Diff for /imach/src/imach.c between versions 1.2 and 1.134

version 1.2, 2001/03/13 18:10:26 version 1.134, 2009/10/29 13:18:53
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.134  2009/10/29 13:18:53  brouard
   individuals from different ages are interviewed on their health status    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.133  2009/07/06 10:21:25  brouard
   Health expectancies are computed from the transistions observed between    just nforces
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.132  2009/07/06 08:22:05  brouard
   reach the Maximum Likelihood of the parameters involved in the model.    Many tings
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.131  2009/06/20 16:22:47  brouard
   to be observed in state i at the first wave. Therefore the model is:    Some dimensions resccaled
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.130  2009/05/26 06:44:34  brouard
   age", you should modify the program where the markup    (Module): Max Covariate is now set to 20 instead of 8. A
     *Covariates have to be included here again* invites you to do it.    lot of cleaning with variables initialized to 0. Trying to make
   More covariates you add, less is the speed of the convergence.    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
   The advantage that this computer programme claims, comes from that if the    Revision 1.129  2007/08/31 13:49:27  lievre
   delay between waves is not identical for each individual, or if some    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.128  2006/06/30 13:02:05  brouard
   hPijx is the probability to be    (Module): Clarifications on computing e.j
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.127  2006/04/28 18:11:50  brouard
   unobserved intermediate  states. This elementary transition (by month or    (Module): Yes the sum of survivors was wrong since
   quarter trimester, semester or year) is model as a multinomial logistic.    imach-114 because nhstepm was no more computed in the age
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    loop. Now we define nhstepma in the age loop.
   and the contribution of each individual to the likelihood is simply hPijx.    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
   Also this programme outputs the covariance matrix of the parameters but also    and then all the health expectancies with variances or standard
   of the life expectancies. It also computes the prevalence limits.    deviation (needs data from the Hessian matrices) which slows the
      computation.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    In the future we should be able to stop the program is only health
            Institut national d'études démographiques, Paris.    expectancies and graph are needed without standard deviations.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.126  2006/04/28 17:23:28  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Yes the sum of survivors was wrong since
   software can be distributed freely for non commercial use. Latest version    imach-114 because nhstepm was no more computed in the age
   can be accessed at http://euroreves.ined.fr/imach .    loop. Now we define nhstepma in the age loop.
   **********************************************************************/    Version 0.98h
    
 #include <math.h>    Revision 1.125  2006/04/04 15:20:31  lievre
 #include <stdio.h>    Errors in calculation of health expectancies. Age was not initialized.
 #include <stdlib.h>    Forecasting file added.
 #include <unistd.h>  
     Revision 1.124  2006/03/22 17:13:53  lievre
 #define MAXLINE 256    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #define FILENAMELENGTH 80    The log-likelihood is printed in the log file
 /*#define DEBUG*/  
 #define windows    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    name. <head> headers where missing.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     * imach.c (Module): Weights can have a decimal point as for
 #define NINTERVMAX 8    English (a comma might work with a correct LC_NUMERIC environment,
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    otherwise the weight is truncated).
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Modification of warning when the covariates values are not 0 or
 #define NCOVMAX 8 /* Maximum number of covariates */    1.
 #define MAXN 80000    Version 0.98g
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.122  2006/03/20 09:45:41  brouard
 #define AGEBASE 40    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 int nvar;    Modification of warning when the covariates values are not 0 or
 static int cptcov;    1.
 int cptcovn;    Version 0.98g
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.121  2006/03/16 17:45:01  lievre
 int ndeath=1; /* Number of dead states */    * imach.c (Module): Comments concerning covariates added
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
     * imach.c (Module): refinements in the computation of lli if
 int *wav; /* Number of waves for this individuual 0 is possible */    status=-2 in order to have more reliable computation if stepm is
 int maxwav; /* Maxim number of waves */    not 1 month. Version 0.98f
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.120  2006/03/16 15:10:38  lievre
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): refinements in the computation of lli if
 double **oldm, **newm, **savm; /* Working pointers to matrices */    status=-2 in order to have more reliable computation if stepm is
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    not 1 month. Version 0.98f
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;  
 FILE *ficgp, *fichtm;    Revision 1.119  2006/03/15 17:42:26  brouard
 FILE *ficreseij;    (Module): Bug if status = -2, the loglikelihood was
   char filerese[FILENAMELENGTH];    computed as likelihood omitting the logarithm. Version O.98e
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.118  2006/03/14 18:20:07  brouard
  FILE  *ficresvpl;    (Module): varevsij Comments added explaining the second
   char fileresvpl[FILENAMELENGTH];    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
     (Module): Version 0.98d
   
 #define NR_END 1    Revision 1.117  2006/03/14 17:16:22  brouard
 #define FREE_ARG char*    (Module): varevsij Comments added explaining the second
 #define FTOL 1.0e-10    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define NRANSI    (Module): Function pstamp added
 #define ITMAX 200    (Module): Version 0.98d
   
 #define TOL 2.0e-4    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 #define CGOLD 0.3819660    varian-covariance of ej. is needed (Saito).
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.114  2006/02/26 12:57:58  brouard
 #define TINY 1.0e-20    (Module): Some improvements in processing parameter
     filename with strsep.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.113  2006/02/24 14:20:24  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Memory leaks checks with valgrind and:
      datafile was not closed, some imatrix were not freed and on matrix
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    allocation too.
 #define rint(a) floor(a+0.5)  
     Revision 1.112  2006/01/30 09:55:26  brouard
 static double sqrarg;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 int imx;    (Module): Comments can be added in data file. Missing date values
 int stepm;    can be a simple dot '.'.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.110  2006/01/25 00:51:50  brouard
 int m,nb;    (Module): Lots of cleaning and bugs added (Gompertz)
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.109  2006/01/24 19:37:15  brouard
 double **pmmij;    (Module): Comments (lines starting with a #) are allowed in data.
   
 double *weight;    Revision 1.108  2006/01/19 18:05:42  lievre
 int **s; /* Status */    Gnuplot problem appeared...
 double *agedc, **covar, idx;    To be fixed
 int **nbcode, *Tcode, *Tvar, **codtab;  
     Revision 1.107  2006/01/19 16:20:37  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Test existence of gnuplot in imach path
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 /******************************************/  
     Revision 1.105  2006/01/05 20:23:19  lievre
 void replace(char *s, char*t)    *** empty log message ***
 {  
   int i;    Revision 1.104  2005/09/30 16:11:43  lievre
   int lg=20;    (Module): sump fixed, loop imx fixed, and simplifications.
   i=0;    (Module): If the status is missing at the last wave but we know
   lg=strlen(t);    that the person is alive, then we can code his/her status as -2
   for(i=0; i<= lg; i++) {    (instead of missing=-1 in earlier versions) and his/her
     (s[i] = t[i]);    contributions to the likelihood is 1 - Prob of dying from last
     if (t[i]== '\\') s[i]='/';    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   }    the healthy state at last known wave). Version is 0.98
 }  
     Revision 1.103  2005/09/30 15:54:49  lievre
 int nbocc(char *s, char occ)    (Module): sump fixed, loop imx fixed, and simplifications.
 {  
   int i,j=0;    Revision 1.102  2004/09/15 17:31:30  brouard
   int lg=20;    Add the possibility to read data file including tab characters.
   i=0;  
   lg=strlen(s);    Revision 1.101  2004/09/15 10:38:38  brouard
   for(i=0; i<= lg; i++) {    Fix on curr_time
   if  (s[i] == occ ) j++;  
   }    Revision 1.100  2004/07/12 18:29:06  brouard
   return j;    Add version for Mac OS X. Just define UNIX in Makefile
 }  
     Revision 1.99  2004/06/05 08:57:40  brouard
 void cutv(char *u,char *v, char*t, char occ)    *** empty log message ***
 {  
   int i,lg,j,p;    Revision 1.98  2004/05/16 15:05:56  brouard
   i=0;    New version 0.97 . First attempt to estimate force of mortality
   if (t[0]== occ) p=0;    directly from the data i.e. without the need of knowing the health
   for(j=0; j<=strlen(t)-1; j++) {    state at each age, but using a Gompertz model: log u =a + b*age .
     if((t[j]!= occ) && (t[j+1]==occ)) p=j+1;    This is the basic analysis of mortality and should be done before any
   }    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
   lg=strlen(t);    from other sources like vital statistic data.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    The same imach parameter file can be used but the option for mle should be -3.
     u[p]='\0';  
   }    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    The output is very simple: only an estimate of the intercept and of
   }    the slope with 95% confident intervals.
 }  
     Current limitations:
     A) Even if you enter covariates, i.e. with the
 /********************** nrerror ********************/    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 void nrerror(char error_text[])  
 {    Revision 1.97  2004/02/20 13:25:42  lievre
   fprintf(stderr,"ERREUR ...\n");    Version 0.96d. Population forecasting command line is (temporarily)
   fprintf(stderr,"%s\n",error_text);    suppressed.
   exit(1);  
 }    Revision 1.96  2003/07/15 15:38:55  brouard
 /*********************** vector *******************/    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 double *vector(int nl, int nh)    rewritten within the same printf. Workaround: many printfs.
 {  
   double *v;    Revision 1.95  2003/07/08 07:54:34  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    * imach.c (Repository):
   if (!v) nrerror("allocation failure in vector");    (Repository): Using imachwizard code to output a more meaningful covariance
   return v-nl+NR_END;    matrix (cov(a12,c31) instead of numbers.
 }  
     Revision 1.94  2003/06/27 13:00:02  brouard
 /************************ free vector ******************/    Just cleaning
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.93  2003/06/25 16:33:55  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): On windows (cygwin) function asctime_r doesn't
 }    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.92  2003/06/25 16:30:45  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   int *v;    exist so I changed back to asctime which exists.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Revision 1.91  2003/06/25 15:30:29  brouard
   return v-nl+NR_END;    * imach.c (Repository): Duplicated warning errors corrected.
 }    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 /******************free ivector **************************/    is stamped in powell.  We created a new html file for the graphs
 void free_ivector(int *v, long nl, long nh)    concerning matrix of covariance. It has extension -cov.htm.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.90  2003/06/24 12:34:15  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /******************* imatrix *******************************/    of the covariance matrix to be input.
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Revision 1.89  2003/06/24 12:30:52  brouard
 {    (Module): Some bugs corrected for windows. Also, when
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    mle=-1 a template is output in file "or"mypar.txt with the design
   int **m;    of the covariance matrix to be input.
    
   /* allocate pointers to rows */    Revision 1.88  2003/06/23 17:54:56  brouard
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.87  2003/06/18 12:26:01  brouard
   m -= nrl;    Version 0.96
    
      Revision 1.86  2003/06/17 20:04:08  brouard
   /* allocate rows and set pointers to them */    (Module): Change position of html and gnuplot routines and added
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    routine fileappend.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.85  2003/06/17 13:12:43  brouard
   m[nrl] -= ncl;    * imach.c (Repository): Check when date of death was earlier that
      current date of interview. It may happen when the death was just
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    prior to the death. In this case, dh was negative and likelihood
      was wrong (infinity). We still send an "Error" but patch by
   /* return pointer to array of pointers to rows */    assuming that the date of death was just one stepm after the
   return m;    interview.
 }    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 /****************** free_imatrix *************************/    memory allocation. But we also truncated to 8 characters (left
 void free_imatrix(m,nrl,nrh,ncl,nch)    truncation)
       int **m;    (Repository): No more line truncation errors.
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.84  2003/06/13 21:44:43  brouard
 {    * imach.c (Repository): Replace "freqsummary" at a correct
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    place. It differs from routine "prevalence" which may be called
   free((FREE_ARG) (m+nrl-NR_END));    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Revision 1.83  2003/06/10 13:39:11  lievre
 {    *** empty log message ***
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  */
   m += NR_END;  /*
   m -= nrl;     Interpolated Markov Chain
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Short summary of the programme:
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    
   m[nrl] += NR_END;    This program computes Healthy Life Expectancies from
   m[nrl] -= ncl;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    interviewed on their health status or degree of disability (in the
   return m;    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /*************************free matrix ************************/    computed from the time spent in each health state according to a
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    simplest model is the multinomial logistic model where pij is the
   free((FREE_ARG)(m+nrl-NR_END));    probability to be observed in state j at the second wave
 }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /******************* ma3x *******************************/    'age' is age and 'sex' is a covariate. If you want to have a more
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    you to do it.  More covariates you add, slower the
   double ***m;    convergence.
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    The advantage of this computer programme, compared to a simple
   if (!m) nrerror("allocation failure 1 in matrix()");    multinomial logistic model, is clear when the delay between waves is not
   m += NR_END;    identical for each individual. Also, if a individual missed an
   m -= nrl;    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    hPijx is the probability to be observed in state i at age x+h
   m[nrl] += NR_END;    conditional to the observed state i at age x. The delay 'h' can be
   m[nrl] -= ncl;    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    and the contribution of each individual to the likelihood is simply
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    hPijx.
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    Also this programme outputs the covariance matrix of the parameters but also
   for (j=ncl+1; j<=nch; j++)    of the life expectancies. It also computes the period (stable) prevalence. 
     m[nrl][j]=m[nrl][j-1]+nlay;    
      Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   for (i=nrl+1; i<=nrh; i++) {             Institut national d'études démographiques, Paris.
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    This software have been partly granted by Euro-REVES, a concerted action
     for (j=ncl+1; j<=nch; j++)    from the European Union.
       m[i][j]=m[i][j-1]+nlay;    It is copyrighted identically to a GNU software product, ie programme and
   }    software can be distributed freely for non commercial use. Latest version
   return m;    can be accessed at http://euroreves.ined.fr/imach .
 }  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /*************************free ma3x ************************/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    
 {    **********************************************************************/
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /*
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    main
   free((FREE_ARG)(m+nrl-NR_END));    read parameterfile
 }    read datafile
     concatwav
 /***************** f1dim *************************/    freqsummary
 extern int ncom;    if (mle >= 1)
 extern double *pcom,*xicom;      mlikeli
 extern double (*nrfunc)(double []);    print results files
      if mle==1 
 double f1dim(double x)       computes hessian
 {    read end of parameter file: agemin, agemax, bage, fage, estepm
   int j;        begin-prev-date,...
   double f;    open gnuplot file
   double *xt;    open html file
      period (stable) prevalence
   xt=vector(1,ncom);     for age prevalim()
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    h Pij x
   f=(*nrfunc)(xt);    variance of p varprob
   free_vector(xt,1,ncom);    forecasting if prevfcast==1 prevforecast call prevalence()
   return f;    health expectancies
 }    Variance-covariance of DFLE
     prevalence()
 /*****************brent *************************/     movingaverage()
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    varevsij() 
 {    if popbased==1 varevsij(,popbased)
   int iter;    total life expectancies
   double a,b,d,etemp;    Variance of period (stable) prevalence
   double fu,fv,fw,fx;   end
   double ftemp;  */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  
    
