Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.134

version 1.41.2.1, 2003/06/12 10:43:20 version 1.134, 2009/10/29 13:18:53
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.134  2009/10/29 13:18:53  brouard
      (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.133  2009/07/06 10:21:25  brouard
   first survey ("cross") where individuals from different ages are    just nforces
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.132  2009/07/06 08:22:05  brouard
   second wave of interviews ("longitudinal") which measure each change    Many tings
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.131  2009/06/20 16:22:47  brouard
   model. More health states you consider, more time is necessary to reach the    Some dimensions resccaled
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.130  2009/05/26 06:44:34  brouard
   probability to be observed in state j at the second wave    (Module): Max Covariate is now set to 20 instead of 8. A
   conditional to be observed in state i at the first wave. Therefore    lot of cleaning with variables initialized to 0. Trying to make
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.129  2007/08/31 13:49:27  lievre
   where the markup *Covariates have to be included here again* invites    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.127  2006/04/28 18:11:50  brouard
   identical for each individual. Also, if a individual missed an    (Module): Yes the sum of survivors was wrong since
   intermediate interview, the information is lost, but taken into    imach-114 because nhstepm was no more computed in the age
   account using an interpolation or extrapolation.      loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
   hPijx is the probability to be observed in state i at age x+h    compute health expectancies (without variances) in a first step
   conditional to the observed state i at age x. The delay 'h' can be    and then all the health expectancies with variances or standard
   split into an exact number (nh*stepm) of unobserved intermediate    deviation (needs data from the Hessian matrices) which slows the
   states. This elementary transition (by month or quarter trimester,    computation.
   semester or year) is model as a multinomial logistic.  The hPx    In the future we should be able to stop the program is only health
   matrix is simply the matrix product of nh*stepm elementary matrices    expectancies and graph are needed without standard deviations.
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
   Also this programme outputs the covariance matrix of the parameters but also    imach-114 because nhstepm was no more computed in the age
   of the life expectancies. It also computes the prevalence limits.    loop. Now we define nhstepma in the age loop.
      Version 0.98h
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.125  2006/04/04 15:20:31  lievre
   This software have been partly granted by Euro-REVES, a concerted action    Errors in calculation of health expectancies. Age was not initialized.
   from the European Union.    Forecasting file added.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.124  2006/03/22 17:13:53  lievre
   can be accessed at http://euroreves.ined.fr/imach .    Parameters are printed with %lf instead of %f (more numbers after the comma).
   **********************************************************************/    The log-likelihood is printed in the log file
    
 #include <math.h>    Revision 1.123  2006/03/20 10:52:43  brouard
 #include <stdio.h>    * imach.c (Module): <title> changed, corresponds to .htm file
 #include <stdlib.h>    name. <head> headers where missing.
 #include <unistd.h>  
     * imach.c (Module): Weights can have a decimal point as for
 #define MAXLINE 256    English (a comma might work with a correct LC_NUMERIC environment,
 #define GNUPLOTPROGRAM "wgnuplot"    otherwise the weight is truncated).
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Modification of warning when the covariates values are not 0 or
 #define FILENAMELENGTH 80    1.
 /*#define DEBUG*/    Version 0.98g
   
 /*#define windows*/    Revision 1.122  2006/03/20 09:45:41  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Weights can have a decimal point as for
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Modification of warning when the covariates values are not 0 or
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    1.
     Version 0.98g
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.121  2006/03/16 17:45:01  lievre
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    * imach.c (Module): Comments concerning covariates added
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    * imach.c (Module): refinements in the computation of lli if
 #define YEARM 12. /* Number of months per year */    status=-2 in order to have more reliable computation if stepm is
 #define AGESUP 130    not 1 month. Version 0.98f
 #define AGEBASE 40  
     Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 int erreur; /* Error number */    status=-2 in order to have more reliable computation if stepm is
 int nvar;    not 1 month. Version 0.98f
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.119  2006/03/15 17:42:26  brouard
 int nlstate=2; /* Number of live states */    (Module): Bug if status = -2, the loglikelihood was
 int ndeath=1; /* Number of dead states */    computed as likelihood omitting the logarithm. Version O.98e
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 int *wav; /* Number of waves for this individuual 0 is possible */    table of variances if popbased=1 .
 int maxwav; /* Maxim number of waves */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Function pstamp added
 int mle, weightopt;    (Module): Version 0.98d
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.117  2006/03/14 17:16:22  brouard
 double jmean; /* Mean space between 2 waves */    (Module): varevsij Comments added explaining the second
 double **oldm, **newm, **savm; /* Working pointers to matrices */    table of variances if popbased=1 .
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Function pstamp added
 FILE *ficgp,*ficresprob,*ficpop;    (Module): Version 0.98d
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.116  2006/03/06 10:29:27  brouard
  FILE  *ficresvij;    (Module): Variance-covariance wrong links and
   char fileresv[FILENAMELENGTH];    varian-covariance of ej. is needed (Saito).
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.114  2006/02/26 12:57:58  brouard
 #define FTOL 1.0e-10    (Module): Some improvements in processing parameter
     filename with strsep.
 #define NRANSI  
 #define ITMAX 200    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 #define TOL 2.0e-4    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.112  2006/01/30 09:55:26  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 #define GOLD 1.618034    Revision 1.111  2006/01/25 20:38:18  brouard
 #define GLIMIT 100.0    (Module): Lots of cleaning and bugs added (Gompertz)
 #define TINY 1.0e-20    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.110  2006/01/25 00:51:50  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Lots of cleaning and bugs added (Gompertz)
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.109  2006/01/24 19:37:15  brouard
 #define rint(a) floor(a+0.5)    (Module): Comments (lines starting with a #) are allowed in data.
   
 static double sqrarg;    Revision 1.108  2006/01/19 18:05:42  lievre
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Gnuplot problem appeared...
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    To be fixed
   
 int imx;    Revision 1.107  2006/01/19 16:20:37  brouard
 int stepm;    Test existence of gnuplot in imach path
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.106  2006/01/19 13:24:36  brouard
 int estepm;    Some cleaning and links added in html output
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.105  2006/01/05 20:23:19  lievre
 int m,nb;    *** empty log message ***
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.104  2005/09/30 16:11:43  lievre
 double **pmmij, ***probs, ***mobaverage;    (Module): sump fixed, loop imx fixed, and simplifications.
 double dateintmean=0;    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 double *weight;    (instead of missing=-1 in earlier versions) and his/her
 int **s; /* Status */    contributions to the likelihood is 1 - Prob of dying from last
 double *agedc, **covar, idx;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    the healthy state at last known wave). Version is 0.98
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.103  2005/09/30 15:54:49  lievre
 double ftolhess; /* Tolerance for computing hessian */    (Module): sump fixed, loop imx fixed, and simplifications.
   
 /**************** split *************************/    Revision 1.102  2004/09/15 17:31:30  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Add the possibility to read data file including tab characters.
 {  
    char *s;                             /* pointer */    Revision 1.101  2004/09/15 10:38:38  brouard
    int  l1, l2;                         /* length counters */    Fix on curr_time
   
    l1 = strlen( path );                 /* length of path */    Revision 1.100  2004/07/12 18:29:06  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Add version for Mac OS X. Just define UNIX in Makefile
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.99  2004/06/05 08:57:40  brouard
 #else    *** empty log message ***
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Revision 1.98  2004/05/16 15:05:56  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    New version 0.97 . First attempt to estimate force of mortality
 #if     defined(__bsd__)                /* get current working directory */    directly from the data i.e. without the need of knowing the health
       extern char       *getwd( );    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
       if ( getwd( dirc ) == NULL ) {    other analysis, in order to test if the mortality estimated from the
 #else    cross-longitudinal survey is different from the mortality estimated
       extern char       *getcwd( );    from other sources like vital statistic data.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    The same imach parameter file can be used but the option for mle should be -3.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Agnès, who wrote this part of the code, tried to keep most of the
       }    former routines in order to include the new code within the former code.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    The output is very simple: only an estimate of the intercept and of
       s++;                              /* after this, the filename */    the slope with 95% confident intervals.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Current limitations:
       strcpy( name, s );                /* save file name */    A) Even if you enter covariates, i.e. with the
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
       dirc[l1-l2] = 0;                  /* add zero */    B) There is no computation of Life Expectancy nor Life Table.
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.97  2004/02/20 13:25:42  lievre
 #ifdef windows    Version 0.96d. Population forecasting command line is (temporarily)
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    suppressed.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.96  2003/07/15 15:38:55  brouard
 #endif    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
    s = strrchr( name, '.' );            /* find last / */    rewritten within the same printf. Workaround: many printfs.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.95  2003/07/08 07:54:34  brouard
    l1= strlen( name);    * imach.c (Repository):
    l2= strlen( s)+1;    (Repository): Using imachwizard code to output a more meaningful covariance
    strncpy( finame, name, l1-l2);    matrix (cov(a12,c31) instead of numbers.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.94  2003/06/27 13:00:02  brouard
 }    Just cleaning
   
     Revision 1.93  2003/06/25 16:33:55  brouard
 /******************************************/    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 void replace(char *s, char*t)    (Module): Version 0.96b
 {  
   int i;    Revision 1.92  2003/06/25 16:30:45  brouard
   int lg=20;    (Module): On windows (cygwin) function asctime_r doesn't
   i=0;    exist so I changed back to asctime which exists.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.91  2003/06/25 15:30:29  brouard
     (s[i] = t[i]);    * imach.c (Repository): Duplicated warning errors corrected.
     if (t[i]== '\\') s[i]='/';    (Repository): Elapsed time after each iteration is now output. It
   }    helps to forecast when convergence will be reached. Elapsed time
 }    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 int nbocc(char *s, char occ)  
 {    Revision 1.90  2003/06/24 12:34:15  brouard
   int i,j=0;    (Module): Some bugs corrected for windows. Also, when
   int lg=20;    mle=-1 a template is output in file "or"mypar.txt with the design
   i=0;    of the covariance matrix to be input.
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.89  2003/06/24 12:30:52  brouard
   if  (s[i] == occ ) j++;    (Module): Some bugs corrected for windows. Also, when
   }    mle=-1 a template is output in file "or"mypar.txt with the design
   return j;    of the covariance matrix to be input.
 }  
     Revision 1.88  2003/06/23 17:54:56  brouard
 void cutv(char *u,char *v, char*t, char occ)    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 {  
   int i,lg,j,p=0;    Revision 1.87  2003/06/18 12:26:01  brouard
   i=0;    Version 0.96
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.86  2003/06/17 20:04:08  brouard
   }    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.85  2003/06/17 13:12:43  brouard
     (u[j] = t[j]);    * imach.c (Repository): Check when date of death was earlier that
   }    current date of interview. It may happen when the death was just
      u[p]='\0';    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
    for(j=0; j<= lg; j++) {    assuming that the date of death was just one stepm after the
     if (j>=(p+1))(v[j-p-1] = t[j]);    interview.
   }    (Repository): Because some people have very long ID (first column)
 }    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /********************** nrerror ********************/    truncation)
     (Repository): No more line truncation errors.
 void nrerror(char error_text[])  
 {    Revision 1.84  2003/06/13 21:44:43  brouard
   fprintf(stderr,"ERREUR ...\n");    * imach.c (Repository): Replace "freqsummary" at a correct
   fprintf(stderr,"%s\n",error_text);    place. It differs from routine "prevalence" which may be called
   exit(1);    many times. Probs is memory consuming and must be used with
 }    parcimony.
 /*********************** vector *******************/    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 double *vector(int nl, int nh)  
 {    Revision 1.83  2003/06/10 13:39:11  lievre
   double *v;    *** empty log message ***
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.82  2003/06/05 15:57:20  brouard
   return v-nl+NR_END;    Add log in  imach.c and  fullversion number is now printed.
 }  
   */
 /************************ free vector ******************/  /*
 void free_vector(double*v, int nl, int nh)     Interpolated Markov Chain
 {  
   free((FREE_ARG)(v+nl-NR_END));    Short summary of the programme:
 }    
     This program computes Healthy Life Expectancies from
 /************************ivector *******************************/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int *ivector(long nl,long nh)    first survey ("cross") where individuals from different ages are
 {    interviewed on their health status or degree of disability (in the
   int *v;    case of a health survey which is our main interest) -2- at least a
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    second wave of interviews ("longitudinal") which measure each change
   if (!v) nrerror("allocation failure in ivector");    (if any) in individual health status.  Health expectancies are
   return v-nl+NR_END;    computed from the time spent in each health state according to a
 }    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 /******************free ivector **************************/    simplest model is the multinomial logistic model where pij is the
 void free_ivector(int *v, long nl, long nh)    probability to be observed in state j at the second wave
 {    conditional to be observed in state i at the first wave. Therefore
   free((FREE_ARG)(v+nl-NR_END));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 }    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 /******************* imatrix *******************************/    where the markup *Covariates have to be included here again* invites
 int **imatrix(long nrl, long nrh, long ncl, long nch)    you to do it.  More covariates you add, slower the
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    convergence.
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    The advantage of this computer programme, compared to a simple
   int **m;    multinomial logistic model, is clear when the delay between waves is not
      identical for each individual. Also, if a individual missed an
   /* allocate pointers to rows */    intermediate interview, the information is lost, but taken into
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    account using an interpolation or extrapolation.  
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    hPijx is the probability to be observed in state i at age x+h
   m -= nrl;    conditional to the observed state i at age x. The delay 'h' can be
      split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month, quarter,
   /* allocate rows and set pointers to them */    semester or year) is modelled as a multinomial logistic.  The hPx
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    matrix is simply the matrix product of nh*stepm elementary matrices
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    and the contribution of each individual to the likelihood is simply
   m[nrl] += NR_END;    hPijx.
   m[nrl] -= ncl;  
      Also this programme outputs the covariance matrix of the parameters but also
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    of the life expectancies. It also computes the period (stable) prevalence. 
      
   /* return pointer to array of pointers to rows */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   return m;             Institut national d'études démographiques, Paris.
 }    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 /****************** free_imatrix *************************/    It is copyrighted identically to a GNU software product, ie programme and
 void free_imatrix(m,nrl,nrh,ncl,nch)    software can be distributed freely for non commercial use. Latest version
       int **m;    can be accessed at http://euroreves.ined.fr/imach .
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    
   free((FREE_ARG) (m+nrl-NR_END));    **********************************************************************/
 }  /*
     main
 /******************* matrix *******************************/    read parameterfile
 double **matrix(long nrl, long nrh, long ncl, long nch)    read datafile
 {    concatwav
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    freqsummary
   double **m;    if (mle >= 1)
       mlikeli
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    print results files
   if (!m) nrerror("allocation failure 1 in matrix()");    if mle==1 
   m += NR_END;       computes hessian
   m -= nrl;    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    open gnuplot file
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    open html file
   m[nrl] += NR_END;    period (stable) prevalence
   m[nrl] -= ncl;     for age prevalim()
     h Pij x
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    variance of p varprob
   return m;    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
 /*************************free matrix ************************/    prevalence()
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)     movingaverage()
 {    varevsij() 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if popbased==1 varevsij(,popbased)
   free((FREE_ARG)(m+nrl-NR_END));    total life expectancies
 }    Variance of period (stable) prevalence
    end
 /******************* ma3x *******************************/  */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;   
   #include <math.h>
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <stdio.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <stdlib.h>
   m += NR_END;  #include <string.h>
   m -= nrl;  #include <unistd.h>
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include <limits.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <sys/types.h>
   m[nrl] += NR_END;  #include <sys/stat.h>
   m[nrl] -= ncl;  #include <errno.h>
   extern int errno;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   /* #include <sys/time.h> */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #include <time.h>
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #include "timeval.h"
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  /* #include <libintl.h> */
   for (j=ncl+1; j<=nch; j++)  /* #define _(String) gettext (String) */
     m[nrl][j]=m[nrl][j-1]+nlay;  
    #define MAXLINE 256
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define GNUPLOTPROGRAM "gnuplot"
     for (j=ncl+1; j<=nch; j++)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       m[i][j]=m[i][j-1]+nlay;  #define FILENAMELENGTH 132
   }  
   return m;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /*************************free ma3x ************************/  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define NINTERVMAX 8
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   free((FREE_ARG)(m+nrl-NR_END));  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 }  #define NCOVMAX 20 /* Maximum number of covariates */
   #define MAXN 20000
 /***************** f1dim *************************/  #define YEARM 12. /* Number of months per year */
 extern int ncom;  #define AGESUP 130
 extern double *pcom,*xicom;  #define AGEBASE 40
 extern double (*nrfunc)(double []);  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
    #ifdef UNIX
 double f1dim(double x)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   int j;  #define ODIRSEPARATOR '\\'
   double f;  #else
   double *xt;  #define DIRSEPARATOR '\\'
    #define CHARSEPARATOR "\\"
   xt=vector(1,ncom);  #define ODIRSEPARATOR '/'
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #endif
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /* $Id$ */
   return f;  /* $State$ */
 }  
   char version[]="Imach version 0.98l, October 2009, INED-EUROREVES-Institut de longevite ";
 /*****************brent *************************/  char fullversion[]="$Revision$ $Date$"; 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  char strstart[80];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int iter;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   double a,b,d,etemp;  int nvar=0, nforce=0; /* Number of variables, number of forces */
   double fu,fv,fw,fx;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
   double ftemp;  int npar=NPARMAX;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int nlstate=2; /* Number of live states */
   double e=0.0;  int ndeath=1; /* Number of dead states */
    int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   a=(ax < cx ? ax : cx);  int popbased=0;
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  int *wav; /* Number of waves for this individuual 0 is possible */
   fw=fv=fx=(*f)(x);  int maxwav=0; /* Maxim number of waves */
   for (iter=1;iter<=ITMAX;iter++) {  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     xm=0.5*(a+b);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/                     to the likelihood and the sum of weights (done by funcone)*/
     printf(".");fflush(stdout);  int mle=1, weightopt=0;
 #ifdef DEBUG  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #endif             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  double jmean=1; /* Mean space between 2 waves */
       *xmin=x;  double **oldm, **newm, **savm; /* Working pointers to matrices */
       return fx;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     }  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     ftemp=fu;  FILE *ficlog, *ficrespow;
     if (fabs(e) > tol1) {  int globpr=0; /* Global variable for printing or not */
       r=(x-w)*(fx-fv);  double fretone; /* Only one call to likelihood */
       q=(x-v)*(fx-fw);  long ipmx=0; /* Number of contributions */
       p=(x-v)*q-(x-w)*r;  double sw; /* Sum of weights */
       q=2.0*(q-r);  char filerespow[FILENAMELENGTH];
       if (q > 0.0) p = -p;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       q=fabs(q);  FILE *ficresilk;
       etemp=e;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       e=d;  FILE *ficresprobmorprev;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  FILE *fichtm, *fichtmcov; /* Html File */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  FILE *ficreseij;
       else {  char filerese[FILENAMELENGTH];
         d=p/q;  FILE *ficresstdeij;
         u=x+d;  char fileresstde[FILENAMELENGTH];
         if (u-a < tol2 || b-u < tol2)  FILE *ficrescveij;
           d=SIGN(tol1,xm-x);  char filerescve[FILENAMELENGTH];
       }  FILE  *ficresvij;
     } else {  char fileresv[FILENAMELENGTH];
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  FILE  *ficresvpl;
     }  char fileresvpl[FILENAMELENGTH];
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char title[MAXLINE];
     fu=(*f)(u);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     if (fu <= fx) {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       if (u >= x) a=x; else b=x;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       SHFT(v,w,x,u)  char command[FILENAMELENGTH];
         SHFT(fv,fw,fx,fu)  int  outcmd=0;
         } else {  
           if (u < x) a=u; else b=u;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
           if (fu <= fw || w == x) {  
             v=w;  char filelog[FILENAMELENGTH]; /* Log file */
             w=u;  char filerest[FILENAMELENGTH];
             fv=fw;  char fileregp[FILENAMELENGTH];
             fw=fu;  char popfile[FILENAMELENGTH];
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
             fv=fu;  
           }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
         }  struct timezone tzp;
   }  extern int gettimeofday();
   nrerror("Too many iterations in brent");  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   *xmin=x;  long time_value;
   return fx;  extern long time();
 }  char strcurr[80], strfor[80];
   
