii=1;ii<=nlstate+ndeath;ii++)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            for (j=1;j<=nlstate+ndeath;j++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gp=matrix(0,nhstepm,1,nlstate*2);            }
     gm=matrix(0,nhstepm,1,nlstate*2);          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            for (kk=1; kk<=cptcovage;kk++) {
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
           
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     /* Computing Variances of health expectancies */            savm=oldm;
             oldm=newm;
      for(theta=1; theta <=npar; theta++){          } /* end mult */
       for(i=1; i<=npar; i++){        
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            ipmx +=1;
       cptj=0;          sw += weight[i];
       for(j=1; j<= nlstate; j++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(i=1; i<=nlstate; i++){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           cptj=cptj+1;        } /* end of wave */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      } /* end of individual */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    } /* End of if */
           }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
          return -l;
        }
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /*************** log-likelihood *************/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    double funcone( double *x)
        {
       cptj=0;    /* Same as likeli but slower because of a lot of printf and if */
       for(j=1; j<= nlstate; j++){    int i, ii, j, k, mi, d, kk;
         for(i=1;i<=nlstate;i++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           cptj=cptj+1;    double **out;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    double lli; /* Individual log likelihood */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double llt;
           }    int s1, s2;
         }    double bbh, survp;
       }    /*extern weight */
       for(j=1; j<= nlstate*2; j++)    /* We are differentiating ll according to initial status */
         for(h=0; h<=nhstepm-1; h++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
      }    */
        cov[1]=1.;
 /* End theta */  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      for(h=0; h<=nhstepm-1; h++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(j=1; j<=nlstate*2;j++)      for(mi=1; mi<= wav[i]-1; mi++){
         for(theta=1; theta <=npar; theta++)        for (ii=1;ii<=nlstate+ndeath;ii++)
           trgradg[h][j][theta]=gradg[h][theta][j];          for (j=1;j<=nlstate+ndeath;j++){
                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
      for(i=1;i<=nlstate*2;i++)          }
       for(j=1;j<=nlstate*2;j++)        for(d=0; d<dh[mi][i]; d++){
         varhe[i][j][(int)age] =0.;          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      printf("%d|",(int)age);fflush(stdout);          for (kk=1; kk<=cptcovage;kk++) {
      for(h=0;h<=nhstepm-1;h++){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(k=0;k<=nhstepm-1;k++){          }
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(i=1;i<=nlstate*2;i++)          savm=oldm;
           for(j=1;j<=nlstate*2;j++)          oldm=newm;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        } /* end mult */
       }        
     }        s1=s[mw[mi][i]][i];
     /* Computing expectancies */        s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)        bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1; j<=nlstate;j++)        /* bias is positive if real duration
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){         * is higher than the multiple of stepm and negative otherwise.
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;         */
                  if( s2 > nlstate && (mle <5) ){  /* Jackson */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
         }          for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     fprintf(ficreseij,"%3.0f",age );          lli= log(survp);
     cptj=0;        }else if (mle==1){
     for(i=1; i<=nlstate;i++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(j=1; j<=nlstate;j++){        } else if(mle==2){
         cptj++;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        } else if(mle==3){  /* exponential inter-extrapolation */
       }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     fprintf(ficreseij,"\n");        } else if (mle==4){  /* mle=4 no inter-extrapolation */
              lli=log(out[s1][s2]); /* Original formula */
     free_matrix(gm,0,nhstepm,1,nlstate*2);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     free_matrix(gp,0,nhstepm,1,nlstate*2);          lli=log(out[s1][s2]); /* Original formula */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        } /* End of if */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        ipmx +=1;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        sw += weight[i];
   }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   printf("\n");        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
   free_vector(xp,1,npar);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   free_matrix(dnewm,1,nlstate*2,1,npar);   %11.6f %11.6f %11.6f ", \
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
 /************ Variance ******************/            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          }
 {          fprintf(ficresilk," %10.6f\n", -llt);
   /* Variance of health expectancies */        }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      } /* end of wave */
   double **newm;    } /* end of individual */
   double **dnewm,**doldm;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int i, j, nhstepm, hstepm, h, nstepm ;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int k, cptcode;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double *xp;    if(globpr==0){ /* First time we count the contributions and weights */
   double **gp, **gm;      gipmx=ipmx;
   double ***gradg, ***trgradg;      gsw=sw;
   double ***p3mat;    }
   double age,agelim, hf;    return -l;
   int theta;  }
   
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");  /*************** function likelione ***********/
   for(i=1; i<=nlstate;i++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     for(j=1; j<=nlstate;j++)  {
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    /* This routine should help understanding what is done with 
   fprintf(ficresvij,"\n");       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
   xp=vector(1,npar);       Plotting could be done.
   dnewm=matrix(1,nlstate,1,npar);     */
   doldm=matrix(1,nlstate,1,nlstate);    int k;
    
   if(estepm < stepm){    if(*globpri !=0){ /* Just counts and sums, no printings */
     printf ("Problem %d lower than %d\n",estepm, stepm);      strcpy(fileresilk,"ilk"); 
   }      strcat(fileresilk,fileres);
   else  hstepm=estepm;        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   /* For example we decided to compute the life expectancy with the smallest unit */        printf("Problem with resultfile: %s\n", fileresilk);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
      nhstepm is the number of hstepm from age to agelim      }
      nstepm is the number of stepm from age to agelin.      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
      Look at hpijx to understand the reason of that which relies in memory size      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      and note for a fixed period like k years */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for(k=1; k<=nlstate; k++) 
      survival function given by stepm (the optimization length). Unfortunately it        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
      means that if the survival funtion is printed only each two years of age and if      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    }
      results. So we changed our mind and took the option of the best precision.  
   */    *fretone=(*funcone)(p);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    if(*globpri !=0){
   agelim = AGESUP;      fclose(ficresilk);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fflush(fichtm); 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    } 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    return;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  }
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);  
   /*********** Maximum Likelihood Estimation ***************/
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  {
       }    int i,j, iter;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double **xi;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double fret;
     double fretone; /* Only one call to likelihood */
       if (popbased==1) {    /*  char filerespow[FILENAMELENGTH];*/
         for(i=1; i<=nlstate;i++)    xi=matrix(1,npar,1,npar);
           prlim[i][i]=probs[(int)age][i][ij];    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
          xi[i][j]=(i==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         for(h=0; h<=nhstepm; h++){    strcpy(filerespow,"pow"); 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    strcat(filerespow,fileres);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", filerespow);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
        }
       for(i=1; i<=npar; i++) /* Computes gradient */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=nlstate;i++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(j=1;j<=nlstate+ndeath;j++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      fprintf(ficrespow,"\n");
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
           prlim[i][i]=probs[(int)age][i][ij];  
       }    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
       for(j=1; j<= nlstate; j++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         for(h=0; h<=nhstepm; h++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  }
       }  
   /**** Computes Hessian and covariance matrix ***/
       for(j=1; j<= nlstate; j++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         for(h=0; h<=nhstepm; h++){  {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double  **a,**y,*x,pd;
         }    double **hess;
     } /* End theta */    int i, j,jk;
     int *indx;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     for(h=0; h<=nhstepm; h++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       for(j=1; j<=nlstate;j++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
         for(theta=1; theta <=npar; theta++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
           trgradg[h][j][theta]=gradg[h][theta][j];    double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
       for(j=1;j<=nlstate;j++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         vareij[i][j][(int)age] =0.;    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
     for(h=0;h<=nhstepm;h++){      fprintf(ficlog,"%d",i);fflush(ficlog);
       for(k=0;k<=nhstepm;k++){     
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      
         for(i=1;i<=nlstate;i++)      /*  printf(" %f ",p[i]);
           for(j=1;j<=nlstate;j++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    }
       }    
     }    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
     fprintf(ficresvij,"%.0f ",age );        if (j>i) { 
     for(i=1; i<=nlstate;i++)          printf(".%d%d",i,j);fflush(stdout);
       for(j=1; j<=nlstate;j++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          hess[i][j]=hessij(p,delti,i,j,func,npar);
       }          
     fprintf(ficresvij,"\n");          hess[j][i]=hess[i][j];    
     free_matrix(gp,0,nhstepm,1,nlstate);          /*printf(" %lf ",hess[i][j]);*/
     free_matrix(gm,0,nhstepm,1,nlstate);        }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\n");
   } /* End age */    fprintf(ficlog,"\n");
    
   free_vector(xp,1,npar);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_matrix(doldm,1,nlstate,1,npar);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);    
     a=matrix(1,npar,1,npar);
 }    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
 /************ Variance of prevlim ******************/    indx=ivector(1,npar);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for (i=1;i<=npar;i++)
 {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   /* Variance of prevalence limit */    ludcmp(a,npar,indx,&pd);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    for (j=1;j<=npar;j++) {
   double **dnewm,**doldm;      for (i=1;i<=npar;i++) x[i]=0;
   int i, j, nhstepm, hstepm;      x[j]=1;
   int k, cptcode;      lubksb(a,npar,indx,x);
   double *xp;      for (i=1;i<=npar;i++){ 
   double *gp, *gm;        matcov[i][j]=x[i];
   double **gradg, **trgradg;      }
   double age,agelim;    }
   int theta;  
        printf("\n#Hessian matrix#\n");
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    fprintf(ficlog,"\n#Hessian matrix#\n");
   fprintf(ficresvpl,"# Age");    for (i=1;i<=npar;i++) { 
   for(i=1; i<=nlstate;i++)      for (j=1;j<=npar;j++) { 
       fprintf(ficresvpl," %1d-%1d",i,i);        printf("%.3e ",hess[i][j]);
   fprintf(ficresvpl,"\n");        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
   xp=vector(1,npar);      printf("\n");
   dnewm=matrix(1,nlstate,1,npar);      fprintf(ficlog,"\n");
   doldm=matrix(1,nlstate,1,nlstate);    }
    