   a=(ax < cx ? ax : cx);   
   b=(ax > cx ? ax : cx);  #include <math.h>
   x=w=v=bx;  #include <stdio.h>
   fw=fv=fx=(*f)(x);  #include <stdlib.h>
   for (iter=1;iter<=ITMAX;iter++) {  #include <string.h>
     xm=0.5*(a+b);  #include <unistd.h>
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #include <limits.h>
     printf(".");fflush(stdout);  #include <sys/types.h>
 #ifdef DEBUG  #include <sys/stat.h>
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #include <errno.h>
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  extern int errno;
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  /* #include <sys/time.h> */
       *xmin=x;  #include <time.h>
       return fx;  #include "timeval.h"
     }  
     ftemp=fu;  /* #include <libintl.h> */
     if (fabs(e) > tol1) {  /* #define _(String) gettext (String) */
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  #define MAXLINE 256
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  #define GNUPLOTPROGRAM "gnuplot"
       if (q > 0.0) p = -p;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       q=fabs(q);  #define FILENAMELENGTH 132
       etemp=e;  
       e=d;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
         d=p/q;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  #define NINTERVMAX 8
           d=SIGN(tol1,xm-x);  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
     } else {  #define NCOVMAX 20 /* Maximum number of covariates */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define MAXN 20000
     }  #define YEARM 12. /* Number of months per year */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define AGESUP 130
     fu=(*f)(u);  #define AGEBASE 40
     if (fu <= fx) {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
       if (u >= x) a=x; else b=x;  #ifdef UNIX
       SHFT(v,w,x,u)  #define DIRSEPARATOR '/'
         SHFT(fv,fw,fx,fu)  #define CHARSEPARATOR "/"
         } else {  #define ODIRSEPARATOR '\\'
           if (u < x) a=u; else b=u;  #else
           if (fu <= fw || w == x) {  #define DIRSEPARATOR '\\'
             v=w;  #define CHARSEPARATOR "\\"
             w=u;  #define ODIRSEPARATOR '/'
             fv=fw;  #endif
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /* $Id$ */
             v=u;  /* $State$ */
             fv=fu;  
           }  char version[]="Imach version 0.98l, October 2009, INED-EUROREVES-Institut de longevite ";
         }  char fullversion[]="$Revision$ $Date$"; 
   }  char strstart[80];
   nrerror("Too many iterations in brent");  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   *xmin=x;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   return fx;  int nvar=0, nforce=0; /* Number of variables, number of forces */
 }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
   int npar=NPARMAX;
 /****************** mnbrak ***********************/  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
             double (*func)(double))  int popbased=0;
 {  
   double ulim,u,r,q, dum;  int *wav; /* Number of waves for this individuual 0 is possible */
   double fu;  int maxwav=0; /* Maxim number of waves */
    int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   *fa=(*func)(*ax);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   *fb=(*func)(*bx);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   if (*fb > *fa) {                     to the likelihood and the sum of weights (done by funcone)*/
     SHFT(dum,*ax,*bx,dum)  int mle=1, weightopt=0;
       SHFT(dum,*fb,*fa,dum)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   *cx=(*bx)+GOLD*(*bx-*ax);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   *fc=(*func)(*cx);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   while (*fb > *fc) {  double jmean=1; /* Mean space between 2 waves */
     r=(*bx-*ax)*(*fb-*fc);  double **oldm, **newm, **savm; /* Working pointers to matrices */
     q=(*bx-*cx)*(*fb-*fa);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  FILE *ficlog, *ficrespow;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int globpr=0; /* Global variable for printing or not */
     if ((*bx-u)*(u-*cx) > 0.0) {  double fretone; /* Only one call to likelihood */
       fu=(*func)(u);  long ipmx=0; /* Number of contributions */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double sw; /* Sum of weights */
       fu=(*func)(u);  char filerespow[FILENAMELENGTH];
       if (fu < *fc) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  FILE *ficresilk;
           SHFT(*fb,*fc,fu,(*func)(u))  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
           }  FILE *ficresprobmorprev;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  FILE *fichtm, *fichtmcov; /* Html File */
       u=ulim;  FILE *ficreseij;
       fu=(*func)(u);  char filerese[FILENAMELENGTH];
     } else {  FILE *ficresstdeij;
       u=(*cx)+GOLD*(*cx-*bx);  char fileresstde[FILENAMELENGTH];
       fu=(*func)(u);  FILE *ficrescveij;
     }  char filerescve[FILENAMELENGTH];
     SHFT(*ax,*bx,*cx,u)  FILE  *ficresvij;
       SHFT(*fa,*fb,*fc,fu)  char fileresv[FILENAMELENGTH];
       }  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /*************** linmin ************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 int ncom;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 double *pcom,*xicom;  char command[FILENAMELENGTH];
 double (*nrfunc)(double []);  int  outcmd=0;
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  
   double brent(double ax, double bx, double cx,  char filelog[FILENAMELENGTH]; /* Log file */
                double (*f)(double), double tol, double *xmin);  char filerest[FILENAMELENGTH];
   double f1dim(double x);  char fileregp[FILENAMELENGTH];
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  char popfile[FILENAMELENGTH];
               double *fc, double (*func)(double));  
   int j;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
    struct timezone tzp;
   ncom=n;  extern int gettimeofday();
   pcom=vector(1,n);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   xicom=vector(1,n);  long time_value;
   nrfunc=func;  extern long time();
   for (j=1;j<=n;j++) {  char strcurr[80], strfor[80];
     pcom[j]=p[j];  
     xicom[j]=xi[j];  char *endptr;
   }  long lval;
   ax=0.0;  double dval;
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #define NR_END 1
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define FREE_ARG char*
 #ifdef DEBUG  #define FTOL 1.0e-10
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  #define NRANSI 
   for (j=1;j<=n;j++) {  #define ITMAX 200 
     xi[j] *= xmin;  
     p[j] += xi[j];  #define TOL 2.0e-4 
   }  
   free_vector(xicom,1,n);  #define CGOLD 0.3819660 
   free_vector(pcom,1,n);  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /*************** powell ************************/  #define GOLD 1.618034 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #define GLIMIT 100.0 
             double (*func)(double []))  #define TINY 1.0e-20 
 {  
   void linmin(double p[], double xi[], int n, double *fret,  static double maxarg1,maxarg2;
               double (*func)(double []));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   int i,ibig,j;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double del,t,*pt,*ptt,*xit;    
   double fp,fptt;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double *xits;  #define rint(a) floor(a+0.5)
   pt=vector(1,n);  
   ptt=vector(1,n);  static double sqrarg;
   xit=vector(1,n);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   xits=vector(1,n);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   *fret=(*func)(p);  int agegomp= AGEGOMP;
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  int imx; 
     fp=(*fret);  int stepm=1;
     ibig=0;  /* Stepm, step in month: minimum step interpolation*/
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  int estepm;
     for (i=1;i<=n;i++)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  int m,nb;
     for (i=1;i<=n;i++) {  long *num;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       fptt=(*fret);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 #ifdef DEBUG  double **pmmij, ***probs;
       printf("fret=%lf \n",*fret);  double *ageexmed,*agecens;
 #endif  double dateintmean=0;
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  double *weight;
       if (fabs(fptt-(*fret)) > del) {  int **s; /* Status */
         del=fabs(fptt-(*fret));  double *agedc, **covar, idx;
         ibig=i;  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       }  double *lsurv, *lpop, *tpop;
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       for (j=1;j<=n;j++) {  double ftolhess; /* Tolerance for computing hessian */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /**************** split *************************/
       }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       for(j=1;j<=n;j++)  {
         printf(" p=%.12e",p[j]);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       printf("\n");       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 #endif    */ 
     }    char  *ss;                            /* pointer */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    int   l1, l2;                         /* length counters */
 #ifdef DEBUG  
       int k[2],l;    l1 = strlen(path );                   /* length of path */
       k[0]=1;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       k[1]=-1;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       printf("Max: %.12e",(*func)(p));    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       for (j=1;j<=n;j++)      strcpy( name, path );               /* we got the fullname name because no directory */
         printf(" %.12e",p[j]);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       printf("\n");        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       for(l=0;l<=1;l++) {      /* get current working directory */
         for (j=1;j<=n;j++) {      /*    extern  char* getcwd ( char *buf , int len);*/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        return( GLOCK_ERROR_GETCWD );
         }      }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      /* got dirc from getcwd*/
       }      printf(" DIRC = %s \n",dirc);
 #endif    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
       free_vector(xit,1,n);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       free_vector(xits,1,n);      strcpy( name, ss );         /* save file name */
       free_vector(ptt,1,n);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       free_vector(pt,1,n);      dirc[l1-l2] = 0;                    /* add zero */
       return;      printf(" DIRC2 = %s \n",dirc);
     }    }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    /* We add a separator at the end of dirc if not exists */
     for (j=1;j<=n;j++) {    l1 = strlen( dirc );                  /* length of directory */
       ptt[j]=2.0*p[j]-pt[j];    if( dirc[l1-1] != DIRSEPARATOR ){
       xit[j]=p[j]-pt[j];      dirc[l1] =  DIRSEPARATOR;
       pt[j]=p[j];      dirc[l1+1] = 0; 
     }      printf(" DIRC3 = %s \n",dirc);
     fptt=(*func)(ptt);    }
     if (fptt < fp) {    ss = strrchr( name, '.' );            /* find last / */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    if (ss >0){
       if (t < 0.0) {      ss++;
         linmin(p,xit,n,fret,func);      strcpy(ext,ss);                     /* save extension */
         for (j=1;j<=n;j++) {      l1= strlen( name);
           xi[j][ibig]=xi[j][n];      l2= strlen(ss)+1;
           xi[j][n]=xit[j];      strncpy( finame, name, l1-l2);
         }      finame[l1-l2]= 0;
 #ifdef DEBUG    }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)    return( 0 );                          /* we're done */
           printf(" %.12e",xit[j]);  }
         printf("\n");  
 #endif  
       }  /******************************************/
     }  
   }  void replace_back_to_slash(char *s, char*t)
 }  {
     int i;
 /**** Prevalence limit ****************/    int lg=0;
     i=0;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    lg=strlen(t);
 {    for(i=0; i<= lg; i++) {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      (s[i] = t[i]);
      matrix by transitions matrix until convergence is reached */      if (t[i]== '\\') s[i]='/';
     }
   int i, ii,j,k;  }
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  char *trimbb(char *out, char *in)
   double **out, cov[NCOVMAX], **pmij();  { /* Trim multiple blanks in line */
   double **newm;    char *s;
   double agefin, delaymax=50 ; /* Max number of years to converge */    s=out;
     while (*in != '\0'){
   for (ii=1;ii<=nlstate+ndeath;ii++)      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
     for (j=1;j<=nlstate+ndeath;j++){        in++;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      }
     }      *out++ = *in++;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    *out='\0';
     newm=savm;    return s;
     /* Covariates have to be included here again */  }
     cov[1]=1.;  
     cov[2]=agefin;  int nbocc(char *s, char occ)
     if (cptcovn>0){  {
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}    int i,j=0;
     }    int lg=20;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    i=0;
     lg=strlen(s);
     savm=oldm;    for(i=0; i<= lg; i++) {
     oldm=newm;    if  (s[i] == occ ) j++;
     maxmax=0.;    }
     for(j=1;j<=nlstate;j++){    return j;
       min=1.;  }
       max=0.;  
       for(i=1; i<=nlstate; i++) {  void cutv(char *u,char *v, char*t, char occ)
         sumnew=0;  {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         prlim[i][j]= newm[i][j]/(1-sumnew);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         max=FMAX(max,prlim[i][j]);       gives u="abcedf" and v="ghi2j" */
         min=FMIN(min,prlim[i][j]);    int i,lg,j,p=0;
       }    i=0;
       maxmin=max-min;    for(j=0; j<=strlen(t)-1; j++) {
       maxmax=FMAX(maxmax,maxmin);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }    }
     if(maxmax < ftolpl){  
       return prlim;    lg=strlen(t);
     }    for(j=0; j<p; j++) {
   }      (u[j] = t[j]);
 }    }
        u[p]='\0';
 /*************** transition probabilities **********/  
      for(j=0; j<= lg; j++) {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      if (j>=(p+1))(v[j-p-1] = t[j]);
 {    }
   double s1, s2;  }
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  /********************** nrerror ********************/
   