 /****************** mnbrak ***********************/  char *endptr;
   long lval;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  double dval;
             double (*func)(double))  
 {  #define NR_END 1
   double ulim,u,r,q, dum;  #define FREE_ARG char*
   double fu;  #define FTOL 1.0e-10
    
   *fa=(*func)(*ax);  #define NRANSI 
   *fb=(*func)(*bx);  #define ITMAX 200 
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  #define TOL 2.0e-4 
       SHFT(dum,*fb,*fa,dum)  
       }  #define CGOLD 0.3819660 
   *cx=(*bx)+GOLD*(*bx-*ax);  #define ZEPS 1.0e-10 
   *fc=(*func)(*cx);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  #define GOLD 1.618034 
     q=(*bx-*cx)*(*fb-*fa);  #define GLIMIT 100.0 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define TINY 1.0e-20 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  static double maxarg1,maxarg2;
     if ((*bx-u)*(u-*cx) > 0.0) {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       fu=(*func)(u);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     } else if ((*cx-u)*(u-ulim) > 0.0) {    
       fu=(*func)(u);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       if (fu < *fc) {  #define rint(a) floor(a+0.5)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  static double sqrarg;
           }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       u=ulim;  int agegomp= AGEGOMP;
       fu=(*func)(u);  
     } else {  int imx; 
       u=(*cx)+GOLD*(*cx-*bx);  int stepm=1;
       fu=(*func)(u);  /* Stepm, step in month: minimum step interpolation*/
     }  
     SHFT(*ax,*bx,*cx,u)  int estepm;
       SHFT(*fa,*fb,*fc,fu)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       }  
 }  int m,nb;
   long *num;
 /*************** linmin ************************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 int ncom;  double **pmmij, ***probs;
 double *pcom,*xicom;  double *ageexmed,*agecens;
 double (*nrfunc)(double []);  double dateintmean=0;
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  double *weight;
 {  int **s; /* Status */
   double brent(double ax, double bx, double cx,  double *agedc, **covar, idx;
                double (*f)(double), double tol, double *xmin);  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double f1dim(double x);  double *lsurv, *lpop, *tpop;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   int j;  double ftolhess; /* Tolerance for computing hessian */
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /**************** split *************************/
    static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   ncom=n;  {
   pcom=vector(1,n);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   xicom=vector(1,n);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   nrfunc=func;    */ 
   for (j=1;j<=n;j++) {    char  *ss;                            /* pointer */
     pcom[j]=p[j];    int   l1, l2;                         /* length counters */
     xicom[j]=xi[j];  
   }    l1 = strlen(path );                   /* length of path */
   ax=0.0;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   xx=1.0;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      strcpy( name, path );               /* we got the fullname name because no directory */
 #ifdef DEBUG      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 #endif      /* get current working directory */
   for (j=1;j<=n;j++) {      /*    extern  char* getcwd ( char *buf , int len);*/
     xi[j] *= xmin;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     p[j] += xi[j];        return( GLOCK_ERROR_GETCWD );
   }      }
   free_vector(xicom,1,n);      /* got dirc from getcwd*/
   free_vector(pcom,1,n);      printf(" DIRC = %s \n",dirc);
 }    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
 /*************** powell ************************/      l2 = strlen( ss );                  /* length of filename */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
             double (*func)(double []))      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   void linmin(double p[], double xi[], int n, double *fret,      dirc[l1-l2] = 0;                    /* add zero */
               double (*func)(double []));      printf(" DIRC2 = %s \n",dirc);
   int i,ibig,j;    }
   double del,t,*pt,*ptt,*xit;    /* We add a separator at the end of dirc if not exists */
   double fp,fptt;    l1 = strlen( dirc );                  /* length of directory */
   double *xits;    if( dirc[l1-1] != DIRSEPARATOR ){
   pt=vector(1,n);      dirc[l1] =  DIRSEPARATOR;
   ptt=vector(1,n);      dirc[l1+1] = 0; 
   xit=vector(1,n);      printf(" DIRC3 = %s \n",dirc);
   xits=vector(1,n);    }
   *fret=(*func)(p);    ss = strrchr( name, '.' );            /* find last / */
   for (j=1;j<=n;j++) pt[j]=p[j];    if (ss >0){
   for (*iter=1;;++(*iter)) {      ss++;
     fp=(*fret);      strcpy(ext,ss);                     /* save extension */
     ibig=0;      l1= strlen( name);
     del=0.0;      l2= strlen(ss)+1;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      strncpy( finame, name, l1-l2);
     for (i=1;i<=n;i++)      finame[l1-l2]= 0;
       printf(" %d %.12f",i, p[i]);    }
     printf("\n");  
     for (i=1;i<=n;i++) {    return( 0 );                          /* we're done */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  }
       fptt=(*fret);  
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  /******************************************/
 #endif  
       printf("%d",i);fflush(stdout);  void replace_back_to_slash(char *s, char*t)
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    int i;
         del=fabs(fptt-(*fret));    int lg=0;
         ibig=i;    i=0;
       }    lg=strlen(t);
 #ifdef DEBUG    for(i=0; i<= lg; i++) {
       printf("%d %.12e",i,(*fret));      (s[i] = t[i]);
       for (j=1;j<=n;j++) {      if (t[i]== '\\') s[i]='/';
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    }
         printf(" x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++)  char *trimbb(char *out, char *in)
         printf(" p=%.12e",p[j]);  { /* Trim multiple blanks in line */
       printf("\n");    char *s;
 #endif    s=out;
     }    while (*in != '\0'){
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
 #ifdef DEBUG        in++;
       int k[2],l;      }
       k[0]=1;      *out++ = *in++;
       k[1]=-1;    }
       printf("Max: %.12e",(*func)(p));    *out='\0';
       for (j=1;j<=n;j++)    return s;
         printf(" %.12e",p[j]);  }
       printf("\n");  
       for(l=0;l<=1;l++) {  int nbocc(char *s, char occ)
         for (j=1;j<=n;j++) {  {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    int i,j=0;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    int lg=20;
         }    i=0;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    lg=strlen(s);
       }    for(i=0; i<= lg; i++) {
 #endif    if  (s[i] == occ ) j++;
     }
     return j;
       free_vector(xit,1,n);  }
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  void cutv(char *u,char *v, char*t, char occ)
       free_vector(pt,1,n);  {
       return;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");       gives u="abcedf" and v="ghi2j" */
     for (j=1;j<=n;j++) {    int i,lg,j,p=0;
       ptt[j]=2.0*p[j]-pt[j];    i=0;
       xit[j]=p[j]-pt[j];    for(j=0; j<=strlen(t)-1; j++) {
       pt[j]=p[j];      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }    }
     fptt=(*func)(ptt);  
     if (fptt < fp) {    lg=strlen(t);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    for(j=0; j<p; j++) {
       if (t < 0.0) {      (u[j] = t[j]);
         linmin(p,xit,n,fret,func);    }
         for (j=1;j<=n;j++) {       u[p]='\0';
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];     for(j=0; j<= lg; j++) {
         }      if (j>=(p+1))(v[j-p-1] = t[j]);
 #ifdef DEBUG    }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /********************** nrerror ********************/
         printf("\n");  
 #endif  void nrerror(char error_text[])
       }  {
     }    fprintf(stderr,"ERREUR ...\n");
   }    fprintf(stderr,"%s\n",error_text);
 }    exit(EXIT_FAILURE);
   }
 /**** Prevalence limit ****************/  /*********************** vector *******************/
   double *vector(int nl, int nh)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  {
 {    double *v;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      matrix by transitions matrix until convergence is reached */    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
   int i, ii,j,k;  }
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  /************************ free vector ******************/
   double **out, cov[NCOVMAX], **pmij();  void free_vector(double*v, int nl, int nh)
   double **newm;  {
   double agefin, delaymax=50 ; /* Max number of years to converge */    free((FREE_ARG)(v+nl-NR_END));
   }
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /************************ivector *******************************/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  int *ivector(long nl,long nh)
     }  {
     int *v;
    cov[1]=1.;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      if (!v) nrerror("allocation failure in ivector");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    return v-nl+NR_END;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  }
     newm=savm;  
     /* Covariates have to be included here again */  /******************free ivector **************************/
      cov[2]=agefin;  void free_ivector(int *v, long nl, long nh)
    {
       for (k=1; k<=cptcovn;k++) {    free((FREE_ARG)(v+nl-NR_END));
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  /************************lvector *******************************/
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  long *lvector(long nl,long nh)
       for (k=1; k<=cptcovprod;k++)  {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    if (!v) nrerror("allocation failure in ivector");
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    return v-nl+NR_END;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /******************free lvector **************************/
     savm=oldm;  void free_lvector(long *v, long nl, long nh)
     oldm=newm;  {
     maxmax=0.;    free((FREE_ARG)(v+nl-NR_END));
     for(j=1;j<=nlstate;j++){  }
       min=1.;  
       max=0.;  /******************* imatrix *******************************/
       for(i=1; i<=nlstate; i++) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         sumnew=0;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  { 
         prlim[i][j]= newm[i][j]/(1-sumnew);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         max=FMAX(max,prlim[i][j]);    int **m; 
         min=FMIN(min,prlim[i][j]);    
       }    /* allocate pointers to rows */ 
       maxmin=max-min;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       maxmax=FMAX(maxmax,maxmin);    if (!m) nrerror("allocation failure 1 in matrix()"); 
     }    m += NR_END; 
     if(maxmax < ftolpl){    m -= nrl; 
       return prlim;    
     }    
   }    /* allocate rows and set pointers to them */ 
 }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 /*************** transition probabilities ***************/    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    
 {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double s1, s2;    
   /*double t34;*/    /* return pointer to array of pointers to rows */ 
   int i,j,j1, nc, ii, jj;    return m; 
   } 
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  /****************** free_imatrix *************************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  void free_imatrix(m,nrl,nrh,ncl,nch)
         /*s2 += param[i][j][nc]*cov[nc];*/        int **m;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        long nch,ncl,nrh,nrl; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/       /* free an int matrix allocated by imatrix() */ 
       }  { 
       ps[i][j]=s2;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    free((FREE_ARG) (m+nrl-NR_END)); 
     }  } 
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /******************* matrix *******************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  double **matrix(long nrl, long nrh, long ncl, long nch)
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  {
       }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       ps[i][j]=s2;    double **m;
     }  
   }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     /*ps[3][2]=1;*/    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
   for(i=1; i<= nlstate; i++){    m -= nrl;
      s1=0;  
     for(j=1; j<i; j++)    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       s1+=exp(ps[i][j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for(j=i+1; j<=nlstate+ndeath; j++)    m[nrl] += NR_END;
       s1+=exp(ps[i][j]);    m[nrl] -= ncl;
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    return m;
     for(j=i+1; j<=nlstate+ndeath; j++)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];     */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  }
   } /* end i */  
   /*************************free matrix ************************/
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
       ps[ii][jj]=0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       ps[ii][ii]=1;    free((FREE_ARG)(m+nrl-NR_END));
     }  }
   }  
   /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
      printf("%lf ",ps[ii][jj]);    double ***m;
    }  
     printf("\n ");    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
     printf("\n ");printf("%lf ",cov[2]);*/    m += NR_END;
 /*    m -= nrl;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     return ps;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 }    m[nrl] += NR_END;
     m[nrl] -= ncl;
 /**************** Product of 2 matrices ******************/  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    m[nrl][ncl] += NR_END;
   /* in, b, out are matrice of pointers which should have been initialized    m[nrl][ncl] -= nll;
      before: only the contents of out is modified. The function returns    for (j=ncl+1; j<=nch; j++) 
      a pointer to pointers identical to out */      m[nrl][j]=m[nrl][j-1]+nlay;
   long i, j, k;    
   for(i=nrl; i<= nrh; i++)    for (i=nrl+1; i<=nrh; i++) {
     for(k=ncolol; k<=ncoloh; k++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      for (j=ncl+1; j<=nch; j++) 
         out[i][k] +=in[i][j]*b[j][k];        m[i][j]=m[i][j-1]+nlay;
     }
   return out;    return m; 
 }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
 /************* Higher Matrix Product ***************/  }
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*************************free ma3x ************************/
 {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  {
      duration (i.e. until    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    free((FREE_ARG)(m+nrl-NR_END));
      (typically every 2 years instead of every month which is too big).  }
      Model is determined by parameters x and covariates have to be  
      included manually here.  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
      */  {
     /* Caution optionfilefiname is hidden */
   int i, j, d, h, k;    strcpy(tmpout,optionfilefiname);
   double **out, cov[NCOVMAX];    strcat(tmpout,"/"); /* Add to the right */
   double **newm;    strcat(tmpout,fileres);
     return tmpout;
   /* Hstepm could be zero and should return the unit matrix */  }
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  /*************** function subdirf2 ***********/
       oldm[i][j]=(i==j ? 1.0 : 0.0);  char *subdirf2(char fileres[], char *preop)
       po[i][j][0]=(i==j ? 1.0 : 0.0);  {
     }    
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* Caution optionfilefiname is hidden */
   for(h=1; h <=nhstepm; h++){    strcpy(tmpout,optionfilefiname);
     for(d=1; d <=hstepm; d++){    strcat(tmpout,"/");
       newm=savm;    strcat(tmpout,preop);
       /* Covariates have to be included here again */    strcat(tmpout,fileres);
       cov[1]=1.;    return tmpout;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  /*************** function subdirf3 ***********/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  char *subdirf3(char fileres[], char *preop, char *preop2)
       for (k=1; k<=cptcovprod;k++)  {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    strcat(tmpout,"/");
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    strcat(tmpout,preop);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    strcat(tmpout,preop2);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    strcat(tmpout,fileres);
       savm=oldm;    return tmpout;
       oldm=newm;  }
     }  
     for(i=1; i<=nlstate+ndeath; i++)  /***************** f1dim *************************/
       for(j=1;j<=nlstate+ndeath;j++) {  extern int ncom; 
         po[i][j][h]=newm[i][j];  extern double *pcom,*xicom;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  extern double (*nrfunc)(double []); 
          */   
       }  double f1dim(double x) 
   } /* end h */  { 
   return po;    int j; 
 }    double f;
     double *xt; 
    