   hstepm=1*YEARM; /* Every year of age */    /* Recompute Inverse */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    for (i=1;i<=npar;i++)
   agelim = AGESUP;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    ludcmp(a,npar,indx,&pd);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;    /*  printf("\n#Hessian matrix recomputed#\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);    for (j=1;j<=npar;j++) {
     gp=vector(1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
     gm=vector(1,nlstate);      x[j]=1;
       lubksb(a,npar,indx,x);
     for(theta=1; theta <=npar; theta++){      for (i=1;i<=npar;i++){ 
       for(i=1; i<=npar; i++){ /* Computes gradient */        y[i][j]=x[i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        printf("%.3e ",y[i][j]);
       }        fprintf(ficlog,"%.3e ",y[i][j]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       for(i=1;i<=nlstate;i++)      printf("\n");
         gp[i] = prlim[i][i];      fprintf(ficlog,"\n");
        }
       for(i=1; i<=npar; i++) /* Computes gradient */    */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_matrix(a,1,npar,1,npar);
       for(i=1;i<=nlstate;i++)    free_matrix(y,1,npar,1,npar);
         gm[i] = prlim[i][i];    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
       for(i=1;i<=nlstate;i++)    free_matrix(hess,1,npar,1,npar);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */  
   }
     trgradg =matrix(1,nlstate,1,npar);  
   /*************** hessian matrix ****************/
     for(j=1; j<=nlstate;j++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       for(theta=1; theta <=npar; theta++)  {
         trgradg[j][theta]=gradg[theta][j];    int i;
     int l=1, lmax=20;
     for(i=1;i<=nlstate;i++)    double k1,k2;
       varpl[i][(int)age] =0.;    double p2[MAXPARM+1]; /* identical to x */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double res;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     for(i=1;i<=nlstate;i++)    double fx;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int k=0,kmax=10;
     double l1;
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    fx=func(x);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    for (i=1;i<=npar;i++) p2[i]=x[i];
     fprintf(ficresvpl,"\n");    for(l=0 ; l <=lmax; l++){
     free_vector(gp,1,nlstate);      l1=pow(10,l);
     free_vector(gm,1,nlstate);      delts=delt;
     free_matrix(gradg,1,npar,1,nlstate);      for(k=1 ; k <kmax; k=k+1){
     free_matrix(trgradg,1,nlstate,1,npar);        delt = delta*(l1*k);
   } /* End age */        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
   free_vector(xp,1,npar);        p2[theta]=x[theta]-delt;
   free_matrix(doldm,1,nlstate,1,npar);        k2=func(p2)-fx;
   free_matrix(dnewm,1,nlstate,1,nlstate);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 }        
   #ifdef DEBUGHESS
 /************ Variance of one-step probabilities  ******************/        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 {  #endif
   int i, j=0,  i1, k1, l1, t, tj;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   int k2, l2, j1,  z1;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   int k=0,l, cptcode;          k=kmax;
   int first=1;        }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double **dnewm,**doldm;          k=kmax; l=lmax*10.;
   double *xp;        }
   double *gp, *gm;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double **gradg, **trgradg;          delts=delt;
   double **mu;        }
   double age,agelim, cov[NCOVMAX];      }
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    }
   int theta;    delti[theta]=delts;
   char fileresprob[FILENAMELENGTH];    return res; 
   char fileresprobcov[FILENAMELENGTH];    
   char fileresprobcor[FILENAMELENGTH];  }
   
   double ***varpij;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
   strcpy(fileresprob,"prob");    int i;
   strcat(fileresprob,fileres);    int l=1, l1, lmax=20;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    double k1,k2,k3,k4,res,fx;
     printf("Problem with resultfile: %s\n", fileresprob);    double p2[MAXPARM+1];
   }    int k;
   strcpy(fileresprobcov,"probcov");  
   strcat(fileresprobcov,fileres);    fx=func(x);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    for (k=1; k<=2; k++) {
     printf("Problem with resultfile: %s\n", fileresprobcov);      for (i=1;i<=npar;i++) p2[i]=x[i];
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
   strcpy(fileresprobcor,"probcor");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   strcat(fileresprobcor,fileres);      k1=func(p2)-fx;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    
     printf("Problem with resultfile: %s\n", fileresprobcor);      p2[thetai]=x[thetai]+delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      k2=func(p2)-fx;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      p2[thetai]=x[thetai]-delti[thetai]/k;
        p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      k3=func(p2)-fx;
   fprintf(ficresprob,"# Age");    
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficresprobcov,"# Age");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      k4=func(p2)-fx;
   fprintf(ficresprobcov,"# Age");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   for(i=1; i<=nlstate;i++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(j=1; j<=(nlstate+ndeath);j++){  #endif
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    }
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    return res;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  }
     }    
   fprintf(ficresprob,"\n");  /************** Inverse of matrix **************/
   fprintf(ficresprobcov,"\n");  void ludcmp(double **a, int n, int *indx, double *d) 
   fprintf(ficresprobcor,"\n");  { 
   xp=vector(1,npar);    int i,imax,j,k; 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    double big,dum,sum,temp; 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    double *vv; 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);   
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    vv=vector(1,n); 
   first=1;    *d=1.0; 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    for (i=1;i<=n;i++) { 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      big=0.0; 
     exit(0);      for (j=1;j<=n;j++) 
   }        if ((temp=fabs(a[i][j])) > big) big=temp; 
   else{      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fprintf(ficgp,"\n# Routine varprob");      vv[i]=1.0/big; 
   }    } 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    for (j=1;j<=n;j++) { 
     printf("Problem with html file: %s\n", optionfilehtm);      for (i=1;i<j;i++) { 
     exit(0);        sum=a[i][j]; 
   }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   else{        a[i][j]=sum; 
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      } 
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      big=0.0; 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
   }        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
   cov[1]=1;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   tj=cptcoveff;          big=dum; 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}          imax=i; 
   j1=0;        } 
   for(t=1; t<=tj;t++){      } 
     for(i1=1; i1<=ncodemax[t];i1++){      if (j != imax) { 
       j1++;        for (k=1;k<=n;k++) { 
                dum=a[imax][k]; 
       if  (cptcovn>0) {          a[imax][k]=a[j][k]; 
         fprintf(ficresprob, "\n#********** Variable ");          a[j][k]=dum; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        } 
         fprintf(ficresprob, "**********\n#");        *d = -(*d); 
         fprintf(ficresprobcov, "\n#********** Variable ");        vv[imax]=vv[j]; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      } 
         fprintf(ficresprobcov, "**********\n#");      indx[j]=imax; 
              if (a[j][j] == 0.0) a[j][j]=TINY; 
         fprintf(ficgp, "\n#********** Variable ");      if (j != n) { 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        dum=1.0/(a[j][j]); 
         fprintf(ficgp, "**********\n#");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
              } 
            } 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    free_vector(vv,1,n);  /* Doesn't work */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  ;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");  } 
          
         fprintf(ficresprobcor, "\n#********** Variable ");      void lubksb(double **a, int n, int *indx, double b[]) 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  { 
         fprintf(ficgp, "**********\n#");        int i,ii=0,ip,j; 
       }    double sum; 
         
       for (age=bage; age<=fage; age ++){    for (i=1;i<=n;i++) { 
         cov[2]=age;      ip=indx[i]; 
         for (k=1; k<=cptcovn;k++) {      sum=b[ip]; 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      b[ip]=b[i]; 
         }      if (ii) 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         for (k=1; k<=cptcovprod;k++)      else if (sum) ii=i; 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      b[i]=sum; 
            } 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    for (i=n;i>=1;i--) { 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      sum=b[i]; 
         gp=vector(1,(nlstate)*(nlstate+ndeath));      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         gm=vector(1,(nlstate)*(nlstate+ndeath));      b[i]=sum/a[i][i]; 
        } 
         for(theta=1; theta <=npar; theta++){  } 
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  void pstamp(FILE *fichier)
            {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
            }
           k=0;  
           for(i=1; i<= (nlstate); i++){  /************ Frequencies ********************/
             for(j=1; j<=(nlstate+ndeath);j++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
               k=k+1;  {  /* Some frequencies */
               gp[k]=pmmij[i][j];    
             }    int i, m, jk, k1,i1, j1, bool, z1,j;
           }    int first;
              double ***freq; /* Frequencies */
           for(i=1; i<=npar; i++)    double *pp, **prop;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        char fileresp[FILENAMELENGTH];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    
           k=0;    pp=vector(1,nlstate);
           for(i=1; i<=(nlstate); i++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
             for(j=1; j<=(nlstate+ndeath);j++){    strcpy(fileresp,"p");
               k=k+1;    strcat(fileresp,fileres);
               gm[k]=pmmij[i][j];    if((ficresp=fopen(fileresp,"w"))==NULL) {
             }      printf("Problem with prevalence resultfile: %s\n", fileresp);
           }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
            exit(0);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    }
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         }    j1=0;
     