     for(i=1; i<= nlstate; i++){  void nrerror(char error_text[])
     for(j=1; j<i;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    fprintf(stderr,"ERREUR ...\n");
         /*s2 += param[i][j][nc]*cov[nc];*/    fprintf(stderr,"%s\n",error_text);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    exit(EXIT_FAILURE);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  }
       }  /*********************** vector *******************/
       ps[i][j]=s2;  double *vector(int nl, int nh)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  {
     }    double *v;
     for(j=i+1; j<=nlstate+ndeath;j++){    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    if (!v) nrerror("allocation failure in vector");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return v-nl+NR_END;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  }
       }  
       ps[i][j]=s2;  /************************ free vector ******************/
     }  void free_vector(double*v, int nl, int nh)
   }  {
   for(i=1; i<= nlstate; i++){    free((FREE_ARG)(v+nl-NR_END));
      s1=0;  }
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  /************************ivector *******************************/
     for(j=i+1; j<=nlstate+ndeath; j++)  int *ivector(long nl,long nh)
       s1+=exp(ps[i][j]);  {
     ps[i][i]=1./(s1+1.);    int *v;
     for(j=1; j<i; j++)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       ps[i][j]= exp(ps[i][j])*ps[i][i];    if (!v) nrerror("allocation failure in ivector");
     for(j=i+1; j<=nlstate+ndeath; j++)    return v-nl+NR_END;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    free((FREE_ARG)(v+nl-NR_END));
       ps[ii][jj]=0;  }
       ps[ii][ii]=1;  
     }  /************************lvector *******************************/
   }  long *lvector(long nl,long nh)
   {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    long *v;
     for(jj=1; jj<= nlstate+ndeath; jj++){    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
      printf("%lf ",ps[ii][jj]);    if (!v) nrerror("allocation failure in ivector");
    }    return v-nl+NR_END;
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /******************free lvector **************************/
 /*  void free_lvector(long *v, long nl, long nh)
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  {
   goto end;*/    free((FREE_ARG)(v+nl-NR_END));
     return ps;  }
 }  
   /******************* imatrix *******************************/
 /**************** Product of 2 matrices ******************/  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  { 
 {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    int **m; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    
   /* in, b, out are matrice of pointers which should have been initialized    /* allocate pointers to rows */ 
      before: only the contents of out is modified. The function returns    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      a pointer to pointers identical to out */    if (!m) nrerror("allocation failure 1 in matrix()"); 
   long i, j, k;    m += NR_END; 
   for(i=nrl; i<= nrh; i++)    m -= nrl; 
     for(k=ncolol; k<=ncoloh; k++)    
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    
         out[i][k] +=in[i][j]*b[j][k];    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   return out;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 }    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
     
 /************* Higher Matrix Product ***************/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    /* return pointer to array of pointers to rows */ 
 {    return m; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  } 
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /****************** free_imatrix *************************/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  void free_imatrix(m,nrl,nrh,ncl,nch)
      (typically every 2 years instead of every month which is too big).        int **m;
      Model is determined by parameters x and covariates have to be        long nch,ncl,nrh,nrl; 
      included manually here.       /* free an int matrix allocated by imatrix() */ 
   { 
      */    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
   int i, j, d, h, k;  } 
   double **out, cov[NCOVMAX];  
   double **newm;  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   /* Hstepm could be zero and should return the unit matrix */  {
   for (i=1;i<=nlstate+ndeath;i++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     for (j=1;j<=nlstate+ndeath;j++){    double **m;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m += NR_END;
   for(h=1; h <=nhstepm; h++){    m -= nrl;
     for(d=1; d <=hstepm; d++){  
       newm=savm;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       /* Covariates have to be included here again */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       cov[1]=1.;    m[nrl] += NR_END;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    m[nrl] -= ncl;
       if (cptcovn>0){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }    return m;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/     */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /*************************free matrix ************************/
       oldm=newm;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     }  {
     for(i=1; i<=nlstate+ndeath; i++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for(j=1;j<=nlstate+ndeath;j++) {    free((FREE_ARG)(m+nrl-NR_END));
         po[i][j][h]=newm[i][j];  }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  /******************* ma3x *******************************/
       }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   } /* end h */  {
   return po;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 }    double ***m;
   
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 /*************** log-likelihood *************/    if (!m) nrerror("allocation failure 1 in matrix()");
 double func( double *x)    m += NR_END;
 {    m -= nrl;
   int i, ii, j, k, mi, d;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double **out;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double sw; /* Sum of weights */    m[nrl] += NR_END;
   double lli; /* Individual log likelihood */    m[nrl] -= ncl;
   long ipmx;  
   /*extern weight */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   /*for(i=1;i<imx;i++)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 printf(" %d\n",s[4][i]);    m[nrl][ncl] += NR_END;
   */    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      m[nrl][j]=m[nrl][j-1]+nlay;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    
        for(mi=1; mi<= wav[i]-1; mi++){    for (i=nrl+1; i<=nrh; i++) {
       for (ii=1;ii<=nlstate+ndeath;ii++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (j=ncl+1; j<=nch; j++) 
             for(d=0; d<dh[mi][i]; d++){        m[i][j]=m[i][j-1]+nlay;
         newm=savm;    }
           cov[1]=1.;    return m; 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
           if (cptcovn>0){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
             for (k=1; k<=cptcovn;k++) {    */
               cov[2+k]=covar[Tvar[k]][i];  }
               /* printf("k=%d cptcovn=%d %lf\n",k,cptcovn,covar[Tvar[k]][i]);*/  
             }  /*************************free ma3x ************************/
             }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
           savm=oldm;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           oldm=newm;    free((FREE_ARG)(m+nrl-NR_END));
       } /* end mult */  }
      
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /*************** function subdirf ***********/
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  char *subdirf(char fileres[])
       ipmx +=1;  {
       sw += weight[i];    /* Caution optionfilefiname is hidden */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    strcpy(tmpout,optionfilefiname);
     } /* end of wave */    strcat(tmpout,"/"); /* Add to the right */
   } /* end of individual */    strcat(tmpout,fileres);
     return tmpout;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
   return -l;  {
 }    
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 /*********** Maximum Likelihood Estimation ***************/    strcat(tmpout,"/");
     strcat(tmpout,preop);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    strcat(tmpout,fileres);
 {    return tmpout;
   int i,j, iter;  }
   double **xi,*delti;  
   double fret;  /*************** function subdirf3 ***********/
   xi=matrix(1,npar,1,npar);  char *subdirf3(char fileres[], char *preop, char *preop2)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++)    
       xi[i][j]=(i==j ? 1.0 : 0.0);    /* Caution optionfilefiname is hidden */
   printf("Powell\n");    strcpy(tmpout,optionfilefiname);
   powell(p,xi,npar,ftol,&iter,&fret,func);    strcat(tmpout,"/");
     strcat(tmpout,preop);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    strcat(tmpout,preop2);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    strcat(tmpout,fileres);
     return tmpout;
 }  }
   