 /*************** log-likelihood *************/    xt=vector(1,ncom); 
 double func( double *x)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 {    f=(*nrfunc)(xt); 
   int i, ii, j, k, mi, d, kk;    free_vector(xt,1,ncom); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    return f; 
   double **out;  } 
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  /*****************brent *************************/
   long ipmx;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   /*extern weight */  { 
   /* We are differentiating ll according to initial status */    int iter; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double a,b,d,etemp;
   /*for(i=1;i<imx;i++)    double fu,fv,fw,fx;
     printf(" %d\n",s[4][i]);    double ftemp;
   */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   cov[1]=1.;    double e=0.0; 
    
   for(k=1; k<=nlstate; k++) ll[k]=0.;    a=(ax < cx ? ax : cx); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    b=(ax > cx ? ax : cx); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    x=w=v=bx; 
     for(mi=1; mi<= wav[i]-1; mi++){    fw=fv=fx=(*f)(x); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    for (iter=1;iter<=ITMAX;iter++) { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      xm=0.5*(a+b); 
       for(d=0; d<dh[mi][i]; d++){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         newm=savm;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      printf(".");fflush(stdout);
         for (kk=1; kk<=cptcovage;kk++) {      fprintf(ficlog,".");fflush(ficlog);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #ifdef DEBUG
         }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
              fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
         savm=oldm;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         oldm=newm;        *xmin=x; 
                return fx; 
              } 
       } /* end mult */      ftemp=fu;
            if (fabs(e) > tol1) { 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        r=(x-w)*(fx-fv); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        q=(x-v)*(fx-fw); 
       ipmx +=1;        p=(x-v)*q-(x-w)*r; 
       sw += weight[i];        q=2.0*(q-r); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        if (q > 0.0) p = -p; 
     } /* end of wave */        q=fabs(q); 
   } /* end of individual */        etemp=e; 
         e=d; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        else { 
   return -l;          d=p/q; 
 }          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
 /*********** Maximum Likelihood Estimation ***************/        } 
       } else { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {      } 
   int i,j, iter;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double **xi,*delti;      fu=(*f)(u); 
   double fret;      if (fu <= fx) { 
   xi=matrix(1,npar,1,npar);        if (u >= x) a=x; else b=x; 
   for (i=1;i<=npar;i++)        SHFT(v,w,x,u) 
     for (j=1;j<=npar;j++)          SHFT(fv,fw,fx,fu) 
       xi[i][j]=(i==j ? 1.0 : 0.0);          } else { 
   printf("Powell\n");            if (u < x) a=u; else b=u; 
   powell(p,xi,npar,ftol,&iter,&fret,func);            if (fu <= fw || w == x) { 
               v=w; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));              w=u; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));              fv=fw; 
               fw=fu; 
 }            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
 /**** Computes Hessian and covariance matrix ***/              fv=fu; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            } 
 {          } 
   double  **a,**y,*x,pd;    } 
   double **hess;    nrerror("Too many iterations in brent"); 
   int i, j,jk;    *xmin=x; 
   int *indx;    return fx; 
   } 
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  /****************** mnbrak ***********************/
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
   hess=matrix(1,npar,1,npar);  { 
     double ulim,u,r,q, dum;
   printf("\nCalculation of the hessian matrix. Wait...\n");    double fu; 
   for (i=1;i<=npar;i++){   
     printf("%d",i);fflush(stdout);    *fa=(*func)(*ax); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    *fb=(*func)(*bx); 
     /*printf(" %f ",p[i]);*/    if (*fb > *fa) { 
     /*printf(" %lf ",hess[i][i]);*/      SHFT(dum,*ax,*bx,dum) 
   }        SHFT(dum,*fb,*fa,dum) 
          } 
   for (i=1;i<=npar;i++) {    *cx=(*bx)+GOLD*(*bx-*ax); 
     for (j=1;j<=npar;j++)  {    *fc=(*func)(*cx); 
       if (j>i) {    while (*fb > *fc) { 
         printf(".%d%d",i,j);fflush(stdout);      r=(*bx-*ax)*(*fb-*fc); 
         hess[i][j]=hessij(p,delti,i,j);      q=(*bx-*cx)*(*fb-*fa); 
         hess[j][i]=hess[i][j];          u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         /*printf(" %lf ",hess[i][j]);*/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     }      if ((*bx-u)*(u-*cx) > 0.0) { 
   }        fu=(*func)(u); 
   printf("\n");      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        if (fu < *fc) { 
            SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   a=matrix(1,npar,1,npar);            SHFT(*fb,*fc,fu,(*func)(u)) 
   y=matrix(1,npar,1,npar);            } 
   x=vector(1,npar);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   indx=ivector(1,npar);        u=ulim; 
   for (i=1;i<=npar;i++)        fu=(*func)(u); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      } else { 
   ludcmp(a,npar,indx,&pd);        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   for (j=1;j<=npar;j++) {      } 
     for (i=1;i<=npar;i++) x[i]=0;      SHFT(*ax,*bx,*cx,u) 
     x[j]=1;        SHFT(*fa,*fb,*fc,fu) 
     lubksb(a,npar,indx,x);        } 
     for (i=1;i<=npar;i++){  } 
       matcov[i][j]=x[i];  
     }  /*************** linmin ************************/
   }  
   int ncom; 
   printf("\n#Hessian matrix#\n");  double *pcom,*xicom;
   for (i=1;i<=npar;i++) {  double (*nrfunc)(double []); 
     for (j=1;j<=npar;j++) {   
       printf("%.3e ",hess[i][j]);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     }  { 
     printf("\n");    double brent(double ax, double bx, double cx, 
   }                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
   /* Recompute Inverse */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for (i=1;i<=npar;i++)                double *fc, double (*func)(double)); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    int j; 
   ludcmp(a,npar,indx,&pd);    double xx,xmin,bx,ax; 
     double fx,fb,fa;
   /*  printf("\n#Hessian matrix recomputed#\n");   
     ncom=n; 
   for (j=1;j<=npar;j++) {    pcom=vector(1,n); 
     for (i=1;i<=npar;i++) x[i]=0;    xicom=vector(1,n); 
     x[j]=1;    nrfunc=func; 
     lubksb(a,npar,indx,x);    for (j=1;j<=n;j++) { 
     for (i=1;i<=npar;i++){      pcom[j]=p[j]; 
       y[i][j]=x[i];      xicom[j]=xi[j]; 
       printf("%.3e ",y[i][j]);    } 
     }    ax=0.0; 
     printf("\n");    xx=1.0; 
   }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   free_matrix(a,1,npar,1,npar);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   free_matrix(y,1,npar,1,npar);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   free_vector(x,1,npar);  #endif
   free_ivector(indx,1,npar);    for (j=1;j<=n;j++) { 
   free_matrix(hess,1,npar,1,npar);      xi[j] *= xmin; 
       p[j] += xi[j]; 
     } 
 }    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
 /*************** hessian matrix ****************/  } 
 double hessii( double x[], double delta, int theta, double delti[])  
 {  char *asc_diff_time(long time_sec, char ascdiff[])
   int i;  {
   int l=1, lmax=20;    long sec_left, days, hours, minutes;
   double k1,k2;    days = (time_sec) / (60*60*24);
   double p2[NPARMAX+1];    sec_left = (time_sec) % (60*60*24);
   double res;    hours = (sec_left) / (60*60) ;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    sec_left = (sec_left) %(60*60);
   double fx;    minutes = (sec_left) /60;
   int k=0,kmax=10;    sec_left = (sec_left) % (60);
   double l1;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   fx=func(x);  }
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){  /*************** powell ************************/
     l1=pow(10,l);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     delts=delt;              double (*func)(double [])) 
     for(k=1 ; k <kmax; k=k+1){  { 
       delt = delta*(l1*k);    void linmin(double p[], double xi[], int n, double *fret, 
       p2[theta]=x[theta] +delt;                double (*func)(double [])); 
       k1=func(p2)-fx;    int i,ibig,j; 
       p2[theta]=x[theta]-delt;    double del,t,*pt,*ptt,*xit;
       k2=func(p2)-fx;    double fp,fptt;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double *xits;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    int niterf, itmp;
        
 #ifdef DEBUG    pt=vector(1,n); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    ptt=vector(1,n); 
 #endif    xit=vector(1,n); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    xits=vector(1,n); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    *fret=(*func)(p); 
         k=kmax;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       }    for (*iter=1;;++(*iter)) { 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      fp=(*fret); 
         k=kmax; l=lmax*10.;      ibig=0; 
       }      del=0.0; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      last_time=curr_time;
         delts=delt;      (void) gettimeofday(&curr_time,&tzp);
       }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   delti[theta]=delts;     for (i=1;i<=n;i++) {
   return res;        printf(" %d %.12f",i, p[i]);
          fprintf(ficlog," %d %.12lf",i, p[i]);
 }        fprintf(ficrespow," %.12lf", p[i]);
       }
 double hessij( double x[], double delti[], int thetai,int thetaj)      printf("\n");
 {      fprintf(ficlog,"\n");
   int i;      fprintf(ficrespow,"\n");fflush(ficrespow);
   int l=1, l1, lmax=20;      if(*iter <=3){
   double k1,k2,k3,k4,res,fx;        tm = *localtime(&curr_time.tv_sec);
   double p2[NPARMAX+1];        strcpy(strcurr,asctime(&tm));
   int k;  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
   fx=func(x);        itmp = strlen(strcurr);
   for (k=1; k<=2; k++) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     for (i=1;i<=npar;i++) p2[i]=x[i];          strcurr[itmp-1]='\0';
     p2[thetai]=x[thetai]+delti[thetai]/k;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     k1=func(p2)-fx;        for(niterf=10;niterf<=30;niterf+=10){
            forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     p2[thetai]=x[thetai]+delti[thetai]/k;          tmf = *localtime(&forecast_time.tv_sec);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*      asctime_r(&tmf,strfor); */
     k2=func(p2)-fx;          strcpy(strfor,asctime(&tmf));
            itmp = strlen(strfor);
     p2[thetai]=x[thetai]-delti[thetai]/k;          if(strfor[itmp-1]=='\n')
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          strfor[itmp-1]='\0';
     k3=func(p2)-fx;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
            fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      }
     k4=func(p2)-fx;      for (i=1;i<=n;i++) { 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 #ifdef DEBUG        fptt=(*fret); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  #ifdef DEBUG
 #endif        printf("fret=%lf \n",*fret);
   }        fprintf(ficlog,"fret=%lf \n",*fret);
   return res;  #endif
 }        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 /************** Inverse of matrix **************/        linmin(p,xit,n,fret,func); 
 void ludcmp(double **a, int n, int *indx, double *d)        if (fabs(fptt-(*fret)) > del) { 
 {          del=fabs(fptt-(*fret)); 
   int i,imax,j,k;          ibig=i; 
   double big,dum,sum,temp;        } 
   double *vv;  #ifdef DEBUG
          printf("%d %.12e",i,(*fret));
   vv=vector(1,n);        fprintf(ficlog,"%d %.12e",i,(*fret));
   *d=1.0;        for (j=1;j<=n;j++) {
   for (i=1;i<=n;i++) {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     big=0.0;          printf(" x(%d)=%.12e",j,xit[j]);
     for (j=1;j<=n;j++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       if ((temp=fabs(a[i][j])) > big) big=temp;        }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        for(j=1;j<=n;j++) {
     vv[i]=1.0/big;          printf(" p=%.12e",p[j]);
   }          fprintf(ficlog," p=%.12e",p[j]);
   for (j=1;j<=n;j++) {        }
     for (i=1;i<j;i++) {        printf("\n");
       sum=a[i][j];        fprintf(ficlog,"\n");
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  #endif
       a[i][j]=sum;      } 
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     big=0.0;  #ifdef DEBUG
     for (i=j;i<=n;i++) {        int k[2],l;
       sum=a[i][j];        k[0]=1;
       for (k=1;k<j;k++)        k[1]=-1;
         sum -= a[i][k]*a[k][j];        printf("Max: %.12e",(*func)(p));
       a[i][j]=sum;        fprintf(ficlog,"Max: %.12e",(*func)(p));
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for (j=1;j<=n;j++) {
         big=dum;          printf(" %.12e",p[j]);
         imax=i;          fprintf(ficlog," %.12e",p[j]);
       }        }
     }        printf("\n");
     if (j != imax) {        fprintf(ficlog,"\n");
       for (k=1;k<=n;k++) {        for(l=0;l<=1;l++) {
         dum=a[imax][k];          for (j=1;j<=n;j++) {
         a[imax][k]=a[j][k];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         a[j][k]=dum;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       *d = -(*d);          }
       vv[imax]=vv[j];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     indx[j]=imax;        }
     if (a[j][j] == 0.0) a[j][j]=TINY;  #endif
     if (j != n) {  
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        free_vector(xit,1,n); 
     }        free_vector(xits,1,n); 
   }        free_vector(ptt,1,n); 
   free_vector(vv,1,n);  /* Doesn't work */        free_vector(pt,1,n); 
 ;        return; 
 }      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 void lubksb(double **a, int n, int *indx, double b[])      for (j=1;j<=n;j++) { 
 {        ptt[j]=2.0*p[j]-pt[j]; 
   int i,ii=0,ip,j;        xit[j]=p[j]-pt[j]; 
   double sum;        pt[j]=p[j]; 
        } 
   for (i=1;i<=n;i++) {      fptt=(*func)(ptt); 
     ip=indx[i];      if (fptt < fp) { 
     sum=b[ip];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     b[ip]=b[i];        if (t < 0.0) { 
     if (ii)          linmin(p,xit,n,fret,func); 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          for (j=1;j<=n;j++) { 
     else if (sum) ii=i;            xi[j][ibig]=xi[j][n]; 
     b[i]=sum;            xi[j][n]=xit[j]; 
   }          }
   for (i=n;i>=1;i--) {  #ifdef DEBUG
     sum=b[i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     b[i]=sum/a[i][i];          for(j=1;j<=n;j++){
   }            printf(" %.12e",xit[j]);
 }            fprintf(ficlog," %.12e",xit[j]);
           }
 /************ Frequencies ********************/          printf("\n");
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          fprintf(ficlog,"\n");
 {  /* Some frequencies */  #endif
          }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      } 
   double ***freq; /* Frequencies */    } 
   double *pp;  } 
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;  /**** Prevalence limit (stable or period prevalence)  ****************/
   char fileresp[FILENAMELENGTH];  
    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   pp=vector(1,nlstate);  {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   strcpy(fileresp,"p");       matrix by transitions matrix until convergence is reached */
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {    int i, ii,j,k;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double min, max, maxmin, maxmax,sumnew=0.;
     exit(0);    double **matprod2();
   }    double **out, cov[NCOVMAX+1], **pmij();
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double **newm;
   j1=0;    double agefin, delaymax=50 ; /* Max number of years to converge */
    
   j=cptcoveff;    for (ii=1;ii<=nlstate+ndeath;ii++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for (j=1;j<=nlstate+ndeath;j++){
          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(k1=1; k1<=j;k1++){      }
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;     cov[1]=1.;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);   
         scanf("%d", i);*/   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (i=-1; i<=nlstate+ndeath; i++)      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         for (jk=-1; jk<=nlstate+ndeath; jk++)        newm=savm;
           for(m=agemin; m <= agemax+3; m++)      /* Covariates have to be included here again */
             freq[i][jk][m]=0;       cov[2]=agefin;
          
       dateintsum=0;        for (k=1; k<=cptcovn;k++) {
       k2cpt=0;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (i=1; i<=imx; i++) {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         bool=1;        }
         if  (cptcovn>0) {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (z1=1; z1<=cptcoveff; z1++)        for (k=1; k<=cptcovprod;k++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
               bool=0;  
         }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         if (bool==1) {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           for(m=firstpass; m<=lastpass; m++){        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
             k2=anint[m][i]+(mint[m][i]/12.);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;      savm=oldm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;      oldm=newm;
               if (m<lastpass) {      maxmax=0.;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for(j=1;j<=nlstate;j++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        min=1.;
               }        max=0.;
                      for(i=1; i<=nlstate; i++) {
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          sumnew=0;
                 dateintsum=dateintsum+k2;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
                 k2cpt++;          prlim[i][j]= newm[i][j]/(1-sumnew);
               }          max=FMAX(max,prlim[i][j]);
             }          min=FMIN(min,prlim[i][j]);
           }        }
         }        maxmin=max-min;
       }        maxmax=FMAX(maxmax,maxmin);
              }
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      if(maxmax < ftolpl){
         return prlim;
       if  (cptcovn>0) {      }
         fprintf(ficresp, "\n#********** Variable ");    }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  }
         fprintf(ficresp, "**********\n#");  
       }  /*************** transition probabilities ***************/ 
       for(i=1; i<=nlstate;i++)  
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       fprintf(ficresp, "\n");  {
          double s1, s2;
       for(i=(int)agemin; i <= (int)agemax+3; i++){    /*double t34;*/
         if(i==(int)agemax+3)    int i,j,j1, nc, ii, jj;
           printf("Total");  
         else      for(i=1; i<= nlstate; i++){
           printf("Age %d", i);        for(j=1; j<i;j++){
         for(jk=1; jk <=nlstate ; jk++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            /*s2 += param[i][j][nc]*cov[nc];*/
             pp[jk] += freq[jk][m][i];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=-1, pos=0; m <=0 ; m++)          ps[i][j]=s2;
             pos += freq[jk][m][i];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
           if(pp[jk]>=1.e-10)        }
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for(j=i+1; j<=nlstate+ndeath;j++){
           else          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           }
         for(jk=1; jk <=nlstate ; jk++){          ps[i][j]=s2;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        }
             pp[jk] += freq[jk][m][i];      }
         }      /*ps[3][2]=1;*/
       