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    j=cptcoveff;
           for(theta=1; theta <=npar; theta++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             trgradg[j][theta]=gradg[theta][j];  
            first=1;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    for(k1=1; k1<=j;k1++){
              for(i1=1; i1<=ncodemax[k1];i1++){
         pmij(pmmij,cov,ncovmodel,x,nlstate);        j1++;
                /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         k=0;          scanf("%d", i);*/
         for(i=1; i<=(nlstate); i++){        for (i=-5; i<=nlstate+ndeath; i++)  
           for(j=1; j<=(nlstate+ndeath);j++){          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             k=k+1;            for(m=iagemin; m <= iagemax+3; m++)
             mu[k][(int) age]=pmmij[i][j];              freq[i][jk][m]=0;
           }  
         }      for (i=1; i<=nlstate; i++)  
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        for(m=iagemin; m <= iagemax+3; m++)
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          prop[i][m]=0;
             varpij[i][j][(int)age] = doldm[i][j];        
         dateintsum=0;
         /*printf("\n%d ",(int)age);        k2cpt=0;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for (i=1; i<=imx; i++) {
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          bool=1;
      }*/          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
         fprintf(ficresprob,"\n%d ",(int)age);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         fprintf(ficresprobcov,"\n%d ",(int)age);                bool=0;
         fprintf(ficresprobcor,"\n%d ",(int)age);          }
           if (bool==1){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            for(m=firstpass; m<=lastpass; m++){
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              k2=anint[m][i]+(mint[m][i]/12.);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         i=0;                if (m<lastpass) {
         for (k=1; k<=(nlstate);k++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           for (l=1; l<=(nlstate+ndeath);l++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
             i=i++;                }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);                
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             for (j=1; j<=i;j++){                  dateintsum=dateintsum+k2;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);                  k2cpt++;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));                }
             }                /*}*/
           }            }
         }/* end of loop for state */          }
       } /* end of loop for age */        }
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/         
       for (k1=1; k1<=(nlstate);k1++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         for (l1=1; l1<=(nlstate+ndeath);l1++){        pstamp(ficresp);
           if(l1==k1) continue;        if  (cptcovn>0) {
           i=(k1-1)*(nlstate+ndeath)+l1;          fprintf(ficresp, "\n#********** Variable "); 
           for (k2=1; k2<=(nlstate);k2++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             for (l2=1; l2<=(nlstate+ndeath);l2++){          fprintf(ficresp, "**********\n#");
               if(l2==k2) continue;        }
               j=(k2-1)*(nlstate+ndeath)+l2;        for(i=1; i<=nlstate;i++) 
               if(j<=i) continue;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
               for (age=bage; age<=fage; age ++){        fprintf(ficresp, "\n");
                 if ((int)age %5==0){        
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        for(i=iagemin; i <= iagemax+3; i++){
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          if(i==iagemax+3){
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;            fprintf(ficlog,"Total");
                   mu1=mu[i][(int) age]/stepm*YEARM ;          }else{
                   mu2=mu[j][(int) age]/stepm*YEARM;            if(first==1){
                   /* Computing eigen value of matrix of covariance */              first=0;
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              printf("See log file for details...\n");
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            }
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);            fprintf(ficlog,"Age %d", i);
                   /* Eigen vectors */          }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          for(jk=1; jk <=nlstate ; jk++){
                   v21=sqrt(1.-v11*v11);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                   v12=-v21;              pp[jk] += freq[jk][m][i]; 
                   v22=v11;          }
                   /*printf(fignu*/          for(jk=1; jk <=nlstate ; jk++){
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            for(m=-1, pos=0; m <=0 ; m++)
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */              pos += freq[jk][m][i];
                   if(first==1){            if(pp[jk]>=1.e-10){
                     first=0;              if(first==1){
                     fprintf(ficgp,"\nset parametric;set nolabel");                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);              }
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);            }else{
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);              if(first==1)
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          for(jk=1; jk <=nlstate ; jk++){
                   }else{            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                     first=0;              pp[jk] += freq[jk][m][i];
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          }       
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            pos += pp[jk];
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            posprop += prop[jk][i];
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          }
                   }/* if first */          for(jk=1; jk <=nlstate ; jk++){
                 } /* age mod 5 */            if(pos>=1.e-5){
               } /* end loop age */              if(first==1)
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               first=1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             } /*l12 */            }else{
           } /* k12 */              if(first==1)
         } /*l1 */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }/* k1 */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     } /* loop covariates */            }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);            if( i <= iagemax){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              if(pos>=1.e-5){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              }
   }              else
   free_vector(xp,1,npar);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   fclose(ficresprob);            }
   fclose(ficresprobcov);          }
   fclose(ficresprobcor);          
   fclose(ficgp);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   fclose(fichtm);            for(m=-1; m <=nlstate+ndeath; m++)
 }              if(freq[jk][m][i] !=0 ) {
               if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 /******************* Printing html file ***********/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              }
                   int lastpass, int stepm, int weightopt, char model[],\          if(i <= iagemax)
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\            fprintf(ficresp,"\n");
                   int popforecast, int estepm ,\          if(first==1)
                   double jprev1, double mprev1,double anprev1, \            printf("Others in log...\n");
                   double jprev2, double mprev2,double anprev2){          fprintf(ficlog,"\n");
   int jj1, k1, i1, cpt;        }
   /*char optionfilehtm[FILENAMELENGTH];*/      }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    }
     printf("Problem with %s \n",optionfilehtm), exit(0);    dateintmean=dateintsum/k2cpt; 
   }   
     fclose(ficresp);
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    free_vector(pp,1,nlstate);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    /* End of Freq */
  - Life expectancies by age and initial health status (estepm=%2d months):  }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n  {  
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n       in each health status at the date of interview (if between dateprev1 and dateprev2).
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n       We still use firstpass and lastpass as another selection.
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n   
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    int i, m, jk, k1, i1, j1, bool, z1,j;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    double ***freq; /* Frequencies */
     double *pp, **prop;
  if(popforecast==1) fprintf(fichtm,"\n    double pos,posprop; 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    double  y2; /* in fractional years */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    int iagemin, iagemax;
         <br>",fileres,fileres,fileres,fileres);  
  else    iagemin= (int) agemin;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    iagemax= (int) agemax;
 fprintf(fichtm," <li><b>Graphs</b></li><p>");    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
  m=cptcoveff;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    j1=0;
     
  jj1=0;    j=cptcoveff;
  for(k1=1; k1<=m;k1++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    for(i1=1; i1<=ncodemax[k1];i1++){    
      jj1++;    for(k1=1; k1<=j;k1++){
      if (cptcovn > 0) {      for(i1=1; i1<=ncodemax[k1];i1++){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        j1++;
        for (cpt=1; cpt<=cptcoveff;cpt++)        
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        for (i=1; i<=nlstate; i++)  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for(m=iagemin; m <= iagemax+3; m++)
      }            prop[i][m]=0.0;
      /* Pij */       
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>        for (i=1; i<=imx; i++) { /* Each individual */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              bool=1;
      /* Quasi-incidences */          if  (cptcovn>0) {
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>            for (z1=1; z1<=cptcoveff; z1++) 
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
        /* Stable prevalence in each health state */                bool=0;
        for(cpt=1; cpt<nlstate;cpt++){          } 
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          if (bool==1) { 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
        }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     for(cpt=1; cpt<=nlstate;cpt++) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 interval) in state (%d): v%s%d%d.png <br>                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
      }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
      for(cpt=1; cpt<=nlstate;cpt++) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  prop[s[m][i]][iagemax+3] += weight[i]; 
      }                } 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              }
 health expectancies in states (1) and (2): e%s%d.png<br>            } /* end selection of waves */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }
    }        }
  }        for(i=iagemin; i <= iagemax+3; i++){  
 fclose(fichtm);          
 }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
 /******************* Gnuplot file **************/          } 
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
           for(jk=1; jk <=nlstate ; jk++){     
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            if( i <=  iagemax){ 
   int ng;              if(posprop>=1.e-5){ 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {                probs[i][jk][j1]= prop[jk][i]/posprop;
     printf("Problem with file %s",optionfilegnuplot);              } else
   }                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
             } 
 #ifdef windows          }/* end jk */ 
     fprintf(ficgp,"cd \"%s\" \n",pathc);        }/* end i */ 
 #endif      } /* end i1 */
 m=pow(2,cptcoveff);    } /* end k1 */
      