 /**** Computes Hessian and covariance matrix ***/  /***************** f1dim *************************/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  extern int ncom; 
 {  extern double *pcom,*xicom;
   double  **a,**y,*x,pd;  extern double (*nrfunc)(double []); 
   double **hess;   
   int i, j,jk;  double f1dim(double x) 
   int *indx;  { 
     int j; 
   double hessii(double p[], double delta, int theta, double delti[]);    double f;
   double hessij(double p[], double delti[], int i, int j);    double *xt; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;   
   void ludcmp(double **a, int npar, int *indx, double *d) ;    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
   hess=matrix(1,npar,1,npar);    free_vector(xt,1,ncom); 
     return f; 
   printf("\nCalculation of the hessian matrix. Wait...\n");  } 
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  /*****************brent *************************/
     hess[i][i]=hessii(p,ftolhess,i,delti);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     /*printf(" %f ",p[i]);*/  { 
   }    int iter; 
     double a,b,d,etemp;
   for (i=1;i<=npar;i++) {    double fu,fv,fw,fx;
     for (j=1;j<=npar;j++)  {    double ftemp;
       if (j>i) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         printf(".%d%d",i,j);fflush(stdout);    double e=0.0; 
         hess[i][j]=hessij(p,delti,i,j);   
         hess[j][i]=hess[i][j];    a=(ax < cx ? ax : cx); 
       }    b=(ax > cx ? ax : cx); 
     }    x=w=v=bx; 
   }    fw=fv=fx=(*f)(x); 
   printf("\n");    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
        /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   a=matrix(1,npar,1,npar);      printf(".");fflush(stdout);
   y=matrix(1,npar,1,npar);      fprintf(ficlog,".");fflush(ficlog);
   x=vector(1,npar);  #ifdef DEBUG
   indx=ivector(1,npar);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (i=1;i<=npar;i++)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   ludcmp(a,npar,indx,&pd);  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for (j=1;j<=npar;j++) {        *xmin=x; 
     for (i=1;i<=npar;i++) x[i]=0;        return fx; 
     x[j]=1;      } 
     lubksb(a,npar,indx,x);      ftemp=fu;
     for (i=1;i<=npar;i++){      if (fabs(e) > tol1) { 
       matcov[i][j]=x[i];        r=(x-w)*(fx-fv); 
     }        q=(x-v)*(fx-fw); 
   }        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
   printf("\n#Hessian matrix#\n");        if (q > 0.0) p = -p; 
   for (i=1;i<=npar;i++) {        q=fabs(q); 
     for (j=1;j<=npar;j++) {        etemp=e; 
       printf("%.3e ",hess[i][j]);        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     printf("\n");          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   }        else { 
           d=p/q; 
   /* Recompute Inverse */          u=x+d; 
   for (i=1;i<=npar;i++)          if (u-a < tol2 || b-u < tol2) 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            d=SIGN(tol1,xm-x); 
   ludcmp(a,npar,indx,&pd);        } 
       } else { 
   /*  printf("\n#Hessian matrix recomputed#\n");        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
   for (j=1;j<=npar;j++) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     for (i=1;i<=npar;i++) x[i]=0;      fu=(*f)(u); 
     x[j]=1;      if (fu <= fx) { 
     lubksb(a,npar,indx,x);        if (u >= x) a=x; else b=x; 
     for (i=1;i<=npar;i++){        SHFT(v,w,x,u) 
       y[i][j]=x[i];          SHFT(fv,fw,fx,fu) 
       printf("%.3e ",y[i][j]);          } else { 
     }            if (u < x) a=u; else b=u; 
     printf("\n");            if (fu <= fw || w == x) { 
   }              v=w; 
   */              w=u; 
               fv=fw; 
   free_matrix(a,1,npar,1,npar);              fw=fu; 
   free_matrix(y,1,npar,1,npar);            } else if (fu <= fv || v == x || v == w) { 
   free_vector(x,1,npar);              v=u; 
   free_ivector(indx,1,npar);              fv=fu; 
   free_matrix(hess,1,npar,1,npar);            } 
           } 
     } 
 }    nrerror("Too many iterations in brent"); 
     *xmin=x; 
 /*************** hessian matrix ****************/    return fx; 
 double hessii( double x[], double delta, int theta, double delti[])  } 
 {  
   int i;  /****************** mnbrak ***********************/
   int l=1, lmax=20;  
   double k1,k2;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   double p2[NPARMAX+1];              double (*func)(double)) 
   double res;  { 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double ulim,u,r,q, dum;
   double fx;    double fu; 
   int k=0,kmax=10;   
   double l1;    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
   fx=func(x);    if (*fb > *fa) { 
   for (i=1;i<=npar;i++) p2[i]=x[i];      SHFT(dum,*ax,*bx,dum) 
   for(l=0 ; l <=lmax; l++){        SHFT(dum,*fb,*fa,dum) 
     l1=pow(10,l);        } 
     delts=delt;    *cx=(*bx)+GOLD*(*bx-*ax); 
     for(k=1 ; k <kmax; k=k+1){    *fc=(*func)(*cx); 
       delt = delta*(l1*k);    while (*fb > *fc) { 
       p2[theta]=x[theta] +delt;      r=(*bx-*ax)*(*fb-*fc); 
       k1=func(p2)-fx;      q=(*bx-*cx)*(*fb-*fa); 
       p2[theta]=x[theta]-delt;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       k2=func(p2)-fx;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      if ((*bx-u)*(u-*cx) > 0.0) { 
              fu=(*func)(u); 
 #ifdef DEBUG      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        fu=(*func)(u); 
 #endif        if (fu < *fc) { 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            SHFT(*fb,*fc,fu,(*func)(u)) 
         k=kmax;            } 
       }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        u=ulim; 
         k=kmax; l=lmax*10.;        fu=(*func)(u); 
       }      } else { 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        u=(*cx)+GOLD*(*cx-*bx); 
         delts=delt;        fu=(*func)(u); 
       }      } 
     }      SHFT(*ax,*bx,*cx,u) 
   }        SHFT(*fa,*fb,*fc,fu) 
   delti[theta]=delts;        } 
   return res;    } 
 }  
   /*************** linmin ************************/
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {  int ncom; 
   int i;  double *pcom,*xicom;
   int l=1, l1, lmax=20;  double (*nrfunc)(double []); 
   double k1,k2,k3,k4,res,fx;   
   double p2[NPARMAX+1];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   int k;  { 
     double brent(double ax, double bx, double cx, 
   fx=func(x);                 double (*f)(double), double tol, double *xmin); 
   for (k=1; k<=2; k++) {    double f1dim(double x); 
     for (i=1;i<=npar;i++) p2[i]=x[i];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     p2[thetai]=x[thetai]+delti[thetai]/k;                double *fc, double (*func)(double)); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int j; 
     k1=func(p2)-fx;    double xx,xmin,bx,ax; 
      double fx,fb,fa;
     p2[thetai]=x[thetai]+delti[thetai]/k;   
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    ncom=n; 
     k2=func(p2)-fx;    pcom=vector(1,n); 
      xicom=vector(1,n); 
     p2[thetai]=x[thetai]-delti[thetai]/k;    nrfunc=func; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (j=1;j<=n;j++) { 
     k3=func(p2)-fx;      pcom[j]=p[j]; 
        xicom[j]=xi[j]; 
     p2[thetai]=x[thetai]-delti[thetai]/k;    } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    ax=0.0; 
     k4=func(p2)-fx;    xx=1.0; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 #ifdef DEBUG    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  #ifdef DEBUG
 #endif    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   return res;  #endif
 }    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
 /************** Inverse of matrix **************/      p[j] += xi[j]; 
 void ludcmp(double **a, int n, int *indx, double *d)    } 
 {    free_vector(xicom,1,n); 
   int i,imax,j,k;    free_vector(pcom,1,n); 
   double big,dum,sum,temp;  } 
   double *vv;  
    char *asc_diff_time(long time_sec, char ascdiff[])
   vv=vector(1,n);  {
   *d=1.0;    long sec_left, days, hours, minutes;
   for (i=1;i<=n;i++) {    days = (time_sec) / (60*60*24);
     big=0.0;    sec_left = (time_sec) % (60*60*24);
     for (j=1;j<=n;j++)    hours = (sec_left) / (60*60) ;
       if ((temp=fabs(a[i][j])) > big) big=temp;    sec_left = (sec_left) %(60*60);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    minutes = (sec_left) /60;
     vv[i]=1.0/big;    sec_left = (sec_left) % (60);
   }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   for (j=1;j<=n;j++) {    return ascdiff;
     for (i=1;i<j;i++) {  }
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /*************** powell ************************/
       a[i][j]=sum;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     }              double (*func)(double [])) 
     big=0.0;  { 
     for (i=j;i<=n;i++) {    void linmin(double p[], double xi[], int n, double *fret, 
       sum=a[i][j];                double (*func)(double [])); 
       for (k=1;k<j;k++)    int i,ibig,j; 
         sum -= a[i][k]*a[k][j];    double del,t,*pt,*ptt,*xit;
       a[i][j]=sum;    double fp,fptt;
       if ( (dum=vv[i]*fabs(sum)) >= big) {    double *xits;
         big=dum;    int niterf, itmp;
         imax=i;  
       }    pt=vector(1,n); 
     }    ptt=vector(1,n); 
     if (j != imax) {    xit=vector(1,n); 
       for (k=1;k<=n;k++) {    xits=vector(1,n); 
         dum=a[imax][k];    *fret=(*func)(p); 
         a[imax][k]=a[j][k];    for (j=1;j<=n;j++) pt[j]=p[j]; 
         a[j][k]=dum;    for (*iter=1;;++(*iter)) { 
       }      fp=(*fret); 
       *d = -(*d);      ibig=0; 
       vv[imax]=vv[j];      del=0.0; 
     }      last_time=curr_time;
     indx[j]=imax;      (void) gettimeofday(&curr_time,&tzp);
     if (a[j][j] == 0.0) a[j][j]=TINY;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     if (j != n) {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       dum=1.0/(a[j][j]);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;     for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
   }        fprintf(ficlog," %d %.12lf",i, p[i]);
   free_vector(vv,1,n);  /* Doesn't work */        fprintf(ficrespow," %.12lf", p[i]);
 ;      }
 }      printf("\n");
       fprintf(ficlog,"\n");
 void lubksb(double **a, int n, int *indx, double b[])      fprintf(ficrespow,"\n");fflush(ficrespow);
 {      if(*iter <=3){
   int i,ii=0,ip,j;        tm = *localtime(&curr_time.tv_sec);
   double sum;        strcpy(strcurr,asctime(&tm));
    /*       asctime_r(&tm,strcurr); */
   for (i=1;i<=n;i++) {        forecast_time=curr_time; 
     ip=indx[i];        itmp = strlen(strcurr);
     sum=b[ip];        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     b[ip]=b[i];          strcurr[itmp-1]='\0';
     if (ii)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     else if (sum) ii=i;        for(niterf=10;niterf<=30;niterf+=10){
     b[i]=sum;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   }          tmf = *localtime(&forecast_time.tv_sec);
   for (i=n;i>=1;i--) {  /*      asctime_r(&tmf,strfor); */
     sum=b[i];          strcpy(strfor,asctime(&tmf));
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          itmp = strlen(strfor);
     b[i]=sum/a[i][i];          if(strfor[itmp-1]=='\n')
   }          strfor[itmp-1]='\0';
 }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 /************ Frequencies ********************/        }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)      }
 {  /* Some frequencies */      for (i=1;i<=n;i++) { 
          for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        fptt=(*fret); 
   double ***freq; /* Frequencies */  #ifdef DEBUG
   double *pp;        printf("fret=%lf \n",*fret);
   double pos;        fprintf(ficlog,"fret=%lf \n",*fret);
   FILE *ficresp;  #endif
   char fileresp[FILENAMELENGTH];        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
   pp=vector(1,nlstate);        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
   strcpy(fileresp,"p");          del=fabs(fptt-(*fret)); 
   strcat(fileresp,fileres);          ibig=i; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {        } 
     printf("Problem with prevalence resultfile: %s\n", fileresp);  #ifdef DEBUG
     exit(0);        printf("%d %.12e",i,(*fret));
   }        fprintf(ficlog,"%d %.12e",i,(*fret));
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for (j=1;j<=n;j++) {
   j1=0;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   j=cptcovn;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        }
         for(j=1;j<=n;j++) {
   for(k1=1; k1<=j;k1++){          printf(" p=%.12e",p[j]);
    for(i1=1; i1<=ncodemax[k1];i1++){          fprintf(ficlog," p=%.12e",p[j]);
        j1++;        }
         printf("\n");
         for (i=-1; i<=nlstate+ndeath; i++)          fprintf(ficlog,"\n");
          for (jk=-1; jk<=nlstate+ndeath; jk++)    #endif
            for(m=agemin; m <= agemax+3; m++)      } 
              freq[i][jk][m]=0;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
          #ifdef DEBUG
        for (i=1; i<=imx; i++) {        int k[2],l;
          bool=1;        k[0]=1;
          if  (cptcovn>0) {        k[1]=-1;
            for (z1=1; z1<=cptcovn; z1++)        printf("Max: %.12e",(*func)(p));
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;        fprintf(ficlog,"Max: %.12e",(*func)(p));
          }        for (j=1;j<=n;j++) {
           if (bool==1) {          printf(" %.12e",p[j]);
            for(m=firstpass; m<=lastpass-1; m++){          fprintf(ficlog," %.12e",p[j]);
              if(agev[m][i]==0) agev[m][i]=agemax+1;        }
              if(agev[m][i]==1) agev[m][i]=agemax+2;        printf("\n");
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        fprintf(ficlog,"\n");
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for(l=0;l<=1;l++) {
            }          for (j=1;j<=n;j++) {
          }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
        }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         if  (cptcovn>0) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
          fprintf(ficresp, "\n#Variable");          }
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
        }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
        fprintf(ficresp, "\n#");        }
        for(i=1; i<=nlstate;i++)  #endif
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
        fprintf(ficresp, "\n");  
                free_vector(xit,1,n); 
   for(i=(int)agemin; i <= (int)agemax+3; i++){        free_vector(xits,1,n); 
     if(i==(int)agemax+3)        free_vector(ptt,1,n); 
       printf("Total");        free_vector(pt,1,n); 
     else        return; 
       printf("Age %d", i);      } 
     for(jk=1; jk <=nlstate ; jk++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for (j=1;j<=n;j++) { 
         pp[jk] += freq[jk][m][i];        ptt[j]=2.0*p[j]-pt[j]; 
     }        xit[j]=p[j]-pt[j]; 
     for(jk=1; jk <=nlstate ; jk++){        pt[j]=p[j]; 
       for(m=-1, pos=0; m <=0 ; m++)      } 
         pos += freq[jk][m][i];      fptt=(*func)(ptt); 
       if(pp[jk]>=1.e-10)      if (fptt < fp) { 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       else        if (t < 0.0) { 
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          linmin(p,xit,n,fret,func); 
     }          for (j=1;j<=n;j++) { 
     for(jk=1; jk <=nlstate ; jk++){            xi[j][ibig]=xi[j][n]; 
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)            xi[j][n]=xit[j]; 
         pp[jk] += freq[jk][m][i];          }
     }  #ifdef DEBUG
     for(jk=1,pos=0; jk <=nlstate ; jk++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       pos += pp[jk];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(jk=1; jk <=nlstate ; jk++){          for(j=1;j<=n;j++){
       if(pos>=1.e-5)            printf(" %.12e",xit[j]);
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            fprintf(ficlog," %.12e",xit[j]);
       else          }
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          printf("\n");
       if( i <= (int) agemax){          fprintf(ficlog,"\n");
         if(pos>=1.e-5)  #endif
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        }
       else      } 
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    } 
       }  } 
     }  
     for(jk=-1; jk <=nlstate+ndeath; jk++)  /**** Prevalence limit (stable or period prevalence)  ****************/
       for(m=-1; m <=nlstate+ndeath; m++)  
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     if(i <= (int) agemax)  {
       fprintf(ficresp,"\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     printf("\n");       matrix by transitions matrix until convergence is reached */
     }  
     }    int i, ii,j,k;
  }    double min, max, maxmin, maxmax,sumnew=0.;
      double **matprod2();
   fclose(ficresp);    double **out, cov[NCOVMAX+1], **pmij();
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    double **newm;
   free_vector(pp,1,nlstate);    double agefin, delaymax=50 ; /* Max number of years to converge */
   
 }  /* End of Freq */    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
 /************* Waves Concatenation ***************/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {     cov[1]=1.;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.   
      Death is a valid wave (if date is known).   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      newm=savm;
      and mw[mi+1][i]. dh depends on stepm.      /* Covariates have to be included here again */
      */       cov[2]=agefin;
     