         for(jk=1,pos=0; jk <=nlstate ; jk++)      for(i=1; i<= nlstate; i++){
           pos += pp[jk];        s1=0;
         for(jk=1; jk <=nlstate ; jk++){        for(j=1; j<i; j++){
           if(pos>=1.e-5)          s1+=exp(ps[i][j]);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           else        }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for(j=i+1; j<=nlstate+ndeath; j++){
           if( i <= (int) agemax){          s1+=exp(ps[i][j]);
             if(pos>=1.e-5){          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        }
               probs[i][jk][j1]= pp[jk]/pos;        ps[i][i]=1./(s1+1.);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        for(j=1; j<i; j++)
             }          ps[i][j]= exp(ps[i][j])*ps[i][i];
             else        for(j=i+1; j<=nlstate+ndeath; j++)
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          ps[i][j]= exp(ps[i][j])*ps[i][i];
           }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         }      } /* end i */
              
         for(jk=-1; jk <=nlstate+ndeath; jk++)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           for(m=-1; m <=nlstate+ndeath; m++)        for(jj=1; jj<= nlstate+ndeath; jj++){
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          ps[ii][jj]=0;
         if(i <= (int) agemax)          ps[ii][ii]=1;
           fprintf(ficresp,"\n");        }
         printf("\n");      }
       }      
     }  
   }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   dateintmean=dateintsum/k2cpt;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
    /*         printf("ddd %lf ",ps[ii][jj]); */
   fclose(ficresp);  /*       } */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*       printf("\n "); */
   free_vector(pp,1,nlstate);  /*        } */
    /*        printf("\n ");printf("%lf ",cov[2]); */
   /* End of Freq */         /*
 }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
 /************ Prevalence ********************/      return ps;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  }
 {  /* Some frequencies */  
    /**************** Product of 2 matrices ******************/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   double *pp;  {
   double pos, k2;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   pp=vector(1,nlstate);    /* in, b, out are matrice of pointers which should have been initialized 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       before: only the contents of out is modified. The function returns
         a pointer to pointers identical to out */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    long i, j, k;
   j1=0;    for(i=nrl; i<= nrh; i++)
        for(k=ncolol; k<=ncoloh; k++)
   j=cptcoveff;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          out[i][k] +=in[i][j]*b[j][k];
    
  for(k1=1; k1<=j;k1++){    return out;
     for(i1=1; i1<=ncodemax[k1];i1++){  }
       j1++;  
    
       for (i=-1; i<=nlstate+ndeath; i++)    /************* Higher Matrix Product ***************/
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             freq[i][jk][m]=0;  {
          /* Computes the transition matrix starting at age 'age' over 
       for (i=1; i<=imx; i++) {       'nhstepm*hstepm*stepm' months (i.e. until
         bool=1;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         if  (cptcovn>0) {       nhstepm*hstepm matrices. 
           for (z1=1; z1<=cptcoveff; z1++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       (typically every 2 years instead of every month which is too big 
               bool=0;       for the memory).
         }       Model is determined by parameters x and covariates have to be 
         if (bool==1) {       included manually here. 
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);       */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;    int i, j, d, h, k;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    double **out, cov[NCOVMAX+1];
               if (m<lastpass)    double **newm;
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  
               else    /* Hstepm could be zero and should return the unit matrix */
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    for (i=1;i<=nlstate+ndeath;i++)
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      for (j=1;j<=nlstate+ndeath;j++){
             }        oldm[i][j]=(i==j ? 1.0 : 0.0);
           }        po[i][j][0]=(i==j ? 1.0 : 0.0);
         }      }
       }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for(i=(int)agemin; i <= (int)agemax+3; i++){    for(h=1; h <=nhstepm; h++){
           for(jk=1; jk <=nlstate ; jk++){      for(d=1; d <=hstepm; d++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        newm=savm;
               pp[jk] += freq[jk][m][i];        /* Covariates have to be included here again */
           }        cov[1]=1.;
           for(jk=1; jk <=nlstate ; jk++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
             for(m=-1, pos=0; m <=0 ; m++)        for (k=1; k<=cptcovn;k++) 
             pos += freq[jk][m][i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         }        for (k=1; k<=cptcovage;k++)
                  cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovprod;k++)
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
              pp[jk] += freq[jk][m][i];  
          }  
                  /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
          for(jk=1; jk <=nlstate ; jk++){                               pmij(pmmij,cov,ncovmodel,x,nlstate));
            if( i <= (int) agemax){        savm=oldm;
              if(pos>=1.e-5){        oldm=newm;
                probs[i][jk][j1]= pp[jk]/pos;      }
              }      for(i=1; i<=nlstate+ndeath; i++)
            }        for(j=1;j<=nlstate+ndeath;j++) {
          }          po[i][j][h]=newm[i][j];
                    /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }        }
     }      /*printf("h=%d ",h);*/
   }    } /* end h */
   /*     printf("\n H=%d \n",h); */
      return po;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  }
   free_vector(pp,1,nlstate);  
    
 }  /* End of Freq */  /*************** log-likelihood *************/
   double func( double *x)
 /************* Waves Concatenation ***************/  {
     int i, ii, j, k, mi, d, kk;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 {    double **out;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double sw; /* Sum of weights */
      Death is a valid wave (if date is known).    double lli; /* Individual log likelihood */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    int s1, s2;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    double bbh, survp;
      and mw[mi+1][i]. dh depends on stepm.    long ipmx;
      */    /*extern weight */
     /* We are differentiating ll according to initial status */
   int i, mi, m;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /*for(i=1;i<imx;i++) 
      double sum=0., jmean=0.;*/      printf(" %d\n",s[4][i]);
     */
   int j, k=0,jk, ju, jl;    cov[1]=1.;
   double sum=0.;  
   jmin=1e+5;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   jmax=-1;  
   jmean=0.;    if(mle==1){
   for(i=1; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     mi=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     m=firstpass;        for(mi=1; mi<= wav[i]-1; mi++){
     while(s[m][i] <= nlstate){          for (ii=1;ii<=nlstate+ndeath;ii++)
       if(s[m][i]>=1)            for (j=1;j<=nlstate+ndeath;j++){
         mw[++mi][i]=m;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(m >=lastpass)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         break;            }
       else          for(d=0; d<dh[mi][i]; d++){
         m++;            newm=savm;
     }/* end while */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if (s[m][i] > nlstate){            for (kk=1; kk<=cptcovage;kk++) {
       mi++;     /* Death is another wave */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       /* if(mi==0)  never been interviewed correctly before death */            }
          /* Only death is a correct wave */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       mw[mi][i]=m;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
             oldm=newm;
     wav[i]=mi;          } /* end mult */
     if(mi==0)        
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   }          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
   for(i=1; i<=imx; i++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
     for(mi=1; mi<wav[i];mi++){           * the nearest (and in case of equal distance, to the lowest) interval but now
       if (stepm <=0)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         dh[mi][i]=1;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       else{           * probability in order to take into account the bias as a fraction of the way
         if (s[mw[mi+1][i]][i] > nlstate) {           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           if (agedc[i] < 2*AGESUP) {           * -stepm/2 to stepm/2 .
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);           * For stepm=1 the results are the same as for previous versions of Imach.
           if(j==0) j=1;  /* Survives at least one month after exam */           * For stepm > 1 the results are less biased than in previous versions. 
           k=k+1;           */
           if (j >= jmax) jmax=j;          s1=s[mw[mi][i]][i];
           if (j <= jmin) jmin=j;          s2=s[mw[mi+1][i]][i];
           sum=sum+j;          bbh=(double)bh[mi][i]/(double)stepm; 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          /* bias bh is positive if real duration
           }           * is higher than the multiple of stepm and negative otherwise.
         }           */
         else{          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          if( s2 > nlstate){ 
           k=k+1;            /* i.e. if s2 is a death state and if the date of death is known 
           if (j >= jmax) jmax=j;               then the contribution to the likelihood is the probability to 
           else if (j <= jmin)jmin=j;               die between last step unit time and current  step unit time, 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */               which is also equal to probability to die before dh 
           sum=sum+j;               minus probability to die before dh-stepm . 
         }               In version up to 0.92 likelihood was computed
         jk= j/stepm;          as if date of death was unknown. Death was treated as any other
         jl= j -jk*stepm;          health state: the date of the interview describes the actual state
         ju= j -(jk+1)*stepm;          and not the date of a change in health state. The former idea was
         if(jl <= -ju)          to consider that at each interview the state was recorded
           dh[mi][i]=jk;          (healthy, disable or death) and IMaCh was corrected; but when we
         else          introduced the exact date of death then we should have modified
           dh[mi][i]=jk+1;          the contribution of an exact death to the likelihood. This new
         if(dh[mi][i]==0)          contribution is smaller and very dependent of the step unit
           dh[mi][i]=1; /* At least one step */          stepm. It is no more the probability to die between last interview
       }          and month of death but the probability to survive from last
     }          interview up to one month before death multiplied by the
   }          probability to die within a month. Thanks to Chris
   jmean=sum/k;          Jackson for correcting this bug.  Former versions increased
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          mortality artificially. The bad side is that we add another loop
  }          which slows down the processing. The difference can be up to 10%
 /*********** Tricode ****************************/          lower mortality.
 void tricode(int *Tvar, int **nbcode, int imx)            */
 {            lli=log(out[s1][s2] - savm[s1][s2]);
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;  
   cptcoveff=0;          } else if  (s2==-2) {
              for (j=1,survp=0. ; j<=nlstate; j++) 
   for (k=0; k<19; k++) Ndum[k]=0;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (k=1; k<=7; k++) ncodemax[k]=0;            /*survp += out[s1][j]; */
             lli= log(survp);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          }
     for (i=1; i<=imx; i++) {          
       ij=(int)(covar[Tvar[j]][i]);          else if  (s2==-4) { 
       Ndum[ij]++;            for (j=3,survp=0. ; j<=nlstate; j++)  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       if (ij > cptcode) cptcode=ij;            lli= log(survp); 
     }          } 
   
     for (i=0; i<=cptcode; i++) {          else if  (s2==-5) { 
       if(Ndum[i]!=0) ncodemax[j]++;            for (j=1,survp=0. ; j<=2; j++)  
     }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     ij=1;            lli= log(survp); 
           } 
           
     for (i=1; i<=ncodemax[j]; i++) {          else{
       for (k=0; k<=19; k++) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         if (Ndum[k] != 0) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           nbcode[Tvar[j]][ij]=k;          } 
                    /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           ij++;          /*if(lli ==000.0)*/
         }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         if (ij > ncodemax[j]) break;          ipmx +=1;
       }            sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }          } /* end of wave */
       } /* end of individual */
  for (k=0; k<19; k++) Ndum[k]=0;    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  for (i=1; i<=ncovmodel-2; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       ij=Tvar[i];        for(mi=1; mi<= wav[i]-1; mi++){
       Ndum[ij]++;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  ij=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (i=1; i<=10; i++) {            }
    if((Ndum[i]!=0) && (i<=ncovcol)){          for(d=0; d<=dh[mi][i]; d++){
      Tvaraff[ij]=i;            newm=savm;
      ij++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    }            for (kk=1; kk<=cptcovage;kk++) {
  }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
     cptcoveff=ij-1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /*********** Health Expectancies ****************/            oldm=newm;
           } /* end mult */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        
           s1=s[mw[mi][i]][i];
 {          s2=s[mw[mi+1][i]][i];
   /* Health expectancies */          bbh=(double)bh[mi][i]/(double)stepm; 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double age, agelim, hf;          ipmx +=1;
   double ***p3mat,***varhe;          sw += weight[i];
   double **dnewm,**doldm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double *xp;        } /* end of wave */
   double **gp, **gm;      } /* end of individual */
   double ***gradg, ***trgradg;    }  else if(mle==3){  /* exponential inter-extrapolation */
   int theta;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        for(mi=1; mi<= wav[i]-1; mi++){
   xp=vector(1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
   dnewm=matrix(1,nlstate*2,1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   doldm=matrix(1,nlstate*2,1,nlstate*2);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Health expectancies\n");            }
   fprintf(ficreseij,"# Age");          for(d=0; d<dh[mi][i]; d++){
   for(i=1; i<=nlstate;i++)            newm=savm;
     for(j=1; j<=nlstate;j++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficreseij,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   if(estepm < stepm){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf ("Problem %d lower than %d\n",estepm, stepm);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   else  hstepm=estepm;              oldm=newm;
   /* We compute the life expectancy from trapezoids spaced every estepm months          } /* end mult */
    * This is mainly to measure the difference between two models: for example        
    * if stepm=24 months pijx are given only every 2 years and by summing them          s1=s[mw[mi][i]][i];
    * we are calculating an estimate of the Life Expectancy assuming a linear          s2=s[mw[mi+1][i]][i];
    * progression inbetween and thus overestimating or underestimating according          bbh=(double)bh[mi][i]/(double)stepm; 
    * to the curvature of the survival function. If, for the same date, we          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          ipmx +=1;
    * to compare the new estimate of Life expectancy with the same linear          sw += weight[i];
    * hypothesis. A more precise result, taking into account a more precise          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    * curvature will be obtained if estepm is as small as stepm. */        } /* end of wave */
       } /* end of individual */
   /* For example we decided to compute the life expectancy with the smallest unit */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      nhstepm is the number of hstepm from age to agelim        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      nstepm is the number of stepm from age to agelin.        for(mi=1; mi<= wav[i]-1; mi++){
      Look at hpijx to understand the reason of that which relies in memory size          for (ii=1;ii<=nlstate+ndeath;ii++)
      and note for a fixed period like estepm months */            for (j=1;j<=nlstate+ndeath;j++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      survival function given by stepm (the optimization length). Unfortunately it              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      means that if the survival funtion is printed only each two years of age and if            }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          for(d=0; d<dh[mi][i]; d++){
      results. So we changed our mind and took the option of the best precision.            newm=savm;
   */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   agelim=AGESUP;            }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          
     /* nhstepm age range expressed in number of stepm */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nstepm=(int) rint((agelim-age)*YEARM/stepm);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            savm=oldm;
     /* if (stepm >= YEARM) hstepm=1;*/            oldm=newm;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          } /* end mult */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          s1=s[mw[mi][i]][i];
     gp=matrix(0,nhstepm,1,nlstate*2);          s2=s[mw[mi+1][i]][i];
     gm=matrix(0,nhstepm,1,nlstate*2);          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          }else{
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            }
            ipmx +=1;
           sw += weight[i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     /* Computing Variances of health expectancies */        } /* end of wave */
       } /* end of individual */
      for(theta=1; theta <=npar; theta++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for(i=1; i<=npar; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
       cptj=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1; i<=nlstate; i++){            }
           cptj=cptj+1;          for(d=0; d<dh[mi][i]; d++){
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){            newm=savm;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
                
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=npar; i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            savm=oldm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              oldm=newm;
                } /* end mult */
       cptj=0;        
       for(j=1; j<= nlstate; j++){          s1=s[mw[mi][i]][i];
         for(i=1;i<=nlstate;i++){          s2=s[mw[mi+1][i]][i];
           cptj=cptj+1;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          ipmx +=1;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       }        } /* end of wave */
            } /* end of individual */
        } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(j=1; j<= nlstate*2; j++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(h=0; h<=nhstepm-1; h++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    return -l;
         }  }
   