  /* 1eme*/    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {    /*free_vector(pp,1,nlstate);*/
    for (k1=1; k1<= m ; k1 ++) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
 #ifdef windows  
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  /************* Waves Concatenation ***************/
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 #ifdef unix  {
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);       Death is a valid wave (if date is known).
 #endif       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 for (i=1; i<= nlstate ; i ++) {       and mw[mi+1][i]. dh depends on stepm.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    int i, mi, m;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     for (i=1; i<= nlstate ; i ++) {       double sum=0., jmean=0.;*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int first;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int j, k=0,jk, ju, jl;
 }    double sum=0.;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    first=0;
      for (i=1; i<= nlstate ; i ++) {    jmin=1e+5;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    jmax=-1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    jmean=0.;
 }      for(i=1; i<=imx; i++){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      mi=0;
 #ifdef unix      m=firstpass;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");      while(s[m][i] <= nlstate){
 #endif        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
    }          mw[++mi][i]=m;
   }        if(m >=lastpass)
   /*2 eme*/          break;
         else
   for (k1=1; k1<= m ; k1 ++) {          m++;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      }/* end while */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      if (s[m][i] > nlstate){
            mi++;     /* Death is another wave */
     for (i=1; i<= nlstate+1 ; i ++) {        /* if(mi==0)  never been interviewed correctly before death */
       k=2*i;           /* Only death is a correct wave */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        mw[mi][i]=m;
       for (j=1; j<= nlstate+1 ; j ++) {      }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      wav[i]=mi;
 }        if(mi==0){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        nbwarn++;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        if(first==0){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       for (j=1; j<= nlstate+1 ; j ++) {          first=1;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
         else fprintf(ficgp," \%%*lf (\%%*lf)");        if(first==1){
 }            fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       fprintf(ficgp,"\" t\"\" w l 0,");        }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      } /* end mi==0 */
       for (j=1; j<= nlstate+1 ; j ++) {    } /* End individuals */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=imx; i++){
 }        for(mi=1; mi<wav[i];mi++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        if (stepm <=0)
       else fprintf(ficgp,"\" t\"\" w l 0,");          dh[mi][i]=1;
     }        else{
   }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
              if (agedc[i] < 2*AGESUP) {
   /*3eme*/              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
   for (k1=1; k1<= m ; k1 ++) {              else if(j<0){
     for (cpt=1; cpt<= nlstate ; cpt ++) {                nberr++;
       k=2+nlstate*(2*cpt-2);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                j=1; /* Temporary Dangerous patch */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              }
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              k=k+1;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              if (j >= jmax){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                jmax=j;
                 ijmax=i;
 */              }
       for (i=1; i< nlstate ; i ++) {              if (j <= jmin){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);                jmin=j;
                 ijmin=i;
       }              }
     }              sum=sum+j;
   }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   /* CV preval stat */            }
     for (k1=1; k1<= m ; k1 ++) {          }
     for (cpt=1; cpt<nlstate ; cpt ++) {          else{
       k=3;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
             k=k+1;
       for (i=1; i< nlstate ; i ++)            if (j >= jmax) {
         fprintf(ficgp,"+$%d",k+i+1);              jmax=j;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              ijmax=i;
                  }
       l=3+(nlstate+ndeath)*cpt;            else if (j <= jmin){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              jmin=j;
       for (i=1; i< nlstate ; i ++) {              ijmin=i;
         l=3+(nlstate+ndeath)*cpt;            }
         fprintf(ficgp,"+$%d",l+i+1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              if(j<0){
     }              nberr++;
   }                printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /* proba elementaires */            }
    for(i=1,jk=1; i <=nlstate; i++){            sum=sum+j;
     for(k=1; k <=(nlstate+ndeath); k++){          }
       if (k != i) {          jk= j/stepm;
         for(j=1; j <=ncovmodel; j++){          jl= j -jk*stepm;
                  ju= j -(jk+1)*stepm;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           jk++;            if(jl==0){
           fprintf(ficgp,"\n");              dh[mi][i]=jk;
         }              bh[mi][i]=0;
       }            }else{ /* We want a negative bias in order to only have interpolation ie
     }                    * at the price of an extra matrix product in likelihood */
    }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/            }
      for(jk=1; jk <=m; jk++) {          }else{
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);            if(jl <= -ju){
        if (ng==2)              dh[mi][i]=jk;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");              bh[mi][i]=jl;       /* bias is positive if real duration
        else                                   * is higher than the multiple of stepm and negative otherwise.
          fprintf(ficgp,"\nset title \"Probability\"\n");                                   */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            }
        i=1;            else{
        for(k2=1; k2<=nlstate; k2++) {              dh[mi][i]=jk+1;
          k3=i;              bh[mi][i]=ju;
          for(k=1; k<=(nlstate+ndeath); k++) {            }
            if (k != k2){            if(dh[mi][i]==0){
              if(ng==2)              dh[mi][i]=1; /* At least one step */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);              bh[mi][i]=ju; /* At least one step */
              else              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            }
              ij=1;          } /* end if mle */
              for(j=3; j <=ncovmodel; j++) {        }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      } /* end wave */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    }
                  ij++;    jmean=sum/k;
                }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                else    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   }
              }  
              fprintf(ficgp,")/(1");  /*********** Tricode ****************************/
                void tricode(int *Tvar, int **nbcode, int imx)
              for(k1=1; k1 <=nlstate; k1++){    {
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    
                ij=1;    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    int cptcode=0;
                    ij++;    cptcoveff=0; 
                  }   
                  else    for (k=0; k<maxncov; k++) Ndum[k]=0;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
                }  
                fprintf(ficgp,")");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
              }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                                 modality*/ 
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
              i=i+ncovmodel;        Ndum[ij]++; /*counts the occurence of this modality */
            }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
          }        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
        }                                         Tvar[j]. If V=sex and male is 0 and 
      }                                         female is 1, then  cptcode=1.*/
    }      }
    fclose(ficgp);  
 }  /* end gnuplot */      for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j
                                          th covariate. In fact
 /*************** Moving average **************/                                         ncodemax[j]=2
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){                                         (dichotom. variables only) but
                                          it can be more */
   int i, cpt, cptcod;      } /* Ndum[-1] number of undefined modalities */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)      ij=1; 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
           mobaverage[(int)agedeb][i][cptcod]=0.;        for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
              if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
       for (i=1; i<=nlstate;i++){                                       k is a modality. If we have model=V1+V1*sex 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           for (cpt=0;cpt<=4;cpt++){            ij++;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          }
           }          if (ij > ncodemax[j]) break; 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        }  
         }      } 
       }    }  
     }  
       for (k=0; k< maxncov; k++) Ndum[k]=0;
 }  
    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 /************** Forecasting ******************/     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){     Ndum[ij]++;
     }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;   ij=1;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   for (i=1; i<= maxncov; i++) {
   double *popeffectif,*popcount;     if((Ndum[i]!=0) && (i<=ncovcol)){
   double ***p3mat;       Tvaraff[ij]=i; /*For printing */
   char fileresf[FILENAMELENGTH];       ij++;
      }
  agelim=AGESUP;   }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;   ij--;
    cptcoveff=ij; /*Number of simple covariates*/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  }
    
    /*********** Health Expectancies ****************/
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);  {
   }    /* Health expectancies, no variances */
   printf("Computing forecasting: result on file '%s' \n", fileresf);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     int nhstepma, nstepma; /* Decreasing with age */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double age, agelim, hf;
     double ***p3mat;
   if (mobilav==1) {    double eip;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    pstamp(ficreseij);
   }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for(i=1; i<=nlstate;i++){
   if (stepm<=12) stepsize=1;      for(j=1; j<=nlstate;j++){
          fprintf(ficreseij," e%1d%1d ",i,j);
   agelim=AGESUP;      }
        fprintf(ficreseij," e%1d. ",i);
   hstepm=1;    }
   hstepm=hstepm/stepm;    fprintf(ficreseij,"\n");
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;    
   yp2=modf((yp1*12),&yp);    if(estepm < stepm){
   mprojmean=yp;      printf ("Problem %d lower than %d\n",estepm, stepm);
   yp1=modf((yp2*30.5),&yp);    }
   jprojmean=yp;    else  hstepm=estepm;   
   if(jprojmean==0) jprojmean=1;    /* We compute the life expectancy from trapezoids spaced every estepm months
   if(mprojmean==0) jprojmean=1;     * This is mainly to measure the difference between two models: for example
       * if stepm=24 months pijx are given only every 2 years and by summing them
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
   for(cptcov=1;cptcov<=i2;cptcov++){     * to the curvature of the survival function. If, for the same date, we 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       k=k+1;     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficresf,"\n#******");     * hypothesis. A more precise result, taking into account a more precise
       for(j=1;j<=cptcoveff;j++) {     * curvature will be obtained if estepm is as small as stepm. */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficresf,"******\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficresf,"# StartingAge FinalAge");       nhstepm is the number of hstepm from age to agelim 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);       nstepm is the number of stepm from age to agelin. 
             Look at hpijx to understand the reason of that which relies in memory size
             and note for a fixed period like estepm months */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficresf,"\n");       survival function given by stepm (the optimization length). Unfortunately it
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);         means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       results. So we changed our mind and took the option of the best precision.
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    */
           nhstepm = nhstepm/hstepm;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    agelim=AGESUP;
           oldm=oldms;savm=savms;    /* If stepm=6 months */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /* Computed by stepm unit matrices, product of hstepm matrices, stored
                 in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           for (h=0; h<=nhstepm; h++){      
             if (h==(int) (calagedate+YEARM*cpt)) {  /* nhstepm age range expressed in number of stepm */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
             }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             for(j=1; j<=nlstate+ndeath;j++) {    /* if (stepm >= YEARM) hstepm=1;*/
               kk1=0.;kk2=0;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               for(i=1; i<=nlstate;i++) {                  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    for (age=bage; age<=fage; age ++){ 
                 else {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                 }      /* if (stepm >= YEARM) hstepm=1;*/
                      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
               }  
               if (h==(int)(calagedate+12*cpt)){      /* If stepm=6 months */
                 fprintf(ficresf," %.3f", kk1);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
                                 in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
               }      
             }      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           }      
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         }      
       }      printf("%d|",(int)age);fflush(stdout);
     }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   }      
              /* Computing expectancies */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   fclose(ficresf);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 /************** Forecasting ******************/            
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          }
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      fprintf(ficreseij,"%3.0f",age );
   double *popeffectif,*popcount;      for(i=1; i<=nlstate;i++){
   double ***p3mat,***tabpop,***tabpopprev;        eip=0;
   char filerespop[FILENAMELENGTH];        for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   agelim=AGESUP;        fprintf(ficreseij,"%9.4f", eip );
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      }
        fprintf(ficreseij,"\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      
      }
      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(filerespop,"pop");    printf("\n");
   strcat(filerespop,fileres);    fprintf(ficlog,"\n");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    
     printf("Problem with forecast resultfile: %s\n", filerespop);  }
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  {
     /* Covariances of health expectancies eij and of total life expectancies according
   if (mobilav==1) {     to initial status i, ei. .
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   }    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double ***p3matp, ***p3matm, ***varhe;
   if (stepm<=12) stepsize=1;    double **dnewm,**doldm;
      double *xp, *xm;
   agelim=AGESUP;    double **gp, **gm;
      double ***gradg, ***trgradg;
   hstepm=1;    int theta;
   hstepm=hstepm/stepm;  
      double eip, vip;
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       printf("Problem with population file : %s\n",popfile);exit(0);    xp=vector(1,npar);
     }    xm=vector(1,npar);
     popage=ivector(0,AGESUP);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     popeffectif=vector(0,AGESUP);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     popcount=vector(0,AGESUP);    
        pstamp(ficresstdeij);
     i=1;      fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    fprintf(ficresstdeij,"# Age");
        for(i=1; i<=nlstate;i++){
     imx=i;      for(j=1; j<=nlstate;j++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   }      fprintf(ficresstdeij," e%1d. ",i);
     }
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficresstdeij,"\n");
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    pstamp(ficrescveij);
       fprintf(ficrespop,"\n#******");    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficrescveij,"# Age");
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=nlstate;j++){
       fprintf(ficrespop,"******\n");        cptj= (j-1)*nlstate+i;
       fprintf(ficrespop,"# Age");        for(i2=1; i2<=nlstate;i2++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for(j2=1; j2<=nlstate;j2++){
       if (popforecast==1)  fprintf(ficrespop," [Population]");            cptj2= (j2-1)*nlstate+i2;
                  if(cptj2 <= cptj)
       for (cpt=0; cpt<=0;cpt++) {              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            }
              }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficrescveij,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;    if(estepm < stepm){
                printf ("Problem %d lower than %d\n",estepm, stepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;    else  hstepm=estepm;   
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* We compute the life expectancy from trapezoids spaced every estepm months
             * This is mainly to measure the difference between two models: for example
           for (h=0; h<=nhstepm; h++){     * if stepm=24 months pijx are given only every 2 years and by summing them
             if (h==(int) (calagedate+YEARM*cpt)) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     * progression in between and thus overestimating or underestimating according
             }     * to the curvature of the survival function. If, for the same date, we 
             for(j=1; j<=nlstate+ndeath;j++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
               kk1=0.;kk2=0;     * to compare the new estimate of Life expectancy with the same linear 
               for(i=1; i<=nlstate;i++) {                   * hypothesis. A more precise result, taking into account a more precise
                 if (mobilav==1)     * curvature will be obtained if estepm is as small as stepm. */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {    /* For example we decided to compute the life expectancy with the smallest unit */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 }       nhstepm is the number of hstepm from age to agelim 
               }       nstepm is the number of stepm from age to agelin. 
               if (h==(int)(calagedate+12*cpt)){       Look at hpijx to understand the reason of that which relies in memory size
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;       and note for a fixed period like estepm months */
                   /*fprintf(ficrespop," %.3f", kk1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/       survival function given by stepm (the optimization length). Unfortunately it
               }       means that if the survival funtion is printed only each two years of age and if
             }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             for(i=1; i<=nlstate;i++){       results. So we changed our mind and took the option of the best precision.
               kk1=0.;    */
                 for(j=1; j<=nlstate;j++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  
                 }    /* If stepm=6 months */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    /* nhstepm age range expressed in number of stepm */
             }    agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    /* if (stepm >= YEARM) hstepm=1;*/
           }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   /******/    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    gm=matrix(0,nhstepm,1,nlstate*nlstate);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    for (age=bage; age<=fage; age ++){ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           nhstepm = nhstepm/hstepm;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                /* if (stepm >= YEARM) hstepm=1;*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /* If stepm=6 months */
           for (h=0; h<=nhstepm; h++){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             if (h==(int) (calagedate+YEARM*cpt)) {         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      
             }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;      /* Computing  Variances of health expectancies */
               for(i=1; i<=nlstate;i++) {                    /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];             decrease memory allocation */
               }      for(theta=1; theta <=npar; theta++){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        for(i=1; i<=npar; i++){ 
             }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
    }    
   }        for(j=1; j<= nlstate; j++){
            for(i=1; i<=nlstate; i++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   if (popforecast==1) {              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     free_ivector(popage,0,AGESUP);            }
     free_vector(popeffectif,0,AGESUP);          }
     free_vector(popcount,0,AGESUP);        }
   }       
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(ij=1; ij<= nlstate*nlstate; ij++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(h=0; h<=nhstepm-1; h++){
   fclose(ficrespop);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 }          }
       }/* End theta */
 /***********************************************/      
 /**************** Main Program *****************/      
 /***********************************************/      for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
 int main(int argc, char *argv[])          for(theta=1; theta <=npar; theta++)
 {            trgradg[h][j][theta]=gradg[h][theta][j];
       