   int i, mi, m;        for (k=1; k<=cptcovn;k++) {
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 float sum=0.;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
   for(i=1; i<=imx; i++){        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     mi=0;        for (k=1; k<=cptcovprod;k++)
     m=firstpass;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         mw[++mi][i]=m;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       if(m >=lastpass)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         break;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       else  
         m++;      savm=oldm;
     }/* end while */      oldm=newm;
     if (s[m][i] > nlstate){      maxmax=0.;
       mi++;     /* Death is another wave */      for(j=1;j<=nlstate;j++){
       /* if(mi==0)  never been interviewed correctly before death */        min=1.;
          /* Only death is a correct wave */        max=0.;
       mw[mi][i]=m;        for(i=1; i<=nlstate; i++) {
     }          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     wav[i]=mi;          prlim[i][j]= newm[i][j]/(1-sumnew);
     if(mi==0)          max=FMAX(max,prlim[i][j]);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          min=FMIN(min,prlim[i][j]);
   }        }
         maxmin=max-min;
   for(i=1; i<=imx; i++){        maxmax=FMAX(maxmax,maxmin);
     for(mi=1; mi<wav[i];mi++){      }
       if (stepm <=0)      if(maxmax < ftolpl){
         dh[mi][i]=1;        return prlim;
       else{      }
         if (s[mw[mi+1][i]][i] > nlstate) {    }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  }
           if(j=0) j=1;  /* Survives at least one month after exam */  
         }  /*************** transition probabilities ***************/ 
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           /*printf("i=%d agevi+1=%lf agevi=%lf j=%d\n", i,agev[mw[mi+1][i]][i],agev[mw[mi][i]][i],j);*/  {
     double s1, s2;
           k=k+1;    /*double t34;*/
           if (j >= jmax) jmax=j;    int i,j,j1, nc, ii, jj;
           else if (j <= jmin)jmin=j;  
           sum=sum+j;      for(i=1; i<= nlstate; i++){
         }        for(j=1; j<i;j++){
         jk= j/stepm;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         jl= j -jk*stepm;            /*s2 += param[i][j][nc]*cov[nc];*/
         ju= j -(jk+1)*stepm;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         if(jl <= -ju)  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           dh[mi][i]=jk;          }
         else          ps[i][j]=s2;
           dh[mi][i]=jk+1;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         if(dh[mi][i]==0)        }
           dh[mi][i]=1; /* At least one step */        for(j=i+1; j<=nlstate+ndeath;j++){
       }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);          }
 }          ps[i][j]=s2;
 /*********** Tricode ****************************/        }
 void tricode(int *Tvar, int **nbcode, int imx)      }
 {      /*ps[3][2]=1;*/
   int Ndum[80],ij, k, j, i;      
   int cptcode=0;      for(i=1; i<= nlstate; i++){
   for (k=0; k<79; k++) Ndum[k]=0;        s1=0;
   for (k=1; k<=7; k++) ncodemax[k]=0;        for(j=1; j<i; j++){
            s1+=exp(ps[i][j]);
   for (j=1; j<=cptcovn; j++) {          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     for (i=1; i<=imx; i++) {        }
       ij=(int)(covar[Tvar[j]][i]);        for(j=i+1; j<=nlstate+ndeath; j++){
       Ndum[ij]++;          s1+=exp(ps[i][j]);
       if (ij > cptcode) cptcode=ij;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     }        }
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/        ps[i][i]=1./(s1+1.);
     for (i=0; i<=cptcode; i++) {        for(j=1; j<i; j++)
       if(Ndum[i]!=0) ncodemax[j]++;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        for(j=i+1; j<=nlstate+ndeath; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
     ij=1;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     for (i=1; i<=ncodemax[j]; i++) {      } /* end i */
       for (k=0; k<=79; k++) {      
         if (Ndum[k] != 0) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           nbcode[Tvar[j]][ij]=k;        for(jj=1; jj<= nlstate+ndeath; jj++){
           ij++;          ps[ii][jj]=0;
         }          ps[ii][ii]=1;
         if (ij > ncodemax[j]) break;        }
       }        }
     }      
   }    
   /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
 /*********** Health Expectancies ****************/  /*       } */
   /*       printf("\n "); */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  /*        } */
 {  /*        printf("\n ");printf("%lf ",cov[2]); */
   /* Health expectancies */         /*
   int i, j, nhstepm, hstepm, h;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   double age, agelim,hf;        goto end;*/
   double ***p3mat;      return ps;
    }
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");  /**************** Product of 2 matrices ******************/
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       fprintf(ficreseij," %1d-%1d",i,j);  {
   fprintf(ficreseij,"\n");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   hstepm=1*YEARM; /*  Every j years of age (in month) */    /* in, b, out are matrice of pointers which should have been initialized 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   agelim=AGESUP;    long i, j, k;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for(i=nrl; i<= nrh; i++)
     /* nhstepm age range expressed in number of stepm */      for(k=ncolol; k<=ncoloh; k++)
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     /* Typically if 20 years = 20*12/6=40 stepm */          out[i][k] +=in[i][j]*b[j][k];
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    return out;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    /************* Higher Matrix Product ***************/
   
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for(i=1; i<=nlstate;i++)  {
       for(j=1; j<=nlstate;j++)    /* Computes the transition matrix starting at age 'age' over 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){       'nhstepm*hstepm*stepm' months (i.e. until
           eij[i][j][(int)age] +=p3mat[i][j][h];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         }       nhstepm*hstepm matrices. 
           Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     hf=1;       (typically every 2 years instead of every month which is too big 
     if (stepm >= YEARM) hf=stepm/YEARM;       for the memory).
     fprintf(ficreseij,"%.0f",age );       Model is determined by parameters x and covariates have to be 
     for(i=1; i<=nlstate;i++)       included manually here. 
       for(j=1; j<=nlstate;j++){  
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);       */
       }  
     fprintf(ficreseij,"\n");    int i, j, d, h, k;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **out, cov[NCOVMAX+1];
   }    double **newm;
 }  
     /* Hstepm could be zero and should return the unit matrix */
 /************ Variance ******************/    for (i=1;i<=nlstate+ndeath;i++)
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for (j=1;j<=nlstate+ndeath;j++){
 {        oldm[i][j]=(i==j ? 1.0 : 0.0);
   /* Variance of health expectancies */        po[i][j][0]=(i==j ? 1.0 : 0.0);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      }
   double **newm;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double **dnewm,**doldm;    for(h=1; h <=nhstepm; h++){
   int i, j, nhstepm, hstepm, h;      for(d=1; d <=hstepm; d++){
   int k, cptcode;        newm=savm;
    double *xp;        /* Covariates have to be included here again */
   double **gp, **gm;        cov[1]=1.;
   double ***gradg, ***trgradg;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double ***p3mat;        for (k=1; k<=cptcovn;k++) 
   double age,agelim;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int theta;        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    fprintf(ficresvij,"# Covariances of life expectancies\n");        for (k=1; k<=cptcovprod;k++)
   fprintf(ficresvij,"# Age");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   fprintf(ficresvij,"\n");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   xp=vector(1,npar);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   dnewm=matrix(1,nlstate,1,npar);        savm=oldm;
   doldm=matrix(1,nlstate,1,nlstate);        oldm=newm;
        }
   hstepm=1*YEARM; /* Every year of age */      for(i=1; i<=nlstate+ndeath; i++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for(j=1;j<=nlstate+ndeath;j++) {
   agelim = AGESUP;          po[i][j][h]=newm[i][j];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }
     if (stepm >= YEARM) hstepm=1;      /*printf("h=%d ",h);*/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    } /* end h */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*     printf("\n H=%d \n",h); */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    return po;
     gp=matrix(0,nhstepm,1,nlstate);  }
     gm=matrix(0,nhstepm,1,nlstate);  
   
     for(theta=1; theta <=npar; theta++){  /*************** log-likelihood *************/
       for(i=1; i<=npar; i++){ /* Computes gradient */  double func( double *x)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  {
       }    int i, ii, j, k, mi, d, kk;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double **out;
       for(j=1; j<= nlstate; j++){    double sw; /* Sum of weights */
         for(h=0; h<=nhstepm; h++){    double lli; /* Individual log likelihood */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    int s1, s2;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double bbh, survp;
         }    long ipmx;
       }    /*extern weight */
        /* We are differentiating ll according to initial status */
       for(i=1; i<=npar; i++) /* Computes gradient */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /*for(i=1;i<imx;i++) 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        printf(" %d\n",s[4][i]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    */
       for(j=1; j<= nlstate; j++){    cov[1]=1.;
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    if(mle==1){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<= nlstate; j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(h=0; h<=nhstepm; h++){        for(mi=1; mi<= wav[i]-1; mi++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
     } /* End theta */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            }
           for(d=0; d<dh[mi][i]; d++){
     for(h=0; h<=nhstepm; h++)            newm=savm;
       for(j=1; j<=nlstate;j++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(theta=1; theta <=npar; theta++)            for (kk=1; kk<=cptcovage;kk++) {
           trgradg[h][j][theta]=gradg[h][theta][j];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     for(i=1;i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1;j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         vareij[i][j][(int)age] =0.;            savm=oldm;
     for(h=0;h<=nhstepm;h++){            oldm=newm;
       for(k=0;k<=nhstepm;k++){          } /* end mult */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         for(i=1;i<=nlstate;i++)          /* But now since version 0.9 we anticipate for bias at large stepm.
           for(j=1;j<=nlstate;j++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             vareij[i][j][(int)age] += doldm[i][j];           * (in months) between two waves is not a multiple of stepm, we rounded to 
       }           * the nearest (and in case of equal distance, to the lowest) interval but now
     }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     h=1;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     if (stepm >= YEARM) h=stepm/YEARM;           * probability in order to take into account the bias as a fraction of the way
     fprintf(ficresvij,"%.0f ",age );           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     for(i=1; i<=nlstate;i++)           * -stepm/2 to stepm/2 .
       for(j=1; j<=nlstate;j++){           * For stepm=1 the results are the same as for previous versions of Imach.
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);           * For stepm > 1 the results are less biased than in previous versions. 
       }           */
     fprintf(ficresvij,"\n");          s1=s[mw[mi][i]][i];
     free_matrix(gp,0,nhstepm,1,nlstate);          s2=s[mw[mi+1][i]][i];
     free_matrix(gm,0,nhstepm,1,nlstate);          bbh=(double)bh[mi][i]/(double)stepm; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          /* bias bh is positive if real duration
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);           * is higher than the multiple of stepm and negative otherwise.
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           */
   } /* End age */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
            if( s2 > nlstate){ 
   free_vector(xp,1,npar);            /* i.e. if s2 is a death state and if the date of death is known 
   free_matrix(doldm,1,nlstate,1,npar);               then the contribution to the likelihood is the probability to 
   free_matrix(dnewm,1,nlstate,1,nlstate);               die between last step unit time and current  step unit time, 
                which is also equal to probability to die before dh 
 }               minus probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
 /************ Variance of prevlim ******************/          as if date of death was unknown. Death was treated as any other
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          health state: the date of the interview describes the actual state
 {          and not the date of a change in health state. The former idea was
   /* Variance of prevalence limit */          to consider that at each interview the state was recorded
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          (healthy, disable or death) and IMaCh was corrected; but when we
   double **newm;          introduced the exact date of death then we should have modified
   double **dnewm,**doldm;          the contribution of an exact death to the likelihood. This new
   int i, j, nhstepm, hstepm;          contribution is smaller and very dependent of the step unit
   int k, cptcode;          stepm. It is no more the probability to die between last interview
   double *xp;          and month of death but the probability to survive from last
   double *gp, *gm;          interview up to one month before death multiplied by the
   double **gradg, **trgradg;          probability to die within a month. Thanks to Chris
   double age,agelim;          Jackson for correcting this bug.  Former versions increased
   int theta;          mortality artificially. The bad side is that we add another loop
              which slows down the processing. The difference can be up to 10%
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          lower mortality.
   fprintf(ficresvpl,"# Age");            */
   for(i=1; i<=nlstate;i++)            lli=log(out[s1][s2] - savm[s1][s2]);
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");  
           } else if  (s2==-2) {
   xp=vector(1,npar);            for (j=1,survp=0. ; j<=nlstate; j++) 
   dnewm=matrix(1,nlstate,1,npar);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   doldm=matrix(1,nlstate,1,nlstate);            /*survp += out[s1][j]; */
              lli= log(survp);
   hstepm=1*YEARM; /* Every year of age */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          
   agelim = AGESUP;          else if  (s2==-4) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (j=3,survp=0. ; j<=nlstate; j++)  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     if (stepm >= YEARM) hstepm=1;            lli= log(survp); 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          } 
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);          else if  (s2==-5) { 
     gm=vector(1,nlstate);            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(theta=1; theta <=npar; theta++){            lli= log(survp); 
       for(i=1; i<=npar; i++){ /* Computes gradient */          } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          
       }          else{
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(i=1;i<=nlstate;i++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         gp[i] = prlim[i][i];          } 
              /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       for(i=1; i<=npar; i++) /* Computes gradient */          /*if(lli ==000.0)*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ipmx +=1;
       for(i=1;i<=nlstate;i++)          sw += weight[i];
         gm[i] = prlim[i][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       for(i=1;i<=nlstate;i++)      } /* end of individual */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    }  else if(mle==2){
     } /* End theta */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     trgradg =matrix(1,nlstate,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for(j=1; j<=nlstate;j++)            for (j=1;j<=nlstate+ndeath;j++){
       for(theta=1; theta <=npar; theta++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         trgradg[j][theta]=gradg[theta][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for(i=1;i<=nlstate;i++)          for(d=0; d<=dh[mi][i]; d++){
       varpl[i][(int)age] =0.;            newm=savm;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            for (kk=1; kk<=cptcovage;kk++) {
     for(i=1;i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficresvpl,"%.0f ",age );                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(i=1; i<=nlstate;i++)            savm=oldm;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            oldm=newm;
     fprintf(ficresvpl,"\n");          } /* end mult */
     free_vector(gp,1,nlstate);        
     free_vector(gm,1,nlstate);          s1=s[mw[mi][i]][i];
     free_matrix(gradg,1,npar,1,nlstate);          s2=s[mw[mi+1][i]][i];
     free_matrix(trgradg,1,nlstate,1,npar);          bbh=(double)bh[mi][i]/(double)stepm; 
   } /* End age */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
   free_vector(xp,1,npar);          sw += weight[i];
   free_matrix(doldm,1,nlstate,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_matrix(dnewm,1,nlstate,1,nlstate);        } /* end of wave */
       } /* end of individual */
 }    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /***********************************************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 /**************** Main Program *****************/            for (j=1;j<=nlstate+ndeath;j++){
 /***********************************************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*int main(int argc, char *argv[])*/            }
 int main()          for(d=0; d<dh[mi][i]; d++){
 {            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;            for (kk=1; kk<=cptcovage;kk++) {
   double agedeb, agefin,hf;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double agemin=1.e20, agemax=-1.e20;            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double fret;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **xi,tmp,delta;            savm=oldm;
             oldm=newm;
   double dum; /* Dummy variable */          } /* end mult */
   double ***p3mat;        
   int *indx;          s1=s[mw[mi][i]][i];
   char line[MAXLINE], linepar[MAXLINE];          s2=s[mw[mi+1][i]][i];
   char title[MAXLINE];          bbh=(double)bh[mi][i]/(double)stepm; 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];          ipmx +=1;
   char filerest[FILENAMELENGTH];          sw += weight[i];
   char fileregp[FILENAMELENGTH];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        } /* end of wave */
   int firstobs=1, lastobs=10;      } /* end of individual */
   int sdeb, sfin; /* Status at beginning and end */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   int c,  h , cpt,l;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int ju,jl, mi;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i1,j1, k1,jk,aa,bb, stepsize;        for(mi=1; mi<= wav[i]-1; mi++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   int hstepm, nhstepm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double bage, fage, age, agelim, agebase;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ftolpl=FTOL;            }
   double **prlim;          for(d=0; d<dh[mi][i]; d++){
   double *severity;            newm=savm;
   double ***param; /* Matrix of parameters */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double  *p;            for (kk=1; kk<=cptcovage;kk++) {
   double **matcov; /* Matrix of covariance */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double ***delti3; /* Scale */            }
   double *delti; /* Scale */          
   double ***eij, ***vareij;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **varpl; /* Variances of prevalence limits by age */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *epj, vepp;            savm=oldm;
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";            oldm=newm;
   char *alph[]={"a","a","b","c","d","e"}, str[4];          } /* end mult */
   char z[1]="c", occ;        
 #include <sys/time.h>          s1=s[mw[mi][i]][i];
 #include <time.h>          s2=s[mw[mi+1][i]][i];
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          if( s2 > nlstate){ 
   /* long total_usecs;            lli=log(out[s1][s2] - savm[s1][s2]);
   struct timeval start_time, end_time;          }else{
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          }
           ipmx +=1;
           sw += weight[i];
   printf("\nIMACH, Version 0.63");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   printf("\nEnter the parameter file name: ");  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
 #ifdef windows      } /* end of individual */
   scanf("%s",pathtot);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   getcwd(pathcd, size);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   cutv(path,optionfile,pathtot,'\\');        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   chdir(path);        for(mi=1; mi<= wav[i]-1; mi++){
   replace(pathc,path);          for (ii=1;ii<=nlstate+ndeath;ii++)
 #endif            for (j=1;j<=nlstate+ndeath;j++){
 #ifdef unix              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   scanf("%s",optionfile);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 #endif            }
           for(d=0; d<dh[mi][i]; d++){
 /*-------- arguments in the command line --------*/            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   strcpy(fileres,"r");            for (kk=1; kk<=cptcovage;kk++) {
   strcat(fileres, optionfile);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   /*---------arguments file --------*/          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("Problem with optionfile %s\n",optionfile);            savm=oldm;
     goto end;            oldm=newm;
   }          } /* end mult */
         