      }  /*************** log-likelihood *************/
      double funcone( double *x)
 /* End theta */  {
     /* Same as likeli but slower because of a lot of printf and if */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      for(h=0; h<=nhstepm-1; h++)    double **out;
       for(j=1; j<=nlstate*2;j++)    double lli; /* Individual log likelihood */
         for(theta=1; theta <=npar; theta++)    double llt;
         trgradg[h][j][theta]=gradg[h][theta][j];    int s1, s2;
     double bbh, survp;
     /*extern weight */
      for(i=1;i<=nlstate*2;i++)    /* We are differentiating ll according to initial status */
       for(j=1;j<=nlstate*2;j++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         varhe[i][j][(int)age] =0.;    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     for(h=0;h<=nhstepm-1;h++){    */
       for(k=0;k<=nhstepm-1;k++){    cov[1]=1.;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
         for(i=1;i<=nlstate*2;i++)  
           for(j=1;j<=nlstate*2;j++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }      for(mi=1; mi<= wav[i]-1; mi++){
     }        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* Computing expectancies */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1; i<=nlstate;i++)          }
       for(j=1; j<=nlstate;j++)        for(d=0; d<dh[mi][i]; d++){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          newm=savm;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
         }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficreseij,"%3.0f",age );          savm=oldm;
     cptj=0;          oldm=newm;
     for(i=1; i<=nlstate;i++)        } /* end mult */
       for(j=1; j<=nlstate;j++){        
         cptj++;        s1=s[mw[mi][i]][i];
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        s2=s[mw[mi+1][i]][i];
       }        bbh=(double)bh[mi][i]/(double)stepm; 
     fprintf(ficreseij,"\n");        /* bias is positive if real duration
             * is higher than the multiple of stepm and negative otherwise.
     free_matrix(gm,0,nhstepm,1,nlstate*2);         */
     free_matrix(gp,0,nhstepm,1,nlstate*2);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          lli=log(out[s1][s2] - savm[s1][s2]);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        } else if  (s2==-2) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (j=1,survp=0. ; j<=nlstate; j++) 
   }            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   free_vector(xp,1,npar);          lli= log(survp);
   free_matrix(dnewm,1,nlstate*2,1,npar);        }else if (mle==1){
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        } else if(mle==2){
 }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
 /************ Variance ******************/          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
 {          lli=log(out[s1][s2]); /* Original formula */
   /* Variance of health expectancies */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          lli=log(out[s1][s2]); /* Original formula */
   double **newm;        } /* End of if */
   double **dnewm,**doldm;        ipmx +=1;
   int i, j, nhstepm, hstepm, h, nstepm ;        sw += weight[i];
   int k, cptcode;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double *xp;        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double **gp, **gm;        if(globpr){
   double ***gradg, ***trgradg;          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   double ***p3mat;   %11.6f %11.6f %11.6f ", \
   double age,agelim, hf;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   int theta;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
    fprintf(ficresvij,"# Covariances of life expectancies\n");            llt +=ll[k]*gipmx/gsw;
   fprintf(ficresvij,"# Age");            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   for(i=1; i<=nlstate;i++)          }
     for(j=1; j<=nlstate;j++)          fprintf(ficresilk," %10.6f\n", -llt);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        }
   fprintf(ficresvij,"\n");      } /* end of wave */
     } /* end of individual */
   xp=vector(1,npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   dnewm=matrix(1,nlstate,1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   doldm=matrix(1,nlstate,1,nlstate);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      if(globpr==0){ /* First time we count the contributions and weights */
   if(estepm < stepm){      gipmx=ipmx;
     printf ("Problem %d lower than %d\n",estepm, stepm);      gsw=sw;
   }    }
   else  hstepm=estepm;      return -l;
   /* For example we decided to compute the life expectancy with the smallest unit */  }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  /*************** function likelione ***********/
      Look at hpijx to understand the reason of that which relies in memory size  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      and note for a fixed period like k years */  {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* This routine should help understanding what is done with 
      survival function given by stepm (the optimization length). Unfortunately it       the selection of individuals/waves and
      means that if the survival funtion is printed only each two years of age and if       to check the exact contribution to the likelihood.
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       Plotting could be done.
      results. So we changed our mind and took the option of the best precision.     */
   */    int k;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
   agelim = AGESUP;    if(*globpri !=0){ /* Just counts and sums, no printings */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      strcpy(fileresilk,"ilk"); 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      strcat(fileresilk,fileres);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("Problem with resultfile: %s\n", fileresilk);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     gp=matrix(0,nhstepm,1,nlstate);      }
     gm=matrix(0,nhstepm,1,nlstate);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     for(theta=1; theta <=npar; theta++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(i=1; i<=npar; i++){ /* Computes gradient */      for(k=1; k<=nlstate; k++) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
     *fretone=(*funcone)(p);
       if (popbased==1) {    if(*globpri !=0){
         for(i=1; i<=nlstate;i++)      fclose(ficresilk);
           prlim[i][i]=probs[(int)age][i][ij];      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       }      fflush(fichtm); 
      } 
       for(j=1; j<= nlstate; j++){    return;
         for(h=0; h<=nhstepm; h++){  }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  /*********** Maximum Likelihood Estimation ***************/
       }  
      void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for(i=1; i<=npar; i++) /* Computes gradient */  {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i,j, iter;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double **xi;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double fret;
      double fretone; /* Only one call to likelihood */
       if (popbased==1) {    /*  char filerespow[FILENAMELENGTH];*/
         for(i=1; i<=nlstate;i++)    xi=matrix(1,npar,1,npar);
           prlim[i][i]=probs[(int)age][i][ij];    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         for(h=0; h<=nhstepm; h++){    strcpy(filerespow,"pow"); 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    strcat(filerespow,fileres);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", filerespow);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
       for(j=1; j<= nlstate; j++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         for(h=0; h<=nhstepm; h++){    for (i=1;i<=nlstate;i++)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for(j=1;j<=nlstate+ndeath;j++)
         }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     } /* End theta */    fprintf(ficrespow,"\n");
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    powell(p,xi,npar,ftol,&iter,&fret,func);
   
     for(h=0; h<=nhstepm; h++)    free_matrix(xi,1,npar,1,npar);
       for(j=1; j<=nlstate;j++)    fclose(ficrespow);
         for(theta=1; theta <=npar; theta++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           trgradg[h][j][theta]=gradg[h][theta][j];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)  }
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     for(h=0;h<=nhstepm;h++){  {
       for(k=0;k<=nhstepm;k++){    double  **a,**y,*x,pd;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double **hess;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    int i, j,jk;
         for(i=1;i<=nlstate;i++)    int *indx;
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     }    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
     fprintf(ficresvij,"%.0f ",age );    double gompertz(double p[]);
     for(i=1; i<=nlstate;i++)    hess=matrix(1,npar,1,npar);
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    printf("\nCalculation of the hessian matrix. Wait...\n");
       }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficresvij,"\n");    for (i=1;i<=npar;i++){
     free_matrix(gp,0,nhstepm,1,nlstate);      printf("%d",i);fflush(stdout);
     free_matrix(gm,0,nhstepm,1,nlstate);      fprintf(ficlog,"%d",i);fflush(ficlog);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);     
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
   } /* End age */      /*  printf(" %f ",p[i]);
            printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   free_vector(xp,1,npar);    }
   free_matrix(doldm,1,nlstate,1,npar);    
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
 }        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
 /************ Variance of prevlim ******************/          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          hess[i][j]=hessij(p,delti,i,j,func,npar);
 {          
   /* Variance of prevalence limit */          hess[j][i]=hess[i][j];    
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          /*printf(" %lf ",hess[i][j]);*/
   double **newm;        }
   double **dnewm,**doldm;      }
   int i, j, nhstepm, hstepm;    }
   int k, cptcode;    printf("\n");
   double *xp;    fprintf(ficlog,"\n");
   double *gp, *gm;  
   double **gradg, **trgradg;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   double age,agelim;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   int theta;    
        a=matrix(1,npar,1,npar);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    y=matrix(1,npar,1,npar);
   fprintf(ficresvpl,"# Age");    x=vector(1,npar);
   for(i=1; i<=nlstate;i++)    indx=ivector(1,npar);
       fprintf(ficresvpl," %1d-%1d",i,i);    for (i=1;i<=npar;i++)
   fprintf(ficresvpl,"\n");      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    for (j=1;j<=npar;j++) {
   doldm=matrix(1,nlstate,1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
   hstepm=1*YEARM; /* Every year of age */      lubksb(a,npar,indx,x);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (i=1;i<=npar;i++){ 
   agelim = AGESUP;        matcov[i][j]=x[i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    printf("\n#Hessian matrix#\n");
     gradg=matrix(1,npar,1,nlstate);    fprintf(ficlog,"\n#Hessian matrix#\n");
     gp=vector(1,nlstate);    for (i=1;i<=npar;i++) { 
     gm=vector(1,nlstate);      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
     for(theta=1; theta <=npar; theta++){        fprintf(ficlog,"%.3e ",hess[i][j]);
       for(i=1; i<=npar; i++){ /* Computes gradient */      }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf("\n");
       }      fprintf(ficlog,"\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];    /* Recompute Inverse */
        for (i=1;i<=npar;i++)
       for(i=1; i<=npar; i++) /* Computes gradient */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    ludcmp(a,npar,indx,&pd);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    /*  printf("\n#Hessian matrix recomputed#\n");
         gm[i] = prlim[i][i];  
     for (j=1;j<=npar;j++) {
       for(i=1;i<=nlstate;i++)      for (i=1;i<=npar;i++) x[i]=0;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      x[j]=1;
     } /* End theta */      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
     trgradg =matrix(1,nlstate,1,npar);        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
     for(j=1; j<=nlstate;j++)        fprintf(ficlog,"%.3e ",y[i][j]);
       for(theta=1; theta <=npar; theta++)      }
         trgradg[j][theta]=gradg[theta][j];      printf("\n");
       fprintf(ficlog,"\n");
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] =0.;    */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    free_matrix(a,1,npar,1,npar);
     for(i=1;i<=nlstate;i++)    free_matrix(y,1,npar,1,npar);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
     fprintf(ficresvpl,"%.0f ",age );    free_matrix(hess,1,npar,1,npar);
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");  }
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);  /*************** hessian matrix ****************/
     free_matrix(gradg,1,npar,1,nlstate);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     free_matrix(trgradg,1,nlstate,1,npar);  {
   } /* End age */    int i;
     int l=1, lmax=20;
   free_vector(xp,1,npar);    double k1,k2;
   free_matrix(doldm,1,nlstate,1,npar);    double p2[MAXPARM+1]; /* identical to x */
   free_matrix(dnewm,1,nlstate,1,nlstate);    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 }    double fx;
     int k=0,kmax=10;
 /************ Variance of one-step probabilities  ******************/    double l1;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {    fx=func(x);
   int i, j, i1, k1, j1, z1;    for (i=1;i<=npar;i++) p2[i]=x[i];
   int k=0, cptcode;    for(l=0 ; l <=lmax; l++){
   double **dnewm,**doldm;      l1=pow(10,l);
   double *xp;      delts=delt;
   double *gp, *gm;      for(k=1 ; k <kmax; k=k+1){
   double **gradg, **trgradg;        delt = delta*(l1*k);
   double age,agelim, cov[NCOVMAX];        p2[theta]=x[theta] +delt;
   int theta;        k1=func(p2)-fx;
   char fileresprob[FILENAMELENGTH];        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
   strcpy(fileresprob,"prob");        /*res= (k1-2.0*fx+k2)/delt/delt; */
   strcat(fileresprob,fileres);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        
     printf("Problem with resultfile: %s\n", fileresprob);  #ifdef DEBUGHESS
   }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
    #endif
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   fprintf(ficresprob,"# Age");        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   for(i=1; i<=nlstate;i++)          k=kmax;
     for(j=1; j<=(nlstate+ndeath);j++)        }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
         }
   fprintf(ficresprob,"\n");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
         }
   xp=vector(1,npar);      }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    }
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    delti[theta]=delts;
      return res; 
   cov[1]=1;    
   j=cptcoveff;  }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
   j1=0;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   for(k1=1; k1<=1;k1++){  {
     for(i1=1; i1<=ncodemax[k1];i1++){    int i;
     j1++;    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
     if  (cptcovn>0) {    double p2[MAXPARM+1];
       fprintf(ficresprob, "\n#********** Variable ");    int k;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(ficresprob, "**********\n#");    fx=func(x);
     }    for (k=1; k<=2; k++) {
          for (i=1;i<=npar;i++) p2[i]=x[i];
       for (age=bage; age<=fage; age ++){      p2[thetai]=x[thetai]+delti[thetai]/k;
         cov[2]=age;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         for (k=1; k<=cptcovn;k++) {      k1=func(p2)-fx;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    
                p2[thetai]=x[thetai]+delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      k2=func(p2)-fx;
         for (k=1; k<=cptcovprod;k++)    
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      p2[thetai]=x[thetai]-delti[thetai]/k;
              p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         gradg=matrix(1,npar,1,9);      k3=func(p2)-fx;
         trgradg=matrix(1,9,1,npar);    
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      p2[thetai]=x[thetai]-delti[thetai]/k;
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
          k4=func(p2)-fx;
         for(theta=1; theta <=npar; theta++){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           for(i=1; i<=npar; i++)  #ifdef DEBUG
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  #endif
              }
           k=0;    return res;
           for(i=1; i<= (nlstate+ndeath); i++){  }
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;  /************** Inverse of matrix **************/
               gp[k]=pmmij[i][j];  void ludcmp(double **a, int n, int *indx, double *d) 
             }  { 
           }    int i,imax,j,k; 
              double big,dum,sum,temp; 
           for(i=1; i<=npar; i++)    double *vv; 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);   
        vv=vector(1,n); 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    *d=1.0; 
           k=0;    for (i=1;i<=n;i++) { 
           for(i=1; i<=(nlstate+ndeath); i++){      big=0.0; 
             for(j=1; j<=(nlstate+ndeath);j++){      for (j=1;j<=n;j++) 
               k=k+1;        if ((temp=fabs(a[i][j])) > big) big=temp; 
               gm[k]=pmmij[i][j];      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
             }      vv[i]=1.0/big; 
           }    } 
          for (j=1;j<=n;j++) { 
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      for (i=1;i<j;i++) { 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          sum=a[i][j]; 
         }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      } 
           for(theta=1; theta <=npar; theta++)      big=0.0; 
             trgradg[j][theta]=gradg[theta][j];      for (i=j;i<=n;i++) { 
                sum=a[i][j]; 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        for (k=1;k<j;k++) 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          sum -= a[i][k]*a[k][j]; 
                a[i][j]=sum; 
         pmij(pmmij,cov,ncovmodel,x,nlstate);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
                  big=dum; 
         k=0;          imax=i; 
         for(i=1; i<=(nlstate+ndeath); i++){        } 
           for(j=1; j<=(nlstate+ndeath);j++){      } 
             k=k+1;      if (j != imax) { 
             gm[k]=pmmij[i][j];        for (k=1;k<=n;k++) { 
           }          dum=a[imax][k]; 
         }          a[imax][k]=a[j][k]; 
                a[j][k]=dum; 
      /*printf("\n%d ",(int)age);        } 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        *d = -(*d); 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        vv[imax]=vv[j]; 
      }*/      } 
       indx[j]=imax; 
         fprintf(ficresprob,"\n%d ",(int)age);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)        dum=1.0/(a[j][j]); 
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
        } 
       }    } 
     }    free_vector(vv,1,n);  /* Doesn't work */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  ;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  } 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  void lubksb(double **a, int n, int *indx, double b[]) 
   }  { 
   free_vector(xp,1,npar);    int i,ii=0,ip,j; 
   fclose(ficresprob);    double sum; 
     
 }    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
 /******************* Printing html file ***********/      sum=b[ip]; 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      b[ip]=b[i]; 
  int lastpass, int stepm, int weightopt, char model[],\      if (ii) 
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\      else if (sum) ii=i; 
  char version[], int popforecast, int estepm ){      b[i]=sum; 
   int jj1, k1, i1, cpt;    } 
   FILE *fichtm;    for (i=n;i>=1;i--) { 
   /*char optionfilehtm[FILENAMELENGTH];*/      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   strcpy(optionfilehtm,optionfile);      b[i]=sum/a[i][i]; 
   strcat(optionfilehtm,".htm");    } 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  } 
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }  void pstamp(FILE *fichier)
   {
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  }
 \n  
 Total number of observations=%d <br>\n  /************ Frequencies ********************/
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 <hr  size=\"2\" color=\"#EC5E5E\">  {  /* Some frequencies */
  <ul><li>Outputs files<br>\n    
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    int i, m, jk, k1,i1, j1, bool, z1,j;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    int first;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    double ***freq; /* Frequencies */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    double *pp, **prop;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    double pos,posprop, k2, dateintsum=0,k2cpt=0;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    char fileresp[FILENAMELENGTH];
     
  fprintf(fichtm,"\n    pp=vector(1,nlstate);
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    prop=matrix(1,nlstate,iagemin,iagemax+3);
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    strcpy(fileresp,"p");
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    strcat(fileresp,fileres);
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    if((ficresp=fopen(fileresp,"w"))==NULL) {
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
  if(popforecast==1) fprintf(fichtm,"\n      exit(0);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         <br>",fileres,fileres,fileres,fileres);    j1=0;
  else    
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    j=cptcoveff;
 fprintf(fichtm," <li>Graphs</li><p>");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
  m=cptcoveff;    first=1;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
     for(k1=1; k1<=j;k1++){
  jj1=0;      for(i1=1; i1<=ncodemax[k1];i1++){
  for(k1=1; k1<=m;k1++){        j1++;
    for(i1=1; i1<=ncodemax[k1];i1++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
        jj1++;          scanf("%d", i);*/
        if (cptcovn > 0) {        for (i=-5; i<=nlstate+ndeath; i++)  
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
          for (cpt=1; cpt<=cptcoveff;cpt++)            for(m=iagemin; m <= iagemax+3; m++)
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              freq[i][jk][m]=0;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
        }      for (i=1; i<=nlstate; i++)  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        for(m=iagemin; m <= iagemax+3; m++)
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              prop[i][m]=0;
        for(cpt=1; cpt<nlstate;cpt++){        
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        dateintsum=0;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        k2cpt=0;
        }        for (i=1; i<=imx; i++) {
     for(cpt=1; cpt<=nlstate;cpt++) {          bool=1;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          if  (cptcovn>0) {
 interval) in state (%d): v%s%d%d.gif <br>            for (z1=1; z1<=cptcoveff; z1++) 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      }                bool=0;
      for(cpt=1; cpt<=nlstate;cpt++) {          }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          if (bool==1){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            for(m=firstpass; m<=lastpass; m++){
      }              k2=anint[m][i]+(mint[m][i]/12.);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 health expectancies in states (1) and (2): e%s%d.gif<br>                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 fprintf(fichtm,"\n</body>");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
    }                if (m<lastpass) {
    }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 fclose(fichtm);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 }                }
                 
 /******************* Gnuplot file **************/                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                  dateintsum=dateintsum+k2;
                   k2cpt++;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                }
                 /*}*/
   strcpy(optionfilegnuplot,optionfilefiname);            }
   strcat(optionfilegnuplot,".gp.txt");          }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        }
     printf("Problem with file %s",optionfilegnuplot);         
   }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
 #ifdef windows        if  (cptcovn>0) {
     fprintf(ficgp,"cd \"%s\" \n",pathc);          fprintf(ficresp, "\n#********** Variable "); 
 #endif          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 m=pow(2,cptcoveff);          fprintf(ficresp, "**********\n#");
          }
  /* 1eme*/        for(i=1; i<=nlstate;i++) 
   for (cpt=1; cpt<= nlstate ; cpt ++) {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
    for (k1=1; k1<= m ; k1 ++) {        fprintf(ficresp, "\n");
         
