Diff for /imach/src/imach.c between versions 1.48 and 1.134

version 1.48, 2002/06/10 13:12:49 version 1.134, 2009/10/29 13:18:53
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.134  2009/10/29 13:18:53  brouard
      (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.133  2009/07/06 10:21:25  brouard
   first survey ("cross") where individuals from different ages are    just nforces
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.132  2009/07/06 08:22:05  brouard
   second wave of interviews ("longitudinal") which measure each change    Many tings
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.131  2009/06/20 16:22:47  brouard
   model. More health states you consider, more time is necessary to reach the    Some dimensions resccaled
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.130  2009/05/26 06:44:34  brouard
   probability to be observed in state j at the second wave    (Module): Max Covariate is now set to 20 instead of 8. A
   conditional to be observed in state i at the first wave. Therefore    lot of cleaning with variables initialized to 0. Trying to make
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.129  2007/08/31 13:49:27  lievre
   where the markup *Covariates have to be included here again* invites    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.127  2006/04/28 18:11:50  brouard
   identical for each individual. Also, if a individual missed an    (Module): Yes the sum of survivors was wrong since
   intermediate interview, the information is lost, but taken into    imach-114 because nhstepm was no more computed in the age
   account using an interpolation or extrapolation.      loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
   hPijx is the probability to be observed in state i at age x+h    compute health expectancies (without variances) in a first step
   conditional to the observed state i at age x. The delay 'h' can be    and then all the health expectancies with variances or standard
   split into an exact number (nh*stepm) of unobserved intermediate    deviation (needs data from the Hessian matrices) which slows the
   states. This elementary transition (by month or quarter trimester,    computation.
   semester or year) is model as a multinomial logistic.  The hPx    In the future we should be able to stop the program is only health
   matrix is simply the matrix product of nh*stepm elementary matrices    expectancies and graph are needed without standard deviations.
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
   Also this programme outputs the covariance matrix of the parameters but also    imach-114 because nhstepm was no more computed in the age
   of the life expectancies. It also computes the prevalence limits.    loop. Now we define nhstepma in the age loop.
      Version 0.98h
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.125  2006/04/04 15:20:31  lievre
   This software have been partly granted by Euro-REVES, a concerted action    Errors in calculation of health expectancies. Age was not initialized.
   from the European Union.    Forecasting file added.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.124  2006/03/22 17:13:53  lievre
   can be accessed at http://euroreves.ined.fr/imach .    Parameters are printed with %lf instead of %f (more numbers after the comma).
   **********************************************************************/    The log-likelihood is printed in the log file
    
 #include <math.h>    Revision 1.123  2006/03/20 10:52:43  brouard
 #include <stdio.h>    * imach.c (Module): <title> changed, corresponds to .htm file
 #include <stdlib.h>    name. <head> headers where missing.
 #include <unistd.h>  
     * imach.c (Module): Weights can have a decimal point as for
 #define MAXLINE 256    English (a comma might work with a correct LC_NUMERIC environment,
 #define GNUPLOTPROGRAM "gnuplot"    otherwise the weight is truncated).
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Modification of warning when the covariates values are not 0 or
 #define FILENAMELENGTH 80    1.
 /*#define DEBUG*/    Version 0.98g
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.122  2006/03/20 09:45:41  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    otherwise the weight is truncated).
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Modification of warning when the covariates values are not 0 or
     1.
 #define NINTERVMAX 8    Version 0.98g
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.121  2006/03/16 17:45:01  lievre
 #define NCOVMAX 8 /* Maximum number of covariates */    * imach.c (Module): Comments concerning covariates added
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    * imach.c (Module): refinements in the computation of lli if
 #define AGESUP 130    status=-2 in order to have more reliable computation if stepm is
 #define AGEBASE 40    not 1 month. Version 0.98f
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.120  2006/03/16 15:10:38  lievre
 #else    (Module): refinements in the computation of lli if
 #define DIRSEPARATOR '/'    status=-2 in order to have more reliable computation if stepm is
 #endif    not 1 month. Version 0.98f
   
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    Revision 1.119  2006/03/15 17:42:26  brouard
 int erreur; /* Error number */    (Module): Bug if status = -2, the loglikelihood was
 int nvar;    computed as likelihood omitting the logarithm. Version O.98e
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.118  2006/03/14 18:20:07  brouard
 int nlstate=2; /* Number of live states */    (Module): varevsij Comments added explaining the second
 int ndeath=1; /* Number of dead states */    table of variances if popbased=1 .
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int popbased=0;    (Module): Function pstamp added
     (Module): Version 0.98d
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.117  2006/03/14 17:16:22  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): varevsij Comments added explaining the second
 int mle, weightopt;    table of variances if popbased=1 .
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Function pstamp added
 double jmean; /* Mean space between 2 waves */    (Module): Version 0.98d
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.116  2006/03/06 10:29:27  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Variance-covariance wrong links and
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    varian-covariance of ej. is needed (Saito).
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.115  2006/02/27 12:17:45  brouard
 char filerese[FILENAMELENGTH];    (Module): One freematrix added in mlikeli! 0.98c
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.114  2006/02/26 12:57:58  brouard
 FILE  *ficresvpl;    (Module): Some improvements in processing parameter
 char fileresvpl[FILENAMELENGTH];    filename with strsep.
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.113  2006/02/24 14:20:24  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    allocation too.
   
 char filerest[FILENAMELENGTH];    Revision 1.112  2006/01/30 09:55:26  brouard
 char fileregp[FILENAMELENGTH];    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 char popfile[FILENAMELENGTH];  
     Revision 1.111  2006/01/25 20:38:18  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 #define NR_END 1    can be a simple dot '.'.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 #define NRANSI  
 #define ITMAX 200    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 #define TOL 2.0e-4  
     Revision 1.108  2006/01/19 18:05:42  lievre
 #define CGOLD 0.3819660    Gnuplot problem appeared...
 #define ZEPS 1.0e-10    To be fixed
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.107  2006/01/19 16:20:37  brouard
 #define GOLD 1.618034    Test existence of gnuplot in imach path
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.105  2006/01/05 20:23:19  lievre
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    *** empty log message ***
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.104  2005/09/30 16:11:43  lievre
 #define rint(a) floor(a+0.5)    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 static double sqrarg;    that the person is alive, then we can code his/her status as -2
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (instead of missing=-1 in earlier versions) and his/her
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int imx;    the healthy state at last known wave). Version is 0.98
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.101  2004/09/15 10:38:38  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Fix on curr_time
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 double *weight;  
 int **s; /* Status */    Revision 1.99  2004/06/05 08:57:40  brouard
 double *agedc, **covar, idx;    *** empty log message ***
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.98  2004/05/16 15:05:56  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    New version 0.97 . First attempt to estimate force of mortality
 double ftolhess; /* Tolerance for computing hessian */    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 /**************** split *************************/    This is the basic analysis of mortality and should be done before any
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    other analysis, in order to test if the mortality estimated from the
 {    cross-longitudinal survey is different from the mortality estimated
    char *s;                             /* pointer */    from other sources like vital statistic data.
    int  l1, l2;                         /* length counters */  
     The same imach parameter file can be used but the option for mle should be -3.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Agnès, who wrote this part of the code, tried to keep most of the
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    former routines in order to include the new code within the former code.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    The output is very simple: only an estimate of the intercept and of
       extern char       *getwd( );    the slope with 95% confident intervals.
   
       if ( getwd( dirc ) == NULL ) {    Current limitations:
 #else    A) Even if you enter covariates, i.e. with the
       extern char       *getcwd( );    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.97  2004/02/20 13:25:42  lievre
          return( GLOCK_ERROR_GETCWD );    Version 0.96d. Population forecasting command line is (temporarily)
       }    suppressed.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.96  2003/07/15 15:38:55  brouard
       s++;                              /* after this, the filename */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       l2 = strlen( s );                 /* length of filename */    rewritten within the same printf. Workaround: many printfs.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.95  2003/07/08 07:54:34  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    * imach.c (Repository):
       dirc[l1-l2] = 0;                  /* add zero */    (Repository): Using imachwizard code to output a more meaningful covariance
    }    matrix (cov(a12,c31) instead of numbers.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.94  2003/06/27 13:00:02  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Just cleaning
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.93  2003/06/25 16:33:55  brouard
 #endif    (Module): On windows (cygwin) function asctime_r doesn't
    s = strrchr( name, '.' );            /* find last / */    exist so I changed back to asctime which exists.
    s++;    (Module): Version 0.96b
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.92  2003/06/25 16:30:45  brouard
    l2= strlen( s)+1;    (Module): On windows (cygwin) function asctime_r doesn't
    strncpy( finame, name, l1-l2);    exist so I changed back to asctime which exists.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.91  2003/06/25 15:30:29  brouard
 }    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 /******************************************/    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 void replace(char *s, char*t)  
 {    Revision 1.90  2003/06/24 12:34:15  brouard
   int i;    (Module): Some bugs corrected for windows. Also, when
   int lg=20;    mle=-1 a template is output in file "or"mypar.txt with the design
   i=0;    of the covariance matrix to be input.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.89  2003/06/24 12:30:52  brouard
     (s[i] = t[i]);    (Module): Some bugs corrected for windows. Also, when
     if (t[i]== '\\') s[i]='/';    mle=-1 a template is output in file "or"mypar.txt with the design
   }    of the covariance matrix to be input.
 }  
     Revision 1.88  2003/06/23 17:54:56  brouard
 int nbocc(char *s, char occ)    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 {  
   int i,j=0;    Revision 1.87  2003/06/18 12:26:01  brouard
   int lg=20;    Version 0.96
   i=0;  
   lg=strlen(s);    Revision 1.86  2003/06/17 20:04:08  brouard
   for(i=0; i<= lg; i++) {    (Module): Change position of html and gnuplot routines and added
   if  (s[i] == occ ) j++;    routine fileappend.
   }  
   return j;    Revision 1.85  2003/06/17 13:12:43  brouard
 }    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 void cutv(char *u,char *v, char*t, char occ)    prior to the death. In this case, dh was negative and likelihood
 {    was wrong (infinity). We still send an "Error" but patch by
   int i,lg,j,p=0;    assuming that the date of death was just one stepm after the
   i=0;    interview.
   for(j=0; j<=strlen(t)-1; j++) {    (Repository): Because some people have very long ID (first column)
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    we changed int to long in num[] and we added a new lvector for
   }    memory allocation. But we also truncated to 8 characters (left
     truncation)
   lg=strlen(t);    (Repository): No more line truncation errors.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.84  2003/06/13 21:44:43  brouard
   }    * imach.c (Repository): Replace "freqsummary" at a correct
      u[p]='\0';    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
    for(j=0; j<= lg; j++) {    parcimony.
     if (j>=(p+1))(v[j-p-1] = t[j]);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   }  
 }    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 /********************** nrerror ********************/  
     Revision 1.82  2003/06/05 15:57:20  brouard
 void nrerror(char error_text[])    Add log in  imach.c and  fullversion number is now printed.
 {  
   fprintf(stderr,"ERREUR ...\n");  */
   fprintf(stderr,"%s\n",error_text);  /*
   exit(1);     Interpolated Markov Chain
 }  
 /*********************** vector *******************/    Short summary of the programme:
 double *vector(int nl, int nh)    
 {    This program computes Healthy Life Expectancies from
   double *v;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    first survey ("cross") where individuals from different ages are
   if (!v) nrerror("allocation failure in vector");    interviewed on their health status or degree of disability (in the
   return v-nl+NR_END;    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /************************ free vector ******************/    computed from the time spent in each health state according to a
 void free_vector(double*v, int nl, int nh)    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   free((FREE_ARG)(v+nl-NR_END));    simplest model is the multinomial logistic model where pij is the
 }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /************************ivector *******************************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int *ivector(long nl,long nh)    'age' is age and 'sex' is a covariate. If you want to have a more
 {    complex model than "constant and age", you should modify the program
   int *v;    where the markup *Covariates have to be included here again* invites
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    you to do it.  More covariates you add, slower the
   if (!v) nrerror("allocation failure in ivector");    convergence.
   return v-nl+NR_END;  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 /******************free ivector **************************/    identical for each individual. Also, if a individual missed an
 void free_ivector(int *v, long nl, long nh)    intermediate interview, the information is lost, but taken into
 {    account using an interpolation or extrapolation.  
   free((FREE_ARG)(v+nl-NR_END));  
 }    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 /******************* imatrix *******************************/    split into an exact number (nh*stepm) of unobserved intermediate
 int **imatrix(long nrl, long nrh, long ncl, long nch)    states. This elementary transition (by month, quarter,
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    and the contribution of each individual to the likelihood is simply
   int **m;    hPijx.
    
   /* allocate pointers to rows */    Also this programme outputs the covariance matrix of the parameters but also
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    of the life expectancies. It also computes the period (stable) prevalence. 
   if (!m) nrerror("allocation failure 1 in matrix()");    
   m += NR_END;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   m -= nrl;             Institut national d'études démographiques, Paris.
      This software have been partly granted by Euro-REVES, a concerted action
      from the European Union.
   /* allocate rows and set pointers to them */    It is copyrighted identically to a GNU software product, ie programme and
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    software can be distributed freely for non commercial use. Latest version
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    can be accessed at http://euroreves.ined.fr/imach .
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
      or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    
      **********************************************************************/
   /* return pointer to array of pointers to rows */  /*
   return m;    main
 }    read parameterfile
     read datafile
 /****************** free_imatrix *************************/    concatwav
 void free_imatrix(m,nrl,nrh,ncl,nch)    freqsummary
       int **m;    if (mle >= 1)
       long nch,ncl,nrh,nrl;      mlikeli
      /* free an int matrix allocated by imatrix() */    print results files
 {    if mle==1 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));       computes hessian
   free((FREE_ARG) (m+nrl-NR_END));    read end of parameter file: agemin, agemax, bage, fage, estepm
 }        begin-prev-date,...
     open gnuplot file
 /******************* matrix *******************************/    open html file
 double **matrix(long nrl, long nrh, long ncl, long nch)    period (stable) prevalence
 {     for age prevalim()
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    h Pij x
   double **m;    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    health expectancies
   if (!m) nrerror("allocation failure 1 in matrix()");    Variance-covariance of DFLE
   m += NR_END;    prevalence()
   m -= nrl;     movingaverage()
     varevsij() 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if popbased==1 varevsij(,popbased)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    total life expectancies
   m[nrl] += NR_END;    Variance of period (stable) prevalence
   m[nrl] -= ncl;   end
   */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  
 }  
    
 /*************************free matrix ************************/  #include <math.h>
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #include <stdio.h>
 {  #include <stdlib.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <string.h>
   free((FREE_ARG)(m+nrl-NR_END));  #include <unistd.h>
 }  
   #include <limits.h>
 /******************* ma3x *******************************/  #include <sys/types.h>
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #include <sys/stat.h>
 {  #include <errno.h>
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  extern int errno;
   double ***m;  
   /* #include <sys/time.h> */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <time.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include "timeval.h"
   m += NR_END;  
   m -= nrl;  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define MAXLINE 256
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define FILENAMELENGTH 132
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   for (j=ncl+1; j<=nch; j++)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     m[nrl][j]=m[nrl][j-1]+nlay;  
    #define NINTERVMAX 8
   for (i=nrl+1; i<=nrh; i++) {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
     for (j=ncl+1; j<=nch; j++)  #define NCOVMAX 20 /* Maximum number of covariates */
       m[i][j]=m[i][j-1]+nlay;  #define MAXN 20000
   }  #define YEARM 12. /* Number of months per year */
   return m;  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /*************************free ma3x ************************/  #ifdef UNIX
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define ODIRSEPARATOR '\\'
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #else
   free((FREE_ARG)(m+nrl-NR_END));  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 /***************** f1dim *************************/  #endif
 extern int ncom;  
 extern double *pcom,*xicom;  /* $Id$ */
 extern double (*nrfunc)(double []);  /* $State$ */
    