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;       for(ij=1;ij<=nlstate*nlstate;ij++)
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   double fret;  
   double **xi,tmp,delta;       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double dum; /* Dummy variable */       for(h=0;h<=nhstepm-1;h++){
   double ***p3mat;        for(k=0;k<=nhstepm-1;k++){
   int *indx;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   char line[MAXLINE], linepar[MAXLINE];          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          for(ij=1;ij<=nlstate*nlstate;ij++)
   int firstobs=1, lastobs=10;            for(ji=1;ji<=nlstate*nlstate;ji++)
   int sdeb, sfin; /* Status at beginning and end */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   int c,  h , cpt,l;        }
   int ju,jl, mi;      }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      /* Computing expectancies */
   int mobilav=0,popforecast=0;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   int hstepm, nhstepm;      for(i=1; i<=nlstate;i++)
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double bage, fage, age, agelim, agebase;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   double ftolpl=FTOL;            
   double **prlim;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double *severity;  
   double ***param; /* Matrix of parameters */          }
   double  *p;  
   double **matcov; /* Matrix of covariance */      fprintf(ficresstdeij,"%3.0f",age );
   double ***delti3; /* Scale */      for(i=1; i<=nlstate;i++){
   double *delti; /* Scale */        eip=0.;
   double ***eij, ***vareij;        vip=0.;
   double **varpl; /* Variances of prevalence limits by age */        for(j=1; j<=nlstate;j++){
   double *epj, vepp;          eip += eij[i][j][(int)age];
   double kk1, kk2;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
            fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
   char *alph[]={"a","a","b","c","d","e"}, str[4];        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   char z[1]="c", occ;  
 #include <sys/time.h>      fprintf(ficrescveij,"%3.0f",age );
 #include <time.h>      for(i=1; i<=nlstate;i++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(j=1; j<=nlstate;j++){
            cptj= (j-1)*nlstate+i;
   /* long total_usecs;          for(i2=1; i2<=nlstate;i2++)
   struct timeval start_time, end_time;            for(j2=1; j2<=nlstate;j2++){
                cptj2= (j2-1)*nlstate+i2;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              if(cptj2 <= cptj)
   getcwd(pathcd, size);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
   printf("\n%s",version);        }
   if(argc <=1){      fprintf(ficrescveij,"\n");
     printf("\nEnter the parameter file name: ");     
     scanf("%s",pathtot);    }
   }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   else{    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     strcpy(pathtot,argv[1]);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*cygwin_split_path(pathtot,path,optionfile);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    printf("\n");
   /* cutv(path,optionfile,pathtot,'\\');*/    fprintf(ficlog,"\n");
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    free_vector(xm,1,npar);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    free_vector(xp,1,npar);
   chdir(path);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   replace(pathc,path);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 /*-------- arguments in the command line --------*/  }
   
   strcpy(fileres,"r");  /************ Variance ******************/
   strcat(fileres, optionfilefiname);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   strcat(fileres,".txt");    /* Other files have txt extension */  {
     /* Variance of health expectancies */
   /*---------arguments file --------*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    double **dnewm,**doldm;
     printf("Problem with optionfile %s\n",optionfile);    double **dnewmp,**doldmp;
     goto end;    int i, j, nhstepm, hstepm, h, nstepm ;
   }    int k, cptcode;
     double *xp;
   strcpy(filereso,"o");    double **gp, **gm;  /* for var eij */
   strcat(filereso,fileres);    double ***gradg, ***trgradg; /*for var eij */
   if((ficparo=fopen(filereso,"w"))==NULL) {    double **gradgp, **trgradgp; /* for var p point j */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    double *gpp, *gmp; /* for var p point j */
   }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
   /* Reads comments: lines beginning with '#' */    double age,agelim, hf;
   while((c=getc(ficpar))=='#' && c!= EOF){    double ***mobaverage;
     ungetc(c,ficpar);    int theta;
     fgets(line, MAXLINE, ficpar);    char digit[4];
     puts(line);    char digitp[25];
     fputs(line,ficparo);  
   }    char fileresprobmorprev[FILENAMELENGTH];
   ungetc(c,ficpar);  
     if(popbased==1){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      if(mobilav!=0)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        strcpy(digitp,"-populbased-mobilav-");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      else strcpy(digitp,"-populbased-nomobil-");
 while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    else 
     fgets(line, MAXLINE, ficpar);      strcpy(digitp,"-stablbased-");
     puts(line);  
     fputs(line,ficparo);    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ungetc(c,ficpar);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            printf(" Error in movingaverage mobilav=%d\n",mobilav);
   covar=matrix(0,NCOVMAX,1,n);      }
   cptcovn=0;    }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
     strcpy(fileresprobmorprev,"prmorprev"); 
   ncovmodel=2+cptcovn;    sprintf(digit,"%-d",ij);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      strcat(fileresprobmorprev,digit); /* Tvar to be done */
   /* Read guess parameters */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   /* Reads comments: lines beginning with '#' */    strcat(fileresprobmorprev,fileres);
   while((c=getc(ficpar))=='#' && c!= EOF){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     puts(line);    }
     fputs(line,ficparo);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }   
   ungetc(c,ficpar);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      pstamp(ficresprobmorprev);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     for(i=1; i <=nlstate; i++)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=1; j <=nlstate+ndeath-1; j++){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficresprobmorprev," p.%-d SE",j);
       fprintf(ficparo,"%1d%1d",i1,j1);      for(i=1; i<=nlstate;i++)
       printf("%1d%1d",i,j);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       for(k=1; k<=ncovmodel;k++){    }  
         fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(ficresprobmorprev,"\n");
         printf(" %lf",param[i][j][k]);    fprintf(ficgp,"\n# Routine varevsij");
         fprintf(ficparo," %lf",param[i][j][k]);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       fscanf(ficpar,"\n");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       printf("\n");  /*   } */
       fprintf(ficparo,"\n");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }    pstamp(ficresvij);
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   p=param[1][1];    else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficresvij,"# Age");
   while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);      for(j=1; j<=nlstate;j++)
     fgets(line, MAXLINE, ficpar);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     puts(line);    fprintf(ficresvij,"\n");
     fputs(line,ficparo);  
   }    xp=vector(1,npar);
   ungetc(c,ficpar);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    gpp=vector(nlstate+1,nlstate+ndeath);
       printf("%1d%1d",i,j);    gmp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficparo,"%1d%1d",i1,j1);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar,"%le",&delti3[i][j][k]);    if(estepm < stepm){
         printf(" %le",delti3[i][j][k]);      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficparo," %le",delti3[i][j][k]);    }
       }    else  hstepm=estepm;   
       fscanf(ficpar,"\n");    /* For example we decided to compute the life expectancy with the smallest unit */
       printf("\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficparo,"\n");       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
   }       Look at function hpijx to understand why (it is linked to memory size questions) */
   delti=delti3[1][1];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   /* Reads comments: lines beginning with '#' */       means that if the survival funtion is printed every two years of age and if
   while((c=getc(ficpar))=='#' && c!= EOF){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     ungetc(c,ficpar);       results. So we changed our mind and took the option of the best precision.
     fgets(line, MAXLINE, ficpar);    */
     puts(line);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     fputs(line,ficparo);    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   ungetc(c,ficpar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   matcov=matrix(1,npar,1,npar);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(i=1; i <=npar; i++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     fscanf(ficpar,"%s",&str);      gp=matrix(0,nhstepm,1,nlstate);
     printf("%s",str);      gm=matrix(0,nhstepm,1,nlstate);
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);      for(theta=1; theta <=npar; theta++){
       printf(" %.5le",matcov[i][j]);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       fprintf(ficparo," %.5le",matcov[i][j]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
     fscanf(ficpar,"\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     printf("\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fprintf(ficparo,"\n");  
   }        if (popbased==1) {
   for(i=1; i <=npar; i++)          if(mobilav ==0){
     for(j=i+1;j<=npar;j++)            for(i=1; i<=nlstate;i++)
       matcov[i][j]=matcov[j][i];              prlim[i][i]=probs[(int)age][i][ij];
              }else{ /* mobilav */ 
   printf("\n");            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
     /*-------- Rewriting paramater file ----------*/        }
      strcpy(rfileres,"r");    /* "Rparameterfile */    
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        for(j=1; j<= nlstate; j++){
      strcat(rfileres,".");    /* */          for(h=0; h<=nhstepm; h++){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     if((ficres =fopen(rfileres,"w"))==NULL) {              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          }
     }        }
     fprintf(ficres,"#%s\n",version);        /* This for computing probability of death (h=1 means
               computed over hstepm matrices product = hstepm*stepm months) 
     /*-------- data file ----------*/           as a weighted average of prlim.
     if((fic=fopen(datafile,"r"))==NULL)    {        */
       printf("Problem with datafile: %s\n", datafile);goto end;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
     n= lastobs;        }    
     severity = vector(1,maxwav);        /* end probability of death */
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     moisnais=vector(1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     annais=vector(1,n);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     moisdc=vector(1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     andc=vector(1,n);   
     agedc=vector(1,n);        if (popbased==1) {
     cod=ivector(1,n);          if(mobilav ==0){
     weight=vector(1,n);            for(i=1; i<=nlstate;i++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              prlim[i][i]=probs[(int)age][i][ij];
     mint=matrix(1,maxwav,1,n);          }else{ /* mobilav */ 
     anint=matrix(1,maxwav,1,n);            for(i=1; i<=nlstate;i++)
     s=imatrix(1,maxwav+1,1,n);              prlim[i][i]=mobaverage[(int)age][i][ij];
     adl=imatrix(1,maxwav+1,1,n);              }
     tab=ivector(1,NCOVMAX);        }
     ncodemax=ivector(1,8);  
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     i=1;          for(h=0; h<=nhstepm; h++){
     while (fgets(line, MAXLINE, fic) != NULL)    {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       if ((i >= firstobs) && (i <=lastobs)) {              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                  }
         for (j=maxwav;j>=1;j--){        }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        /* This for computing probability of death (h=1 means
           strcpy(line,stra);           computed over hstepm matrices product = hstepm*stepm months) 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);           as a weighted average of prlim.
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        */
         }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                  for(i=1,gmp[j]=0.; i<= nlstate; i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        }    
         /* end probability of death */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         for (j=ncovcol;j>=1;j--){          }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         num[i]=atol(stra);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      } /* End theta */
   