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
 for (i=1; i<= nlstate ; i ++) {            fprintf(ficlog,"Total");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(first==1){
 }              first=0;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              printf("See log file for details...\n");
     for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            fprintf(ficlog,"Age %d", i);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
      for (i=1; i<= nlstate ; i ++) {              pp[jk] += freq[jk][m][i]; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=1; jk <=nlstate ; jk++){
 }              for(m=-1, pos=0; m <=0 ; m++)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              if(first==1){
    }                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   }              }
   /*2 eme*/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
   for (k1=1; k1<= m ; k1 ++) {              if(first==1)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                  fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for (i=1; i<= nlstate+1 ; i ++) {            }
       k=2*i;          }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {          for(jk=1; jk <=nlstate ; jk++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              pp[jk] += freq[jk][m][i];
 }            }       
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            pos += pp[jk];
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            posprop += prop[jk][i];
       for (j=1; j<= nlstate+1 ; j ++) {          }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for(jk=1; jk <=nlstate ; jk++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");            if(pos>=1.e-5){
 }                if(first==1)
       fprintf(ficgp,"\" t\"\" w l 0,");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for (j=1; j<= nlstate+1 ; j ++) {            }else{
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              if(first==1)
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 }                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            }
       else fprintf(ficgp,"\" t\"\" w l 0,");            if( i <= iagemax){
     }              if(pos>=1.e-5){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   }                /*probs[i][jk][j1]= pp[jk]/pos;*/
                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   /*3eme*/              }
               else
   for (k1=1; k1<= m ; k1 ++) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     for (cpt=1; cpt<= nlstate ; cpt ++) {            }
       k=2+nlstate*(2*cpt-2);          }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          for(jk=-1; jk <=nlstate+ndeath; jk++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            for(m=-1; m <=nlstate+ndeath; m++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              if(freq[jk][m][i] !=0 ) {
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              if(first==1)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
 */          if(i <= iagemax)
       for (i=1; i< nlstate ; i ++) {            fprintf(ficresp,"\n");
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          if(first==1)
             printf("Others in log...\n");
       }          fprintf(ficlog,"\n");
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        }
     }      }
     }    }
      dateintmean=dateintsum/k2cpt; 
   /* CV preval stat */   
     for (k1=1; k1<= m ; k1 ++) {    fclose(ficresp);
     for (cpt=1; cpt<nlstate ; cpt ++) {    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       k=3;    free_vector(pp,1,nlstate);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
       for (i=1; i< nlstate ; i ++)  }
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  /************ Prevalence ********************/
        void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       l=3+(nlstate+ndeath)*cpt;  {  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       for (i=1; i< nlstate ; i ++) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
         l=3+(nlstate+ndeath)*cpt;       We still use firstpass and lastpass as another selection.
         fprintf(ficgp,"+$%d",l+i+1);    */
       }   
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      int i, m, jk, k1, i1, j1, bool, z1,j;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    double ***freq; /* Frequencies */
     }    double *pp, **prop;
   }      double pos,posprop; 
      double  y2; /* in fractional years */
   /* proba elementaires */    int iagemin, iagemax;
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){    iagemin= (int) agemin;
       if (k != i) {    iagemax= (int) agemax;
         for(j=1; j <=ncovmodel; j++){    /*pp=vector(1,nlstate);*/
            prop=matrix(1,nlstate,iagemin,iagemax+3); 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           jk++;    j1=0;
           fprintf(ficgp,"\n");    
         }    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     }    
     }    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
     for(jk=1; jk <=m; jk++) {        j1++;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        
    i=1;        for (i=1; i<=nlstate; i++)  
    for(k2=1; k2<=nlstate; k2++) {          for(m=iagemin; m <= iagemax+3; m++)
      k3=i;            prop[i][m]=0.0;
      for(k=1; k<=(nlstate+ndeath); k++) {       
        if (k != k2){        for (i=1; i<=imx; i++) { /* Each individual */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          bool=1;
 ij=1;          if  (cptcovn>0) {
         for(j=3; j <=ncovmodel; j++) {            for (z1=1; z1<=cptcoveff; z1++) 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                bool=0;
             ij++;          } 
           }          if (bool==1) { 
           else            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           fprintf(ficgp,")/(1");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                        if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for(k1=1; k1 <=nlstate; k1++){                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 ij=1;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           for(j=3; j <=ncovmodel; j++){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                } 
             ij++;              }
           }            } /* end selection of waves */
           else          }
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }
           }        for(i=iagemin; i <= iagemax+3; i++){  
           fprintf(ficgp,")");          
         }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            posprop += prop[jk][i]; 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          } 
         i=i+ncovmodel;  
        }          for(jk=1; jk <=nlstate ; jk++){     
      }            if( i <=  iagemax){ 
    }              if(posprop>=1.e-5){ 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);                probs[i][jk][j1]= prop[jk][i]/posprop;
    }              } else
                    printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
   fclose(ficgp);            } 
 }  /* end gnuplot */          }/* end jk */ 
         }/* end i */ 
       } /* end i1 */
 /*************** Moving average **************/    } /* end k1 */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   int i, cpt, cptcod;    /*free_vector(pp,1,nlstate);*/
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       for (i=1; i<=nlstate;i++)  }  /* End of prevalence */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;  /************* Waves Concatenation ***************/
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       for (i=1; i<=nlstate;i++){  {
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           for (cpt=0;cpt<=4;cpt++){       Death is a valid wave (if date is known).
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;       and mw[mi+1][i]. dh depends on stepm.
         }       */
       }  
     }    int i, mi, m;
        /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 }       double sum=0., jmean=0.;*/
     int first;
     int j, k=0,jk, ju, jl;
 /************** Forecasting ******************/    double sum=0.;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    first=0;
      jmin=1e+5;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    jmax=-1;
   int *popage;    jmean=0.;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    for(i=1; i<=imx; i++){
   double *popeffectif,*popcount;      mi=0;
   double ***p3mat;      m=firstpass;
   char fileresf[FILENAMELENGTH];      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
  agelim=AGESUP;          mw[++mi][i]=m;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        if(m >=lastpass)
           break;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        else
            m++;
        }/* end while */
   strcpy(fileresf,"f");      if (s[m][i] > nlstate){
   strcat(fileresf,fileres);        mi++;     /* Death is another wave */
   if((ficresf=fopen(fileresf,"w"))==NULL) {        /* if(mi==0)  never been interviewed correctly before death */
     printf("Problem with forecast resultfile: %s\n", fileresf);           /* Only death is a correct wave */
   }        mw[mi][i]=m;
   printf("Computing forecasting: result on file '%s' \n", fileresf);      }
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      wav[i]=mi;
       if(mi==0){
   if (mobilav==1) {        nbwarn++;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if(first==0){
     movingaverage(agedeb, fage, ageminpar, mobaverage);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   }          first=1;
         }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        if(first==1){
   if (stepm<=12) stepsize=1;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
          }
   agelim=AGESUP;      } /* end mi==0 */
      } /* End individuals */
   hstepm=1;  
   hstepm=hstepm/stepm;    for(i=1; i<=imx; i++){
   yp1=modf(dateintmean,&yp);      for(mi=1; mi<wav[i];mi++){
   anprojmean=yp;        if (stepm <=0)
   yp2=modf((yp1*12),&yp);          dh[mi][i]=1;
   mprojmean=yp;        else{
   yp1=modf((yp2*30.5),&yp);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   jprojmean=yp;            if (agedc[i] < 2*AGESUP) {
   if(jprojmean==0) jprojmean=1;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   if(mprojmean==0) jprojmean=1;              if(j==0) j=1;  /* Survives at least one month after exam */
                else if(j<0){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);                nberr++;
                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for(cptcov=1;cptcov<=i2;cptcov++){                j=1; /* Temporary Dangerous patch */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       k=k+1;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficresf,"\n#******");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for(j=1;j<=cptcoveff;j++) {              }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              k=k+1;
       }              if (j >= jmax){
       fprintf(ficresf,"******\n");                jmax=j;
       fprintf(ficresf,"# StartingAge FinalAge");                ijmax=i;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              }
                    if (j <= jmin){
                      jmin=j;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {                ijmin=i;
         fprintf(ficresf,"\n");              }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            }
           nhstepm = nhstepm/hstepm;          }
                    else{
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           oldm=oldms;savm=savms;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
                    k=k+1;
           for (h=0; h<=nhstepm; h++){            if (j >= jmax) {
             if (h==(int) (calagedate+YEARM*cpt)) {              jmax=j;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);              ijmax=i;
             }            }
             for(j=1; j<=nlstate+ndeath;j++) {            else if (j <= jmin){
               kk1=0.;kk2=0;              jmin=j;
               for(i=1; i<=nlstate;i++) {                            ijmin=i;
                 if (mobilav==1)            }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                 else {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            if(j<0){
                 }              nberr++;
                              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               if (h==(int)(calagedate+12*cpt)){            }
                 fprintf(ficresf," %.3f", kk1);            sum=sum+j;
                                  }
               }          jk= j/stepm;
             }          jl= j -jk*stepm;
           }          ju= j -(jk+1)*stepm;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         }            if(jl==0){
       }              dh[mi][i]=jk;
     }              bh[mi][i]=0;
   }            }else{ /* We want a negative bias in order to only have interpolation ie
                            * at the price of an extra matrix product in likelihood */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   fclose(ficresf);            }
 }          }else{
 /************** Forecasting ******************/            if(jl <= -ju){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              dh[mi][i]=jk;
                bh[mi][i]=jl;       /* bias is positive if real duration
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                                   * is higher than the multiple of stepm and negative otherwise.
   int *popage;                                   */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            }
   double *popeffectif,*popcount;            else{
   double ***p3mat,***tabpop,***tabpopprev;              dh[mi][i]=jk+1;
   char filerespop[FILENAMELENGTH];              bh[mi][i]=ju;
             }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if(dh[mi][i]==0){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              dh[mi][i]=1; /* At least one step */
   agelim=AGESUP;              bh[mi][i]=ju; /* At least one step */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
              }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          } /* end if mle */
          }
        } /* end wave */
   strcpy(filerespop,"pop");    }
   strcat(filerespop,fileres);    jmean=sum/k;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     printf("Problem with forecast resultfile: %s\n", filerespop);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   }   }
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
   /*********** Tricode ****************************/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  void tricode(int *Tvar, int **nbcode, int imx)
   {
   if (mobilav==1) {    
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int cptcode=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    cptcoveff=0; 
   if (stepm<=12) stepsize=1;   
      for (k=0; k<maxncov; k++) Ndum[k]=0;
   agelim=AGESUP;    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
    
   hstepm=1;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
   hstepm=hstepm/stepm;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                   modality*/ 
   if (popforecast==1) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
     if((ficpop=fopen(popfile,"r"))==NULL) {        Ndum[ij]++; /*counts the occurence of this modality */
       printf("Problem with population file : %s\n",popfile);exit(0);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     }        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
     popage=ivector(0,AGESUP);                                         Tvar[j]. If V=sex and male is 0 and 
     popeffectif=vector(0,AGESUP);                                         female is 1, then  cptcode=1.*/
     popcount=vector(0,AGESUP);      }
      
     i=1;        for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j
                                             th covariate. In fact
     imx=i;                                         ncodemax[j]=2
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                                         (dichotom. variables only) but
   }                                         it can be more */
       } /* Ndum[-1] number of undefined modalities */
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      ij=1; 
       k=k+1;      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
       fprintf(ficrespop,"\n#******");        for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
       for(j=1;j<=cptcoveff;j++) {          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
       }                                       k is a modality. If we have model=V1+V1*sex 
       fprintf(ficrespop,"******\n");                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       fprintf(ficrespop,"# Age");            ij++;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          }
       if (popforecast==1)  fprintf(ficrespop," [Population]");          if (ij > ncodemax[j]) break; 
              }  
       for (cpt=0; cpt<=0;cpt++) {      } 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      }  
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){   for (k=0; k< maxncov; k++) Ndum[k]=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
               /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
           oldm=oldms;savm=savms;     Ndum[ij]++;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     }
          
           for (h=0; h<=nhstepm; h++){   ij=1;
             if (h==(int) (calagedate+YEARM*cpt)) {   for (i=1; i<= maxncov; i++) {
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     if((Ndum[i]!=0) && (i<=ncovcol)){
             }       Tvaraff[ij]=i; /*For printing */
             for(j=1; j<=nlstate+ndeath;j++) {       ij++;
               kk1=0.;kk2=0;     }
               for(i=1; i<=nlstate;i++) {                 }
                 if (mobilav==1)   ij--;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];   cptcoveff=ij; /*Number of simple covariates*/
                 else {  }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }  /*********** Health Expectancies ****************/
               }  
               if (h==(int)(calagedate+12*cpt)){  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);  {
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    /* Health expectancies, no variances */
               }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
             }    int nhstepma, nstepma; /* Decreasing with age */
             for(i=1; i<=nlstate;i++){    double age, agelim, hf;
               kk1=0.;    double ***p3mat;
                 for(j=1; j<=nlstate;j++){    double eip;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  
                 }    pstamp(ficreseij);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
             }    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      for(j=1; j<=nlstate;j++){
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        fprintf(ficreseij," e%1d%1d ",i,j);
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficreseij," e%1d. ",i);
         }    }
       }    fprintf(ficreseij,"\n");
    
   /******/    
     if(estepm < stepm){
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    else  hstepm=estepm;   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /* We compute the life expectancy from trapezoids spaced every estepm months
           nhstepm = nhstepm/hstepm;     * This is mainly to measure the difference between two models: for example
               * if stepm=24 months pijx are given only every 2 years and by summing them
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           oldm=oldms;savm=savms;     * progression in between and thus overestimating or underestimating according
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * to the curvature of the survival function. If, for the same date, we 
           for (h=0; h<=nhstepm; h++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             if (h==(int) (calagedate+YEARM*cpt)) {     * to compare the new estimate of Life expectancy with the same linear 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     * hypothesis. A more precise result, taking into account a more precise
             }     * curvature will be obtained if estepm is as small as stepm. */
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    /* For example we decided to compute the life expectancy with the smallest unit */
               for(i=1; i<=nlstate;i++) {                  /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];           nhstepm is the number of hstepm from age to agelim 
               }       nstepm is the number of stepm from age to agelin. 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);       Look at hpijx to understand the reason of that which relies in memory size
             }       and note for a fixed period like estepm months */
           }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       survival function given by stepm (the optimization length). Unfortunately it
         }       means that if the survival funtion is printed only each two years of age and if
       }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    }       results. So we changed our mind and took the option of the best precision.
   }    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     agelim=AGESUP;
   if (popforecast==1) {    /* If stepm=6 months */
     free_ivector(popage,0,AGESUP);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     free_vector(popeffectif,0,AGESUP);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     free_vector(popcount,0,AGESUP);      
   }  /* nhstepm age range expressed in number of stepm */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   fclose(ficrespop);    /* if (stepm >= YEARM) hstepm=1;*/
 }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /***********************************************/  
 /**************** Main Program *****************/    for (age=bage; age<=fage; age ++){ 
 /***********************************************/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 int main(int argc, char *argv[])      /* if (stepm >= YEARM) hstepm=1;*/
 {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      /* If stepm=6 months */
   double agedeb, agefin,hf;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
   double fret;      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double **xi,tmp,delta;      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double dum; /* Dummy variable */      
   double ***p3mat;      printf("%d|",(int)age);fflush(stdout);
   int *indx;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   char line[MAXLINE], linepar[MAXLINE];      
   char title[MAXLINE];      /* Computing expectancies */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      for(i=1; i<=nlstate;i++)
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
   char filerest[FILENAMELENGTH];            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   char fileregp[FILENAMELENGTH];  
   char popfile[FILENAMELENGTH];          }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;      fprintf(ficreseij,"%3.0f",age );
   int sdeb, sfin; /* Status at beginning and end */      for(i=1; i<=nlstate;i++){
   int c,  h , cpt,l;        eip=0;
   int ju,jl, mi;        for(j=1; j<=nlstate;j++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          eip +=eij[i][j][(int)age];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   int mobilav=0,popforecast=0;        }
   int hstepm, nhstepm;        fprintf(ficreseij,"%9.4f", eip );
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      }
       fprintf(ficreseij,"\n");
   double bage, fage, age, agelim, agebase;      
   double ftolpl=FTOL;    }
   double **prlim;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double *severity;    printf("\n");
   double ***param; /* Matrix of parameters */    fprintf(ficlog,"\n");
   double  *p;    
   double **matcov; /* Matrix of covariance */  }
   double ***delti3; /* Scale */  
   double *delti; /* Scale */  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */  {
   double *epj, vepp;    /* Covariances of health expectancies eij and of total life expectancies according
   double kk1, kk2;     to initial status i, ei. .
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";    double age, agelim, hf;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
   char z[1]="c", occ;    double **gp, **gm;
 #include <sys/time.h>    double ***gradg, ***trgradg;
 #include <time.h>    int theta;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
      double eip, vip;
   /* long total_usecs;  
   struct timeval start_time, end_time;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      xp=vector(1,npar);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    xm=vector(1,npar);
   getcwd(pathcd, size);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   printf("\n%s",version);    
   if(argc <=1){    pstamp(ficresstdeij);
     printf("\nEnter the parameter file name: ");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     scanf("%s",pathtot);    fprintf(ficresstdeij,"# Age");
   }    for(i=1; i<=nlstate;i++){
   else{      for(j=1; j<=nlstate;j++)
     strcpy(pathtot,argv[1]);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   }      fprintf(ficresstdeij," e%1d. ",i);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    }
   /*cygwin_split_path(pathtot,path,optionfile);    fprintf(ficresstdeij,"\n");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficrescveij,"# Age");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    for(i=1; i<=nlstate;i++)
   chdir(path);      for(j=1; j<=nlstate;j++){
   replace(pathc,path);        cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
 /*-------- arguments in the command line --------*/          for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
   strcpy(fileres,"r");            if(cptj2 <= cptj)
   strcat(fileres, optionfilefiname);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   strcat(fileres,".txt");    /* Other files have txt extension */          }
       }
   /*---------arguments file --------*/    fprintf(ficrescveij,"\n");
     