 double f1dim(double x)  char version[]="Imach version 0.98l, October 2009, INED-EUROREVES-Institut de longevite ";
 {  char fullversion[]="$Revision$ $Date$"; 
   int j;  char strstart[80];
   double f;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   double *xt;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    int nvar=0, nforce=0; /* Number of variables, number of forces */
   xt=vector(1,ncom);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int npar=NPARMAX;
   f=(*nrfunc)(xt);  int nlstate=2; /* Number of live states */
   free_vector(xt,1,ncom);  int ndeath=1; /* Number of dead states */
   return f;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /*****************brent *************************/  int *wav; /* Number of waves for this individuual 0 is possible */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int maxwav=0; /* Maxim number of waves */
 {  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   int iter;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   double a,b,d,etemp;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   double fu,fv,fw,fx;                     to the likelihood and the sum of weights (done by funcone)*/
   double ftemp;  int mle=1, weightopt=0;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   double e=0.0;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   a=(ax < cx ? ax : cx);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   b=(ax > cx ? ax : cx);  double jmean=1; /* Mean space between 2 waves */
   x=w=v=bx;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   fw=fv=fx=(*f)(x);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for (iter=1;iter<=ITMAX;iter++) {  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     xm=0.5*(a+b);  FILE *ficlog, *ficrespow;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int globpr=0; /* Global variable for printing or not */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  double fretone; /* Only one call to likelihood */
     printf(".");fflush(stdout);  long ipmx=0; /* Number of contributions */
 #ifdef DEBUG  double sw; /* Sum of weights */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char filerespow[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #endif  FILE *ficresilk;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       *xmin=x;  FILE *ficresprobmorprev;
       return fx;  FILE *fichtm, *fichtmcov; /* Html File */
     }  FILE *ficreseij;
     ftemp=fu;  char filerese[FILENAMELENGTH];
     if (fabs(e) > tol1) {  FILE *ficresstdeij;
       r=(x-w)*(fx-fv);  char fileresstde[FILENAMELENGTH];
       q=(x-v)*(fx-fw);  FILE *ficrescveij;
       p=(x-v)*q-(x-w)*r;  char filerescve[FILENAMELENGTH];
       q=2.0*(q-r);  FILE  *ficresvij;
       if (q > 0.0) p = -p;  char fileresv[FILENAMELENGTH];
       q=fabs(q);  FILE  *ficresvpl;
       etemp=e;  char fileresvpl[FILENAMELENGTH];
       e=d;  char title[MAXLINE];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       else {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         d=p/q;  char command[FILENAMELENGTH];
         u=x+d;  int  outcmd=0;
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       }  
     } else {  char filelog[FILENAMELENGTH]; /* Log file */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char filerest[FILENAMELENGTH];
     }  char fileregp[FILENAMELENGTH];
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char popfile[FILENAMELENGTH];
     fu=(*f)(u);  
     if (fu <= fx) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
         SHFT(fv,fw,fx,fu)  struct timezone tzp;
         } else {  extern int gettimeofday();
           if (u < x) a=u; else b=u;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
           if (fu <= fw || w == x) {  long time_value;
             v=w;  extern long time();
             w=u;  char strcurr[80], strfor[80];
             fv=fw;  
             fw=fu;  char *endptr;
           } else if (fu <= fv || v == x || v == w) {  long lval;
             v=u;  double dval;
             fv=fu;  
           }  #define NR_END 1
         }  #define FREE_ARG char*
   }  #define FTOL 1.0e-10
   nrerror("Too many iterations in brent");  
   *xmin=x;  #define NRANSI 
   return fx;  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /****************** mnbrak ***********************/  
   #define CGOLD 0.3819660 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define ZEPS 1.0e-10 
             double (*func)(double))  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   double ulim,u,r,q, dum;  #define GOLD 1.618034 
   double fu;  #define GLIMIT 100.0 
    #define TINY 1.0e-20 
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  static double maxarg1,maxarg2;
   if (*fb > *fa) {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     SHFT(dum,*ax,*bx,dum)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       SHFT(dum,*fb,*fa,dum)    
       }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   *cx=(*bx)+GOLD*(*bx-*ax);  #define rint(a) floor(a+0.5)
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  static double sqrarg;
     r=(*bx-*ax)*(*fb-*fc);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     q=(*bx-*cx)*(*fb-*fa);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int agegomp= AGEGOMP;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int imx; 
     if ((*bx-u)*(u-*cx) > 0.0) {  int stepm=1;
       fu=(*func)(u);  /* Stepm, step in month: minimum step interpolation*/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  int estepm;
       if (fu < *fc) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  int m,nb;
           }  long *num;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       u=ulim;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       fu=(*func)(u);  double **pmmij, ***probs;
     } else {  double *ageexmed,*agecens;
       u=(*cx)+GOLD*(*cx-*bx);  double dateintmean=0;
       fu=(*func)(u);  
     }  double *weight;
     SHFT(*ax,*bx,*cx,u)  int **s; /* Status */
       SHFT(*fa,*fb,*fc,fu)  double *agedc, **covar, idx;
       }  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 }  double *lsurv, *lpop, *tpop;
   
 /*************** linmin ************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 int ncom;  
 double *pcom,*xicom;  /**************** split *************************/
 double (*nrfunc)(double []);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
    {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double brent(double ax, double bx, double cx,    */ 
                double (*f)(double), double tol, double *xmin);    char  *ss;                            /* pointer */
   double f1dim(double x);    int   l1, l2;                         /* length counters */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));    l1 = strlen(path );                   /* length of path */
   int j;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double xx,xmin,bx,ax;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double fx,fb,fa;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
        strcpy( name, path );               /* we got the fullname name because no directory */
   ncom=n;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   pcom=vector(1,n);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   xicom=vector(1,n);      /* get current working directory */
   nrfunc=func;      /*    extern  char* getcwd ( char *buf , int len);*/
   for (j=1;j<=n;j++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     pcom[j]=p[j];        return( GLOCK_ERROR_GETCWD );
     xicom[j]=xi[j];      }
   }      /* got dirc from getcwd*/
   ax=0.0;      printf(" DIRC = %s \n",dirc);
   xx=1.0;    } else {                              /* strip direcotry from path */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      ss++;                               /* after this, the filename */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      l2 = strlen( ss );                  /* length of filename */
 #ifdef DEBUG      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      strcpy( name, ss );         /* save file name */
 #endif      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   for (j=1;j<=n;j++) {      dirc[l1-l2] = 0;                    /* add zero */
     xi[j] *= xmin;      printf(" DIRC2 = %s \n",dirc);
     p[j] += xi[j];    }
   }    /* We add a separator at the end of dirc if not exists */
   free_vector(xicom,1,n);    l1 = strlen( dirc );                  /* length of directory */
   free_vector(pcom,1,n);    if( dirc[l1-1] != DIRSEPARATOR ){
 }      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
 /*************** powell ************************/      printf(" DIRC3 = %s \n",dirc);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    }
             double (*func)(double []))    ss = strrchr( name, '.' );            /* find last / */
 {    if (ss >0){
   void linmin(double p[], double xi[], int n, double *fret,      ss++;
               double (*func)(double []));      strcpy(ext,ss);                     /* save extension */
   int i,ibig,j;      l1= strlen( name);
   double del,t,*pt,*ptt,*xit;      l2= strlen(ss)+1;
   double fp,fptt;      strncpy( finame, name, l1-l2);
   double *xits;      finame[l1-l2]= 0;
   pt=vector(1,n);    }
   ptt=vector(1,n);  
   xit=vector(1,n);    return( 0 );                          /* we're done */
   xits=vector(1,n);  }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /******************************************/
     fp=(*fret);  
     ibig=0;  void replace_back_to_slash(char *s, char*t)
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    int i;
     for (i=1;i<=n;i++)    int lg=0;
       printf(" %d %.12f",i, p[i]);    i=0;
     printf("\n");    lg=strlen(t);
     for (i=1;i<=n;i++) {    for(i=0; i<= lg; i++) {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      (s[i] = t[i]);
       fptt=(*fret);      if (t[i]== '\\') s[i]='/';
 #ifdef DEBUG    }
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  char *trimbb(char *out, char *in)
       linmin(p,xit,n,fret,func);  { /* Trim multiple blanks in line */
       if (fabs(fptt-(*fret)) > del) {    char *s;
         del=fabs(fptt-(*fret));    s=out;
         ibig=i;    while (*in != '\0'){
       }      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
 #ifdef DEBUG        in++;
       printf("%d %.12e",i,(*fret));      }
       for (j=1;j<=n;j++) {      *out++ = *in++;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    }
         printf(" x(%d)=%.12e",j,xit[j]);    *out='\0';
       }    return s;
       for(j=1;j<=n;j++)  }
         printf(" p=%.12e",p[j]);  
       printf("\n");  int nbocc(char *s, char occ)
 #endif  {
     }    int i,j=0;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    int lg=20;
 #ifdef DEBUG    i=0;
       int k[2],l;    lg=strlen(s);
       k[0]=1;    for(i=0; i<= lg; i++) {
       k[1]=-1;    if  (s[i] == occ ) j++;
       printf("Max: %.12e",(*func)(p));    }
       for (j=1;j<=n;j++)    return j;
         printf(" %.12e",p[j]);  }
       printf("\n");  
       for(l=0;l<=1;l++) {  void cutv(char *u,char *v, char*t, char occ)
         for (j=1;j<=n;j++) {  {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         }       gives u="abcedf" and v="ghi2j" */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    int i,lg,j,p=0;
       }    i=0;
 #endif    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
       free_vector(xit,1,n);  
       free_vector(xits,1,n);    lg=strlen(t);
       free_vector(ptt,1,n);    for(j=0; j<p; j++) {
       free_vector(pt,1,n);      (u[j] = t[j]);
       return;    }
     }       u[p]='\0';
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {     for(j=0; j<= lg; j++) {
       ptt[j]=2.0*p[j]-pt[j];      if (j>=(p+1))(v[j-p-1] = t[j]);
       xit[j]=p[j]-pt[j];    }
       pt[j]=p[j];  }
     }  
     fptt=(*func)(ptt);  /********************** nrerror ********************/
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  void nrerror(char error_text[])
       if (t < 0.0) {  {
         linmin(p,xit,n,fret,func);    fprintf(stderr,"ERREUR ...\n");
         for (j=1;j<=n;j++) {    fprintf(stderr,"%s\n",error_text);
           xi[j][ibig]=xi[j][n];    exit(EXIT_FAILURE);
           xi[j][n]=xit[j];  }
         }  /*********************** vector *******************/
 #ifdef DEBUG  double *vector(int nl, int nh)
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  {
         for(j=1;j<=n;j++)    double *v;
           printf(" %.12e",xit[j]);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         printf("\n");    if (!v) nrerror("allocation failure in vector");
 #endif    return v-nl+NR_END;
       }  }
     }  
   }  /************************ free vector ******************/
 }  void free_vector(double*v, int nl, int nh)
   {
 /**** Prevalence limit ****************/    free((FREE_ARG)(v+nl-NR_END));
   }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  /************************ivector *******************************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  int *ivector(long nl,long nh)
      matrix by transitions matrix until convergence is reached */  {
     int *v;
   int i, ii,j,k;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double min, max, maxmin, maxmax,sumnew=0.;    if (!v) nrerror("allocation failure in ivector");
   double **matprod2();    return v-nl+NR_END;
   double **out, cov[NCOVMAX], **pmij();  }
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
   for (ii=1;ii<=nlstate+ndeath;ii++)  {
     for (j=1;j<=nlstate+ndeath;j++){    free((FREE_ARG)(v+nl-NR_END));
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
     }  
   /************************lvector *******************************/
    cov[1]=1.;  long *lvector(long nl,long nh)
    {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    long *v;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     newm=savm;    if (!v) nrerror("allocation failure in ivector");
     /* Covariates have to be included here again */    return v-nl+NR_END;
      cov[2]=agefin;  }
    
       for (k=1; k<=cptcovn;k++) {  /******************free lvector **************************/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  void free_lvector(long *v, long nl, long nh)
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  {
       }    free((FREE_ARG)(v+nl-NR_END));
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  { 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    int **m; 
     
     savm=oldm;    /* allocate pointers to rows */ 
     oldm=newm;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     maxmax=0.;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     for(j=1;j<=nlstate;j++){    m += NR_END; 
       min=1.;    m -= nrl; 
       max=0.;    
       for(i=1; i<=nlstate; i++) {    
         sumnew=0;    /* allocate rows and set pointers to them */ 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         max=FMAX(max,prlim[i][j]);    m[nrl] += NR_END; 
         min=FMIN(min,prlim[i][j]);    m[nrl] -= ncl; 
       }    
       maxmin=max-min;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       maxmax=FMAX(maxmax,maxmin);    
     }    /* return pointer to array of pointers to rows */ 
     if(maxmax < ftolpl){    return m; 
       return prlim;  } 
     }  
   }  /****************** free_imatrix *************************/
 }  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
 /*************** transition probabilities ***************/        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  { 
 {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double s1, s2;    free((FREE_ARG) (m+nrl-NR_END)); 
   /*double t34;*/  } 
   int i,j,j1, nc, ii, jj;  
   /******************* matrix *******************************/
     for(i=1; i<= nlstate; i++){  double **matrix(long nrl, long nrh, long ncl, long nch)
     for(j=1; j<i;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         /*s2 += param[i][j][nc]*cov[nc];*/    double **m;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
       ps[i][j]=s2;    m += NR_END;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    m -= nrl;
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m[nrl] += NR_END;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    m[nrl] -= ncl;
       }  
       ps[i][j]=s2;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }    return m;
   }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     /*ps[3][2]=1;*/     */
   }
   for(i=1; i<= nlstate; i++){  
      s1=0;  /*************************free matrix ************************/
     for(j=1; j<i; j++)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       s1+=exp(ps[i][j]);  {
     for(j=i+1; j<=nlstate+ndeath; j++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       s1+=exp(ps[i][j]);    free((FREE_ARG)(m+nrl-NR_END));
     ps[i][i]=1./(s1+1.);  }
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /******************* ma3x *******************************/
     for(j=i+1; j<=nlstate+ndeath; j++)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       ps[i][j]= exp(ps[i][j])*ps[i][i];  {
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   } /* end i */    double ***m;
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(jj=1; jj<= nlstate+ndeath; jj++){    if (!m) nrerror("allocation failure 1 in matrix()");
       ps[ii][jj]=0;    m += NR_END;
       ps[ii][ii]=1;    m -= nrl;
     }  
   }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    m[nrl] -= ncl;
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
    }  
     printf("\n ");    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     printf("\n ");printf("%lf ",cov[2]);*/    m[nrl][ncl] += NR_END;
 /*    m[nrl][ncl] -= nll;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    for (j=ncl+1; j<=nch; j++) 
   goto end;*/      m[nrl][j]=m[nrl][j-1]+nlay;
     return ps;    
 }    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 /**************** Product of 2 matrices ******************/      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    }
 {    return m; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   /* in, b, out are matrice of pointers which should have been initialized    */
      before: only the contents of out is modified. The function returns  }
      a pointer to pointers identical to out */  
   long i, j, k;  /*************************free ma3x ************************/
   for(i=nrl; i<= nrh; i++)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for(k=ncolol; k<=ncoloh; k++)  {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         out[i][k] +=in[i][j]*b[j][k];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   return out;  }
 }  
   /*************** function subdirf ***********/
   char *subdirf(char fileres[])
 /************* Higher Matrix Product ***************/  {
     /* Caution optionfilefiname is hidden */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    strcpy(tmpout,optionfilefiname);
 {    strcat(tmpout,"/"); /* Add to the right */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    strcat(tmpout,fileres);
      duration (i.e. until    return tmpout;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).  /*************** function subdirf2 ***********/
      Model is determined by parameters x and covariates have to be  char *subdirf2(char fileres[], char *preop)
      included manually here.  {
     
      */    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   int i, j, d, h, k;    strcat(tmpout,"/");
   double **out, cov[NCOVMAX];    strcat(tmpout,preop);
   double **newm;    strcat(tmpout,fileres);
     return tmpout;
   /* Hstepm could be zero and should return the unit matrix */  }
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  /*************** function subdirf3 ***********/
       oldm[i][j]=(i==j ? 1.0 : 0.0);  char *subdirf3(char fileres[], char *preop, char *preop2)
       po[i][j][0]=(i==j ? 1.0 : 0.0);  {
     }    
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* Caution optionfilefiname is hidden */
   for(h=1; h <=nhstepm; h++){    strcpy(tmpout,optionfilefiname);
     for(d=1; d <=hstepm; d++){    strcat(tmpout,"/");
       newm=savm;    strcat(tmpout,preop);
       /* Covariates have to be included here again */    strcat(tmpout,preop2);
       cov[1]=1.;    strcat(tmpout,fileres);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    return tmpout;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /***************** f1dim *************************/
       for (k=1; k<=cptcovprod;k++)  extern int ncom; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
    
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  double f1dim(double x) 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    int j; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double f;
       savm=oldm;    double *xt; 
       oldm=newm;   
     }    xt=vector(1,ncom); 
     for(i=1; i<=nlstate+ndeath; i++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for(j=1;j<=nlstate+ndeath;j++) {    f=(*nrfunc)(xt); 
         po[i][j][h]=newm[i][j];    free_vector(xt,1,ncom); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    return f; 
          */  } 
       }  
   } /* end h */  /*****************brent *************************/
   return po;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 }  { 
     int iter; 
     double a,b,d,etemp;
 /*************** log-likelihood *************/    double fu,fv,fw,fx;
 double func( double *x)    double ftemp;
 {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   int i, ii, j, k, mi, d, kk;    double e=0.0; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];   
   double **out;    a=(ax < cx ? ax : cx); 
   double sw; /* Sum of weights */    b=(ax > cx ? ax : cx); 
   double lli; /* Individual log likelihood */    x=w=v=bx; 
   long ipmx;    fw=fv=fx=(*f)(x); 
   /*extern weight */    for (iter=1;iter<=ITMAX;iter++) { 
   /* We are differentiating ll according to initial status */      xm=0.5*(a+b); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   /*for(i=1;i<imx;i++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     printf(" %d\n",s[4][i]);      printf(".");fflush(stdout);
   */      fprintf(ficlog,".");fflush(ficlog);
   cov[1]=1.;  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for(k=1; k<=nlstate; k++) ll[k]=0.;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  #endif
     for(mi=1; mi<= wav[i]-1; mi++){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for (ii=1;ii<=nlstate+ndeath;ii++)        *xmin=x; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        return fx; 
       for(d=0; d<dh[mi][i]; d++){      } 
         newm=savm;      ftemp=fu;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      if (fabs(e) > tol1) { 
         for (kk=1; kk<=cptcovage;kk++) {        r=(x-w)*(fx-fv); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        q=(x-v)*(fx-fw); 
         }        p=(x-v)*q-(x-w)*r; 
                q=2.0*(q-r); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        if (q > 0.0) p = -p; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        q=fabs(q); 
         savm=oldm;        etemp=e; 
         oldm=newm;        e=d; 
                if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
                  d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } /* end mult */        else { 
                d=p/q; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          u=x+d; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          if (u-a < tol2 || b-u < tol2) 
       ipmx +=1;            d=SIGN(tol1,xm-x); 
       sw += weight[i];        } 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      } else { 
     } /* end of wave */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   } /* end of individual */      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      fu=(*f)(u); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      if (fu <= fx) { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        if (u >= x) a=x; else b=x; 
   return -l;        SHFT(v,w,x,u) 
 }          SHFT(fv,fw,fx,fu) 
           } else { 
             if (u < x) a=u; else b=u; 
 /*********** Maximum Likelihood Estimation ***************/            if (fu <= fw || w == x) { 
               v=w; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))              w=u; 
 {              fv=fw; 
   int i,j, iter;              fw=fu; 
   double **xi,*delti;            } else if (fu <= fv || v == x || v == w) { 
   double fret;              v=u; 
   xi=matrix(1,npar,1,npar);              fv=fu; 
   for (i=1;i<=npar;i++)            } 
     for (j=1;j<=npar;j++)          } 
       xi[i][j]=(i==j ? 1.0 : 0.0);    } 
   printf("Powell\n");    nrerror("Too many iterations in brent"); 
   powell(p,xi,npar,ftol,&iter,&fret,func);    *xmin=x; 
     return fx; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  } 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   /****************** mnbrak ***********************/
 }  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 /**** Computes Hessian and covariance matrix ***/              double (*func)(double)) 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  { 
 {    double ulim,u,r,q, dum;
   double  **a,**y,*x,pd;    double fu; 
   double **hess;   
   int i, j,jk;    *fa=(*func)(*ax); 
   int *indx;    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   double hessii(double p[], double delta, int theta, double delti[]);      SHFT(dum,*ax,*bx,dum) 
   double hessij(double p[], double delti[], int i, int j);        SHFT(dum,*fb,*fa,dum) 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        } 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
   hess=matrix(1,npar,1,npar);    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
   printf("\nCalculation of the hessian matrix. Wait...\n");      q=(*bx-*cx)*(*fb-*fa); 
   for (i=1;i<=npar;i++){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     printf("%d",i);fflush(stdout);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     hess[i][i]=hessii(p,ftolhess,i,delti);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     /*printf(" %f ",p[i]);*/      if ((*bx-u)*(u-*cx) > 0.0) { 
     /*printf(" %lf ",hess[i][i]);*/        fu=(*func)(u); 
   }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
          fu=(*func)(u); 
   for (i=1;i<=npar;i++) {        if (fu < *fc) { 
     for (j=1;j<=npar;j++)  {          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       if (j>i) {            SHFT(*fb,*fc,fu,(*func)(u)) 
         printf(".%d%d",i,j);fflush(stdout);            } 
         hess[i][j]=hessij(p,delti,i,j);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         hess[j][i]=hess[i][j];            u=ulim; 
         /*printf(" %lf ",hess[i][j]);*/        fu=(*func)(u); 
       }      } else { 
     }        u=(*cx)+GOLD*(*cx-*bx); 
   }        fu=(*func)(u); 
   printf("\n");      } 
       SHFT(*ax,*bx,*cx,u) 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        SHFT(*fa,*fb,*fc,fu) 
          } 
   a=matrix(1,npar,1,npar);  } 
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  /*************** linmin ************************/
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  int ncom; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  double *pcom,*xicom;
   ludcmp(a,npar,indx,&pd);  double (*nrfunc)(double []); 
    