   strcpy(filereso,"o");          s1=s[mw[mi][i]][i];
   strcat(filereso,fileres);          s2=s[mw[mi+1][i]][i];
   if((ficparo=fopen(filereso,"w"))==NULL) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          ipmx +=1;
   }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Reads comments: lines beginning with '#' */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   while((c=getc(ficpar))=='#' && c!= EOF){        } /* end of wave */
     ungetc(c,ficpar);      } /* end of individual */
     fgets(line, MAXLINE, ficpar);    } /* End of if */
     puts(line);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     fputs(line,ficparo);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   ungetc(c,ficpar);    return -l;
   }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  /*************** log-likelihood *************/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);  double funcone( double *x)
   {
   covar=matrix(1,NCOVMAX,1,n);        /* Same as likeli but slower because of a lot of printf and if */
   if (strlen(model)<=1) cptcovn=0;    int i, ii, j, k, mi, d, kk;
   else {    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     j=0;    double **out;
     j=nbocc(model,'+');    double lli; /* Individual log likelihood */
     cptcovn=j+1;    double llt;
   }    int s1, s2;
     double bbh, survp;
   ncovmodel=2+cptcovn;    /*extern weight */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /* Read guess parameters */    /*for(i=1;i<imx;i++) 
   /* Reads comments: lines beginning with '#' */      printf(" %d\n",s[4][i]);
   while((c=getc(ficpar))=='#' && c!= EOF){    */
     ungetc(c,ficpar);    cov[1]=1.;
     fgets(line, MAXLINE, ficpar);  
     puts(line);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     fputs(line,ficparo);  
   }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   ungetc(c,ficpar);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        for(mi=1; mi<= wav[i]-1; mi++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1; i <=nlstate; i++)          for (j=1;j<=nlstate+ndeath;j++){
     for(j=1; j <=nlstate+ndeath-1; j++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fscanf(ficpar,"%1d%1d",&i1,&j1);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficparo,"%1d%1d",i1,j1);          }
       printf("%1d%1d",i,j);        for(d=0; d<dh[mi][i]; d++){
       for(k=1; k<=ncovmodel;k++){          newm=savm;
         fscanf(ficpar," %lf",&param[i][j][k]);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         printf(" %lf",param[i][j][k]);          for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficparo," %lf",param[i][j][k]);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }          }
       fscanf(ficpar,"\n");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       printf("\n");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficparo,"\n");          savm=oldm;
     }          oldm=newm;
          } /* end mult */
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        
   p=param[1][1];        s1=s[mw[mi][i]][i];
          s2=s[mw[mi+1][i]][i];
   /* Reads comments: lines beginning with '#' */        bbh=(double)bh[mi][i]/(double)stepm; 
   while((c=getc(ficpar))=='#' && c!= EOF){        /* bias is positive if real duration
     ungetc(c,ficpar);         * is higher than the multiple of stepm and negative otherwise.
     fgets(line, MAXLINE, ficpar);         */
     puts(line);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     fputs(line,ficparo);          lli=log(out[s1][s2] - savm[s1][s2]);
   }        } else if  (s2==-2) {
   ungetc(c,ficpar);          for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          lli= log(survp);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        }else if (mle==1){
   for(i=1; i <=nlstate; i++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for(j=1; j <=nlstate+ndeath-1; j++){        } else if(mle==2){
       fscanf(ficpar,"%1d%1d",&i1,&j1);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       printf("%1d%1d",i,j);        } else if(mle==3){  /* exponential inter-extrapolation */
       fprintf(ficparo,"%1d%1d",i1,j1);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(k=1; k<=ncovmodel;k++){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         fscanf(ficpar,"%le",&delti3[i][j][k]);          lli=log(out[s1][s2]); /* Original formula */
         printf(" %le",delti3[i][j][k]);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         fprintf(ficparo," %le",delti3[i][j][k]);          lli=log(out[s1][s2]); /* Original formula */
       }        } /* End of if */
       fscanf(ficpar,"\n");        ipmx +=1;
       printf("\n");        sw += weight[i];
       fprintf(ficparo,"\n");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   }        if(globpr){
   delti=delti3[1][1];          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     %11.6f %11.6f %11.6f ", \
   /* Reads comments: lines beginning with '#' */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   while((c=getc(ficpar))=='#' && c!= EOF){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     ungetc(c,ficpar);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     fgets(line, MAXLINE, ficpar);            llt +=ll[k]*gipmx/gsw;
     puts(line);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     fputs(line,ficparo);          }
   }          fprintf(ficresilk," %10.6f\n", -llt);
   ungetc(c,ficpar);        }
        } /* end of wave */
   matcov=matrix(1,npar,1,npar);    } /* end of individual */
   for(i=1; i <=npar; i++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     fscanf(ficpar,"%s",&str);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     printf("%s",str);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     fprintf(ficparo,"%s",str);    if(globpr==0){ /* First time we count the contributions and weights */
     for(j=1; j <=i; j++){      gipmx=ipmx;
       fscanf(ficpar," %le",&matcov[i][j]);      gsw=sw;
       printf(" %.5le",matcov[i][j]);    }
       fprintf(ficparo," %.5le",matcov[i][j]);    return -l;
     }  }
     fscanf(ficpar,"\n");  
     printf("\n");  
     fprintf(ficparo,"\n");  /*************** function likelione ***********/
   }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   for(i=1; i <=npar; i++)  {
     for(j=i+1;j<=npar;j++)    /* This routine should help understanding what is done with 
       matcov[i][j]=matcov[j][i];       the selection of individuals/waves and
           to check the exact contribution to the likelihood.
   printf("\n");       Plotting could be done.
      */
     int k;
    if(mle==1){  
     /*-------- data file ----------*/    if(*globpri !=0){ /* Just counts and sums, no printings */
     if((ficres =fopen(fileres,"w"))==NULL) {      strcpy(fileresilk,"ilk"); 
       printf("Problem with resultfile: %s\n", fileres);goto end;      strcat(fileresilk,fileres);
     }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     fprintf(ficres,"#%s\n",version);        printf("Problem with resultfile: %s\n", fileresilk);
            fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     if((fic=fopen(datafile,"r"))==NULL)    {      }
       printf("Problem with datafile: %s\n", datafile);goto end;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     n= lastobs;      for(k=1; k<=nlstate; k++) 
     severity = vector(1,maxwav);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     outcome=imatrix(1,maxwav+1,1,n);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     num=ivector(1,n);    }
     moisnais=vector(1,n);  
     annais=vector(1,n);    *fretone=(*funcone)(p);
     moisdc=vector(1,n);    if(*globpri !=0){
     andc=vector(1,n);      fclose(ficresilk);
     agedc=vector(1,n);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     cod=ivector(1,n);      fflush(fichtm); 
     weight=vector(1,n);    } 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    return;
     mint=matrix(1,maxwav,1,n);  }
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);      /*********** Maximum Likelihood Estimation ***************/
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,NCOVMAX);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
     i=1;    int i,j, iter;
     while (fgets(line, MAXLINE, fic) != NULL)    {    double **xi;
       if ((i >= firstobs) && (i <=lastobs)) {    double fret;
            double fretone; /* Only one call to likelihood */
         for (j=maxwav;j>=1;j--){    /*  char filerespow[FILENAMELENGTH];*/
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    xi=matrix(1,npar,1,npar);
           strcpy(line,stra);    for (i=1;i<=npar;i++)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for (j=1;j<=npar;j++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        xi[i][j]=(i==j ? 1.0 : 0.0);
         }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
            strcpy(filerespow,"pow"); 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    strcat(filerespow,fileres);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1;i<=nlstate;i++)
         for (j=ncov;j>=1;j--){      for(j=1;j<=nlstate+ndeath;j++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         }    fprintf(ficrespow,"\n");
         num[i]=atol(stra);  
     powell(p,xi,npar,ftol,&iter,&fret,func);
         /* printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  
     free_matrix(xi,1,npar,1,npar);
         /*printf("%d %.lf %.lf %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),(covar[3][i]), (covar[4][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]));*/    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         i=i+1;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     }  
     /*scanf("%d",i);*/  }
   