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    if(estepm < stepm){
     printf("Problem with optionfile %s\n",optionfile);      printf ("Problem %d lower than %d\n",estepm, stepm);
     goto end;    }
   }    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   strcpy(filereso,"o");     * This is mainly to measure the difference between two models: for example
   strcat(filereso,fileres);     * if stepm=24 months pijx are given only every 2 years and by summing them
   if((ficparo=fopen(filereso,"w"))==NULL) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;     * progression in between and thus overestimating or underestimating according
   }     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   /* Reads comments: lines beginning with '#' */     * to compare the new estimate of Life expectancy with the same linear 
   while((c=getc(ficpar))=='#' && c!= EOF){     * hypothesis. A more precise result, taking into account a more precise
     ungetc(c,ficpar);     * curvature will be obtained if estepm is as small as stepm. */
     fgets(line, MAXLINE, ficpar);  
     puts(line);    /* For example we decided to compute the life expectancy with the smallest unit */
     fputs(line,ficparo);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
   ungetc(c,ficpar);       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);       and note for a fixed period like estepm months */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);       survival function given by stepm (the optimization length). Unfortunately it
 while((c=getc(ficpar))=='#' && c!= EOF){       means that if the survival funtion is printed only each two years of age and if
     ungetc(c,ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fgets(line, MAXLINE, ficpar);       results. So we changed our mind and took the option of the best precision.
     puts(line);    */
     fputs(line,ficparo);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
   ungetc(c,ficpar);    /* If stepm=6 months */
      /* nhstepm age range expressed in number of stepm */
        agelim=AGESUP;
   covar=matrix(0,NCOVMAX,1,n);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   cptcovn=0;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   ncovmodel=2+cptcovn;    
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* Read guess parameters */    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   /* Reads comments: lines beginning with '#' */    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     ungetc(c,ficpar);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     fgets(line, MAXLINE, ficpar);  
     puts(line);    for (age=bage; age<=fage; age ++){ 
     fputs(line,ficparo);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   ungetc(c,ficpar);      /* if (stepm >= YEARM) hstepm=1;*/
        nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)      /* If stepm=6 months */
     for(j=1; j <=nlstate+ndeath-1; j++){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       fscanf(ficpar,"%1d%1d",&i1,&j1);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       fprintf(ficparo,"%1d%1d",i1,j1);      
       printf("%1d%1d",i,j);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);      /* Computing  Variances of health expectancies */
         printf(" %lf",param[i][j][k]);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
         fprintf(ficparo," %lf",param[i][j][k]);         decrease memory allocation */
       }      for(theta=1; theta <=npar; theta++){
       fscanf(ficpar,"\n");        for(i=1; i<=npar; i++){ 
       printf("\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficparo,"\n");          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     }        }
          hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
   p=param[1][1];        for(j=1; j<= nlstate; j++){
            for(i=1; i<=nlstate; i++){
   /* Reads comments: lines beginning with '#' */            for(h=0; h<=nhstepm-1; h++){
   while((c=getc(ficpar))=='#' && c!= EOF){              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     ungetc(c,ficpar);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     fgets(line, MAXLINE, ficpar);            }
     puts(line);          }
     fputs(line,ficparo);        }
   }       
   ungetc(c,ficpar);        for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          }
   for(i=1; i <=nlstate; i++){      }/* End theta */
     for(j=1; j <=nlstate+ndeath-1; j++){      
       fscanf(ficpar,"%1d%1d",&i1,&j1);      
       printf("%1d%1d",i,j);      for(h=0; h<=nhstepm-1; h++)
       fprintf(ficparo,"%1d%1d",i1,j1);        for(j=1; j<=nlstate*nlstate;j++)
       for(k=1; k<=ncovmodel;k++){          for(theta=1; theta <=npar; theta++)
         fscanf(ficpar,"%le",&delti3[i][j][k]);            trgradg[h][j][theta]=gradg[h][theta][j];
         printf(" %le",delti3[i][j][k]);      
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }       for(ij=1;ij<=nlstate*nlstate;ij++)
       fscanf(ficpar,"\n");        for(ji=1;ji<=nlstate*nlstate;ji++)
       printf("\n");          varhe[ij][ji][(int)age] =0.;
       fprintf(ficparo,"\n");  
     }       printf("%d|",(int)age);fflush(stdout);
   }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   delti=delti3[1][1];       for(h=0;h<=nhstepm-1;h++){
          for(k=0;k<=nhstepm-1;k++){
   /* Reads comments: lines beginning with '#' */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   while((c=getc(ficpar))=='#' && c!= EOF){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     ungetc(c,ficpar);          for(ij=1;ij<=nlstate*nlstate;ij++)
     fgets(line, MAXLINE, ficpar);            for(ji=1;ji<=nlstate*nlstate;ji++)
     puts(line);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     fputs(line,ficparo);        }
   }      }
   ungetc(c,ficpar);  
        /* Computing expectancies */
   matcov=matrix(1,npar,1,npar);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   for(i=1; i <=npar; i++){      for(i=1; i<=nlstate;i++)
     fscanf(ficpar,"%s",&str);        for(j=1; j<=nlstate;j++)
     printf("%s",str);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     fprintf(ficparo,"%s",str);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     for(j=1; j <=i; j++){            
       fscanf(ficpar," %le",&matcov[i][j]);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);          }
     }  
     fscanf(ficpar,"\n");      fprintf(ficresstdeij,"%3.0f",age );
     printf("\n");      for(i=1; i<=nlstate;i++){
     fprintf(ficparo,"\n");        eip=0.;
   }        vip=0.;
   for(i=1; i <=npar; i++)        for(j=1; j<=nlstate;j++){
     for(j=i+1;j<=npar;j++)          eip += eij[i][j][(int)age];
       matcov[i][j]=matcov[j][i];          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   printf("\n");          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     /*-------- Rewriting paramater file ----------*/      }
      strcpy(rfileres,"r");    /* "Rparameterfile */      fprintf(ficresstdeij,"\n");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
      strcat(rfileres,".");    /* */      fprintf(ficrescveij,"%3.0f",age );
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      for(i=1; i<=nlstate;i++)
     if((ficres =fopen(rfileres,"w"))==NULL) {        for(j=1; j<=nlstate;j++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          cptj= (j-1)*nlstate+i;
     }          for(i2=1; i2<=nlstate;i2++)
     fprintf(ficres,"#%s\n",version);            for(j2=1; j2<=nlstate;j2++){
                  cptj2= (j2-1)*nlstate+i2;
     /*-------- data file ----------*/              if(cptj2 <= cptj)
     if((fic=fopen(datafile,"r"))==NULL)    {                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       printf("Problem with datafile: %s\n", datafile);goto end;            }
     }        }
       fprintf(ficrescveij,"\n");
     n= lastobs;     
     severity = vector(1,maxwav);    }
     outcome=imatrix(1,maxwav+1,1,n);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     num=ivector(1,n);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     moisnais=vector(1,n);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     annais=vector(1,n);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     moisdc=vector(1,n);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     andc=vector(1,n);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     agedc=vector(1,n);    printf("\n");
     cod=ivector(1,n);    fprintf(ficlog,"\n");
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    free_vector(xm,1,npar);
     mint=matrix(1,maxwav,1,n);    free_vector(xp,1,npar);
     anint=matrix(1,maxwav,1,n);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     s=imatrix(1,maxwav+1,1,n);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     adl=imatrix(1,maxwav+1,1,n);        free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     tab=ivector(1,NCOVMAX);  }
     ncodemax=ivector(1,8);  
   /************ Variance ******************/
     i=1;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     while (fgets(line, MAXLINE, fic) != NULL)    {  {
       if ((i >= firstobs) && (i <=lastobs)) {    /* Variance of health expectancies */
            /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         for (j=maxwav;j>=1;j--){    /* double **newm;*/
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    double **dnewm,**doldm;
           strcpy(line,stra);    double **dnewmp,**doldmp;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int i, j, nhstepm, hstepm, h, nstepm ;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int k, cptcode;
         }    double *xp;
            double **gp, **gm;  /* for var eij */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    double ***gradg, ***trgradg; /*for var eij */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    double ***p3mat;
     double age,agelim, hf;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    double ***mobaverage;
         for (j=ncovcol;j>=1;j--){    int theta;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    char digit[4];
         }    char digitp[25];
         num[i]=atol(stra);  
            char fileresprobmorprev[FILENAMELENGTH];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    if(popbased==1){
       if(mobilav!=0)
         i=i+1;        strcpy(digitp,"-populbased-mobilav-");
       }      else strcpy(digitp,"-populbased-nomobil-");
     }    }
     /* printf("ii=%d", ij);    else 
        scanf("%d",i);*/      strcpy(digitp,"-stablbased-");
   imx=i-1; /* Number of individuals */  
     if (mobilav!=0) {
   /* for (i=1; i<=imx; i++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     }*/      }
    /*  for (i=1; i<=imx; i++){    }
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    strcpy(fileresprobmorprev,"prmorprev"); 
      sprintf(digit,"%-d",ij);
      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   /* Calculation of the number of parameter from char model*/    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   Tvar=ivector(1,15);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   Tprod=ivector(1,15);    strcat(fileresprobmorprev,fileres);
   Tvaraff=ivector(1,15);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   Tvard=imatrix(1,15,1,2);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   Tage=ivector(1,15);            fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
        }
   if (strlen(model) >1){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     j=0, j1=0, k1=1, k2=1;   
     j=nbocc(model,'+');    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     j1=nbocc(model,'*');    pstamp(ficresprobmorprev);
     cptcovn=j+1;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     cptcovprod=j1;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     strcpy(modelsav,model);      fprintf(ficresprobmorprev," p.%-d SE",j);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      for(i=1; i<=nlstate;i++)
       printf("Error. Non available option model=%s ",model);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       goto end;    }  
     }    fprintf(ficresprobmorprev,"\n");
        fprintf(ficgp,"\n# Routine varevsij");
     for(i=(j+1); i>=1;i--){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       cutv(stra,strb,modelsav,'+');    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  /*   } */
       /*scanf("%d",i);*/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       if (strchr(strb,'*')) {    pstamp(ficresvij);
         cutv(strd,strc,strb,'*');    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
         if (strcmp(strc,"age")==0) {    if(popbased==1)
           cptcovprod--;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
           cutv(strb,stre,strd,'V');    else
           Tvar[i]=atoi(stre);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
           cptcovage++;    fprintf(ficresvij,"# Age");
             Tage[cptcovage]=i;    for(i=1; i<=nlstate;i++)
             /*printf("stre=%s ", stre);*/      for(j=1; j<=nlstate;j++)
         }        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         else if (strcmp(strd,"age")==0) {    fprintf(ficresvij,"\n");
           cptcovprod--;  
           cutv(strb,stre,strc,'V');    xp=vector(1,npar);
           Tvar[i]=atoi(stre);    dnewm=matrix(1,nlstate,1,npar);
           cptcovage++;    doldm=matrix(1,nlstate,1,nlstate);
           Tage[cptcovage]=i;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         else {  
           cutv(strb,stre,strc,'V');    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           Tvar[i]=ncovcol+k1;    gpp=vector(nlstate+1,nlstate+ndeath);
           cutv(strb,strc,strd,'V');    gmp=vector(nlstate+1,nlstate+ndeath);
           Tprod[k1]=i;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           Tvard[k1][1]=atoi(strc);    
           Tvard[k1][2]=atoi(stre);    if(estepm < stepm){
           Tvar[cptcovn+k2]=Tvard[k1][1];      printf ("Problem %d lower than %d\n",estepm, stepm);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    }
           for (k=1; k<=lastobs;k++)    else  hstepm=estepm;   
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    /* For example we decided to compute the life expectancy with the smallest unit */
           k1++;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           k2=k2+2;       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
       }       Look at function hpijx to understand why (it is linked to memory size questions) */
       else {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/       survival function given by stepm (the optimization length). Unfortunately it
        /*  scanf("%d",i);*/       means that if the survival funtion is printed every two years of age and if
       cutv(strd,strc,strb,'V');       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       Tvar[i]=atoi(strc);       results. So we changed our mind and took the option of the best precision.
       }    */
       strcpy(modelsav,stra);      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    agelim = AGESUP;
         scanf("%d",i);*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   printf("cptcovprod=%d ", cptcovprod);      gp=matrix(0,nhstepm,1,nlstate);
   scanf("%d ",i);*/      gm=matrix(0,nhstepm,1,nlstate);
     fclose(fic);  
   
     /*  if(mle==1){*/      for(theta=1; theta <=npar; theta++){
     if (weightopt != 1) { /* Maximisation without weights*/        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       for(i=1;i<=n;i++) weight[i]=1.0;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
     /*-calculation of age at interview from date of interview and age at death -*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     agev=matrix(1,maxwav,1,imx);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
     for (i=1; i<=imx; i++) {        if (popbased==1) {
       for(m=2; (m<= maxwav); m++) {          if(mobilav ==0){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            for(i=1; i<=nlstate;i++)
          anint[m][i]=9999;              prlim[i][i]=probs[(int)age][i][ij];
          s[m][i]=-1;          }else{ /* mobilav */ 
        }            for(i=1; i<=nlstate;i++)
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
     }        }
     
     for (i=1; i<=imx; i++)  {        for(j=1; j<= nlstate; j++){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for(h=0; h<=nhstepm; h++){
       for(m=1; (m<= maxwav); m++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         if(s[m][i] >0){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           if (s[m][i] >= nlstate+1) {          }
             if(agedc[i]>0)        }
               if(moisdc[i]!=99 && andc[i]!=9999)        /* This for computing probability of death (h=1 means
                 agev[m][i]=agedc[i];           computed over hstepm matrices product = hstepm*stepm months) 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/           as a weighted average of prlim.
            else {        */
               if (andc[i]!=9999){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
               agev[m][i]=-1;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
               }        }    
             }        /* end probability of death */
           }  
           else if(s[m][i] !=9){ /* Should no more exist */        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             if(mint[m][i]==99 || anint[m][i]==9999)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               agev[m][i]=1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             else if(agev[m][i] <agemin){   
               agemin=agev[m][i];        if (popbased==1) {
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          if(mobilav ==0){
             }            for(i=1; i<=nlstate;i++)
             else if(agev[m][i] >agemax){              prlim[i][i]=probs[(int)age][i][ij];
               agemax=agev[m][i];          }else{ /* mobilav */ 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=mobaverage[(int)age][i][ij];
             /*agev[m][i]=anint[m][i]-annais[i];*/          }
             /*   agev[m][i] = age[i]+2*m;*/        }
           }  
           else { /* =9 */        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
             agev[m][i]=1;          for(h=0; h<=nhstepm; h++){
             s[m][i]=-1;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
           }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
         else /*= 0 Unknown */        }
           agev[m][i]=1;        /* This for computing probability of death (h=1 means
       }           computed over hstepm matrices product = hstepm*stepm months) 
               as a weighted average of prlim.
     }        */
     for (i=1; i<=imx; i++)  {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(m=1; (m<= maxwav); m++){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         if (s[m][i] > (nlstate+ndeath)) {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           printf("Error: Wrong value in nlstate or ndeath\n");          }    
           goto end;        /* end probability of death */
         }  
       }        for(j=1; j<= nlstate; j++) /* vareij */
     }          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          }
   
     free_vector(severity,1,maxwav);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     free_imatrix(outcome,1,maxwav+1,1,n);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     free_vector(moisnais,1,n);        }
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);      } /* End theta */
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     free_vector(andc,1,n);  
       for(h=0; h<=nhstepm; h++) /* veij */
            for(j=1; j<=nlstate;j++)
     wav=ivector(1,imx);          for(theta=1; theta <=npar; theta++)
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            trgradg[h][j][theta]=gradg[h][theta][j];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
          for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     /* Concatenates waves */        for(theta=1; theta <=npar; theta++)
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          trgradgp[j][theta]=gradgp[theta][j];
     