   for (j=1;j<=npar;j++) {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for (i=1;i<=npar;i++) x[i]=0;  { 
     x[j]=1;    double brent(double ax, double bx, double cx, 
     lubksb(a,npar,indx,x);                 double (*f)(double), double tol, double *xmin); 
     for (i=1;i<=npar;i++){    double f1dim(double x); 
       matcov[i][j]=x[i];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     }                double *fc, double (*func)(double)); 
   }    int j; 
     double xx,xmin,bx,ax; 
   printf("\n#Hessian matrix#\n");    double fx,fb,fa;
   for (i=1;i<=npar;i++) {   
     for (j=1;j<=npar;j++) {    ncom=n; 
       printf("%.3e ",hess[i][j]);    pcom=vector(1,n); 
     }    xicom=vector(1,n); 
     printf("\n");    nrfunc=func; 
   }    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   /* Recompute Inverse */      xicom[j]=xi[j]; 
   for (i=1;i<=npar;i++)    } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    ax=0.0; 
   ludcmp(a,npar,indx,&pd);    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   /*  printf("\n#Hessian matrix recomputed#\n");    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   for (j=1;j<=npar;j++) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (i=1;i<=npar;i++) x[i]=0;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     x[j]=1;  #endif
     lubksb(a,npar,indx,x);    for (j=1;j<=n;j++) { 
     for (i=1;i<=npar;i++){      xi[j] *= xmin; 
       y[i][j]=x[i];      p[j] += xi[j]; 
       printf("%.3e ",y[i][j]);    } 
     }    free_vector(xicom,1,n); 
     printf("\n");    free_vector(pcom,1,n); 
   }  } 
   */  
   char *asc_diff_time(long time_sec, char ascdiff[])
   free_matrix(a,1,npar,1,npar);  {
   free_matrix(y,1,npar,1,npar);    long sec_left, days, hours, minutes;
   free_vector(x,1,npar);    days = (time_sec) / (60*60*24);
   free_ivector(indx,1,npar);    sec_left = (time_sec) % (60*60*24);
   free_matrix(hess,1,npar,1,npar);    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 }    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 /*************** hessian matrix ****************/    return ascdiff;
 double hessii( double x[], double delta, int theta, double delti[])  }
 {  
   int i;  /*************** powell ************************/
   int l=1, lmax=20;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   double k1,k2;              double (*func)(double [])) 
   double p2[NPARMAX+1];  { 
   double res;    void linmin(double p[], double xi[], int n, double *fret, 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;                double (*func)(double [])); 
   double fx;    int i,ibig,j; 
   int k=0,kmax=10;    double del,t,*pt,*ptt,*xit;
   double l1;    double fp,fptt;
     double *xits;
   fx=func(x);    int niterf, itmp;
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){    pt=vector(1,n); 
     l1=pow(10,l);    ptt=vector(1,n); 
     delts=delt;    xit=vector(1,n); 
     for(k=1 ; k <kmax; k=k+1){    xits=vector(1,n); 
       delt = delta*(l1*k);    *fret=(*func)(p); 
       p2[theta]=x[theta] +delt;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       k1=func(p2)-fx;    for (*iter=1;;++(*iter)) { 
       p2[theta]=x[theta]-delt;      fp=(*fret); 
       k2=func(p2)-fx;      ibig=0; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      del=0.0; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      last_time=curr_time;
            (void) gettimeofday(&curr_time,&tzp);
 #ifdef DEBUG      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 #endif  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */     for (i=1;i<=n;i++) {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        printf(" %d %.12f",i, p[i]);
         k=kmax;        fprintf(ficlog," %d %.12lf",i, p[i]);
       }        fprintf(ficrespow," %.12lf", p[i]);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      }
         k=kmax; l=lmax*10.;      printf("\n");
       }      fprintf(ficlog,"\n");
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      fprintf(ficrespow,"\n");fflush(ficrespow);
         delts=delt;      if(*iter <=3){
       }        tm = *localtime(&curr_time.tv_sec);
     }        strcpy(strcurr,asctime(&tm));
   }  /*       asctime_r(&tm,strcurr); */
   delti[theta]=delts;        forecast_time=curr_time; 
   return res;        itmp = strlen(strcurr);
          if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 }          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 double hessij( double x[], double delti[], int thetai,int thetaj)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 {        for(niterf=10;niterf<=30;niterf+=10){
   int i;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   int l=1, l1, lmax=20;          tmf = *localtime(&forecast_time.tv_sec);
   double k1,k2,k3,k4,res,fx;  /*      asctime_r(&tmf,strfor); */
   double p2[NPARMAX+1];          strcpy(strfor,asctime(&tmf));
   int k;          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
   fx=func(x);          strfor[itmp-1]='\0';
   for (k=1; k<=2; k++) {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (i=1;i<=npar;i++) p2[i]=x[i];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      }
     k1=func(p2)-fx;      for (i=1;i<=n;i++) { 
          for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        fptt=(*fret); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #ifdef DEBUG
     k2=func(p2)-fx;        printf("fret=%lf \n",*fret);
          fprintf(ficlog,"fret=%lf \n",*fret);
     p2[thetai]=x[thetai]-delti[thetai]/k;  #endif
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        printf("%d",i);fflush(stdout);
     k3=func(p2)-fx;        fprintf(ficlog,"%d",i);fflush(ficlog);
          linmin(p,xit,n,fret,func); 
     p2[thetai]=x[thetai]-delti[thetai]/k;        if (fabs(fptt-(*fret)) > del) { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          del=fabs(fptt-(*fret)); 
     k4=func(p2)-fx;          ibig=i; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        } 
 #ifdef DEBUG  #ifdef DEBUG
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        printf("%d %.12e",i,(*fret));
 #endif        fprintf(ficlog,"%d %.12e",i,(*fret));
   }        for (j=1;j<=n;j++) {
   return res;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 /************** Inverse of matrix **************/        }
 void ludcmp(double **a, int n, int *indx, double *d)        for(j=1;j<=n;j++) {
 {          printf(" p=%.12e",p[j]);
   int i,imax,j,k;          fprintf(ficlog," p=%.12e",p[j]);
   double big,dum,sum,temp;        }
   double *vv;        printf("\n");
          fprintf(ficlog,"\n");
   vv=vector(1,n);  #endif
   *d=1.0;      } 
   for (i=1;i<=n;i++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     big=0.0;  #ifdef DEBUG
     for (j=1;j<=n;j++)        int k[2],l;
       if ((temp=fabs(a[i][j])) > big) big=temp;        k[0]=1;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        k[1]=-1;
     vv[i]=1.0/big;        printf("Max: %.12e",(*func)(p));
   }        fprintf(ficlog,"Max: %.12e",(*func)(p));
   for (j=1;j<=n;j++) {        for (j=1;j<=n;j++) {
     for (i=1;i<j;i++) {          printf(" %.12e",p[j]);
       sum=a[i][j];          fprintf(ficlog," %.12e",p[j]);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        }
       a[i][j]=sum;        printf("\n");
     }        fprintf(ficlog,"\n");
     big=0.0;        for(l=0;l<=1;l++) {
     for (i=j;i<=n;i++) {          for (j=1;j<=n;j++) {
       sum=a[i][j];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       for (k=1;k<j;k++)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         sum -= a[i][k]*a[k][j];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       a[i][j]=sum;          }
       if ( (dum=vv[i]*fabs(sum)) >= big) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         big=dum;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         imax=i;        }
       }  #endif
     }  
     if (j != imax) {  
       for (k=1;k<=n;k++) {        free_vector(xit,1,n); 
         dum=a[imax][k];        free_vector(xits,1,n); 
         a[imax][k]=a[j][k];        free_vector(ptt,1,n); 
         a[j][k]=dum;        free_vector(pt,1,n); 
       }        return; 
       *d = -(*d);      } 
       vv[imax]=vv[j];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     }      for (j=1;j<=n;j++) { 
     indx[j]=imax;        ptt[j]=2.0*p[j]-pt[j]; 
     if (a[j][j] == 0.0) a[j][j]=TINY;        xit[j]=p[j]-pt[j]; 
     if (j != n) {        pt[j]=p[j]; 
       dum=1.0/(a[j][j]);      } 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   free_vector(vv,1,n);  /* Doesn't work */        if (t < 0.0) { 
 ;          linmin(p,xit,n,fret,func); 
 }          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
 void lubksb(double **a, int n, int *indx, double b[])            xi[j][n]=xit[j]; 
 {          }
   int i,ii=0,ip,j;  #ifdef DEBUG
   double sum;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=n;i++) {          for(j=1;j<=n;j++){
     ip=indx[i];            printf(" %.12e",xit[j]);
     sum=b[ip];            fprintf(ficlog," %.12e",xit[j]);
     b[ip]=b[i];          }
     if (ii)          printf("\n");
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          fprintf(ficlog,"\n");
     else if (sum) ii=i;  #endif
     b[i]=sum;        }
   }      } 
   for (i=n;i>=1;i--) {    } 
     sum=b[i];  } 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  /**** Prevalence limit (stable or period prevalence)  ****************/
   }  
 }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
 /************ Frequencies ********************/    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)       matrix by transitions matrix until convergence is reached */
 {  /* Some frequencies */  
      int i, ii,j,k;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    double min, max, maxmin, maxmax,sumnew=0.;
   double ***freq; /* Frequencies */    double **matprod2();
   double *pp;    double **out, cov[NCOVMAX+1], **pmij();
   double pos, k2, dateintsum=0,k2cpt=0;    double **newm;
   FILE *ficresp;    double agefin, delaymax=50 ; /* Max number of years to converge */
   char fileresp[FILENAMELENGTH];  
      for (ii=1;ii<=nlstate+ndeath;ii++)
   pp=vector(1,nlstate);      for (j=1;j<=nlstate+ndeath;j++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcpy(fileresp,"p");      }
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {     cov[1]=1.;
     printf("Problem with prevalence resultfile: %s\n", fileresp);   
     exit(0);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      newm=savm;
   j1=0;      /* Covariates have to be included here again */
         cov[2]=agefin;
   j=cptcoveff;    
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (k=1; k<=cptcovn;k++) {
            cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for(k1=1; k1<=j;k1++){          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     for(i1=1; i1<=ncodemax[k1];i1++){        }
       j1++;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        for (k=1; k<=cptcovprod;k++)
         scanf("%d", i);*/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)          /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           for(m=agemin; m <= agemax+3; m++)        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
             freq[i][jk][m]=0;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
            out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       dateintsum=0;  
       k2cpt=0;      savm=oldm;
       for (i=1; i<=imx; i++) {      oldm=newm;
         bool=1;      maxmax=0.;
         if  (cptcovn>0) {      for(j=1;j<=nlstate;j++){
           for (z1=1; z1<=cptcoveff; z1++)        min=1.;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        max=0.;
               bool=0;        for(i=1; i<=nlstate; i++) {
         }          sumnew=0;
         if (bool==1) {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           for(m=firstpass; m<=lastpass; m++){          prlim[i][j]= newm[i][j]/(1-sumnew);
             k2=anint[m][i]+(mint[m][i]/12.);          max=FMAX(max,prlim[i][j]);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          min=FMIN(min,prlim[i][j]);
               if(agev[m][i]==0) agev[m][i]=agemax+1;        }
               if(agev[m][i]==1) agev[m][i]=agemax+2;        maxmin=max-min;
               if (m<lastpass) {        maxmax=FMAX(maxmax,maxmin);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      if(maxmax < ftolpl){
               }        return prlim;
                    }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    }
                 dateintsum=dateintsum+k2;  }
                 k2cpt++;  
               }  /*************** transition probabilities ***************/ 
             }  
           }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         }  {
       }    double s1, s2;
            /*double t34;*/
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int i,j,j1, nc, ii, jj;
   
       if  (cptcovn>0) {      for(i=1; i<= nlstate; i++){
         fprintf(ficresp, "\n#********** Variable ");        for(j=1; j<i;j++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         fprintf(ficresp, "**********\n#");            /*s2 += param[i][j][nc]*cov[nc];*/
       }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for(i=1; i<=nlstate;i++)  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          }
       fprintf(ficresp, "\n");          ps[i][j]=s2;
        /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       for(i=(int)agemin; i <= (int)agemax+3; i++){        }
         if(i==(int)agemax+3)        for(j=i+1; j<=nlstate+ndeath;j++){
           printf("Total");          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         else            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           printf("Age %d", i);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          ps[i][j]=s2;
             pp[jk] += freq[jk][m][i];        }
         }      }
         for(jk=1; jk <=nlstate ; jk++){      /*ps[3][2]=1;*/
           for(m=-1, pos=0; m <=0 ; m++)      
             pos += freq[jk][m][i];      for(i=1; i<= nlstate; i++){
           if(pp[jk]>=1.e-10)        s1=0;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for(j=1; j<i; j++){
           else          s1+=exp(ps[i][j]);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }        }
         for(j=i+1; j<=nlstate+ndeath; j++){
         for(jk=1; jk <=nlstate ; jk++){          s1+=exp(ps[i][j]);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             pp[jk] += freq[jk][m][i];        }
         }        ps[i][i]=1./(s1+1.);
         for(j=1; j<i; j++)
         for(jk=1,pos=0; jk <=nlstate ; jk++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
           pos += pp[jk];        for(j=i+1; j<=nlstate+ndeath; j++)
         for(jk=1; jk <=nlstate ; jk++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
           if(pos>=1.e-5)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      } /* end i */
           else      
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           if( i <= (int) agemax){        for(jj=1; jj<= nlstate+ndeath; jj++){
             if(pos>=1.e-5){          ps[ii][jj]=0;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          ps[ii][ii]=1;
               probs[i][jk][j1]= pp[jk]/pos;        }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      }
             }      
             else  
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         }  /*         printf("ddd %lf ",ps[ii][jj]); */
          /*       } */
         for(jk=-1; jk <=nlstate+ndeath; jk++)  /*       printf("\n "); */
           for(m=-1; m <=nlstate+ndeath; m++)  /*        } */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  /*        printf("\n ");printf("%lf ",cov[2]); */
         if(i <= (int) agemax)         /*
           fprintf(ficresp,"\n");        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         printf("\n");        goto end;*/
       }      return ps;
     }  }
   }  
   dateintmean=dateintsum/k2cpt;  /**************** Product of 2 matrices ******************/
    
   fclose(ficresp);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  {
   free_vector(pp,1,nlstate);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   /* End of Freq */    /* in, b, out are matrice of pointers which should have been initialized 
 }       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
 /************ Prevalence ********************/    long i, j, k;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    for(i=nrl; i<= nrh; i++)
 {  /* Some frequencies */      for(k=ncolol; k<=ncoloh; k++)
          for(j=ncl,out[i][k]=0.; j<=nch; j++)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          out[i][k] +=in[i][j]*b[j][k];
   double ***freq; /* Frequencies */  
   double *pp;    return out;
   double pos, k2;  }
   