         i=i+1;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       }  
     }      for(h=0; h<=nhstepm; h++) /* veij */
     /* printf("ii=%d", ij);        for(j=1; j<=nlstate;j++)
        scanf("%d",i);*/          for(theta=1; theta <=npar; theta++)
   imx=i-1; /* Number of individuals */            trgradg[h][j][theta]=gradg[h][theta][j];
   
   /* for (i=1; i<=imx; i++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for(theta=1; theta <=npar; theta++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          trgradgp[j][theta]=gradgp[theta][j];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    
     }*/  
    /*  for (i=1; i<=imx; i++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      if (s[4][i]==9)  s[4][i]=-1;      for(i=1;i<=nlstate;i++)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        for(j=1;j<=nlstate;j++)
            vareij[i][j][(int)age] =0.;
    
   /* Calculation of the number of parameter from char model*/      for(h=0;h<=nhstepm;h++){
   Tvar=ivector(1,15);        for(k=0;k<=nhstepm;k++){
   Tprod=ivector(1,15);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   Tvaraff=ivector(1,15);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   Tvard=imatrix(1,15,1,2);          for(i=1;i<=nlstate;i++)
   Tage=ivector(1,15);                  for(j=1;j<=nlstate;j++)
                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   if (strlen(model) >1){        }
     j=0, j1=0, k1=1, k2=1;      }
     j=nbocc(model,'+');    
     j1=nbocc(model,'*');      /* pptj */
     cptcovn=j+1;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     cptcovprod=j1;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
          for(j=nlstate+1;j<=nlstate+ndeath;j++)
     strcpy(modelsav,model);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          varppt[j][i]=doldmp[j][i];
       printf("Error. Non available option model=%s ",model);      /* end ppptj */
       goto end;      /*  x centered again */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     for(i=(j+1); i>=1;i--){   
       cutv(stra,strb,modelsav,'+');      if (popbased==1) {
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        if(mobilav ==0){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          for(i=1; i<=nlstate;i++)
       /*scanf("%d",i);*/            prlim[i][i]=probs[(int)age][i][ij];
       if (strchr(strb,'*')) {        }else{ /* mobilav */ 
         cutv(strd,strc,strb,'*');          for(i=1; i<=nlstate;i++)
         if (strcmp(strc,"age")==0) {            prlim[i][i]=mobaverage[(int)age][i][ij];
           cptcovprod--;        }
           cutv(strb,stre,strd,'V');      }
           Tvar[i]=atoi(stre);               
           cptcovage++;      /* This for computing probability of death (h=1 means
             Tage[cptcovage]=i;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             /*printf("stre=%s ", stre);*/         as a weighted average of prlim.
         }      */
         else if (strcmp(strd,"age")==0) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           cptcovprod--;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           cutv(strb,stre,strc,'V');          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           Tvar[i]=atoi(stre);      }    
           cptcovage++;      /* end probability of death */
           Tage[cptcovage]=i;  
         }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         else {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           cutv(strb,stre,strc,'V');        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           Tvar[i]=ncovcol+k1;        for(i=1; i<=nlstate;i++){
           cutv(strb,strc,strd,'V');          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           Tprod[k1]=i;        }
           Tvard[k1][1]=atoi(strc);      } 
           Tvard[k1][2]=atoi(stre);      fprintf(ficresprobmorprev,"\n");
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      fprintf(ficresvij,"%.0f ",age );
           for (k=1; k<=lastobs;k++)      for(i=1; i<=nlstate;i++)
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        for(j=1; j<=nlstate;j++){
           k1++;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           k2=k2+2;        }
         }      fprintf(ficresvij,"\n");
       }      free_matrix(gp,0,nhstepm,1,nlstate);
       else {      free_matrix(gm,0,nhstepm,1,nlstate);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        /*  scanf("%d",i);*/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       cutv(strd,strc,strb,'V');      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       Tvar[i]=atoi(strc);    } /* End age */
       }    free_vector(gpp,nlstate+1,nlstate+ndeath);
       strcpy(modelsav,stra);      free_vector(gmp,nlstate+1,nlstate+ndeath);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         scanf("%d",i);*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     }    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
 }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   printf("cptcovprod=%d ", cptcovprod);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   scanf("%d ",i);*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fclose(fic);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     /*  if(mle==1){*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     if (weightopt != 1) { /* Maximisation without weights*/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       for(i=1;i<=n;i++) weight[i]=1.0;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     /*-calculation of age at interview from date of interview and age at death -*/  */
     agev=matrix(1,maxwav,1,imx);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {    free_vector(xp,1,npar);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    free_matrix(doldm,1,nlstate,1,nlstate);
          anint[m][i]=9999;    free_matrix(dnewm,1,nlstate,1,npar);
          s[m][i]=-1;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }    fclose(ficresprobmorprev);
     fflush(ficgp);
     for (i=1; i<=imx; i++)  {    fflush(fichtm); 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  }  /* end varevsij */
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){  /************ Variance of prevlim ******************/
           if (s[m][i] >= nlstate+1) {  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
             if(agedc[i]>0)  {
               if(moisdc[i]!=99 && andc[i]!=9999)    /* Variance of prevalence limit */
                 agev[m][i]=agedc[i];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    double **newm;
            else {    double **dnewm,**doldm;
               if (andc[i]!=9999){    int i, j, nhstepm, hstepm;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    int k, cptcode;
               agev[m][i]=-1;    double *xp;
               }    double *gp, *gm;
             }    double **gradg, **trgradg;
           }    double age,agelim;
           else if(s[m][i] !=9){ /* Should no more exist */    int theta;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    
             if(mint[m][i]==99 || anint[m][i]==9999)    pstamp(ficresvpl);
               agev[m][i]=1;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
             else if(agev[m][i] <agemin){    fprintf(ficresvpl,"# Age");
               agemin=agev[m][i];    for(i=1; i<=nlstate;i++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        fprintf(ficresvpl," %1d-%1d",i,i);
             }    fprintf(ficresvpl,"\n");
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];    xp=vector(1,npar);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    dnewm=matrix(1,nlstate,1,npar);
             }    doldm=matrix(1,nlstate,1,nlstate);
             /*agev[m][i]=anint[m][i]-annais[i];*/    
             /*   agev[m][i] = age[i]+2*m;*/    hstepm=1*YEARM; /* Every year of age */
           }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           else { /* =9 */    agelim = AGESUP;
             agev[m][i]=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             s[m][i]=-1;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           }      if (stepm >= YEARM) hstepm=1;
         }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         else /*= 0 Unknown */      gradg=matrix(1,npar,1,nlstate);
           agev[m][i]=1;      gp=vector(1,nlstate);
       }      gm=vector(1,nlstate);
      