   
       Tcode=ivector(1,100);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      for(i=1;i<=nlstate;i++)
       ncodemax[1]=1;        for(j=1;j<=nlstate;j++)
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          vareij[i][j][(int)age] =0.;
        
    codtab=imatrix(1,100,1,10);      for(h=0;h<=nhstepm;h++){
    h=0;        for(k=0;k<=nhstepm;k++){
    m=pow(2,cptcoveff);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
    for(k=1;k<=cptcoveff; k++){          for(i=1;i<=nlstate;i++)
      for(i=1; i <=(m/pow(2,k));i++){            for(j=1;j<=nlstate;j++)
        for(j=1; j <= ncodemax[k]; j++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        }
            h++;      }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      /* pptj */
          }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
      }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
    }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          varppt[j][i]=doldmp[j][i];
       codtab[1][2]=1;codtab[2][2]=2; */      /* end ppptj */
    /* for(i=1; i <=m ;i++){      /*  x centered again */
       for(k=1; k <=cptcovn; k++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       }   
       printf("\n");      if (popbased==1) {
       }        if(mobilav ==0){
       scanf("%d",i);*/          for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
    /* Calculates basic frequencies. Computes observed prevalence at single age        }else{ /* mobilav */ 
        and prints on file fileres'p'. */          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
            }
          }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* This for computing probability of death (h=1 means
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         as a weighted average of prlim.
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      */
            for(j=nlstate+1;j<=nlstate+ndeath;j++){
     /* For Powell, parameters are in a vector p[] starting at p[1]        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      }    
       /* end probability of death */
     if(mle==1){  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
            fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     /*--------- results files --------------*/        for(i=1; i<=nlstate;i++){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
       } 
    jk=1;      fprintf(ficresprobmorprev,"\n");
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficresvij,"%.0f ",age );
    for(i=1,jk=1; i <=nlstate; i++){      for(i=1; i<=nlstate;i++)
      for(k=1; k <=(nlstate+ndeath); k++){        for(j=1; j<=nlstate;j++){
        if (k != i)          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          {        }
            printf("%d%d ",i,k);      fprintf(ficresvij,"\n");
            fprintf(ficres,"%1d%1d ",i,k);      free_matrix(gp,0,nhstepm,1,nlstate);
            for(j=1; j <=ncovmodel; j++){      free_matrix(gm,0,nhstepm,1,nlstate);
              printf("%f ",p[jk]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
              fprintf(ficres,"%f ",p[jk]);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
              jk++;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            }    } /* End age */
            printf("\n");    free_vector(gpp,nlstate+1,nlstate+ndeath);
            fprintf(ficres,"\n");    free_vector(gmp,nlstate+1,nlstate+ndeath);
          }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
    }    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
  if(mle==1){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     /* Computing hessian and covariance matrix */    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     ftolhess=ftol; /* Usually correct */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     hesscov(matcov, p, npar, delti, ftolhess, func);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
  }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     printf("# Scales (for hessian or gradient estimation)\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         if (j!=i) {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           fprintf(ficres,"%1d%1d",i,j);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           printf("%1d%1d",i,j);  */
           for(k=1; k<=ncovmodel;k++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
             printf(" %.5e",delti[jk]);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;    free_vector(xp,1,npar);
           }    free_matrix(doldm,1,nlstate,1,nlstate);
           printf("\n");    free_matrix(dnewm,1,nlstate,1,npar);
           fprintf(ficres,"\n");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        fclose(ficresprobmorprev);
     k=1;    fflush(ficgp);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fflush(fichtm); 
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  }  /* end varevsij */
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;  /************ Variance of prevlim ******************/
       i1=(i-1)/(ncovmodel*nlstate)+1;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  {
       printf("%s%d%d",alph[k],i1,tab[i]);*/    /* Variance of prevalence limit */
       fprintf(ficres,"%3d",i);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       printf("%3d",i);    double **newm;
       for(j=1; j<=i;j++){    double **dnewm,**doldm;
         fprintf(ficres," %.5e",matcov[i][j]);    int i, j, nhstepm, hstepm;
         printf(" %.5e",matcov[i][j]);    int k, cptcode;
       }    double *xp;
       fprintf(ficres,"\n");    double *gp, *gm;
       printf("\n");    double **gradg, **trgradg;
       k++;    double age,agelim;
     }    int theta;
        
     while((c=getc(ficpar))=='#' && c!= EOF){    pstamp(ficresvpl);
       ungetc(c,ficpar);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       fgets(line, MAXLINE, ficpar);    fprintf(ficresvpl,"# Age");
       puts(line);    for(i=1; i<=nlstate;i++)
       fputs(line,ficparo);        fprintf(ficresvpl," %1d-%1d",i,i);
     }    fprintf(ficresvpl,"\n");
     ungetc(c,ficpar);  
     estepm=0;    xp=vector(1,npar);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    dnewm=matrix(1,nlstate,1,npar);
     if (estepm==0 || estepm < stepm) estepm=stepm;    doldm=matrix(1,nlstate,1,nlstate);
     if (fage <= 2) {    
       bage = ageminpar;    hstepm=1*YEARM; /* Every year of age */
       fage = agemaxpar;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     }    agelim = AGESUP;
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      if (stepm >= YEARM) hstepm=1;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
        gradg=matrix(1,npar,1,nlstate);
     while((c=getc(ficpar))=='#' && c!= EOF){      gp=vector(1,nlstate);
     ungetc(c,ficpar);      gm=vector(1,nlstate);
     fgets(line, MAXLINE, ficpar);  
     puts(line);      for(theta=1; theta <=npar; theta++){
     fputs(line,ficparo);        for(i=1; i<=npar; i++){ /* Computes gradient */
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   ungetc(c,ficpar);        }
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        for(i=1;i<=nlstate;i++)
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          gp[i] = prlim[i][i];
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      
              for(i=1; i<=npar; i++) /* Computes gradient */
   while((c=getc(ficpar))=='#' && c!= EOF){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fgets(line, MAXLINE, ficpar);        for(i=1;i<=nlstate;i++)
     puts(line);          gm[i] = prlim[i][i];
     fputs(line,ficparo);  
   }        for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
        } /* End theta */
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      trgradg =matrix(1,nlstate,1,npar);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
       for(j=1; j<=nlstate;j++)
   fscanf(ficpar,"pop_based=%d\n",&popbased);        for(theta=1; theta <=npar; theta++)
   fprintf(ficparo,"pop_based=%d\n",popbased);            trgradg[j][theta]=gradg[theta][j];
   fprintf(ficres,"pop_based=%d\n",popbased);    
        for(i=1;i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){        varpl[i][(int)age] =0.;
     ungetc(c,ficpar);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     fgets(line, MAXLINE, ficpar);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     puts(line);      for(i=1;i<=nlstate;i++)
     fputs(line,ficparo);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   }  
   ungetc(c,ficpar);      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      fprintf(ficresvpl,"\n");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
 while((c=getc(ficpar))=='#' && c!= EOF){      free_matrix(trgradg,1,nlstate,1,npar);
     ungetc(c,ficpar);    } /* End age */
     fgets(line, MAXLINE, ficpar);  
     puts(line);    free_vector(xp,1,npar);
     fputs(line,ficparo);    free_matrix(doldm,1,nlstate,1,npar);
   }    free_matrix(dnewm,1,nlstate,1,nlstate);
   ungetc(c,ficpar);  
   }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  /************ Variance of one-step probabilities  ******************/
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
 /*------------ gnuplot -------------*/    int k=0,l, cptcode;
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    int first=1, first1;
      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 /*------------ free_vector  -------------*/    double **dnewm,**doldm;
  chdir(path);    double *xp;
      double *gp, *gm;
  free_ivector(wav,1,imx);    double **gradg, **trgradg;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double **mu;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      double age,agelim, cov[NCOVMAX];
  free_ivector(num,1,n);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
  free_vector(agedc,1,n);    int theta;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    char fileresprob[FILENAMELENGTH];
  fclose(ficparo);    char fileresprobcov[FILENAMELENGTH];
  fclose(ficres);    char fileresprobcor[FILENAMELENGTH];
   
 /*--------- index.htm --------*/    double ***varpij;
   
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   /*--------------- Prevalence limit --------------*/      printf("Problem with resultfile: %s\n", fileresprob);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   strcpy(filerespl,"pl");    }
   strcat(filerespl,fileres);    strcpy(fileresprobcov,"probcov"); 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    strcat(fileresprobcov,fileres);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcov);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   fprintf(ficrespl,"#Prevalence limit\n");    }
   fprintf(ficrespl,"#Age ");    strcpy(fileresprobcor,"probcor"); 
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    strcat(fileresprobcor,fileres);
   fprintf(ficrespl,"\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcor);
   prlim=matrix(1,nlstate,1,nlstate);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   k=0;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   agebase=ageminpar;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   agelim=agemaxpar;    pstamp(ficresprob);
   ftolpl=1.e-10;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   i1=cptcoveff;    fprintf(ficresprob,"# Age");
   if (cptcovn < 1){i1=1;}    pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresprobcov,"# Age");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    pstamp(ficresprobcor);
         k=k+1;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    fprintf(ficresprobcor,"# Age");
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i<=nlstate;i++)
         fprintf(ficrespl,"******\n");      for(j=1; j<=(nlstate+ndeath);j++){
                fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         for (age=agebase; age<=agelim; age++){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           fprintf(ficrespl,"%.0f",age );      }  
           for(i=1; i<=nlstate;i++)   /* fprintf(ficresprob,"\n");
           fprintf(ficrespl," %.5f", prlim[i][i]);    fprintf(ficresprobcov,"\n");
           fprintf(ficrespl,"\n");    fprintf(ficresprobcor,"\n");
         }   */
       }    xp=vector(1,npar);
     }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   fclose(ficrespl);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   /*------------- h Pij x at various ages ------------*/    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      first=1;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    fprintf(ficgp,"\n# Routine varprob");
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    fprintf(fichtm,"\n");
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
      fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   stepsize=(int) (stepm+YEARM-1)/YEARM;    file %s<br>\n",optionfilehtmcov);
   /*if (stepm<=24) stepsize=2;*/    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
   agelim=AGESUP;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   hstepm=stepsize*YEARM; /* Every year of age */    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   k=0;  standard deviations wide on each axis. <br>\
   for(cptcov=1;cptcov<=i1;cptcov++){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       k=k+1;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)    cov[1]=1;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    tj=cptcoveff;
         fprintf(ficrespij,"******\n");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
            j1=0;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    for(t=1; t<=tj;t++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for(i1=1; i1<=ncodemax[t];i1++){ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        j1++;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if  (cptcovn>0) {
           oldm=oldms;savm=savms;          fprintf(ficresprob, "\n#********** Variable "); 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficrespij,"# Age");          fprintf(ficresprob, "**********\n#\n");
           for(i=1; i<=nlstate;i++)          fprintf(ficresprobcov, "\n#********** Variable "); 
             for(j=1; j<=nlstate+ndeath;j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               fprintf(ficrespij," %1d-%1d",i,j);          fprintf(ficresprobcov, "**********\n#\n");
           fprintf(ficrespij,"\n");          
            for (h=0; h<=nhstepm; h++){          fprintf(ficgp, "\n#********** Variable "); 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             for(i=1; i<=nlstate;i++)          fprintf(ficgp, "**********\n#\n");
               for(j=1; j<=nlstate+ndeath;j++)          
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          
             fprintf(ficrespij,"\n");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
              }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficrespij,"\n");          
         }          fprintf(ficresprobcor, "\n#********** Variable ");    
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcor, "**********\n#");    
         }
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        
         for (age=bage; age<=fage; age ++){ 
   fclose(ficrespij);          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   /*---------- Forecasting ------------------*/          }
   if((stepm == 1) && (strcmp(model,".")==0)){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          for (k=1; k<=cptcovprod;k++)
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }          
   else{          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     erreur=108;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          gp=vector(1,(nlstate)*(nlstate+ndeath));
   }          gm=vector(1,(nlstate)*(nlstate+ndeath));
        
           for(theta=1; theta <=npar; theta++){
   /*---------- Health expectancies and variances ------------*/            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   strcpy(filerest,"t");            
   strcat(filerest,fileres);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   if((ficrest=fopen(filerest,"w"))==NULL) {            
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            k=0;
   }            for(i=1; i<= (nlstate); i++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
   strcpy(filerese,"e");              }
   strcat(filerese,fileres);            }
   if((ficreseij=fopen(filerese,"w"))==NULL) {            
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
  strcpy(fileresv,"v");            k=0;
   strcat(fileresv,fileres);            for(i=1; i<=(nlstate); i++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {              for(j=1; j<=(nlstate+ndeath);j++){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                k=k+1;
   }                gm[k]=pmmij[i][j];
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);              }
   calagedate=-1;            }
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   k=0;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   for(cptcov=1;cptcov<=i1;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       fprintf(ficrest,"\n#****** ");            for(theta=1; theta <=npar; theta++)
       for(j=1;j<=cptcoveff;j++)              trgradg[j][theta]=gradg[theta][j];
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       fprintf(ficrest,"******\n");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       fprintf(ficreseij,"\n#****** ");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       for(j=1;j<=cptcoveff;j++)          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       fprintf(ficreseij,"******\n");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
       fprintf(ficresvij,"\n#****** ");          pmij(pmmij,cov,ncovmodel,x,nlstate);
       for(j=1;j<=cptcoveff;j++)          
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          k=0;
       fprintf(ficresvij,"******\n");          for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              k=k+1;
       oldm=oldms;savm=savms;              mu[k][(int) age]=pmmij[i][j];
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);              }
            }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       oldm=oldms;savm=savms;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);              varpij[i][j][(int)age] = doldm[i][j];
      
           /*printf("\n%d ",(int)age);
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       fprintf(ficrest,"\n");            }*/
   
       epj=vector(1,nlstate+1);          fprintf(ficresprob,"\n%d ",(int)age);
       for(age=bage; age <=fage ;age++){          fprintf(ficresprobcov,"\n%d ",(int)age);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          fprintf(ficresprobcor,"\n%d ",(int)age);
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             prlim[i][i]=probs[(int)age][i][k];            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                    fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         fprintf(ficrest," %4.0f",age);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          i=0;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          for (k=1; k<=(nlstate);k++){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/            for (l=1; l<=(nlstate+ndeath);l++){ 
           }              i=i++;
           epj[nlstate+1] +=epj[j];              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
         for(i=1, vepp=0.;i <=nlstate;i++)                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           for(j=1;j <=nlstate;j++)                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
             vepp += vareij[i][j][(int)age];              }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            }
         for(j=1;j <=nlstate;j++){          }/* end of loop for state */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        } /* end of loop for age */
         }  
         fprintf(ficrest,"\n");        /* Confidence intervalle of pij  */
       }        /*
     }          fprintf(ficgp,"\nunset parametric;unset label");
   }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 free_matrix(mint,1,maxwav,1,n);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     free_vector(weight,1,n);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   fclose(ficreseij);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   fclose(ficresvij);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   fclose(ficrest);        */
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
          first1=1;
   /*------- Variance limit prevalence------*/          for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   strcpy(fileresvpl,"vpl");            if(l2==k2) continue;
   strcat(fileresvpl,fileres);            j=(k2-1)*(nlstate+ndeath)+l2;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            for (k1=1; k1<=(nlstate);k1++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     exit(0);                if(l1==k1) continue;
   }                i=(k1-1)*(nlstate+ndeath)+l1;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
   k=0;                  if ((int)age %5==0){
   for(cptcov=1;cptcov<=i1;cptcov++){                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       k=k+1;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       fprintf(ficresvpl,"\n#****** ");                    mu1=mu[i][(int) age]/stepm*YEARM ;
       for(j=1;j<=cptcoveff;j++)                    mu2=mu[j][(int) age]/stepm*YEARM;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    c12=cv12/sqrt(v1*v2);
       fprintf(ficresvpl,"******\n");                    /* Computing eigen value of matrix of covariance */
                          lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       oldm=oldms;savm=savms;                    /* Eigen vectors */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     }                    /*v21=sqrt(1.-v11*v11); *//* error */
  }                    v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
   fclose(ficresvpl);                    v22=v11;
                     tnalp=v21/v11;
   /*---------- End : free ----------------*/                    if(first1==1){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                      first1=0;
                        printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                      /*printf(fignu*/
                      /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                    if(first==1){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                      first=0;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                      fprintf(ficgp,"\nset parametric;unset label");
                        fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   free_matrix(matcov,1,npar,1,npar);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   free_vector(delti,1,npar);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   free_matrix(agev,1,maxwav,1,imx);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   if(erreur >0)                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("End of Imach with error or warning %d\n",erreur);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   else   printf("End of Imach\n");                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   /*printf("Total time was %d uSec.\n", total_usecs);*/                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /*------ End -----------*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
  end:                      first=0;
   /* chdir(pathcd);*/                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
  /*system("wgnuplot graph.plt");*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
  /*system("../gp37mgw/wgnuplot graph.plt");*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
  /*system("cd ../gp37mgw");*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
  strcpy(plotcmd,GNUPLOTPROGRAM);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
  strcat(plotcmd," ");                    }/* if first */
  strcat(plotcmd,optionfilegnuplot);                  } /* age mod 5 */
  system(plotcmd);                } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  /*#ifdef windows*/                first=1;
   while (z[0] != 'q') {              } /*l12 */
     /* chdir(path); */            } /* k12 */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          } /*l1 */
     scanf("%s",z);        }/* k1 */
     if (z[0] == 'c') system("./imach");      } /* loop covariates */
     else if (z[0] == 'e') system(optionfilehtm);    }
     else if (z[0] == 'g') system(plotcmd);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     else if (z[0] == 'q') exit(0);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   /*#endif */    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 }    free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char linetmp[MAXLINE];
       char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     /* where is ncovprod ?*/
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sums the number of covariates including age as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.134


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>