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /************* Higher Matrix Product ***************/
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   j1=0;  {
      /* Computes the transition matrix starting at age 'age' over 
   j=cptcoveff;       'nhstepm*hstepm*stepm' months (i.e. until
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         nhstepm*hstepm matrices. 
   for(k1=1; k1<=j;k1++){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for(i1=1; i1<=ncodemax[k1];i1++){       (typically every 2 years instead of every month which is too big 
       j1++;       for the memory).
             Model is determined by parameters x and covariates have to be 
       for (i=-1; i<=nlstate+ndeath; i++)         included manually here. 
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)       */
             freq[i][jk][m]=0;  
          int i, j, d, h, k;
       for (i=1; i<=imx; i++) {    double **out, cov[NCOVMAX+1];
         bool=1;    double **newm;
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)    /* Hstepm could be zero and should return the unit matrix */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    for (i=1;i<=nlstate+ndeath;i++)
               bool=0;      for (j=1;j<=nlstate+ndeath;j++){
         }        oldm[i][j]=(i==j ? 1.0 : 0.0);
         if (bool==1) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
           for(m=firstpass; m<=lastpass; m++){      }
             k2=anint[m][i]+(mint[m][i]/12.);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    for(h=1; h <=nhstepm; h++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;      for(d=1; d <=hstepm; d++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;        newm=savm;
               if (m<lastpass) {        /* Covariates have to be included here again */
                 if (calagedate>0)        cov[1]=1.;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
                 else        for (k=1; k<=cptcovn;k++) 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        for (k=1; k<=cptcovage;k++)
               }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             }        for (k=1; k<=cptcovprod;k++)
           }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         }  
       }  
       for(i=(int)agemin; i <= (int)agemax+3; i++){        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         for(jk=1; jk <=nlstate ; jk++){        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
             pp[jk] += freq[jk][m][i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         }        savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){        oldm=newm;
           for(m=-1, pos=0; m <=0 ; m++)      }
             pos += freq[jk][m][i];      for(i=1; i<=nlstate+ndeath; i++)
         }        for(j=1;j<=nlstate+ndeath;j++) {
                  po[i][j][h]=newm[i][j];
         for(jk=1; jk <=nlstate ; jk++){          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        }
             pp[jk] += freq[jk][m][i];      /*printf("h=%d ",h);*/
         }    } /* end h */
          /*     printf("\n H=%d \n",h); */
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    return po;
          }
         for(jk=1; jk <=nlstate ; jk++){      
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  /*************** log-likelihood *************/
               probs[i][jk][j1]= pp[jk]/pos;  double func( double *x)
             }  {
           }    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
            double **out;
       }    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
   }    int s1, s2;
     double bbh, survp;
      long ipmx;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /*extern weight */
   free_vector(pp,1,nlstate);    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 }  /* End of Freq */    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
 /************* Waves Concatenation ***************/    */
     cov[1]=1.;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {    for(k=1; k<=nlstate; k++) ll[k]=0.;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  
      Death is a valid wave (if date is known).    if(mle==1){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      and mw[mi+1][i]. dh depends on stepm.        for(mi=1; mi<= wav[i]-1; mi++){
      */          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   int i, mi, m;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      double sum=0., jmean=0.;*/            }
           for(d=0; d<dh[mi][i]; d++){
   int j, k=0,jk, ju, jl;            newm=savm;
   double sum=0.;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   jmin=1e+5;            for (kk=1; kk<=cptcovage;kk++) {
   jmax=-1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   jmean=0.;            }
   for(i=1; i<=imx; i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     mi=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     m=firstpass;            savm=oldm;
     while(s[m][i] <= nlstate){            oldm=newm;
       if(s[m][i]>=1)          } /* end mult */
         mw[++mi][i]=m;        
       if(m >=lastpass)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         break;          /* But now since version 0.9 we anticipate for bias at large stepm.
       else           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         m++;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }/* end while */           * the nearest (and in case of equal distance, to the lowest) interval but now
     if (s[m][i] > nlstate){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       mi++;     /* Death is another wave */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       /* if(mi==0)  never been interviewed correctly before death */           * probability in order to take into account the bias as a fraction of the way
          /* Only death is a correct wave */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       mw[mi][i]=m;           * -stepm/2 to stepm/2 .
     }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
     wav[i]=mi;           */
     if(mi==0)          s1=s[mw[mi][i]][i];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
   for(i=1; i<=imx; i++){           * is higher than the multiple of stepm and negative otherwise.
     for(mi=1; mi<wav[i];mi++){           */
       if (stepm <=0)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         dh[mi][i]=1;          if( s2 > nlstate){ 
       else{            /* i.e. if s2 is a death state and if the date of death is known 
         if (s[mw[mi+1][i]][i] > nlstate) {               then the contribution to the likelihood is the probability to 
           if (agedc[i] < 2*AGESUP) {               die between last step unit time and current  step unit time, 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);               which is also equal to probability to die before dh 
           if(j==0) j=1;  /* Survives at least one month after exam */               minus probability to die before dh-stepm . 
           k=k+1;               In version up to 0.92 likelihood was computed
           if (j >= jmax) jmax=j;          as if date of death was unknown. Death was treated as any other
           if (j <= jmin) jmin=j;          health state: the date of the interview describes the actual state
           sum=sum+j;          and not the date of a change in health state. The former idea was
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          to consider that at each interview the state was recorded
           }          (healthy, disable or death) and IMaCh was corrected; but when we
         }          introduced the exact date of death then we should have modified
         else{          the contribution of an exact death to the likelihood. This new
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          contribution is smaller and very dependent of the step unit
           k=k+1;          stepm. It is no more the probability to die between last interview
           if (j >= jmax) jmax=j;          and month of death but the probability to survive from last
           else if (j <= jmin)jmin=j;          interview up to one month before death multiplied by the
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          probability to die within a month. Thanks to Chris
           sum=sum+j;          Jackson for correcting this bug.  Former versions increased
         }          mortality artificially. The bad side is that we add another loop
         jk= j/stepm;          which slows down the processing. The difference can be up to 10%
         jl= j -jk*stepm;          lower mortality.
         ju= j -(jk+1)*stepm;            */
         if(jl <= -ju)            lli=log(out[s1][s2] - savm[s1][s2]);
           dh[mi][i]=jk;  
         else  
           dh[mi][i]=jk+1;          } else if  (s2==-2) {
         if(dh[mi][i]==0)            for (j=1,survp=0. ; j<=nlstate; j++) 
           dh[mi][i]=1; /* At least one step */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }            /*survp += out[s1][j]; */
     }            lli= log(survp);
   }          }
   jmean=sum/k;          
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          else if  (s2==-4) { 
  }            for (j=3,survp=0. ; j<=nlstate; j++)  
 /*********** Tricode ****************************/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 void tricode(int *Tvar, int **nbcode, int imx)            lli= log(survp); 
 {          } 
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;          else if  (s2==-5) { 
   cptcoveff=0;            for (j=1,survp=0. ; j<=2; j++)  
                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (k=0; k<19; k++) Ndum[k]=0;            lli= log(survp); 
   for (k=1; k<=7; k++) ncodemax[k]=0;          } 
           
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          else{
     for (i=1; i<=imx; i++) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       ij=(int)(covar[Tvar[j]][i]);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       Ndum[ij]++;          } 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       if (ij > cptcode) cptcode=ij;          /*if(lli ==000.0)*/
     }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
     for (i=0; i<=cptcode; i++) {          sw += weight[i];
       if(Ndum[i]!=0) ncodemax[j]++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
     ij=1;      } /* end of individual */
     }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1; i<=ncodemax[j]; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (k=0; k<=19; k++) {        for(mi=1; mi<= wav[i]-1; mi++){
         if (Ndum[k] != 0) {          for (ii=1;ii<=nlstate+ndeath;ii++)
           nbcode[Tvar[j]][ij]=k;            for (j=1;j<=nlstate+ndeath;j++){
                        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           ij++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         if (ij > ncodemax[j]) break;          for(d=0; d<=dh[mi][i]; d++){
       }              newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }              for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  for (k=0; k<19; k++) Ndum[k]=0;            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  for (i=1; i<=ncovmodel-2; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       ij=Tvar[i];            savm=oldm;
       Ndum[ij]++;            oldm=newm;
     }          } /* end mult */
         
  ij=1;          s1=s[mw[mi][i]][i];
  for (i=1; i<=10; i++) {          s2=s[mw[mi+1][i]][i];
    if((Ndum[i]!=0) && (i<=ncovcol)){          bbh=(double)bh[mi][i]/(double)stepm; 
      Tvaraff[ij]=i;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      ij++;          ipmx +=1;
    }          sw += weight[i];
  }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
     cptcoveff=ij-1;      } /* end of individual */
 }    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*********** Health Expectancies ****************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Health expectancies */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            }
   double age, agelim, hf;          for(d=0; d<dh[mi][i]; d++){
   double ***p3mat,***varhe;            newm=savm;
   double **dnewm,**doldm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double *xp;            for (kk=1; kk<=cptcovage;kk++) {
   double **gp, **gm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double ***gradg, ***trgradg;            }
   int theta;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);            savm=oldm;
   xp=vector(1,npar);            oldm=newm;
   dnewm=matrix(1,nlstate*2,1,npar);          } /* end mult */
   doldm=matrix(1,nlstate*2,1,nlstate*2);        
            s1=s[mw[mi][i]][i];
   fprintf(ficreseij,"# Health expectancies\n");          s2=s[mw[mi+1][i]][i];
   fprintf(ficreseij,"# Age");          bbh=(double)bh[mi][i]/(double)stepm; 
   for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for(j=1; j<=nlstate;j++)          ipmx +=1;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          sw += weight[i];
   fprintf(ficreseij,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   if(estepm < stepm){      } /* end of individual */
     printf ("Problem %d lower than %d\n",estepm, stepm);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   else  hstepm=estepm;          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* We compute the life expectancy from trapezoids spaced every estepm months        for(mi=1; mi<= wav[i]-1; mi++){
    * This is mainly to measure the difference between two models: for example          for (ii=1;ii<=nlstate+ndeath;ii++)
    * if stepm=24 months pijx are given only every 2 years and by summing them            for (j=1;j<=nlstate+ndeath;j++){
    * we are calculating an estimate of the Life Expectancy assuming a linear              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    * progression inbetween and thus overestimating or underestimating according              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    * to the curvature of the survival function. If, for the same date, we            }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          for(d=0; d<dh[mi][i]; d++){
    * to compare the new estimate of Life expectancy with the same linear            newm=savm;
    * hypothesis. A more precise result, taking into account a more precise            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    * curvature will be obtained if estepm is as small as stepm. */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* For example we decided to compute the life expectancy with the smallest unit */            }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          
      nhstepm is the number of hstepm from age to agelim            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      nstepm is the number of stepm from age to agelin.                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      Look at hpijx to understand the reason of that which relies in memory size            savm=oldm;
      and note for a fixed period like estepm months */            oldm=newm;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          } /* end mult */
      survival function given by stepm (the optimization length). Unfortunately it        
      means that if the survival funtion is printed only each two years of age and if          s1=s[mw[mi][i]][i];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          s2=s[mw[mi+1][i]][i];
      results. So we changed our mind and took the option of the best precision.          if( s2 > nlstate){ 
   */            lli=log(out[s1][s2] - savm[s1][s2]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   agelim=AGESUP;          }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          ipmx +=1;
     /* nhstepm age range expressed in number of stepm */          sw += weight[i];
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     /* if (stepm >= YEARM) hstepm=1;*/        } /* end of wave */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      } /* end of individual */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gp=matrix(0,nhstepm,1,nlstate*2);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     gm=matrix(0,nhstepm,1,nlstate*2);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            for (j=1;j<=nlstate+ndeath;j++){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
           for(d=0; d<dh[mi][i]; d++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* Computing Variances of health expectancies */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++){          
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              savm=oldm;
              oldm=newm;
       cptj=0;          } /* end mult */
       for(j=1; j<= nlstate; j++){        
         for(i=1; i<=nlstate; i++){          s1=s[mw[mi][i]][i];
           cptj=cptj+1;          s2=s[mw[mi+1][i]][i];
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
              } /* end of wave */
            } /* end of individual */
       for(i=1; i<=npar; i++)    } /* End of if */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
          l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       cptj=0;    return -l;
       for(j=1; j<= nlstate; j++){  }
         for(i=1;i<=nlstate;i++){  
           cptj=cptj+1;  /*************** log-likelihood *************/
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  double funcone( double *x)
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  {
           }    /* Same as likeli but slower because of a lot of printf and if */
         }    int i, ii, j, k, mi, d, kk;
       }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       for(j=1; j<= nlstate*2; j++)    double **out;
         for(h=0; h<=nhstepm-1; h++){    double lli; /* Individual log likelihood */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double llt;
         }    int s1, s2;
      }    double bbh, survp;
        /*extern weight */
 /* End theta */    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
      for(h=0; h<=nhstepm-1; h++)    */
       for(j=1; j<=nlstate*2;j++)    cov[1]=1.;
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    for(k=1; k<=nlstate; k++) ll[k]=0.;
        
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      for(i=1;i<=nlstate*2;i++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(j=1;j<=nlstate*2;j++)      for(mi=1; mi<= wav[i]-1; mi++){
         varhe[i][j][(int)age] =0.;        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
      printf("%d|",(int)age);fflush(stdout);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      for(h=0;h<=nhstepm-1;h++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(k=0;k<=nhstepm-1;k++){          }
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        for(d=0; d<dh[mi][i]; d++){
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          newm=savm;
         for(i=1;i<=nlstate*2;i++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(j=1;j<=nlstate*2;j++)          for (kk=1; kk<=cptcovage;kk++) {
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }          }
     }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     /* Computing expectancies */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(i=1; i<=nlstate;i++)          savm=oldm;
       for(j=1; j<=nlstate;j++)          oldm=newm;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        } /* end mult */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        
                  s1=s[mw[mi][i]][i];
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
         }        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
     fprintf(ficreseij,"%3.0f",age );         */
     cptj=0;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     for(i=1; i<=nlstate;i++)          lli=log(out[s1][s2] - savm[s1][s2]);
       for(j=1; j<=nlstate;j++){        } else if  (s2==-2) {
         cptj++;          for (j=1,survp=0. ; j<=nlstate; j++) 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }          lli= log(survp);
     fprintf(ficreseij,"\n");        }else if (mle==1){
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     free_matrix(gm,0,nhstepm,1,nlstate*2);        } else if(mle==2){
     free_matrix(gp,0,nhstepm,1,nlstate*2);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        } else if(mle==3){  /* exponential inter-extrapolation */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   }          lli=log(out[s1][s2]); /* Original formula */
   printf("\n");        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
   free_vector(xp,1,npar);        } /* End of if */
   free_matrix(dnewm,1,nlstate*2,1,npar);        ipmx +=1;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        sw += weight[i];
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
 /************ Variance ******************/          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)   %11.6f %11.6f %11.6f ", \
 {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   /* Variance of health expectancies */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double **newm;            llt +=ll[k]*gipmx/gsw;
   double **dnewm,**doldm;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   int i, j, nhstepm, hstepm, h, nstepm ;          }
   int k, cptcode;          fprintf(ficresilk," %10.6f\n", -llt);
   double *xp;        }
   double **gp, **gm;      } /* end of wave */
   double ***gradg, ***trgradg;    } /* end of individual */
   double ***p3mat;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double age,agelim, hf;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int theta;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      gipmx=ipmx;
   fprintf(ficresvij,"# Age");      gsw=sw;
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=nlstate;j++)    return -l;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  }
   fprintf(ficresvij,"\n");  
   
   xp=vector(1,npar);  /*************** function likelione ***********/
   dnewm=matrix(1,nlstate,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   doldm=matrix(1,nlstate,1,nlstate);  {
      /* This routine should help understanding what is done with 
   if(estepm < stepm){       the selection of individuals/waves and
     printf ("Problem %d lower than %d\n",estepm, stepm);       to check the exact contribution to the likelihood.
   }       Plotting could be done.
   else  hstepm=estepm;       */
   /* For example we decided to compute the life expectancy with the smallest unit */    int k;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    if(*globpri !=0){ /* Just counts and sums, no printings */
      nstepm is the number of stepm from age to agelin.      strcpy(fileresilk,"ilk"); 
      Look at hpijx to understand the reason of that which relies in memory size      strcat(fileresilk,fileres);
      and note for a fixed period like k years */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        printf("Problem with resultfile: %s\n", fileresilk);
      survival function given by stepm (the optimization length). Unfortunately it        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
      means that if the survival funtion is printed only each two years of age and if      }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
      results. So we changed our mind and took the option of the best precision.      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for(k=1; k<=nlstate; k++) 
   agelim = AGESUP;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    *fretone=(*funcone)(p);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    if(*globpri !=0){
     gp=matrix(0,nhstepm,1,nlstate);      fclose(ficresilk);
     gm=matrix(0,nhstepm,1,nlstate);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
     for(theta=1; theta <=npar; theta++){    } 
       for(i=1; i<=npar; i++){ /* Computes gradient */    return;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  }
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /*********** Maximum Likelihood Estimation ***************/
   
       if (popbased==1) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         for(i=1; i<=nlstate;i++)  {
           prlim[i][i]=probs[(int)age][i][ij];    int i,j, iter;
       }    double **xi;
      double fret;
       for(j=1; j<= nlstate; j++){    double fretone; /* Only one call to likelihood */
         for(h=0; h<=nhstepm; h++){    /*  char filerespow[FILENAMELENGTH];*/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    xi=matrix(1,npar,1,npar);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++)
       }        xi[i][j]=(i==j ? 1.0 : 0.0);
        printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(i=1; i<=npar; i++) /* Computes gradient */    strcpy(filerespow,"pow"); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    strcat(filerespow,fileres);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      if((ficrespow=fopen(filerespow,"w"))==NULL) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      printf("Problem with resultfile: %s\n", filerespow);
        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       if (popbased==1) {    }
         for(i=1; i<=nlstate;i++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           prlim[i][i]=probs[(int)age][i][ij];    for (i=1;i<=nlstate;i++)
       }      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       for(j=1; j<= nlstate; j++){    fprintf(ficrespow,"\n");
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    free_matrix(xi,1,npar,1,npar);
       }    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(j=1; j<= nlstate; j++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(h=0; h<=nhstepm; h++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  }
     } /* End theta */  
   /**** Computes Hessian and covariance matrix ***/
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
     for(h=0; h<=nhstepm; h++)    double  **a,**y,*x,pd;
       for(j=1; j<=nlstate;j++)    double **hess;
         for(theta=1; theta <=npar; theta++)    int i, j,jk;
           trgradg[h][j][theta]=gradg[h][theta][j];    int *indx;
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     for(i=1;i<=nlstate;i++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       for(j=1;j<=nlstate;j++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
         vareij[i][j][(int)age] =0.;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
     for(h=0;h<=nhstepm;h++){    hess=matrix(1,npar,1,npar);
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    printf("\nCalculation of the hessian matrix. Wait...\n");
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++){
           for(j=1;j<=nlstate;j++)      printf("%d",i);fflush(stdout);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      fprintf(ficlog,"%d",i);fflush(ficlog);
       }     
     }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
     fprintf(ficresvij,"%.0f ",age );      /*  printf(" %f ",p[i]);
     for(i=1; i<=nlstate;i++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       for(j=1; j<=nlstate;j++){    }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    
       }    for (i=1;i<=npar;i++) {
     fprintf(ficresvij,"\n");      for (j=1;j<=npar;j++)  {
     free_matrix(gp,0,nhstepm,1,nlstate);        if (j>i) { 
     free_matrix(gm,0,nhstepm,1,nlstate);          printf(".%d%d",i,j);fflush(stdout);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
   } /* End age */          hess[j][i]=hess[i][j];    
            /*printf(" %lf ",hess[i][j]);*/
   free_vector(xp,1,npar);        }
   free_matrix(doldm,1,nlstate,1,npar);      }
   free_matrix(dnewm,1,nlstate,1,nlstate);    }
     printf("\n");
 }    fprintf(ficlog,"\n");
   