     }      for(theta=1; theta <=npar; theta++){
     for (i=1; i<=imx; i++)  {        for(i=1; i<=npar; i++){ /* Computes gradient */
       for(m=1; (m<= maxwav); m++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         if (s[m][i] > (nlstate+ndeath)) {        }
           printf("Error: Wrong value in nlstate or ndeath\n");          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           goto end;        for(i=1;i<=nlstate;i++)
         }          gp[i] = prlim[i][i];
       }      
     }        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
     free_vector(severity,1,maxwav);          gm[i] = prlim[i][i];
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);        for(i=1;i<=nlstate;i++)
     free_vector(annais,1,n);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     /* free_matrix(mint,1,maxwav,1,n);      } /* End theta */
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);      trgradg =matrix(1,nlstate,1,npar);
     free_vector(andc,1,n);  
       for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
     wav=ivector(1,imx);          trgradg[j][theta]=gradg[theta][j];
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      for(i=1;i<=nlstate;i++)
            varpl[i][(int)age] =0.;
     /* Concatenates waves */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      fprintf(ficresvpl,"%.0f ",age );
       ncodemax[1]=1;      for(i=1; i<=nlstate;i++)
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
            fprintf(ficresvpl,"\n");
    codtab=imatrix(1,100,1,10);      free_vector(gp,1,nlstate);
    h=0;      free_vector(gm,1,nlstate);
    m=pow(2,cptcoveff);      free_matrix(gradg,1,npar,1,nlstate);
        free_matrix(trgradg,1,nlstate,1,npar);
    for(k=1;k<=cptcoveff; k++){    } /* End age */
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){    free_vector(xp,1,npar);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    free_matrix(doldm,1,nlstate,1,npar);
            h++;    free_matrix(dnewm,1,nlstate,1,nlstate);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  }
          }  
        }  /************ Variance of one-step probabilities  ******************/
      }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
    }  {
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    int i, j=0,  i1, k1, l1, t, tj;
       codtab[1][2]=1;codtab[2][2]=2; */    int k2, l2, j1,  z1;
    /* for(i=1; i <=m ;i++){    int k=0,l, cptcode;
       for(k=1; k <=cptcovn; k++){    int first=1, first1;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       }    double **dnewm,**doldm;
       printf("\n");    double *xp;
       }    double *gp, *gm;
       scanf("%d",i);*/    double **gradg, **trgradg;
        double **mu;
    /* Calculates basic frequencies. Computes observed prevalence at single age    double age,agelim, cov[NCOVMAX];
        and prints on file fileres'p'. */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
        char fileresprob[FILENAMELENGTH];
        char fileresprobcov[FILENAMELENGTH];
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char fileresprobcor[FILENAMELENGTH];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***varpij;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    strcpy(fileresprob,"prob"); 
          strcat(fileresprob,fileres);
     /* For Powell, parameters are in a vector p[] starting at p[1]    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      printf("Problem with resultfile: %s\n", fileresprob);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     if(mle==1){    strcpy(fileresprobcov,"probcov"); 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    strcat(fileresprobcov,fileres);
     }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcov);
     /*--------- results files --------------*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    }
      strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
    jk=1;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      printf("Problem with resultfile: %s\n", fileresprobcor);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
    for(i=1,jk=1; i <=nlstate; i++){    }
      for(k=1; k <=(nlstate+ndeath); k++){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
        if (k != i)    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
          {    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
            printf("%d%d ",i,k);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
            fprintf(ficres,"%1d%1d ",i,k);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
            for(j=1; j <=ncovmodel; j++){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
              printf("%f ",p[jk]);    pstamp(ficresprob);
              fprintf(ficres,"%f ",p[jk]);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
              jk++;    fprintf(ficresprob,"# Age");
            }    pstamp(ficresprobcov);
            printf("\n");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
            fprintf(ficres,"\n");    fprintf(ficresprobcov,"# Age");
          }    pstamp(ficresprobcor);
      }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
    }    fprintf(ficresprobcor,"# Age");
  if(mle==1){  
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */    for(i=1; i<=nlstate;i++)
     hesscov(matcov, p, npar, delti, ftolhess, func);      for(j=1; j<=(nlstate+ndeath);j++){
  }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     printf("# Scales (for hessian or gradient estimation)\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
      for(i=1,jk=1; i <=nlstate; i++){      }  
       for(j=1; j <=nlstate+ndeath; j++){   /* fprintf(ficresprob,"\n");
         if (j!=i) {    fprintf(ficresprobcov,"\n");
           fprintf(ficres,"%1d%1d",i,j);    fprintf(ficresprobcor,"\n");
           printf("%1d%1d",i,j);   */
           for(k=1; k<=ncovmodel;k++){    xp=vector(1,npar);
             printf(" %.5e",delti[jk]);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             fprintf(ficres," %.5e",delti[jk]);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             jk++;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           printf("\n");    first=1;
           fprintf(ficres,"\n");    fprintf(ficgp,"\n# Routine varprob");
         }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       }    fprintf(fichtm,"\n");
      }  
        fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     k=1;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    file %s<br>\n",optionfilehtmcov);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     for(i=1;i<=npar;i++){  and drawn. It helps understanding how is the covariance between two incidences.\
       /*  if (k>nlstate) k=1;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       i1=(i-1)/(ncovmodel*nlstate)+1;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       printf("%s%d%d",alph[k],i1,tab[i]);*/  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       fprintf(ficres,"%3d",i);  standard deviations wide on each axis. <br>\
       printf("%3d",i);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       for(j=1; j<=i;j++){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
         fprintf(ficres," %.5e",matcov[i][j]);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         printf(" %.5e",matcov[i][j]);  
       }    cov[1]=1;
       fprintf(ficres,"\n");    tj=cptcoveff;
       printf("\n");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       k++;    j1=0;
     }    for(t=1; t<=tj;t++){
          for(i1=1; i1<=ncodemax[t];i1++){ 
     while((c=getc(ficpar))=='#' && c!= EOF){        j1++;
       ungetc(c,ficpar);        if  (cptcovn>0) {
       fgets(line, MAXLINE, ficpar);          fprintf(ficresprob, "\n#********** Variable "); 
       puts(line);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fputs(line,ficparo);          fprintf(ficresprob, "**********\n#\n");
     }          fprintf(ficresprobcov, "\n#********** Variable "); 
     ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     estepm=0;          fprintf(ficresprobcov, "**********\n#\n");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          
     if (estepm==0 || estepm < stepm) estepm=stepm;          fprintf(ficgp, "\n#********** Variable "); 
     if (fage <= 2) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       bage = ageminpar;          fprintf(ficgp, "**********\n#\n");
       fage = agemaxpar;          
     }          
              fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          
            fprintf(ficresprobcor, "\n#********** Variable ");    
     while((c=getc(ficpar))=='#' && c!= EOF){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ungetc(c,ficpar);          fprintf(ficresprobcor, "**********\n#");    
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        
     fputs(line,ficparo);        for (age=bage; age<=fage; age ++){ 
   }          cov[2]=age;
   ungetc(c,ficpar);          for (k=1; k<=cptcovn;k++) {
              cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for (k=1; k<=cptcovprod;k++)
                  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     fgets(line, MAXLINE, ficpar);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     puts(line);          gp=vector(1,(nlstate)*(nlstate+ndeath));
     fputs(line,ficparo);          gm=vector(1,(nlstate)*(nlstate+ndeath));
   }      
   ungetc(c,ficpar);          for(theta=1; theta <=npar; theta++){
              for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
   fscanf(ficpar,"pop_based=%d\n",&popbased);            k=0;
   fprintf(ficparo,"pop_based=%d\n",popbased);              for(i=1; i<= (nlstate); i++){
   fprintf(ficres,"pop_based=%d\n",popbased);                for(j=1; j<=(nlstate+ndeath);j++){
                  k=k+1;
   while((c=getc(ficpar))=='#' && c!= EOF){                gp[k]=pmmij[i][j];
     ungetc(c,ficpar);              }
     fgets(line, MAXLINE, ficpar);            }
     puts(line);            
     fputs(line,ficparo);            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   ungetc(c,ficpar);      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            k=0;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            for(i=1; i<=(nlstate); i++){
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
 while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);       
     puts(line);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     fputs(line,ficparo);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   }          }
   ungetc(c,ficpar);  
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            for(theta=1; theta <=npar; theta++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              trgradg[j][theta]=gradg[theta][j];
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 /*------------ gnuplot -------------*/          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   strcpy(optionfilegnuplot,optionfilefiname);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   strcat(optionfilegnuplot,".gp");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);          pmij(pmmij,cov,ncovmodel,x,nlstate);
   }          
   fclose(ficgp);          k=0;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          for(i=1; i<=(nlstate); i++){
 /*--------- index.htm --------*/            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
   strcpy(optionfilehtm,optionfile);              mu[k][(int) age]=pmmij[i][j];
   strcat(optionfilehtm,".htm");            }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          }
     printf("Problem with %s \n",optionfilehtm), exit(0);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          /*printf("\n%d ",(int)age);
 \n            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 Total number of observations=%d <br>\n            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 <hr  size=\"2\" color=\"#EC5E5E\">            }*/
  <ul><li><h4>Parameter files</h4>\n  
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          fprintf(ficresprob,"\n%d ",(int)age);
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);          fprintf(ficresprobcov,"\n%d ",(int)age);
   fclose(fichtm);          fprintf(ficresprobcor,"\n%d ",(int)age);
   