   imx=i-1; /* Number of individuals */  /**** Computes Hessian and covariance matrix ***/
    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   /* Calculation of the number of parameter from char model*/  {
   Tvar=ivector(1,8);        double  **a,**y,*x,pd;
        double **hess;
   if (strlen(model) >1){    int i, j,jk;
     j=0;    int *indx;
     j=nbocc(model,'+');  
     cptcovn=j+1;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     strcpy(modelsav,model);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     if (j==0) {    void ludcmp(double **a, int npar, int *indx, double *d) ;
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);    double gompertz(double p[]);
     }    hess=matrix(1,npar,1,npar);
     else {  
       for(i=j; i>=1;i--){    printf("\nCalculation of the hessian matrix. Wait...\n");
         cutv(stra,strb,modelsav,'+');    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         if (strchr(strb,'*')) {    for (i=1;i<=npar;i++){
           cutv(strd,strc,strb,'*');      printf("%d",i);fflush(stdout);
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;      fprintf(ficlog,"%d",i);fflush(ficlog);
           cutv(strb,strc,strd,'V');     
           for (k=1; k<=lastobs;k++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      
         }      /*  printf(" %f ",p[i]);
         else {          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           cutv(strd,strc,strb,'V');    }
           Tvar[i+1]=atoi(strc);    
         }    for (i=1;i<=npar;i++) {
         strcpy(modelsav,stra);        for (j=1;j<=npar;j++)  {
       }        if (j>i) { 
       /*cutv(strd,strc,stra,'V');*/          printf(".%d%d",i,j);fflush(stdout);
       Tvar[1]=atoi(strc);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     }          hess[i][j]=hessij(p,delti,i,j,func,npar);
   }          
   /*printf("tvar=%d ",Tvar[1]);*/          hess[j][i]=hess[i][j];    
   /*scanf("%d ",i);*/          /*printf(" %lf ",hess[i][j]);*/
     fclose(fic);        }
       }
     if (weightopt != 1) { /* Maximisation without weights*/    }
       for(i=1;i<=n;i++) weight[i]=1.0;    printf("\n");
     }    fprintf(ficlog,"\n");
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
        fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     for (i=1; i<=imx; i++)  {    
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    a=matrix(1,npar,1,npar);
       for(m=1; (m<= maxwav); m++){    y=matrix(1,npar,1,npar);
         if (mint[m][i]==99 || anint[m][i]==9999) s[m][i]=-1;      x=vector(1,npar);
         if(s[m][i] >0){    indx=ivector(1,npar);
           if (s[m][i] == nlstate+1) {    for (i=1;i<=npar;i++)
             if(agedc[i]>0)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
               if(moisdc[i]!=99 && andc[i]!=9999)    ludcmp(a,npar,indx,&pd);
               agev[m][i]=agedc[i];  
             else{    for (j=1;j<=npar;j++) {
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      for (i=1;i<=npar;i++) x[i]=0;
               agev[m][i]=-1;      x[j]=1;
             }      lubksb(a,npar,indx,x);
           }      for (i=1;i<=npar;i++){ 
           else if(s[m][i] !=9){ /* Should no more exist */        matcov[i][j]=x[i];
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      }
             if(mint[m][i]==99 || anint[m][i]==9999){    }
               agev[m][i]=1;  
               /* printf("i=%d m=%d agev=%lf \n",i,m, agev[m][i]);    */    printf("\n#Hessian matrix#\n");
             }    fprintf(ficlog,"\n#Hessian matrix#\n");
             else if(agev[m][i] <agemin){    for (i=1;i<=npar;i++) { 
               agemin=agev[m][i];      for (j=1;j<=npar;j++) { 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        printf("%.3e ",hess[i][j]);
             }        fprintf(ficlog,"%.3e ",hess[i][j]);
             else if(agev[m][i] >agemax){      }
               agemax=agev[m][i];      printf("\n");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      fprintf(ficlog,"\n");
             }    }
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/    /* Recompute Inverse */
           }    for (i=1;i<=npar;i++)
           else { /* =9 */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             agev[m][i]=1;    ludcmp(a,npar,indx,&pd);
             s[m][i]=-1;  
           }    /*  printf("\n#Hessian matrix recomputed#\n");
         }  
         else /*= 0 Unknown */    for (j=1;j<=npar;j++) {
           agev[m][i]=1;      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
          lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){ 
     for (i=1; i<=imx; i++)  {        y[i][j]=x[i];
       for(m=1; (m<= maxwav); m++){        printf("%.3e ",y[i][j]);
         if (s[m][i] > (nlstate+ndeath)) {        fprintf(ficlog,"%.3e ",y[i][j]);
           printf("Error: Wrong value in nlstate or ndeath\n");        }
           goto end;      printf("\n");
         }      fprintf(ficlog,"\n");
       }    }
     }    */
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
     free_vector(severity,1,maxwav);    free_vector(x,1,npar);
     free_imatrix(outcome,1,maxwav+1,1,n);    free_ivector(indx,1,npar);
     free_vector(moisnais,1,n);    free_matrix(hess,1,npar,1,npar);
     free_vector(annais,1,n);  
     free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n);  }
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
      {
     wav=ivector(1,imx);    int i;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    int l=1, lmax=20;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    double k1,k2;
        double p2[MAXPARM+1]; /* identical to x */
     /* Concatenates waves */    double res;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
     int k=0,kmax=10;
 Tcode=ivector(1,100);    double l1;
    nbcode=imatrix(1,nvar,1,8);    
    ncodemax[1]=1;    fx=func(x);
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);    for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){
    codtab=imatrix(1,100,1,10);      l1=pow(10,l);
    h=0;      delts=delt;
    m=pow(2,cptcovn);      for(k=1 ; k <kmax; k=k+1){
          delt = delta*(l1*k);
    for(k=1;k<=cptcovn; k++){        p2[theta]=x[theta] +delt;
      for(i=1; i <=(m/pow(2,k));i++){        k1=func(p2)-fx;
        for(j=1; j <= ncodemax[k]; j++){        p2[theta]=x[theta]-delt;
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){        k2=func(p2)-fx;
            h++;        /*res= (k1-2.0*fx+k2)/delt/delt; */
            if (h>m) h=1;codtab[h][k]=j;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          }        
        }  #ifdef DEBUGHESS
      }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
    }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
    /*for(i=1; i <=m ;i++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
      for(k=1; k <=cptcovn; k++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);          k=kmax;
      }        }
      printf("\n");        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
    }          k=kmax; l=lmax*10.;
   scanf("%d",i);*/        }
            else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
    /* Calculates basic frequencies. Computes observed prevalence at single age          delts=delt;
        and prints on file fileres'p'. */        }
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);      }
     }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    delti[theta]=delts;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    return res; 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
      double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     /* For Powell, parameters are in a vector p[] starting at p[1]  {
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    int i;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    int l=1, l1, lmax=20;
     /*scanf("%d",i);*/    double k1,k2,k3,k4,res,fx;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double p2[MAXPARM+1];
     int k;
      
     /*--------- results files --------------*/    fx=func(x);
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    for (k=1; k<=2; k++) {
          for (i=1;i<=npar;i++) p2[i]=x[i];
    jk=1;      p2[thetai]=x[thetai]+delti[thetai]/k;
    fprintf(ficres,"# Parameters\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
    printf("# Parameters\n");      k1=func(p2)-fx;
    for(i=1,jk=1; i <=nlstate; i++){    
      for(k=1; k <=(nlstate+ndeath); k++){      p2[thetai]=x[thetai]+delti[thetai]/k;
        if (k != i)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
          {      k2=func(p2)-fx;
            printf("%d%d ",i,k);    
            fprintf(ficres,"%1d%1d ",i,k);      p2[thetai]=x[thetai]-delti[thetai]/k;
            for(j=1; j <=ncovmodel; j++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
              printf("%f ",p[jk]);      k3=func(p2)-fx;
              fprintf(ficres,"%f ",p[jk]);    
              jk++;      p2[thetai]=x[thetai]-delti[thetai]/k;
            }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
            printf("\n");      k4=func(p2)-fx;
            fprintf(ficres,"\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
          }  #ifdef DEBUG
      }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
     /* Computing hessian and covariance matrix */    }
     ftolhess=ftol; /* Usually correct */    return res;
     hesscov(matcov, p, npar, delti, ftolhess, func);  }
     fprintf(ficres,"# Scales\n");  
     printf("# Scales\n");  /************** Inverse of matrix **************/
      for(i=1,jk=1; i <=nlstate; i++){  void ludcmp(double **a, int n, int *indx, double *d) 
       for(j=1; j <=nlstate+ndeath; j++){  { 
         if (j!=i) {    int i,imax,j,k; 
           fprintf(ficres,"%1d%1d",i,j);    double big,dum,sum,temp; 
           printf("%1d%1d",i,j);    double *vv; 
           for(k=1; k<=ncovmodel;k++){   
             printf(" %.5e",delti[jk]);    vv=vector(1,n); 
             fprintf(ficres," %.5e",delti[jk]);    *d=1.0; 
             jk++;    for (i=1;i<=n;i++) { 
           }      big=0.0; 
           printf("\n");      for (j=1;j<=n;j++) 
           fprintf(ficres,"\n");        if ((temp=fabs(a[i][j])) > big) big=temp; 
         }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       }      vv[i]=1.0/big; 
       }    } 
        for (j=1;j<=n;j++) { 
     k=1;      for (i=1;i<j;i++) { 
     fprintf(ficres,"# Covariance\n");        sum=a[i][j]; 
     printf("# Covariance\n");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     for(i=1;i<=npar;i++){        a[i][j]=sum; 
       /*  if (k>nlstate) k=1;      } 
       i1=(i-1)/(ncovmodel*nlstate)+1;      big=0.0; 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      for (i=j;i<=n;i++) { 
       printf("%s%d%d",alph[k],i1,tab[i]);*/        sum=a[i][j]; 
       fprintf(ficres,"%3d",i);        for (k=1;k<j;k++) 
       printf("%3d",i);          sum -= a[i][k]*a[k][j]; 
       for(j=1; j<=i;j++){        a[i][j]=sum; 
         fprintf(ficres," %.5e",matcov[i][j]);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         printf(" %.5e",matcov[i][j]);          big=dum; 
       }          imax=i; 
       fprintf(ficres,"\n");        } 
       printf("\n");      } 
       k++;      if (j != imax) { 
     }        for (k=1;k<=n;k++) { 
              dum=a[imax][k]; 
     while((c=getc(ficpar))=='#' && c!= EOF){          a[imax][k]=a[j][k]; 
       ungetc(c,ficpar);          a[j][k]=dum; 
       fgets(line, MAXLINE, ficpar);        } 
       puts(line);        *d = -(*d); 
       fputs(line,ficparo);        vv[imax]=vv[j]; 
     }      } 
     ungetc(c,ficpar);      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      if (j != n) { 
            dum=1.0/(a[j][j]); 
     if (fage <= 2) {        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       bage = agemin;      } 
       fage = agemax;    } 
     }    free_vector(vv,1,n);  /* Doesn't work */
   ;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  } 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
 /*------------ gnuplot -------------*/  void lubksb(double **a, int n, int *indx, double b[]) 
 chdir(pathcd);  { 
   if((ficgp=fopen("graph.plt","w"))==NULL) {    int i,ii=0,ip,j; 
     printf("Problem with file graph.gp");goto end;    double sum; 
   }   
 #ifdef windows    for (i=1;i<=n;i++) { 
   fprintf(ficgp,"cd \"%s\" \n",pathc);      ip=indx[i]; 
 #endif      sum=b[ip]; 
 m=pow(2,cptcovn);      b[ip]=b[i]; 
        if (ii) 
  /* 1eme*/        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   for (cpt=1; cpt<= nlstate ; cpt ++) {      else if (sum) ii=i; 
    for (k1=1; k1<= m ; k1 ++) {      b[i]=sum; 
     } 
 #ifdef windows    for (i=n;i>=1;i--) { 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      sum=b[i]; 
 #endif      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 #ifdef unix      b[i]=sum/a[i][i]; 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    } 
 #endif  } 
   
 for (i=1; i<= nlstate ; i ++) {  void pstamp(FILE *fichier)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  {
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 }  }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {  /************ Frequencies ********************/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {  /* Some frequencies */
 }    
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    int i, m, jk, k1,i1, j1, bool, z1,j;
      for (i=1; i<= nlstate ; i ++) {    int first;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double ***freq; /* Frequencies */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *pp, **prop;
 }      double pos,posprop, k2, dateintsum=0,k2cpt=0;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    char fileresp[FILENAMELENGTH];
 #ifdef unix    
 fprintf(ficgp,"\nset ter gif small size 400,300");    pp=vector(1,nlstate);
 #endif    prop=matrix(1,nlstate,iagemin,iagemax+3);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    strcpy(fileresp,"p");
    }    strcat(fileresp,fileres);
   }    if((ficresp=fopen(fileresp,"w"))==NULL) {
   /*2 eme*/      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   for (k1=1; k1<= m ; k1 ++) {      exit(0);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    }
        freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     for (i=1; i<= nlstate+1 ; i ++) {    j1=0;
       k=2*i;    
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    j=cptcoveff;
       for (j=1; j<= nlstate+1 ; j ++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    first=1;
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    for(k1=1; k1<=j;k1++){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        j1++;
       for (j=1; j<= nlstate+1 ; j ++) {        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          scanf("%d", i);*/
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for (i=-5; i<=nlstate+ndeath; i++)  
 }            for (jk=-5; jk<=nlstate+ndeath; jk++)  
       fprintf(ficgp,"\" t\"\" w l 0,");            for(m=iagemin; m <= iagemax+3; m++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              freq[i][jk][m]=0;
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for (i=1; i<=nlstate; i++)  
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(m=iagemin; m <= iagemax+3; m++)
 }            prop[i][m]=0;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        
       else fprintf(ficgp,"\" t\"\" w l 0,");        dateintsum=0;
     }        k2cpt=0;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        for (i=1; i<=imx; i++) {
   }          bool=1;
            if  (cptcovn>0) {
   /*3eme*/            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   for (k1=1; k1<= m ; k1 ++) {                bool=0;
     for (cpt=1; cpt<= nlstate ; cpt ++) {          }
       k=2+nlstate*(cpt-1);          if (bool==1){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);            for(m=firstpass; m<=lastpass; m++){
       for (i=1; i< nlstate ; i ++) {              k2=anint[m][i]+(mint[m][i]/12.);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                if (m<lastpass) {
                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   /* CV preval stat */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   for (k1=1; k1<= m ; k1 ++) {                }
     for (cpt=1; cpt<nlstate ; cpt ++) {                
       k=3;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);                  dateintsum=dateintsum+k2;
       for (i=1; i< nlstate ; i ++)                  k2cpt++;
         fprintf(ficgp,"+$%d",k+i+1);                }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                /*}*/
                  }
       l=3+(nlstate+ndeath)*cpt;          }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        }
       for (i=1; i< nlstate ; i ++) {         
         l=3+(nlstate+ndeath)*cpt;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         fprintf(ficgp,"+$%d",l+i+1);        pstamp(ficresp);
       }        if  (cptcovn>0) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            fprintf(ficresp, "\n#********** Variable "); 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficresp, "**********\n#");
   }        }
         for(i=1; i<=nlstate;i++) 
   /* proba elementaires */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficresp, "\n");
     for(k=1; k <=(nlstate+ndeath); k++){        
       if (k != i) {        for(i=iagemin; i <= iagemax+3; i++){
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/          if(i==iagemax+3){
         for(j=1; j <=ncovmodel; j++){            fprintf(ficlog,"Total");
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);          }else{
           jk++;            if(first==1){
           fprintf(ficgp,"\n");              first=0;
         }              printf("See log file for details...\n");
       }            }
     }            fprintf(ficlog,"Age %d", i);
   }          }
   for(jk=1; jk <=m; jk++) {          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   for(i=1; i <=nlstate; i++) {              pp[jk] += freq[jk][m][i]; 
     for(k=1; k <=(nlstate+ndeath); k++){          }
       if (k != i) {          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);            for(m=-1, pos=0; m <=0 ; m++)
         for(j=3; j <=ncovmodel; j++)              pos += freq[jk][m][i];
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            if(pp[jk]>=1.e-10){
         fprintf(ficgp,")/(1");              if(first==1){
         for(k1=1; k1 <=(nlstate+ndeath); k1++)                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           if (k1 != i) {              }
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             for(j=3; j <=ncovmodel; j++)            }else{
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              if(first==1)
             fprintf(ficgp,")");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         fprintf(ficgp,") t \"p%d%d\" ", i,k);            }
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          }
       }  
     }          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);                pp[jk] += freq[jk][m][i];
   }          }       
   fclose(ficgp);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                pos += pp[jk];
 chdir(path);            posprop += prop[jk][i];
     free_matrix(agev,1,maxwav,1,imx);          }
     free_ivector(wav,1,imx);          for(jk=1; jk <=nlstate ; jk++){
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            if(pos>=1.e-5){
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              if(first==1)
                    printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_imatrix(s,1,maxwav+1,1,n);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                }else{
                  if(first==1)
     free_ivector(num,1,n);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     free_vector(agedc,1,n);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     free_vector(weight,1,n);            }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/            if( i <= iagemax){
     fclose(ficparo);              if(pos>=1.e-5){
     fclose(ficres);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
    }                /*probs[i][jk][j1]= pp[jk]/pos;*/
                    /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
    /*________fin mle=1_________*/              }
                  else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
              }
     /* No more information from the sample is required now */          }
   /* Reads comments: lines beginning with '#' */          
   while((c=getc(ficpar))=='#' && c!= EOF){          for(jk=-1; jk <=nlstate+ndeath; jk++)
     ungetc(c,ficpar);            for(m=-1; m <=nlstate+ndeath; m++)
     fgets(line, MAXLINE, ficpar);              if(freq[jk][m][i] !=0 ) {
     puts(line);              if(first==1)
     fputs(line,ficparo);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   ungetc(c,ficpar);              }
            if(i <= iagemax)
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);            fprintf(ficresp,"\n");
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          if(first==1)
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            printf("Others in log...\n");
 /*--------- index.htm --------*/          fprintf(ficlog,"\n");
         }
   if((fichtm=fopen("index.htm","w"))==NULL)    {      }
     printf("Problem with index.htm \n");goto end;    }
   }    dateintmean=dateintsum/k2cpt; 
    