 /************ Variance of prevlim ******************/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 {    
   /* Variance of prevalence limit */    a=matrix(1,npar,1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    y=matrix(1,npar,1,npar);
   double **newm;    x=vector(1,npar);
   double **dnewm,**doldm;    indx=ivector(1,npar);
   int i, j, nhstepm, hstepm;    for (i=1;i<=npar;i++)
   int k, cptcode;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double *xp;    ludcmp(a,npar,indx,&pd);
   double *gp, *gm;  
   double **gradg, **trgradg;    for (j=1;j<=npar;j++) {
   double age,agelim;      for (i=1;i<=npar;i++) x[i]=0;
   int theta;      x[j]=1;
          lubksb(a,npar,indx,x);
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      for (i=1;i<=npar;i++){ 
   fprintf(ficresvpl,"# Age");        matcov[i][j]=x[i];
   for(i=1; i<=nlstate;i++)      }
       fprintf(ficresvpl," %1d-%1d",i,i);    }
   fprintf(ficresvpl,"\n");  
     printf("\n#Hessian matrix#\n");
   xp=vector(1,npar);    fprintf(ficlog,"\n#Hessian matrix#\n");
   dnewm=matrix(1,nlstate,1,npar);    for (i=1;i<=npar;i++) { 
   doldm=matrix(1,nlstate,1,nlstate);      for (j=1;j<=npar;j++) { 
          printf("%.3e ",hess[i][j]);
   hstepm=1*YEARM; /* Every year of age */        fprintf(ficlog,"%.3e ",hess[i][j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      }
   agelim = AGESUP;      printf("\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(ficlog,"\n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* Recompute Inverse */
     gradg=matrix(1,npar,1,nlstate);    for (i=1;i<=npar;i++)
     gp=vector(1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     gm=vector(1,nlstate);    ludcmp(a,npar,indx,&pd);
   
     for(theta=1; theta <=npar; theta++){    /*  printf("\n#Hessian matrix recomputed#\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      x[j]=1;
       for(i=1;i<=nlstate;i++)      lubksb(a,npar,indx,x);
         gp[i] = prlim[i][i];      for (i=1;i<=npar;i++){ 
            y[i][j]=x[i];
       for(i=1; i<=npar; i++) /* Computes gradient */        printf("%.3e ",y[i][j]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        fprintf(ficlog,"%.3e ",y[i][j]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       for(i=1;i<=nlstate;i++)      printf("\n");
         gm[i] = prlim[i][i];      fprintf(ficlog,"\n");
     }
       for(i=1;i<=nlstate;i++)    */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
     trgradg =matrix(1,nlstate,1,npar);    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
     for(j=1; j<=nlstate;j++)    free_matrix(hess,1,npar,1,npar);
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];  
   }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;  /*************** hessian matrix ****************/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  {
     for(i=1;i<=nlstate;i++)    int i;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int l=1, lmax=20;
     double k1,k2;
     fprintf(ficresvpl,"%.0f ",age );    double p2[MAXPARM+1]; /* identical to x */
     for(i=1; i<=nlstate;i++)    double res;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     fprintf(ficresvpl,"\n");    double fx;
     free_vector(gp,1,nlstate);    int k=0,kmax=10;
     free_vector(gm,1,nlstate);    double l1;
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    fx=func(x);
   } /* End age */    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
   free_vector(xp,1,npar);      l1=pow(10,l);
   free_matrix(doldm,1,nlstate,1,npar);      delts=delt;
   free_matrix(dnewm,1,nlstate,1,nlstate);      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
 }        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
 /************ Variance of one-step probabilities  ******************/        p2[theta]=x[theta]-delt;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        k2=func(p2)-fx;
 {        /*res= (k1-2.0*fx+k2)/delt/delt; */
   int i, j,  i1, k1, l1;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   int k2, l2, j1,  z1;        
   int k=0,l, cptcode;  #ifdef DEBUGHESS
   int first=1;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double **dnewm,**doldm;  #endif
   double *xp;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   double *gp, *gm;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double **gradg, **trgradg;          k=kmax;
   double **mu;        }
   double age,agelim, cov[NCOVMAX];        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          k=kmax; l=lmax*10.;
   int theta;        }
   char fileresprob[FILENAMELENGTH];        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   char fileresprobcov[FILENAMELENGTH];          delts=delt;
   char fileresprobcor[FILENAMELENGTH];        }
       }
   double ***varpij;    }
     delti[theta]=delts;
   strcpy(fileresprob,"prob");    return res; 
   strcat(fileresprob,fileres);    
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  }
     printf("Problem with resultfile: %s\n", fileresprob);  
   }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   strcpy(fileresprobcov,"probcov");  {
   strcat(fileresprobcov,fileres);    int i;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    int l=1, l1, lmax=20;
     printf("Problem with resultfile: %s\n", fileresprobcov);    double k1,k2,k3,k4,res,fx;
   }    double p2[MAXPARM+1];
   strcpy(fileresprobcor,"probcor");    int k;
   strcat(fileresprobcor,fileres);  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    fx=func(x);
     printf("Problem with resultfile: %s\n", fileresprobcor);    for (k=1; k<=2; k++) {
   }      for (i=1;i<=npar;i++) p2[i]=x[i];
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      p2[thetai]=x[thetai]+delti[thetai]/k;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      k1=func(p2)-fx;
      
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
   fprintf(ficresprob,"# Age");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      k2=func(p2)-fx;
   fprintf(ficresprobcov,"# Age");    
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficresprobcov,"# Age");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
     
   for(i=1; i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
     for(j=1; j<=(nlstate+ndeath);j++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      k4=func(p2)-fx;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  #ifdef DEBUG
     }        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficresprob,"\n");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficresprobcov,"\n");  #endif
   fprintf(ficresprobcor,"\n");    }
   xp=vector(1,npar);    return res;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  /************** Inverse of matrix **************/
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  void ludcmp(double **a, int n, int *indx, double *d) 
   first=1;  { 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    int i,imax,j,k; 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    double big,dum,sum,temp; 
     exit(0);    double *vv; 
   }   
   else{    vv=vector(1,n); 
     fprintf(ficgp,"\n# Routine varprob");    *d=1.0; 
   }    for (i=1;i<=n;i++) { 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      big=0.0; 
     printf("Problem with html file: %s\n", optionfilehtm);      for (j=1;j<=n;j++) 
     exit(0);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   else{      vv[i]=1.0/big; 
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");    } 
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    for (j=1;j<=n;j++) { 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
   }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   cov[1]=1;        a[i][j]=sum; 
   j=cptcoveff;      } 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      big=0.0; 
   j1=0;      for (i=j;i<=n;i++) { 
   for(k1=1; k1<=1;k1++){        sum=a[i][j]; 
     for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1;k<j;k++) 
     j1++;          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
     if  (cptcovn>0) {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       fprintf(ficresprob, "\n#********** Variable ");          big=dum; 
       fprintf(ficresprobcov, "\n#********** Variable ");          imax=i; 
       fprintf(ficgp, "\n#********** Variable ");        } 
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");      } 
       fprintf(ficresprobcor, "\n#********** Variable ");      if (j != imax) { 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (k=1;k<=n;k++) { 
       fprintf(ficresprob, "**********\n#");          dum=a[imax][k]; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          a[imax][k]=a[j][k]; 
       fprintf(ficresprobcov, "**********\n#");          a[j][k]=dum; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        } 
       fprintf(ficgp, "**********\n#");        *d = -(*d); 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        vv[imax]=vv[j]; 
       fprintf(ficgp, "**********\n#");      } 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      indx[j]=imax; 
       fprintf(fichtm, "**********\n#");      if (a[j][j] == 0.0) a[j][j]=TINY; 
     }      if (j != n) { 
            dum=1.0/(a[j][j]); 
       for (age=bage; age<=fage; age ++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         cov[2]=age;      } 
         for (k=1; k<=cptcovn;k++) {    } 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    free_vector(vv,1,n);  /* Doesn't work */
         }  ;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  } 
         for (k=1; k<=cptcovprod;k++)  
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void lubksb(double **a, int n, int *indx, double b[]) 
          { 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    int i,ii=0,ip,j; 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    double sum; 
         gp=vector(1,(nlstate)*(nlstate+ndeath));   
         gm=vector(1,(nlstate)*(nlstate+ndeath));    for (i=1;i<=n;i++) { 
          ip=indx[i]; 
         for(theta=1; theta <=npar; theta++){      sum=b[ip]; 
           for(i=1; i<=npar; i++)      b[ip]=b[i]; 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      if (ii) 
                  for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      else if (sum) ii=i; 
                b[i]=sum; 
           k=0;    } 
           for(i=1; i<= (nlstate); i++){    for (i=n;i>=1;i--) { 
             for(j=1; j<=(nlstate+ndeath);j++){      sum=b[i]; 
               k=k+1;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
               gp[k]=pmmij[i][j];      b[i]=sum/a[i][i]; 
             }    } 
           }  } 
            
           for(i=1; i<=npar; i++)  void pstamp(FILE *fichier)
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  {
        fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  }
           k=0;  
           for(i=1; i<=(nlstate); i++){  /************ Frequencies ********************/
             for(j=1; j<=(nlstate+ndeath);j++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
               k=k+1;  {  /* Some frequencies */
               gm[k]=pmmij[i][j];    
             }    int i, m, jk, k1,i1, j1, bool, z1,j;
           }    int first;
          double ***freq; /* Frequencies */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    double *pp, **prop;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      double pos,posprop, k2, dateintsum=0,k2cpt=0;
         }    char fileresp[FILENAMELENGTH];
     
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    pp=vector(1,nlstate);
           for(theta=1; theta <=npar; theta++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
             trgradg[j][theta]=gradg[theta][j];    strcpy(fileresp,"p");
            strcat(fileresp,fileres);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    if((ficresp=fopen(fileresp,"w"))==NULL) {
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      printf("Problem with prevalence resultfile: %s\n", fileresp);
              fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         pmij(pmmij,cov,ncovmodel,x,nlstate);      exit(0);
            }
         k=0;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         for(i=1; i<=(nlstate); i++){    j1=0;
           for(j=1; j<=(nlstate+ndeath);j++){    
             k=k+1;    j=cptcoveff;
             mu[k][(int) age]=pmmij[i][j];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           }  
         }    first=1;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    for(k1=1; k1<=j;k1++){
             varpij[i][j][(int)age] = doldm[i][j];      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
         /*printf("\n%d ",(int)age);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          scanf("%d", i);*/
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        for (i=-5; i<=nlstate+ndeath; i++)  
      }*/          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
         fprintf(ficresprob,"\n%d ",(int)age);              freq[i][jk][m]=0;
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          prop[i][m]=0;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        dateintsum=0;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        k2cpt=0;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        for (i=1; i<=imx; i++) {
         }          bool=1;
         i=0;          if  (cptcovn>0) {
         for (k=1; k<=(nlstate);k++){            for (z1=1; z1<=cptcoveff; z1++) 
           for (l=1; l<=(nlstate+ndeath);l++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             i=i++;                bool=0;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          if (bool==1){
             for (j=1; j<=i;j++){            for(m=firstpass; m<=lastpass; m++){
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              k2=anint[m][i]+(mint[m][i]/12.);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         }/* end of loop for state */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       } /* end of loop for age */                if (m<lastpass) {
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       for (k1=1; k1<=(nlstate);k1++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         for (l1=1; l1<=(nlstate+ndeath);l1++){                }
           if(l1==k1) continue;                
           i=(k1-1)*(nlstate+ndeath)+l1;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           for (k2=1; k2<=(nlstate);k2++){                  dateintsum=dateintsum+k2;
             for (l2=1; l2<=(nlstate+ndeath);l2++){                  k2cpt++;
               if(l2==k2) continue;                }
               j=(k2-1)*(nlstate+ndeath)+l2;                /*}*/
               if(j<=i) continue;            }
               for (age=bage; age<=fage; age ++){          }
                 if ((int)age %5==0){        }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;         
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        pstamp(ficresp);
                   mu1=mu[i][(int) age]/stepm*YEARM ;        if  (cptcovn>0) {
                   mu2=mu[j][(int) age]/stepm*YEARM;          fprintf(ficresp, "\n#********** Variable "); 
                   /* Computing eigen value of matrix of covariance */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));          fprintf(ficresp, "**********\n#");
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));        }
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);        for(i=1; i<=nlstate;i++) 
                   /* Eigen vectors */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        fprintf(ficresp, "\n");
                   v21=sqrt(1.-v11*v11);        
                   v12=-v21;        for(i=iagemin; i <= iagemax+3; i++){
                   v22=v11;          if(i==iagemax+3){
                   /*printf(fignu*/            fprintf(ficlog,"Total");
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          }else{
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */            if(first==1){
                   if(first==1){              first=0;
                     first=0;              printf("See log file for details...\n");
                     fprintf(ficgp,"\nset parametric;set nolabel");            }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);            fprintf(ficlog,"Age %d", i);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          }
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);          for(jk=1; jk <=nlstate ; jk++){
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);              pp[jk] += freq[jk][m][i]; 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          for(jk=1; jk <=nlstate ; jk++){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            for(m=-1, pos=0; m <=0 ; m++)
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              pos += freq[jk][m][i];
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);            if(pp[jk]>=1.e-10){
                   }else{              if(first==1){
                     first=0;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);              }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            }else{
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              if(first==1)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   }/* if first */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                 } /* age mod 5 */            }
               } /* end loop age */          }
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);  
               first=1;          for(jk=1; jk <=nlstate ; jk++){
             } /*l12 */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           } /* k12 */              pp[jk] += freq[jk][m][i];
         } /*l1 */          }       
       }/* k1 */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     } /* loop covariates */            pos += pp[jk];
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);            posprop += prop[jk][i];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          for(jk=1; jk <=nlstate ; jk++){
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);            if(pos>=1.e-5){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              if(first==1)
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_vector(xp,1,npar);            }else{
   fclose(ficresprob);              if(first==1)
   fclose(ficresprobcov);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fclose(ficresprobcor);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fclose(ficgp);            }
   fclose(fichtm);            if( i <= iagemax){
 }              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
 /******************* Printing html file ***********/                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              }
                   int lastpass, int stepm, int weightopt, char model[],\              else
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                   int popforecast, int estepm ,\            }
                   double jprev1, double mprev1,double anprev1, \          }
                   double jprev2, double mprev2,double anprev2){          
   int jj1, k1, i1, cpt;          for(jk=-1; jk <=nlstate+ndeath; jk++)
   /*char optionfilehtm[FILENAMELENGTH];*/            for(m=-1; m <=nlstate+ndeath; m++)
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {              if(freq[jk][m][i] !=0 ) {
     printf("Problem with %s \n",optionfilehtm), exit(0);              if(first==1)
   }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n              }
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          if(i <= iagemax)
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n            fprintf(ficresp,"\n");
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          if(first==1)
  - Life expectancies by age and initial health status (estepm=%2d months):            printf("Others in log...\n");
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          fprintf(ficlog,"\n");
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        }
       }
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    dateintmean=dateintsum/k2cpt; 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n   
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    fclose(ficresp);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    free_vector(pp,1,nlstate);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    /* End of Freq */
   }
  if(popforecast==1) fprintf(fichtm,"\n  
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  /************ Prevalence ********************/
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         <br>",fileres,fileres,fileres,fileres);  {  
  else    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);       in each health status at the date of interview (if between dateprev1 and dateprev2).
 fprintf(fichtm," <li>Graphs</li><p>");       We still use firstpass and lastpass as another selection.
     */
  m=cptcoveff;   
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    int i, m, jk, k1, i1, j1, bool, z1,j;
     double ***freq; /* Frequencies */
  jj1=0;    double *pp, **prop;
  for(k1=1; k1<=m;k1++){    double pos,posprop; 
    for(i1=1; i1<=ncodemax[k1];i1++){    double  y2; /* in fractional years */
      jj1++;    int iagemin, iagemax;
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    iagemin= (int) agemin;
        for (cpt=1; cpt<=cptcoveff;cpt++)    iagemax= (int) agemax;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    /*pp=vector(1,nlstate);*/
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      /* Pij */    j1=0;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        j=cptcoveff;
      /* Quasi-incidences */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    for(k1=1; k1<=j;k1++){
        /* Stable prevalence in each health state */      for(i1=1; i1<=ncodemax[k1];i1++){
        for(cpt=1; cpt<nlstate;cpt++){        j1++;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for (i=1; i<=nlstate; i++)  
        }          for(m=iagemin; m <= iagemax+3; m++)
     for(cpt=1; cpt<=nlstate;cpt++) {            prop[i][m]=0.0;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident       
 interval) in state (%d): v%s%d%d.png <br>        for (i=1; i<=imx; i++) { /* Each individual */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            bool=1;
      }          if  (cptcovn>0) {
      for(cpt=1; cpt<=nlstate;cpt++) {            for (z1=1; z1<=cptcoveff; z1++) 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                bool=0;
      }          } 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          if (bool==1) { 
 health expectancies in states (1) and (2): e%s%d.png<br>            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
    }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
  }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 fclose(fichtm);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
 /******************* Gnuplot file **************/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                } 
   int ng;              }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            } /* end selection of waves */
     printf("Problem with file %s",optionfilegnuplot);          }
   }        }
         for(i=iagemin; i <= iagemax+3; i++){  
 #ifdef windows          
     fprintf(ficgp,"cd \"%s\" \n",pathc);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 #endif            posprop += prop[jk][i]; 
 m=pow(2,cptcoveff);          } 
    