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
              fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 /*------------ free_vector  -------------*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  chdir(path);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
  free_ivector(wav,1,imx);          }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          i=0;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            for (k=1; k<=(nlstate);k++){
  free_ivector(num,1,n);            for (l=1; l<=(nlstate+ndeath);l++){ 
  free_vector(agedc,1,n);              i=i++;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
  fclose(ficparo);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
  fclose(ficres);              for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   /*--------------- Prevalence limit --------------*/              }
              }
   strcpy(filerespl,"pl");          }/* end of loop for state */
   strcat(filerespl,fileres);        } /* end of loop for age */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        /* Confidence intervalle of pij  */
   }        /*
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          fprintf(ficgp,"\nunset parametric;unset label");
   fprintf(ficrespl,"#Prevalence limit\n");          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   fprintf(ficrespl,"#Age ");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   fprintf(ficrespl,"\n");          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
            fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   prlim=matrix(1,nlstate,1,nlstate);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        first1=1;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for (k2=1; k2<=(nlstate);k2++){
   k=0;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   agebase=ageminpar;            if(l2==k2) continue;
   agelim=agemaxpar;            j=(k2-1)*(nlstate+ndeath)+l2;
   ftolpl=1.e-10;            for (k1=1; k1<=(nlstate);k1++){
   i1=cptcoveff;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   if (cptcovn < 1){i1=1;}                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
   for(cptcov=1;cptcov<=i1;cptcov++){                if(i<=j) continue;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                for (age=bage; age<=fage; age ++){ 
         k=k+1;                  if ((int)age %5==0){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
         fprintf(ficrespl,"\n#******");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         for(j=1;j<=cptcoveff;j++)                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    mu1=mu[i][(int) age]/stepm*YEARM ;
         fprintf(ficrespl,"******\n");                    mu2=mu[j][(int) age]/stepm*YEARM;
                            c12=cv12/sqrt(v1*v2);
         for (age=agebase; age<=agelim; age++){                    /* Computing eigen value of matrix of covariance */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           fprintf(ficrespl,"%.0f",age );                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           for(i=1; i<=nlstate;i++)                    /* Eigen vectors */
           fprintf(ficrespl," %.5f", prlim[i][i]);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           fprintf(ficrespl,"\n");                    /*v21=sqrt(1.-v11*v11); *//* error */
         }                    v21=(lc1-v1)/cv12*v11;
       }                    v12=-v21;
     }                    v22=v11;
   fclose(ficrespl);                    tnalp=v21/v11;
                     if(first1==1){
   /*------------- h Pij x at various ages ------------*/                      first1=0;
                        printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                    }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                    /*printf(fignu*/
   }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   printf("Computing pij: result on file '%s' \n", filerespij);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                      if(first==1){
   stepsize=(int) (stepm+YEARM-1)/YEARM;                      first=0;
   /*if (stepm<=24) stepsize=2;*/                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   agelim=AGESUP;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   hstepm=stepsize*YEARM; /* Every year of age */                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   /* hstepm=1;   aff par mois*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   k=0;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   for(cptcov=1;cptcov<=i1;cptcov++){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       k=k+1;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         fprintf(ficrespij,"\n#****** ");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         fprintf(ficrespij,"******\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                            }else{
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                      first=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           oldm=oldms;savm=savms;                    }/* if first */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                    } /* age mod 5 */
           fprintf(ficrespij,"# Age");                } /* end loop age */
           for(i=1; i<=nlstate;i++)                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             for(j=1; j<=nlstate+ndeath;j++)                first=1;
               fprintf(ficrespij," %1d-%1d",i,j);              } /*l12 */
           fprintf(ficrespij,"\n");            } /* k12 */
            for (h=0; h<=nhstepm; h++){          } /*l1 */
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        }/* k1 */
             for(i=1; i<=nlstate;i++)      } /* loop covariates */
               for(j=1; j<=nlstate+ndeath;j++)    }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
             fprintf(ficrespij,"\n");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
              }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
           fprintf(ficrespij,"\n");    free_vector(xp,1,npar);
         }    fclose(ficresprob);
     }    fclose(ficresprobcov);
   }    fclose(ficresprobcor);
     fflush(ficgp);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    fflush(fichtmcov);
   }
   fclose(ficrespij);  
   
   /******************* Printing html file ***********/
   /*---------- Forecasting ------------------*/  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   if((stepm == 1) && (strcmp(model,".")==0)){                    int lastpass, int stepm, int weightopt, char model[],\
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                    int popforecast, int estepm ,\
   }                    double jprev1, double mprev1,double anprev1, \
   else{                    double jprev2, double mprev2,double anprev2){
     erreur=108;    int jj1, k1, i1, cpt;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
   }     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
   /*---------- Health expectancies and variances ------------*/     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   strcpy(filerest,"t");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   strcat(filerest,fileres);     fprintf(fichtm,"\
   if((ficrest=fopen(filerest,"w"))==NULL) {   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   }     fprintf(fichtm,"\
   printf("Computing Total LEs with variances: file '%s' \n", filerest);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
   strcpy(filerese,"e");   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   strcat(filerese,fileres);     <a href=\"%s\">%s</a> <br>\n",
   if((ficreseij=fopen(filerese,"w"))==NULL) {             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);     fprintf(fichtm,"\
   }   - Population projections by age and states: \
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
  strcpy(fileresv,"v");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {   m=cptcoveff;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   jj1=0;
   calagedate=-1;   for(k1=1; k1<=m;k1++){
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   k=0;       if (cptcovn > 0) {
   for(cptcov=1;cptcov<=i1;cptcov++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         for (cpt=1; cpt<=cptcoveff;cpt++) 
       k=k+1;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fprintf(ficrest,"\n#****** ");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       for(j=1;j<=cptcoveff;j++)       }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       /* Pij */
       fprintf(ficrest,"******\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       fprintf(ficreseij,"\n#****** ");       /* Quasi-incidences */
       for(j=1;j<=cptcoveff;j++)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
       fprintf(ficreseij,"******\n");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
       fprintf(ficresvij,"\n#****** ");         for(cpt=1; cpt<nlstate;cpt++){
       for(j=1;j<=cptcoveff;j++)           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       fprintf(ficresvij,"******\n");         }
        for(cpt=1; cpt<=nlstate;cpt++) {
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
       oldm=oldms;savm=savms;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);         }
       } /* end i1 */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   }/* End k1 */
       oldm=oldms;savm=savms;   fprintf(fichtm,"</ul>");
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  
      
    fprintf(fichtm,"\
    \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       epj=vector(1,nlstate+1);   fprintf(fichtm,"\
       for(age=bage; age <=fage ;age++){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)   fprintf(fichtm,"\
             prlim[i][i]=probs[(int)age][i][k];   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
           fprintf(fichtm,"\
         fprintf(ficrest," %4.0f",age);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){     <a href=\"%s\">%s</a> <br>\n</li>",
           for(i=1, epj[j]=0.;i <=nlstate;i++) {             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
             epj[j] += prlim[i][i]*eij[i][j][(int)age];   fprintf(fichtm,"\
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
           }     <a href=\"%s\">%s</a> <br>\n</li>",
           epj[nlstate+1] +=epj[j];             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
         }   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         for(i=1, vepp=0.;i <=nlstate;i++)           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
           for(j=1;j <=nlstate;j++)   fprintf(fichtm,"\
             vepp += vareij[i][j][(int)age];   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
         for(j=1;j <=nlstate;j++){   fprintf(fichtm,"\
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
         }           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
         fprintf(ficrest,"\n");  
       }  /*  if(popforecast==1) fprintf(fichtm,"\n */
     }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 free_matrix(mint,1,maxwav,1,n);  /*      <br>",fileres,fileres,fileres,fileres); */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  /*  else  */
     free_vector(weight,1,n);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fclose(ficreseij);   fflush(fichtm);
   fclose(ficresvij);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   fclose(ficrest);  
   fclose(ficpar);   m=cptcoveff;
   free_vector(epj,1,nlstate+1);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
   /*------- Variance limit prevalence------*/     jj1=0;
    for(k1=1; k1<=m;k1++){
   strcpy(fileresvpl,"vpl");     for(i1=1; i1<=ncodemax[k1];i1++){
   strcat(fileresvpl,fileres);       jj1++;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {       if (cptcovn > 0) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     exit(0);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   k=0;       for(cpt=1; cpt<=nlstate;cpt++) {
   for(cptcov=1;cptcov<=i1;cptcov++){         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       k=k+1;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       fprintf(ficresvpl,"\n#****** ");       }
       for(j=1;j<=cptcoveff;j++)       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
       fprintf(ficresvpl,"******\n");  true period expectancies (those weighted with period prevalences are also\
         drawn in addition to the population based expectancies computed using\
       varpl=matrix(1,nlstate,(int) bage, (int) fage);   observed and cahotic prevalences: %s%d.png<br>\
       oldm=oldms;savm=savms;  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);     } /* end i1 */
     }   }/* End k1 */
  }   fprintf(fichtm,"</ul>");
    fflush(fichtm);
   fclose(ficresvpl);  }
   
   /*---------- End : free ----------------*/  /******************* Gnuplot file **************/
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    char dirfileres[132],optfileres[132];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
      int ng=0;
    /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  /*     printf("Problem with file %s",optionfilegnuplot); */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  /*   } */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
      /*#ifdef windows */
   free_matrix(matcov,1,npar,1,npar);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   free_vector(delti,1,npar);      /*#endif */
   free_matrix(agev,1,maxwav,1,imx);    m=pow(2,cptcoveff);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
     strcpy(dirfileres,optionfilefiname);
   fprintf(fichtm,"\n</body>");    strcpy(optfileres,"vpl");
   fclose(fichtm);   /* 1eme*/
   fclose(ficgp);    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   if(erreur >0)       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     printf("End of Imach with error or warning %d\n",erreur);       fprintf(ficgp,"set xlabel \"Age\" \n\
   else   printf("End of Imach\n");  set ylabel \"Probability\" \n\
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  set ter png small\n\
    set size 0.65,0.65\n\
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
  end:       }
 #ifdef windows       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   /* chdir(pathcd);*/       for (i=1; i<= nlstate ; i ++) {
 #endif         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  /*system("wgnuplot graph.plt");*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
  /*system("../gp37mgw/wgnuplot graph.plt");*/       } 
  /*system("cd ../gp37mgw");*/       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/       for (i=1; i<= nlstate ; i ++) {
  strcpy(plotcmd,GNUPLOTPROGRAM);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  strcat(plotcmd," ");         else fprintf(ficgp," \%%*lf (\%%*lf)");
  strcat(plotcmd,optionfilegnuplot);       }  
  system(plotcmd);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
 #ifdef windows    }
   while (z[0] != 'q') {    /*2 eme*/
     /* chdir(path); */    
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    for (k1=1; k1<= m ; k1 ++) { 
     scanf("%s",z);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     if (z[0] == 'c') system("./imach");      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     else if (z[0] == 'e') system(optionfilehtm);      
     else if (z[0] == 'g') system(plotcmd);      for (i=1; i<= nlstate+1 ; i ++) {
     else if (z[0] == 'q') exit(0);        k=2*i;
   }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 #endif        for (j=1; j<= nlstate+1 ; j ++) {
 }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char linetmp[MAXLINE];
       char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     /* where is ncovprod ?*/
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforces= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);fflush(ficlog);
           goto end;
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sums the number of covariates including age as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.49  
changed lines
  Added in v.1.132


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>