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n    fclose(ficresp);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    free_vector(pp,1,nlstate);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    /* End of Freq */
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>  }
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>  
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  /************ Prevalence ********************/
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
  fprintf(fichtm," <li>Graphs</li>\n<p>");       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
  m=cptcovn;    */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}   
     int i, m, jk, k1, i1, j1, bool, z1,j;
  j1=0;    double ***freq; /* Frequencies */
  for(k1=1; k1<=m;k1++){    double *pp, **prop;
    for(i1=1; i1<=ncodemax[k1];i1++){    double pos,posprop; 
        j1++;    double  y2; /* in fractional years */
        if (cptcovn > 0) {    int iagemin, iagemax;
          fprintf(fichtm,"<hr>************ Results for covariates");  
          for (cpt=1; cpt<=cptcovn;cpt++)    iagemin= (int) agemin;
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);    iagemax= (int) agemax;
          fprintf(fichtm," ************\n<hr>");    /*pp=vector(1,nlstate);*/
        }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        j1=0;
        for(cpt=1; cpt<nlstate;cpt++){    
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    j=cptcoveff;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        }    
     for(cpt=1; cpt<=nlstate;cpt++) {    for(k1=1; k1<=j;k1++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      for(i1=1; i1<=ncodemax[k1];i1++){
 interval) in state (%d): v%s%d%d.gif <br>        j1++;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          
      }        for (i=1; i<=nlstate; i++)  
      for(cpt=1; cpt<=nlstate;cpt++) {          for(m=iagemin; m <= iagemax+3; m++)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            prop[i][m]=0.0;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);       
      }        for (i=1; i<=imx; i++) { /* Each individual */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          bool=1;
 health expectancies in states (1) and (2): e%s%d.gif<br>          if  (cptcovn>0) {
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            for (z1=1; z1<=cptcoveff; z1++) 
 fprintf(fichtm,"\n</body>");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
    }                bool=0;
  }          } 
 fclose(fichtm);          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   /*--------------- Prevalence limit --------------*/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   strcpy(filerespl,"pl");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   strcat(filerespl,fileres);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficrespl,"#Prevalence limit\n");                  prop[s[m][i]][iagemax+3] += weight[i]; 
   fprintf(ficrespl,"#Age ");                } 
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              }
   fprintf(ficrespl,"\n");            } /* end selection of waves */
            }
   prlim=matrix(1,nlstate,1,nlstate);        }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=iagemin; i <= iagemax+3; i++){  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            posprop += prop[jk][i]; 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          } 
   k=0;  
   agebase=agemin;          for(jk=1; jk <=nlstate ; jk++){     
   agelim=agemax;            if( i <=  iagemax){ 
   ftolpl=1.e-10;              if(posprop>=1.e-5){ 
   i1=cptcovn;                probs[i][jk][j1]= prop[jk][i]/posprop;
   if (cptcovn < 1){i1=1;}              } else
                 printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
   for(cptcov=1;cptcov<=i1;cptcov++){            } 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }/* end jk */ 
         k=k+1;        }/* end i */ 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      } /* end i1 */
         fprintf(ficrespl,"\n#****** ");    } /* end k1 */
         for(j=1;j<=cptcovn;j++)    
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         fprintf(ficrespl,"******\n");    /*free_vector(pp,1,nlstate);*/
            free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         for (age=agebase; age<=agelim; age++){  }  /* End of prevalence */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );  /************* Waves Concatenation ***************/
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           fprintf(ficrespl,"\n");  {
         }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       }       Death is a valid wave (if date is known).
     }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   fclose(ficrespl);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   /*------------- h Pij x at various ages ------------*/       and mw[mi+1][i]. dh depends on stepm.
         */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    int i, mi, m;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   }       double sum=0., jmean=0.;*/
   printf("Computing pij: result on file '%s' \n", filerespij);    int first;
      int j, k=0,jk, ju, jl;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double sum=0.;
   if (stepm<=24) stepsize=2;    first=0;
     jmin=1e+5;
   agelim=AGESUP;    jmax=-1;
   hstepm=stepsize*YEARM; /* Every year of age */    jmean=0.;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    for(i=1; i<=imx; i++){
        mi=0;
   k=0;      m=firstpass;
   for(cptcov=1;cptcov<=i1;cptcov++){      while(s[m][i] <= nlstate){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       k=k+1;          mw[++mi][i]=m;
         fprintf(ficrespij,"\n#****** ");        if(m >=lastpass)
         for(j=1;j<=cptcovn;j++)          break;
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        else
         fprintf(ficrespij,"******\n");          m++;
              }/* end while */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      if (s[m][i] > nlstate){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        mi++;     /* Death is another wave */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        /* if(mi==0)  never been interviewed correctly before death */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           /* Only death is a correct wave */
           oldm=oldms;savm=savms;        mw[mi][i]=m;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)      wav[i]=mi;
             for(j=1; j<=nlstate+ndeath;j++)      if(mi==0){
               fprintf(ficrespij," %1d-%1d",i,j);        nbwarn++;
           fprintf(ficrespij,"\n");        if(first==0){
           for (h=0; h<=nhstepm; h++){          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          first=1;
             for(i=1; i<=nlstate;i++)        }
               for(j=1; j<=nlstate+ndeath;j++)        if(first==1){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
             fprintf(ficrespij,"\n");        }
           }      } /* end mi==0 */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } /* End individuals */
           fprintf(ficrespij,"\n");  
         }    for(i=1; i<=imx; i++){
     }      for(mi=1; mi<wav[i];mi++){
   }        if (stepm <=0)
           dh[mi][i]=1;
   fclose(ficrespij);        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   /*---------- Health expectancies and variances ------------*/            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   strcpy(filerest,"t");              if(j==0) j=1;  /* Survives at least one month after exam */
   strcat(filerest,fileres);              else if(j<0){
   if((ficrest=fopen(filerest,"w"))==NULL) {                nberr++;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                j=1; /* Temporary Dangerous patch */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   strcpy(filerese,"e");              }
   strcat(filerese,fileres);              k=k+1;
   if((ficreseij=fopen(filerese,"w"))==NULL) {              if (j >= jmax){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                jmax=j;
   }                ijmax=i;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);              }
               if (j <= jmin){
  strcpy(fileresv,"v");                jmin=j;
   strcat(fileresv,fileres);                ijmin=i;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {              }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);              sum=sum+j;
   }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   k=0;          }
   for(cptcov=1;cptcov<=i1;cptcov++){          else{
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       k=k+1;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcovn;j++)            k=k+1;
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);            if (j >= jmax) {
       fprintf(ficrest,"******\n");              jmax=j;
               ijmax=i;
       fprintf(ficreseij,"\n#****** ");            }
       for(j=1;j<=cptcovn;j++)            else if (j <= jmin){
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);              jmin=j;
       fprintf(ficreseij,"******\n");              ijmin=i;
             }
       fprintf(ficresvij,"\n#****** ");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       for(j=1;j<=cptcovn;j++)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            if(j<0){
       fprintf(ficresvij,"******\n");              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       oldm=oldms;savm=savms;            }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);              sum=sum+j;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          }
       oldm=oldms;savm=savms;          jk= j/stepm;
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          jl= j -jk*stepm;
                ju= j -(jk+1)*stepm;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            if(jl==0){
       fprintf(ficrest,"\n");              dh[mi][i]=jk;
                      bh[mi][i]=0;
       hf=1;            }else{ /* We want a negative bias in order to only have interpolation ie
       if (stepm >= YEARM) hf=stepm/YEARM;                    * at the price of an extra matrix product in likelihood */
       epj=vector(1,nlstate+1);              dh[mi][i]=jk+1;
       for(age=bage; age <=fage ;age++){              bh[mi][i]=ju;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            }
         fprintf(ficrest," %.0f",age);          }else{
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            if(jl <= -ju){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {              dh[mi][i]=jk;
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];              bh[mi][i]=jl;       /* bias is positive if real duration
           }                                   * is higher than the multiple of stepm and negative otherwise.
           epj[nlstate+1] +=epj[j];                                   */
         }            }
         for(i=1, vepp=0.;i <=nlstate;i++)            else{
           for(j=1;j <=nlstate;j++)              dh[mi][i]=jk+1;
             vepp += vareij[i][j][(int)age];              bh[mi][i]=ju;
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));            }
         for(j=1;j <=nlstate;j++){            if(dh[mi][i]==0){
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));              dh[mi][i]=1; /* At least one step */
         }              bh[mi][i]=ju; /* At least one step */
         fprintf(ficrest,"\n");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       }            }
     }          } /* end if mle */
   }        }
              } /* end wave */
  fclose(ficreseij);    }
  fclose(ficresvij);    jmean=sum/k;
   fclose(ficrest);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   fclose(ficpar);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   free_vector(epj,1,nlstate+1);   }
   /*  scanf("%d ",i); */  
   /*********** Tricode ****************************/
   /*------- Variance limit prevalence------*/    void tricode(int *Tvar, int **nbcode, int imx)
   {
 strcpy(fileresvpl,"vpl");    
   strcat(fileresvpl,fileres);    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     exit(0);    int cptcode=0;
   }    cptcoveff=0; 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
  k=0;    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
  for(cptcov=1;cptcov<=i1;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
      k=k+1;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
      fprintf(ficresvpl,"\n#****** ");                                 modality*/ 
      for(j=1;j<=cptcovn;j++)        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        Ndum[ij]++; /*counts the occurence of this modality */
      fprintf(ficresvpl,"******\n");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
              if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
      varpl=matrix(1,nlstate,(int) bage, (int) fage);                                         Tvar[j]. If V=sex and male is 0 and 
      oldm=oldms;savm=savms;                                         female is 1, then  cptcode=1.*/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      }
    }  
  }      for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j
   fclose(ficresvpl);                                         th covariate. In fact
                                          ncodemax[j]=2
   /*---------- End : free ----------------*/                                         (dichotom. variables only) but
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                                         it can be more */
        } /* Ndum[-1] number of undefined modalities */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      ij=1; 
        for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
          for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                                       k is a modality. If we have model=V1+V1*sex 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
              ij++;
   free_matrix(matcov,1,npar,1,npar);          }
   free_vector(delti,1,npar);          if (ij > ncodemax[j]) break; 
          }  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      } 
     }  
   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   for (k=0; k< maxncov; k++) Ndum[k]=0;
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
   /*printf("Total time was %d uSec.\n", total_usecs);*/     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   /*------ End -----------*/     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
      Ndum[ij]++;
  end:   }
 #ifdef windows  
  chdir(pathcd);   ij=1;
 #endif   for (i=1; i<= maxncov; i++) {
  system("wgnuplot ../gp37mgw/graph.plt");     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
 #ifdef windows       ij++;
   while (z[0] != 'q') {     }
     chdir(pathcd);   }
     printf("\nType e to edit output files, c to start again, and q for exiting: ");   ij--;
     scanf("%s",z);   cptcoveff=ij; /*Number of simple covariates*/
     if (z[0] == 'c') system("./imach");  }
     else if (z[0] == 'e') {  
       chdir(path);  /*********** Health Expectancies ****************/
       system("index.htm");  
     }  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     else if (z[0] == 'q') exit(0);  
   }  {
 #endif    /* Health expectancies, no variances */
 }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3mat;
     double eip;
   
     pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char linetmp[MAXLINE];
       char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     /* where is ncovprod ?*/
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sums the number of covariates including age as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.2  
changed lines
  Added in v.1.134


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>