  /* 1eme*/          for(jk=1; jk <=nlstate ; jk++){     
   for (cpt=1; cpt<= nlstate ; cpt ++) {            if( i <=  iagemax){ 
    for (k1=1; k1<= m ; k1 ++) {              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
 #ifdef windows              } else
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            } 
 #endif          }/* end jk */ 
 #ifdef unix        }/* end i */ 
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      } /* end i1 */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    } /* end k1 */
 #endif    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 for (i=1; i<= nlstate ; i ++) {    /*free_vector(pp,1,nlstate);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }  /* End of prevalence */
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  /************* Waves Concatenation ***************/
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {
 }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);       Death is a valid wave (if date is known).
      for (i=1; i<= nlstate ; i ++) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   else fprintf(ficgp," \%%*lf (\%%*lf)");       and mw[mi+1][i]. dh depends on stepm.
 }         */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix    int i, mi, m;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 #endif       double sum=0., jmean=0.;*/
    }    int first;
   }    int j, k=0,jk, ju, jl;
   /*2 eme*/    double sum=0.;
     first=0;
   for (k1=1; k1<= m ; k1 ++) {    jmin=1e+5;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    jmax=-1;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    jmean=0.;
        for(i=1; i<=imx; i++){
     for (i=1; i<= nlstate+1 ; i ++) {      mi=0;
       k=2*i;      m=firstpass;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      while(s[m][i] <= nlstate){
       for (j=1; j<= nlstate+1 ; j ++) {        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          mw[++mi][i]=m;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if(m >=lastpass)
 }            break;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        else
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          m++;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      }/* end while */
       for (j=1; j<= nlstate+1 ; j ++) {      if (s[m][i] > nlstate){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        mi++;     /* Death is another wave */
         else fprintf(ficgp," \%%*lf (\%%*lf)");        /* if(mi==0)  never been interviewed correctly before death */
 }             /* Only death is a correct wave */
       fprintf(ficgp,"\" t\"\" w l 0,");        mw[mi][i]=m;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      wav[i]=mi;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if(mi==0){
 }          nbwarn++;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        if(first==0){
       else fprintf(ficgp,"\" t\"\" w l 0,");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     }          first=1;
   }        }
          if(first==1){
   /*3eme*/          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
   for (k1=1; k1<= m ; k1 ++) {      } /* end mi==0 */
     for (cpt=1; cpt<= nlstate ; cpt ++) {    } /* End individuals */
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    for(i=1; i<=imx; i++){
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      for(mi=1; mi<wav[i];mi++){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        if (stepm <=0)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          dh[mi][i]=1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        else{
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            if (agedc[i] < 2*AGESUP) {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
 */              else if(j<0){
       for (i=1; i< nlstate ; i ++) {                nberr++;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
       }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                }
   /* CV preval stat */              k=k+1;
     for (k1=1; k1<= m ; k1 ++) {              if (j >= jmax){
     for (cpt=1; cpt<nlstate ; cpt ++) {                jmax=j;
       k=3;                ijmax=i;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              if (j <= jmin){
                 jmin=j;
       for (i=1; i< nlstate ; i ++)                ijmin=i;
         fprintf(ficgp,"+$%d",k+i+1);              }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              sum=sum+j;
                    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       l=3+(nlstate+ndeath)*cpt;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            }
       for (i=1; i< nlstate ; i ++) {          }
         l=3+(nlstate+ndeath)*cpt;          else{
         fprintf(ficgp,"+$%d",l+i+1);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
     }            k=k+1;
   }              if (j >= jmax) {
                jmax=j;
   /* proba elementaires */              ijmax=i;
    for(i=1,jk=1; i <=nlstate; i++){            }
     for(k=1; k <=(nlstate+ndeath); k++){            else if (j <= jmin){
       if (k != i) {              jmin=j;
         for(j=1; j <=ncovmodel; j++){              ijmin=i;
                    }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           jk++;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           fprintf(ficgp,"\n");            if(j<0){
         }              nberr++;
       }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    }            }
             sum=sum+j;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          }
      for(jk=1; jk <=m; jk++) {          jk= j/stepm;
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          jl= j -jk*stepm;
        if (ng==2)          ju= j -(jk+1)*stepm;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
        else            if(jl==0){
          fprintf(ficgp,"\nset title \"Probability\"\n");              dh[mi][i]=jk;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              bh[mi][i]=0;
        i=1;            }else{ /* We want a negative bias in order to only have interpolation ie
        for(k2=1; k2<=nlstate; k2++) {                    * at the price of an extra matrix product in likelihood */
          k3=i;              dh[mi][i]=jk+1;
          for(k=1; k<=(nlstate+ndeath); k++) {              bh[mi][i]=ju;
            if (k != k2){            }
              if(ng==2)          }else{
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);            if(jl <= -ju){
              else              dh[mi][i]=jk;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              bh[mi][i]=jl;       /* bias is positive if real duration
              ij=1;                                   * is higher than the multiple of stepm and negative otherwise.
              for(j=3; j <=ncovmodel; j++) {                                   */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            else{
                  ij++;              dh[mi][i]=jk+1;
                }              bh[mi][i]=ju;
                else            }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            if(dh[mi][i]==0){
              }              dh[mi][i]=1; /* At least one step */
              fprintf(ficgp,")/(1");              bh[mi][i]=ju; /* At least one step */
                            /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
              for(k1=1; k1 <=nlstate; k1++){              }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          } /* end if mle */
                ij=1;        }
                for(j=3; j <=ncovmodel; j++){      } /* end wave */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    jmean=sum/k;
                    ij++;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                  }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                  else   }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
                }  /*********** Tricode ****************************/
                fprintf(ficgp,")");  void tricode(int *Tvar, int **nbcode, int imx)
              }  {
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
              i=i+ncovmodel;  
            }    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
          }    int cptcode=0;
        }    cptcoveff=0; 
      }   
    }    for (k=0; k<maxncov; k++) Ndum[k]=0;
    fclose(ficgp);    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
 }  /* end gnuplot */  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 /*************** Moving average **************/                                 modality*/ 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
         Ndum[ij]++; /*counts the occurence of this modality */
   int i, cpt, cptcod;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
       for (i=1; i<=nlstate;i++)                                         Tvar[j]. If V=sex and male is 0 and 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                                         female is 1, then  cptcode=1.*/
           mobaverage[(int)agedeb][i][cptcod]=0.;      }
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
       for (i=1; i<=nlstate;i++){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                                         th covariate. In fact
           for (cpt=0;cpt<=4;cpt++){                                         ncodemax[j]=2
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                                         (dichotom. variables only) but
           }                                         it can be more */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      } /* Ndum[-1] number of undefined modalities */
         }  
       }      ij=1; 
     }      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
            for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
 }          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
 /************** Forecasting ******************/                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){            ij++;
            }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          if (ij > ncodemax[j]) break; 
   int *popage;        }  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      } 
   double *popeffectif,*popcount;    }  
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
  agelim=AGESUP;   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     Ndum[ij]++;
     }
    
   strcpy(fileresf,"f");   ij=1;
   strcat(fileresf,fileres);   for (i=1; i<= maxncov; i++) {
   if((ficresf=fopen(fileresf,"w"))==NULL) {     if((Ndum[i]!=0) && (i<=ncovcol)){
     printf("Problem with forecast resultfile: %s\n", fileresf);       Tvaraff[ij]=i; /*For printing */
   }       ij++;
   printf("Computing forecasting: result on file '%s' \n", fileresf);     }
    }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   ij--;
    cptcoveff=ij; /*Number of simple covariates*/
   if (mobilav==1) {  }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);  /*********** Health Expectancies ****************/
   }  
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;  {
      /* Health expectancies, no variances */
   agelim=AGESUP;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
      int nhstepma, nstepma; /* Decreasing with age */
   hstepm=1;    double age, agelim, hf;
   hstepm=hstepm/stepm;    double ***p3mat;
   yp1=modf(dateintmean,&yp);    double eip;
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);    pstamp(ficreseij);
   mprojmean=yp;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   yp1=modf((yp2*30.5),&yp);    fprintf(ficreseij,"# Age");
   jprojmean=yp;    for(i=1; i<=nlstate;i++){
   if(jprojmean==0) jprojmean=1;      for(j=1; j<=nlstate;j++){
   if(mprojmean==0) jprojmean=1;        fprintf(ficreseij," e%1d%1d ",i,j);
        }
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      fprintf(ficreseij," e%1d. ",i);
      }
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficreseij,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    
       fprintf(ficresf,"\n#******");    if(estepm < stepm){
       for(j=1;j<=cptcoveff;j++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       }    else  hstepm=estepm;   
       fprintf(ficresf,"******\n");    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficresf,"# StartingAge FinalAge");     * This is mainly to measure the difference between two models: for example
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);     * if stepm=24 months pijx are given only every 2 years and by summing them
           * we are calculating an estimate of the Life Expectancy assuming a linear 
           * progression in between and thus overestimating or underestimating according
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficresf,"\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);       * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     * curvature will be obtained if estepm is as small as stepm. */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    /* For example we decided to compute the life expectancy with the smallest unit */
              /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       nhstepm is the number of hstepm from age to agelim 
           oldm=oldms;savm=savms;       nstepm is the number of stepm from age to agelin. 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         Look at hpijx to understand the reason of that which relies in memory size
               and note for a fixed period like estepm months */
           for (h=0; h<=nhstepm; h++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             if (h==(int) (calagedate+YEARM*cpt)) {       survival function given by stepm (the optimization length). Unfortunately it
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);       means that if the survival funtion is printed only each two years of age and if
             }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             for(j=1; j<=nlstate+ndeath;j++) {       results. So we changed our mind and took the option of the best precision.
               kk1=0.;kk2=0;    */
               for(i=1; i<=nlstate;i++) {                  hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    agelim=AGESUP;
                 else {    /* If stepm=6 months */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                 }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                      
               }  /* nhstepm age range expressed in number of stepm */
               if (h==(int)(calagedate+12*cpt)){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                 fprintf(ficresf," %.3f", kk1);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                            /* if (stepm >= YEARM) hstepm=1;*/
               }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (age=bage; age<=fage; age ++){ 
         }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }      /* if (stepm >= YEARM) hstepm=1;*/
   }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
          
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
   fclose(ficresf);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 }      
 /************** Forecasting ******************/      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      
   int *popage;      printf("%d|",(int)age);fflush(stdout);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double *popeffectif,*popcount;      
   double ***p3mat,***tabpop,***tabpopprev;      /* Computing expectancies */
   char filerespop[FILENAMELENGTH];      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   agelim=AGESUP;            
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          }
    
        fprintf(ficreseij,"%3.0f",age );
   strcpy(filerespop,"pop");      for(i=1; i<=nlstate;i++){
   strcat(filerespop,fileres);        eip=0;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        for(j=1; j<=nlstate;j++){
     printf("Problem with forecast resultfile: %s\n", filerespop);          eip +=eij[i][j][(int)age];
   }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   printf("Computing forecasting: result on file '%s' \n", filerespop);        }
         fprintf(ficreseij,"%9.4f", eip );
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      }
       fprintf(ficreseij,"\n");
   if (mobilav==1) {      
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
     movingaverage(agedeb, fage, ageminpar, mobaverage);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    printf("\n");
     fprintf(ficlog,"\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    
   if (stepm<=12) stepsize=1;  }
    
   agelim=AGESUP;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
    
   hstepm=1;  {
   hstepm=hstepm/stepm;    /* Covariances of health expectancies eij and of total life expectancies according
       to initial status i, ei. .
   if (popforecast==1) {    */
     if((ficpop=fopen(popfile,"r"))==NULL) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       printf("Problem with population file : %s\n",popfile);exit(0);    int nhstepma, nstepma; /* Decreasing with age */
     }    double age, agelim, hf;
     popage=ivector(0,AGESUP);    double ***p3matp, ***p3matm, ***varhe;
     popeffectif=vector(0,AGESUP);    double **dnewm,**doldm;
     popcount=vector(0,AGESUP);    double *xp, *xm;
        double **gp, **gm;
     i=1;      double ***gradg, ***trgradg;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    int theta;
      
     imx=i;    double eip, vip;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
   for(cptcov=1;cptcov<=i2;cptcov++){    xm=vector(1,npar);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
       k=k+1;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficrespop,"\n#******");    
       for(j=1;j<=cptcoveff;j++) {    pstamp(ficresstdeij);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       }    fprintf(ficresstdeij,"# Age");
       fprintf(ficrespop,"******\n");    for(i=1; i<=nlstate;i++){
       fprintf(ficrespop,"# Age");      for(j=1; j<=nlstate;j++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       if (popforecast==1)  fprintf(ficrespop," [Population]");      fprintf(ficresstdeij," e%1d. ",i);
          }
       for (cpt=0; cpt<=0;cpt++) {    fprintf(ficresstdeij,"\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
            pstamp(ficrescveij);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficrescveij,"# Age");
           nhstepm = nhstepm/hstepm;    for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        cptj= (j-1)*nlstate+i;
           oldm=oldms;savm=savms;        for(i2=1; i2<=nlstate;i2++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(j2=1; j2<=nlstate;j2++){
                    cptj2= (j2-1)*nlstate+i2;
           for (h=0; h<=nhstepm; h++){            if(cptj2 <= cptj)
             if (h==(int) (calagedate+YEARM*cpt)) {              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          }
             }      }
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficrescveij,"\n");
               kk1=0.;kk2=0;    
               for(i=1; i<=nlstate;i++) {                  if(estepm < stepm){
                 if (mobilav==1)      printf ("Problem %d lower than %d\n",estepm, stepm);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    }
                 else {    else  hstepm=estepm;   
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* We compute the life expectancy from trapezoids spaced every estepm months
                 }     * This is mainly to measure the difference between two models: for example
               }     * if stepm=24 months pijx are given only every 2 years and by summing them
               if (h==(int)(calagedate+12*cpt)){     * we are calculating an estimate of the Life Expectancy assuming a linear 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;     * progression in between and thus overestimating or underestimating according
                   /*fprintf(ficrespop," %.3f", kk1);     * to the curvature of the survival function. If, for the same date, we 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
               }     * to compare the new estimate of Life expectancy with the same linear 
             }     * hypothesis. A more precise result, taking into account a more precise
             for(i=1; i<=nlstate;i++){     * curvature will be obtained if estepm is as small as stepm. */
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){    /* For example we decided to compute the life expectancy with the smallest unit */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 }       nhstepm is the number of hstepm from age to agelim 
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];       nstepm is the number of stepm from age to agelin. 
             }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);       survival function given by stepm (the optimization length). Unfortunately it
           }       means that if the survival funtion is printed only each two years of age and if
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         }       results. So we changed our mind and took the option of the best precision.
       }    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /******/  
     /* If stepm=6 months */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    /* nhstepm age range expressed in number of stepm */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      agelim=AGESUP;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           nhstepm = nhstepm/hstepm;    /* if (stepm >= YEARM) hstepm=1;*/
              nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for (h=0; h<=nhstepm; h++){    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
             }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    for (age=bage; age<=fage; age ++){ 
               for(i=1; i<=nlstate;i++) {                    nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               }      /* if (stepm >= YEARM) hstepm=1;*/
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
             }  
           }      /* If stepm=6 months */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
         }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       }      
    }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }  
        /* Computing  Variances of health expectancies */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
   if (popforecast==1) {      for(theta=1; theta <=npar; theta++){
     free_ivector(popage,0,AGESUP);        for(i=1; i<=npar; i++){ 
     free_vector(popeffectif,0,AGESUP);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     free_vector(popcount,0,AGESUP);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   }        }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   fclose(ficrespop);    
 }        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
 /***********************************************/            for(h=0; h<=nhstepm-1; h++){
 /**************** Main Program *****************/              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 /***********************************************/              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
 int main(int argc, char *argv[])          }
 {        }
        
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        for(ij=1; ij<= nlstate*nlstate; ij++)
   double agedeb, agefin,hf;          for(h=0; h<=nhstepm-1; h++){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
   double fret;      }/* End theta */
   double **xi,tmp,delta;      
       
   double dum; /* Dummy variable */      for(h=0; h<=nhstepm-1; h++)
   double ***p3mat;        for(j=1; j<=nlstate*nlstate;j++)
   int *indx;          for(theta=1; theta <=npar; theta++)
   char line[MAXLINE], linepar[MAXLINE];            trgradg[h][j][theta]=gradg[h][theta][j];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */       for(ij=1;ij<=nlstate*nlstate;ij++)
   int c,  h , cpt,l;        for(ji=1;ji<=nlstate*nlstate;ji++)
   int ju,jl, mi;          varhe[ij][ji][(int)age] =0.;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;       printf("%d|",(int)age);fflush(stdout);
   int mobilav=0,popforecast=0;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   int hstepm, nhstepm;       for(h=0;h<=nhstepm-1;h++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   double bage, fage, age, agelim, agebase;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   double ftolpl=FTOL;          for(ij=1;ij<=nlstate*nlstate;ij++)
   double **prlim;            for(ji=1;ji<=nlstate*nlstate;ji++)
   double *severity;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   double ***param; /* Matrix of parameters */        }
   double  *p;      }
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */      /* Computing expectancies */
   double *delti; /* Scale */      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double ***eij, ***vareij;      for(i=1; i<=nlstate;i++)
   double **varpl; /* Variances of prevalence limits by age */        for(j=1; j<=nlstate;j++)
   double *epj, vepp;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double kk1, kk2;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            
              /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];          }
   
       fprintf(ficresstdeij,"%3.0f",age );
   char z[1]="c", occ;      for(i=1; i<=nlstate;i++){
 #include <sys/time.h>        eip=0.;
 #include <time.h>        vip=0.;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(j=1; j<=nlstate;j++){
            eip += eij[i][j][(int)age];
   /* long total_usecs;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   struct timeval start_time, end_time;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
            fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        }
   getcwd(pathcd, size);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
   printf("\n%s",version);      fprintf(ficresstdeij,"\n");
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");      fprintf(ficrescveij,"%3.0f",age );
     scanf("%s",pathtot);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   else{          cptj= (j-1)*nlstate+i;
     strcpy(pathtot,argv[1]);          for(i2=1; i2<=nlstate;i2++)
   }            for(j2=1; j2<=nlstate;j2++){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/              cptj2= (j2-1)*nlstate+i2;
   /*cygwin_split_path(pathtot,path,optionfile);              if(cptj2 <= cptj)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   /* cutv(path,optionfile,pathtot,'\\');*/            }
         }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      fprintf(ficrescveij,"\n");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);     
   chdir(path);    }
   replace(pathc,path);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 /*-------- arguments in the command line --------*/    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   strcpy(fileres,"r");    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileres, optionfilefiname);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileres,".txt");    /* Other files have txt extension */    printf("\n");
     fprintf(ficlog,"\n");
   /*---------arguments file --------*/  
     free_vector(xm,1,npar);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    free_vector(xp,1,npar);
     printf("Problem with optionfile %s\n",optionfile);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     goto end;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   strcpy(filereso,"o");  
   strcat(filereso,fileres);  /************ Variance ******************/
   if((ficparo=fopen(filereso,"w"))==NULL) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  {
   }    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   /* Reads comments: lines beginning with '#' */    /* double **newm;*/
   while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewm,**doldm;
     ungetc(c,ficpar);    double **dnewmp,**doldmp;
     fgets(line, MAXLINE, ficpar);    int i, j, nhstepm, hstepm, h, nstepm ;
     puts(line);    int k, cptcode;
     fputs(line,ficparo);    double *xp;
   }    double **gp, **gm;  /* for var eij */
   ungetc(c,ficpar);    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double *gpp, *gmp; /* for var p point j */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double ***p3mat;
 while((c=getc(ficpar))=='#' && c!= EOF){    double age,agelim, hf;
     ungetc(c,ficpar);    double ***mobaverage;
     fgets(line, MAXLINE, ficpar);    int theta;
     puts(line);    char digit[4];
     fputs(line,ficparo);    char digitp[25];
   }  
   ungetc(c,ficpar);    char fileresprobmorprev[FILENAMELENGTH];
    
        if(popbased==1){
   covar=matrix(0,NCOVMAX,1,n);      if(mobilav!=0)
   cptcovn=0;        strcpy(digitp,"-populbased-mobilav-");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      else strcpy(digitp,"-populbased-nomobil-");
     }
   ncovmodel=2+cptcovn;    else 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      strcpy(digitp,"-stablbased-");
    
   /* Read guess parameters */    if (mobilav!=0) {
   /* Reads comments: lines beginning with '#' */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   while((c=getc(ficpar))=='#' && c!= EOF){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     ungetc(c,ficpar);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fgets(line, MAXLINE, ficpar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     puts(line);      }
     fputs(line,ficparo);    }
   }  
   ungetc(c,ficpar);    strcpy(fileresprobmorprev,"prmorprev"); 
      sprintf(digit,"%-d",ij);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     for(i=1; i <=nlstate; i++)    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     for(j=1; j <=nlstate+ndeath-1; j++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    strcat(fileresprobmorprev,fileres);
       fprintf(ficparo,"%1d%1d",i1,j1);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("%1d%1d",i,j);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       for(k=1; k<=ncovmodel;k++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         fscanf(ficpar," %lf",&param[i][j][k]);    }
         printf(" %lf",param[i][j][k]);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficparo," %lf",param[i][j][k]);   
       }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fscanf(ficpar,"\n");    pstamp(ficresprobmorprev);
       printf("\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fprintf(ficparo,"\n");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   p=param[1][1];    }  
      fprintf(ficresprobmorprev,"\n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficgp,"\n# Routine varevsij");
   while((c=getc(ficpar))=='#' && c!= EOF){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     ungetc(c,ficpar);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fgets(line, MAXLINE, ficpar);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     puts(line);  /*   } */
     fputs(line,ficparo);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    pstamp(ficresvij);
   ungetc(c,ficpar);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    else
   for(i=1; i <=nlstate; i++){      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(ficresvij,"# Age");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    for(i=1; i<=nlstate;i++)
       printf("%1d%1d",i,j);      for(j=1; j<=nlstate;j++)
       fprintf(ficparo,"%1d%1d",i1,j1);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       for(k=1; k<=ncovmodel;k++){    fprintf(ficresvij,"\n");
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);    xp=vector(1,npar);
         fprintf(ficparo," %le",delti3[i][j][k]);    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
       fscanf(ficpar,"\n");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       printf("\n");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficparo,"\n");  
     }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   }    gpp=vector(nlstate+1,nlstate+ndeath);
   delti=delti3[1][1];    gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){    if(estepm < stepm){
     ungetc(c,ficpar);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    else  hstepm=estepm;   
     fputs(line,ficparo);    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   ungetc(c,ficpar);       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   matcov=matrix(1,npar,1,npar);       Look at function hpijx to understand why (it is linked to memory size questions) */
   for(i=1; i <=npar; i++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fscanf(ficpar,"%s",&str);       survival function given by stepm (the optimization length). Unfortunately it
     printf("%s",str);       means that if the survival funtion is printed every two years of age and if
     fprintf(ficparo,"%s",str);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for(j=1; j <=i; j++){       results. So we changed our mind and took the option of the best precision.
       fscanf(ficpar," %le",&matcov[i][j]);    */
       printf(" %.5le",matcov[i][j]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficparo," %.5le",matcov[i][j]);    agelim = AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fscanf(ficpar,"\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     printf("\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficparo,"\n");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   for(i=1; i <=npar; i++)      gp=matrix(0,nhstepm,1,nlstate);
     for(j=i+1;j<=npar;j++)      gm=matrix(0,nhstepm,1,nlstate);
       matcov[i][j]=matcov[j][i];  
      
   printf("\n");      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
     /*-------- Rewriting paramater file ----------*/        }
      strcpy(rfileres,"r");    /* "Rparameterfile */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        if (popbased==1) {
     if((ficres =fopen(rfileres,"w"))==NULL) {          if(mobilav ==0){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
     fprintf(ficres,"#%s\n",version);          }else{ /* mobilav */ 
                for(i=1; i<=nlstate;i++)
     /*-------- data file ----------*/              prlim[i][i]=mobaverage[(int)age][i][ij];
     if((fic=fopen(datafile,"r"))==NULL)    {          }
       printf("Problem with datafile: %s\n", datafile);goto end;        }
     }    
         for(j=1; j<= nlstate; j++){
     n= lastobs;          for(h=0; h<=nhstepm; h++){
     severity = vector(1,maxwav);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     outcome=imatrix(1,maxwav+1,1,n);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     num=ivector(1,n);          }
     moisnais=vector(1,n);        }
     annais=vector(1,n);        /* This for computing probability of death (h=1 means
     moisdc=vector(1,n);           computed over hstepm matrices product = hstepm*stepm months) 
     andc=vector(1,n);           as a weighted average of prlim.
     agedc=vector(1,n);        */
     cod=ivector(1,n);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     weight=vector(1,n);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     mint=matrix(1,maxwav,1,n);        }    
     anint=matrix(1,maxwav,1,n);        /* end probability of death */
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);            for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     tab=ivector(1,NCOVMAX);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     ncodemax=ivector(1,8);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     i=1;   
     while (fgets(line, MAXLINE, fic) != NULL)    {        if (popbased==1) {
       if ((i >= firstobs) && (i <=lastobs)) {          if(mobilav ==0){
                    for(i=1; i<=nlstate;i++)
         for (j=maxwav;j>=1;j--){              prlim[i][i]=probs[(int)age][i][ij];
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          }else{ /* mobilav */ 
           strcpy(line,stra);            for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              prlim[i][i]=mobaverage[(int)age][i][ij];
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }        }
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        /* This for computing probability of death (h=1 means
         for (j=ncovcol;j>=1;j--){           computed over hstepm matrices product = hstepm*stepm months) 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);           as a weighted average of prlim.
         }        */
         num[i]=atol(stra);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                  for(i=1,gmp[j]=0.; i<= nlstate; i++)
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        }    
         /* end probability of death */
         i=i+1;  
       }        for(j=1; j<= nlstate; j++) /* vareij */
     }          for(h=0; h<=nhstepm; h++){
     /* printf("ii=%d", ij);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
        scanf("%d",i);*/          }
   imx=i-1; /* Number of individuals */  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   /* for (i=1; i<=imx; i++){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      } /* End theta */
     }*/  
    /*  for (i=1; i<=imx; i++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      for(h=0; h<=nhstepm; h++) /* veij */
          for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   /* Calculation of the number of parameter from char model*/            trgradg[h][j][theta]=gradg[h][theta][j];
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   Tvaraff=ivector(1,15);        for(theta=1; theta <=npar; theta++)
   Tvard=imatrix(1,15,1,2);          trgradgp[j][theta]=gradgp[theta][j];
   Tage=ivector(1,15);          
      
   if (strlen(model) >1){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     j=0, j1=0, k1=1, k2=1;      for(i=1;i<=nlstate;i++)
     j=nbocc(model,'+');        for(j=1;j<=nlstate;j++)
     j1=nbocc(model,'*');          vareij[i][j][(int)age] =0.;
     cptcovn=j+1;  
     cptcovprod=j1;      for(h=0;h<=nhstepm;h++){
            for(k=0;k<=nhstepm;k++){
     strcpy(modelsav,model);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       printf("Error. Non available option model=%s ",model);          for(i=1;i<=nlstate;i++)
       goto end;            for(j=1;j<=nlstate;j++)
     }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
            }
     for(i=(j+1); i>=1;i--){      }
       cutv(stra,strb,modelsav,'+');    
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      /* pptj */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       /*scanf("%d",i);*/      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       if (strchr(strb,'*')) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         cutv(strd,strc,strb,'*');        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         if (strcmp(strc,"age")==0) {          varppt[j][i]=doldmp[j][i];
           cptcovprod--;      /* end ppptj */
           cutv(strb,stre,strd,'V');      /*  x centered again */
           Tvar[i]=atoi(stre);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           cptcovage++;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
             Tage[cptcovage]=i;   
             /*printf("stre=%s ", stre);*/      if (popbased==1) {
         }        if(mobilav ==0){
         else if (strcmp(strd,"age")==0) {          for(i=1; i<=nlstate;i++)
           cptcovprod--;            prlim[i][i]=probs[(int)age][i][ij];
           cutv(strb,stre,strc,'V');        }else{ /* mobilav */ 
           Tvar[i]=atoi(stre);          for(i=1; i<=nlstate;i++)
           cptcovage++;            prlim[i][i]=mobaverage[(int)age][i][ij];
           Tage[cptcovage]=i;        }
         }      }
         else {               
           cutv(strb,stre,strc,'V');      /* This for computing probability of death (h=1 means
           Tvar[i]=ncovcol+k1;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           cutv(strb,strc,strd,'V');         as a weighted average of prlim.
           Tprod[k1]=i;      */
           Tvard[k1][1]=atoi(strc);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           Tvard[k1][2]=atoi(stre);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           Tvar[cptcovn+k2]=Tvard[k1][1];          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      }    
           for (k=1; k<=lastobs;k++)      /* end probability of death */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           k2=k2+2;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       }        for(i=1; i<=nlstate;i++){
       else {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        }
        /*  scanf("%d",i);*/      } 
       cutv(strd,strc,strb,'V');      fprintf(ficresprobmorprev,"\n");
       Tvar[i]=atoi(strc);  
       }      fprintf(ficresvij,"%.0f ",age );
       strcpy(modelsav,stra);        for(i=1; i<=nlstate;i++)
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        for(j=1; j<=nlstate;j++){
         scanf("%d",i);*/          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     }        }
 }      fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      free_matrix(gm,0,nhstepm,1,nlstate);
   printf("cptcovprod=%d ", cptcovprod);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   scanf("%d ",i);*/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     fclose(fic);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     /*  if(mle==1){*/    free_vector(gpp,nlstate+1,nlstate+ndeath);
     if (weightopt != 1) { /* Maximisation without weights*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
       for(i=1;i<=n;i++) weight[i]=1.0;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     /*-calculation of age at interview from date of interview and age at death -*/    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
     agev=matrix(1,maxwav,1,imx);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     for (i=1; i<=imx; i++) {  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       for(m=2; (m<= maxwav); m++) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
          anint[m][i]=9999;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
          s[m][i]=-1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
        }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
     for (i=1; i<=imx; i++)  {  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){    free_vector(xp,1,npar);
           if (s[m][i] >= nlstate+1) {    free_matrix(doldm,1,nlstate,1,nlstate);
             if(agedc[i]>0)    free_matrix(dnewm,1,nlstate,1,npar);
               if(moisdc[i]!=99 && andc[i]!=9999)    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                 agev[m][i]=agedc[i];    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            else {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               if (andc[i]!=9999){    fclose(ficresprobmorprev);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    fflush(ficgp);
               agev[m][i]=-1;    fflush(fichtm); 
               }  }  /* end varevsij */
             }  
           }  /************ Variance of prevlim ******************/
           else if(s[m][i] !=9){ /* Should no more exist */  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  {
             if(mint[m][i]==99 || anint[m][i]==9999)    /* Variance of prevalence limit */
               agev[m][i]=1;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
             else if(agev[m][i] <agemin){    double **newm;
               agemin=agev[m][i];    double **dnewm,**doldm;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    int i, j, nhstepm, hstepm;
             }    int k, cptcode;
             else if(agev[m][i] >agemax){    double *xp;
               agemax=agev[m][i];    double *gp, *gm;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    double **gradg, **trgradg;
             }    double age,agelim;
             /*agev[m][i]=anint[m][i]-annais[i];*/    int theta;
             /*   agev[m][i] = age[i]+2*m;*/    
           }    pstamp(ficresvpl);
           else { /* =9 */    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
             agev[m][i]=1;    fprintf(ficresvpl,"# Age");
             s[m][i]=-1;    for(i=1; i<=nlstate;i++)
           }        fprintf(ficresvpl," %1d-%1d",i,i);
         }    fprintf(ficresvpl,"\n");
         else /*= 0 Unknown */  
           agev[m][i]=1;    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate,1,npar);
        doldm=matrix(1,nlstate,1,nlstate);
     }    
     for (i=1; i<=imx; i++)  {    hstepm=1*YEARM; /* Every year of age */
       for(m=1; (m<= maxwav); m++){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         if (s[m][i] > (nlstate+ndeath)) {    agelim = AGESUP;
           printf("Error: Wrong value in nlstate or ndeath\n");      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           goto end;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         }      if (stepm >= YEARM) hstepm=1;
       }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     }      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      gm=vector(1,nlstate);
   
     free_vector(severity,1,maxwav);      for(theta=1; theta <=npar; theta++){
     free_imatrix(outcome,1,maxwav+1,1,n);        for(i=1; i<=npar; i++){ /* Computes gradient */
     free_vector(moisnais,1,n);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     free_vector(annais,1,n);        }
     /* free_matrix(mint,1,maxwav,1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        free_matrix(anint,1,maxwav,1,n);*/        for(i=1;i<=nlstate;i++)
     free_vector(moisdc,1,n);          gp[i] = prlim[i][i];
     free_vector(andc,1,n);      
         for(i=1; i<=npar; i++) /* Computes gradient */
              xp[i] = x[i] - (i==theta ?delti[theta]:0);
     wav=ivector(1,imx);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        for(i=1;i<=nlstate;i++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          gm[i] = prlim[i][i];
      
     /* Concatenates waves */        for(i=1;i<=nlstate;i++)
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       Tcode=ivector(1,100);      trgradg =matrix(1,nlstate,1,npar);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;      for(j=1; j<=nlstate;j++)
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        for(theta=1; theta <=npar; theta++)
                trgradg[j][theta]=gradg[theta][j];
    codtab=imatrix(1,100,1,10);  
    h=0;      for(i=1;i<=nlstate;i++)
    m=pow(2,cptcoveff);        varpl[i][(int)age] =0.;
        matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
    for(k=1;k<=cptcoveff; k++){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
      for(i=1; i <=(m/pow(2,k));i++){      for(i=1;i<=nlstate;i++)
        for(j=1; j <= ncodemax[k]; j++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;      fprintf(ficresvpl,"%.0f ",age );
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      for(i=1; i<=nlstate;i++)
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
          }      fprintf(ficresvpl,"\n");
        }      free_vector(gp,1,nlstate);
      }      free_vector(gm,1,nlstate);
    }      free_matrix(gradg,1,npar,1,nlstate);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      free_matrix(trgradg,1,nlstate,1,npar);
       codtab[1][2]=1;codtab[2][2]=2; */    } /* End age */
    /* for(i=1; i <=m ;i++){  
       for(k=1; k <=cptcovn; k++){    free_vector(xp,1,npar);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    free_matrix(doldm,1,nlstate,1,npar);
       }    free_matrix(dnewm,1,nlstate,1,nlstate);
       printf("\n");  
       }  }
       scanf("%d",i);*/  
      /************ Variance of one-step probabilities  ******************/
    /* Calculates basic frequencies. Computes observed prevalence at single age  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
        and prints on file fileres'p'. */  {
     int i, j=0,  i1, k1, l1, t, tj;
        int k2, l2, j1,  z1;
        int k=0,l, cptcode;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int first=1, first1;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **dnewm,**doldm;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *xp;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double *gp, *gm;
          double **gradg, **trgradg;
     /* For Powell, parameters are in a vector p[] starting at p[1]    double **mu;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double age,agelim, cov[NCOVMAX];
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     if(mle==1){    char fileresprob[FILENAMELENGTH];
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    char fileresprobcov[FILENAMELENGTH];
     }    char fileresprobcor[FILENAMELENGTH];
      
     /*--------- results files --------------*/    double ***varpij;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
      strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
    jk=1;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      printf("Problem with resultfile: %s\n", fileresprob);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
    for(i=1,jk=1; i <=nlstate; i++){    }
      for(k=1; k <=(nlstate+ndeath); k++){    strcpy(fileresprobcov,"probcov"); 
        if (k != i)    strcat(fileresprobcov,fileres);
          {    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
            printf("%d%d ",i,k);      printf("Problem with resultfile: %s\n", fileresprobcov);
            fprintf(ficres,"%1d%1d ",i,k);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
            for(j=1; j <=ncovmodel; j++){    }
              printf("%f ",p[jk]);    strcpy(fileresprobcor,"probcor"); 
              fprintf(ficres,"%f ",p[jk]);    strcat(fileresprobcor,fileres);
              jk++;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
            }      printf("Problem with resultfile: %s\n", fileresprobcor);
            printf("\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
            fprintf(ficres,"\n");    }
          }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  if(mle==1){    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     /* Computing hessian and covariance matrix */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     ftolhess=ftol; /* Usually correct */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     hesscov(matcov, p, npar, delti, ftolhess, func);    pstamp(ficresprob);
  }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    fprintf(ficresprob,"# Age");
     printf("# Scales (for hessian or gradient estimation)\n");    pstamp(ficresprobcov);
      for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficresprobcov,"# Age");
         if (j!=i) {    pstamp(ficresprobcor);
           fprintf(ficres,"%1d%1d",i,j);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           printf("%1d%1d",i,j);    fprintf(ficresprobcor,"# Age");
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);    for(i=1; i<=nlstate;i++)
             jk++;      for(j=1; j<=(nlstate+ndeath);j++){
           }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           printf("\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           fprintf(ficres,"\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         }      }  
       }   /* fprintf(ficresprob,"\n");
      }    fprintf(ficresprobcov,"\n");
        fprintf(ficresprobcor,"\n");
     k=1;   */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    xp=vector(1,npar);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     for(i=1;i<=npar;i++){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       /*  if (k>nlstate) k=1;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       i1=(i-1)/(ncovmodel*nlstate)+1;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    first=1;
       printf("%s%d%d",alph[k],i1,tab[i]);*/    fprintf(ficgp,"\n# Routine varprob");
       fprintf(ficres,"%3d",i);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       printf("%3d",i);    fprintf(fichtm,"\n");
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         printf(" %.5e",matcov[i][j]);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       }    file %s<br>\n",optionfilehtmcov);
       fprintf(ficres,"\n");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       printf("\n");  and drawn. It helps understanding how is the covariance between two incidences.\
       k++;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
      It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     while((c=getc(ficpar))=='#' && c!= EOF){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       ungetc(c,ficpar);  standard deviations wide on each axis. <br>\
       fgets(line, MAXLINE, ficpar);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       puts(line);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       fputs(line,ficparo);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     }  
     ungetc(c,ficpar);    cov[1]=1;
     estepm=0;    tj=cptcoveff;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     if (estepm==0 || estepm < stepm) estepm=stepm;    j1=0;
     if (fage <= 2) {    for(t=1; t<=tj;t++){
       bage = ageminpar;      for(i1=1; i1<=ncodemax[t];i1++){ 
       fage = agemaxpar;        j1++;
     }        if  (cptcovn>0) {
              fprintf(ficresprob, "\n#********** Variable "); 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficresprob, "**********\n#\n");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficresprobcov, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcov, "**********\n#\n");
     ungetc(c,ficpar);          
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp, "\n#********** Variable "); 
     puts(line);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fputs(line,ficparo);          fprintf(ficgp, "**********\n#\n");
   }          
   ungetc(c,ficpar);          
            fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          
                fprintf(ficresprobcor, "\n#********** Variable ");    
   while((c=getc(ficpar))=='#' && c!= EOF){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ungetc(c,ficpar);          fprintf(ficresprobcor, "**********\n#");    
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        
     fputs(line,ficparo);        for (age=bage; age<=fage; age ++){ 
   }          cov[2]=age;
   ungetc(c,ficpar);          for (k=1; k<=cptcovn;k++) {
              cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   fscanf(ficpar,"pop_based=%d\n",&popbased);          
   fprintf(ficparo,"pop_based=%d\n",popbased);            gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   fprintf(ficres,"pop_based=%d\n",popbased);            trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            gp=vector(1,(nlstate)*(nlstate+ndeath));
   while((c=getc(ficpar))=='#' && c!= EOF){          gm=vector(1,(nlstate)*(nlstate+ndeath));
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);          for(theta=1; theta <=npar; theta++){
     puts(line);            for(i=1; i<=npar; i++)
     fputs(line,ficparo);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   }            
   ungetc(c,ficpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            k=0;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            for(i=1; i<= (nlstate); i++){
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
 while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);            
     puts(line);            for(i=1; i<=npar; i++)
     fputs(line,ficparo);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   }      
   ungetc(c,ficpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            for(i=1; i<=(nlstate); i++){
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              for(j=1; j<=(nlstate+ndeath);j++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                k=k+1;
                 gm[k]=pmmij[i][j];
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              }
             }
 /*------------ gnuplot -------------*/       
   strcpy(optionfilegnuplot,optionfilefiname);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   strcat(optionfilegnuplot,".gp");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          }
     printf("Problem with file %s",optionfilegnuplot);  
   }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   fclose(ficgp);            for(theta=1; theta <=npar; theta++)
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);              trgradg[j][theta]=gradg[theta][j];
 /*--------- index.htm --------*/          
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   strcpy(optionfilehtm,optionfile);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   strcat(optionfilehtm,".htm");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     printf("Problem with %s \n",optionfilehtm), exit(0);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          pmij(pmmij,cov,ncovmodel,x,nlstate);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          
 \n          k=0;
 Total number of observations=%d <br>\n          for(i=1; i<=(nlstate); i++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            for(j=1; j<=(nlstate+ndeath);j++){
 <hr  size=\"2\" color=\"#EC5E5E\">              k=k+1;
  <ul><li>Parameter files<br>\n              mu[k][(int) age]=pmmij[i][j];
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n            }
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);          }
   fclose(fichtm);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);              varpij[i][j][(int)age] = doldm[i][j];
    
 /*------------ free_vector  -------------*/          /*printf("\n%d ",(int)age);
  chdir(path);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  free_ivector(wav,1,imx);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            }*/
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
  free_ivector(num,1,n);          fprintf(ficresprob,"\n%d ",(int)age);
  free_vector(agedc,1,n);          fprintf(ficresprobcov,"\n%d ",(int)age);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          fprintf(ficresprobcor,"\n%d ",(int)age);
  fclose(ficparo);  
  fclose(ficres);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   /*--------------- Prevalence limit --------------*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   strcpy(filerespl,"pl");          }
   strcat(filerespl,fileres);          i=0;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          for (k=1; k<=(nlstate);k++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            for (l=1; l<=(nlstate+ndeath);l++){ 
   }              i=i++;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   fprintf(ficrespl,"#Prevalence limit\n");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   fprintf(ficrespl,"#Age ");              for (j=1; j<=i;j++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   fprintf(ficrespl,"\n");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                }
   prlim=matrix(1,nlstate,1,nlstate);            }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }/* end of loop for state */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        } /* end of loop for age */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /* Confidence intervalle of pij  */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        /*
   k=0;          fprintf(ficgp,"\nunset parametric;unset label");
   agebase=ageminpar;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   agelim=agemaxpar;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   ftolpl=1.e-10;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   i1=cptcoveff;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   if (cptcovn < 1){i1=1;}          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   for(cptcov=1;cptcov<=i1;cptcov++){        */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        first1=1;
         fprintf(ficrespl,"\n#******");        for (k2=1; k2<=(nlstate);k2++){
         for(j=1;j<=cptcoveff;j++)          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            if(l2==k2) continue;
         fprintf(ficrespl,"******\n");            j=(k2-1)*(nlstate+ndeath)+l2;
                    for (k1=1; k1<=(nlstate);k1++){
         for (age=agebase; age<=agelim; age++){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                if(l1==k1) continue;
           fprintf(ficrespl,"%.0f",age );                i=(k1-1)*(nlstate+ndeath)+l1;
           for(i=1; i<=nlstate;i++)                if(i<=j) continue;
           fprintf(ficrespl," %.5f", prlim[i][i]);                for (age=bage; age<=fage; age ++){ 
           fprintf(ficrespl,"\n");                  if ((int)age %5==0){
         }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   fclose(ficrespl);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
   /*------------- h Pij x at various ages ------------*/                    c12=cv12/sqrt(v1*v2);
                      /* Computing eigen value of matrix of covariance */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                    /* Eigen vectors */
   }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   printf("Computing pij: result on file '%s' \n", filerespij);                    /*v21=sqrt(1.-v11*v11); *//* error */
                      v21=(lc1-v1)/cv12*v11;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    v12=-v21;
   /*if (stepm<=24) stepsize=2;*/                    v22=v11;
                     tnalp=v21/v11;
   agelim=AGESUP;                    if(first1==1){
   hstepm=stepsize*YEARM; /* Every year of age */                      first1=0;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                      }
   k=0;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   for(cptcov=1;cptcov<=i1;cptcov++){                    /*printf(fignu*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       k=k+1;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         fprintf(ficrespij,"\n#****** ");                    if(first==1){
         for(j=1;j<=cptcoveff;j++)                      first=0;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(ficgp,"\nset parametric;unset label");
         fprintf(ficrespij,"******\n");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                              fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           oldm=oldms;savm=savms;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                        fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           fprintf(ficrespij,"# Age");                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
           for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             for(j=1; j<=nlstate+ndeath;j++)                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               fprintf(ficrespij," %1d-%1d",i,j);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           fprintf(ficrespij,"\n");                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
            for (h=0; h<=nhstepm; h++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             for(i=1; i<=nlstate;i++)                    }else{
               for(j=1; j<=nlstate+ndeath;j++)                      first=0;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
             fprintf(ficrespij,"\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
              }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           fprintf(ficrespij,"\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     }                    }/* if first */
   }                  } /* age mod 5 */
                 } /* end loop age */
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
   fclose(ficrespij);              } /*l12 */
             } /* k12 */
           } /*l1 */
   /*---------- Forecasting ------------------*/        }/* k1 */
   if((stepm == 1) && (strcmp(model,".")==0)){      } /* loop covariates */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   else{    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     erreur=108;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    free_vector(xp,1,npar);
   }    fclose(ficresprob);
      fclose(ficresprobcov);
     fclose(ficresprobcor);
   /*---------- Health expectancies and variances ------------*/    fflush(ficgp);
     fflush(fichtmcov);
   strcpy(filerest,"t");  }
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /******************* Printing html file ***********/
   }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
   strcpy(filerese,"e");                    double jprev1, double mprev1,double anprev1, \
   strcat(filerese,fileres);                    double jprev2, double mprev2,double anprev2){
   if((ficreseij=fopen(filerese,"w"))==NULL) {    int jj1, k1, i1, cpt;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
  strcpy(fileresv,"v");     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   strcat(fileresv,fileres);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   if((ficresvij=fopen(fileresv,"w"))==NULL) {             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);     fprintf(fichtm,"\
   }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   calagedate=-1;     fprintf(fichtm,"\
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   k=0;     fprintf(fichtm,"\
   for(cptcov=1;cptcov<=i1;cptcov++){   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     <a href=\"%s\">%s</a> <br>\n",
       k=k+1;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       fprintf(ficrest,"\n#****** ");     fprintf(fichtm,"\
       for(j=1;j<=cptcoveff;j++)   - Population projections by age and states: \
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
       fprintf(ficrest,"******\n");  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)   m=cptcoveff;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       fprintf(ficreseij,"******\n");  
    jj1=0;
       fprintf(ficresvij,"\n#****** ");   for(k1=1; k1<=m;k1++){
       for(j=1;j<=cptcoveff;j++)     for(i1=1; i1<=ncodemax[k1];i1++){
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       jj1++;
       fprintf(ficresvij,"******\n");       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);         for (cpt=1; cpt<=cptcoveff;cpt++) 
       oldm=oldms;savm=savms;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       /* Pij */
       oldm=oldms;savm=savms;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);         /* Period (stable) prevalence in each health state */
       fprintf(ficrest,"\n");         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
       epj=vector(1,nlstate+1);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       for(age=bage; age <=fage ;age++){         }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       for(cpt=1; cpt<=nlstate;cpt++) {
         if (popbased==1) {          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
           for(i=1; i<=nlstate;i++)  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
             prlim[i][i]=probs[(int)age][i][k];       }
         }     } /* end i1 */
           }/* End k1 */
         fprintf(ficrest," %4.0f",age);   fprintf(fichtm,"</ul>");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];   fprintf(fichtm,"\
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
           }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
           epj[nlstate+1] +=epj[j];  
         }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
         for(i=1, vepp=0.;i <=nlstate;i++)   fprintf(fichtm,"\
           for(j=1;j <=nlstate;j++)   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             vepp += vareij[i][j][(int)age];           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){   fprintf(fichtm,"\
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
         fprintf(ficrest,"\n");   fprintf(fichtm,"\
       }   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     }     <a href=\"%s\">%s</a> <br>\n</li>",
   }             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 free_matrix(mint,1,maxwav,1,n);   fprintf(fichtm,"\
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     free_vector(weight,1,n);     <a href=\"%s\">%s</a> <br>\n</li>",
   fclose(ficreseij);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   fclose(ficresvij);   fprintf(fichtm,"\
   fclose(ficrest);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   fclose(ficpar);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   free_vector(epj,1,nlstate+1);   fprintf(fichtm,"\
     - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
   /*------- Variance limit prevalence------*/             estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
   strcpy(fileresvpl,"vpl");   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   strcat(fileresvpl,fileres);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  /*  if(popforecast==1) fprintf(fichtm,"\n */
     exit(0);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   k=0;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   for(cptcov=1;cptcov<=i1;cptcov++){   fflush(fichtm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");   m=cptcoveff;
       for(j=1;j<=cptcoveff;j++)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");   jj1=0;
         for(k1=1; k1<=m;k1++){
       varpl=matrix(1,nlstate,(int) bage, (int) fage);     for(i1=1; i1<=ncodemax[k1];i1++){
       oldm=oldms;savm=savms;       jj1++;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       if (cptcovn > 0) {
     }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  }         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   fclose(ficresvpl);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   /*---------- End : free ----------------*/       for(cpt=1; cpt<=nlstate;cpt++) {
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
    prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       }
         fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  true period expectancies (those weighted with period prevalences are also\
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);   drawn in addition to the population based expectancies computed using\
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   observed and cahotic prevalences: %s%d.png<br>\
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       } /* end i1 */
   free_matrix(matcov,1,npar,1,npar);   }/* End k1 */
   free_vector(delti,1,npar);   fprintf(fichtm,"</ul>");
   free_matrix(agev,1,maxwav,1,imx);   fflush(fichtm);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  }
   
   fprintf(fichtm,"\n</body>");  /******************* Gnuplot file **************/
   fclose(fichtm);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   fclose(ficgp);  
      char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
   if(erreur >0)    int ng=0;
     printf("End of Imach with error or warning %d\n",erreur);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   else   printf("End of Imach\n");  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
    /*   } */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/    /*#ifdef windows */
   /*------ End -----------*/    fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
  end:  
 #ifdef windows    strcpy(dirfileres,optionfilefiname);
   /* chdir(pathcd);*/    strcpy(optfileres,"vpl");
 #endif   /* 1eme*/
  /*system("wgnuplot graph.plt");*/    for (cpt=1; cpt<= nlstate ; cpt ++) {
  /*system("../gp37mgw/wgnuplot graph.plt");*/     for (k1=1; k1<= m ; k1 ++) {
  /*system("cd ../gp37mgw");*/       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
  strcpy(plotcmd,GNUPLOTPROGRAM);       fprintf(ficgp,"set xlabel \"Age\" \n\
  strcat(plotcmd," ");  set ylabel \"Probability\" \n\
  strcat(plotcmd,optionfilegnuplot);  set ter png small\n\
  system(plotcmd);  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 #ifdef windows  
   while (z[0] != 'q') {       for (i=1; i<= nlstate ; i ++) {
     /* chdir(path); */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");         else        fprintf(ficgp," \%%*lf (\%%*lf)");
     scanf("%s",z);       }
     if (z[0] == 'c') system("./imach");       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     else if (z[0] == 'e') system(optionfilehtm);       for (i=1; i<= nlstate ; i ++) {
     else if (z[0] == 'g') system(plotcmd);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     else if (z[0] == 'q') exit(0);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       } 
 #endif       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 }       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char linetmp[MAXLINE];
       char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     /* where is ncovprod ?*/
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sums the number of covariates including age as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.134


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>