Diff for /imach/src/imach.c between versions 1.47 and 1.137

version 1.47, 2002/06/10 13:12:01 version 1.137, 2010/04/29 18:11:38
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.137  2010/04/29 18:11:38  brouard
      (Module): Checking covariates for more complex models
   This program computes Healthy Life Expectancies from    than V1+V2. A lot of change to be done. Unstable.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.136  2010/04/26 20:30:53  brouard
   interviewed on their health status or degree of disability (in the    (Module): merging some libgsl code. Fixing computation
   case of a health survey which is our main interest) -2- at least a    of likelione (using inter/intrapolation if mle = 0) in order to
   second wave of interviews ("longitudinal") which measure each change    get same likelihood as if mle=1.
   (if any) in individual health status.  Health expectancies are    Some cleaning of code and comments added.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.135  2009/10/29 15:33:14  brouard
   Maximum Likelihood of the parameters involved in the model.  The    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.134  2009/10/29 13:18:53  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.133  2009/07/06 10:21:25  brouard
   complex model than "constant and age", you should modify the program    just nforces
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.132  2009/07/06 08:22:05  brouard
   convergence.    Many tings
   
   The advantage of this computer programme, compared to a simple    Revision 1.131  2009/06/20 16:22:47  brouard
   multinomial logistic model, is clear when the delay between waves is not    Some dimensions resccaled
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.130  2009/05/26 06:44:34  brouard
   account using an interpolation or extrapolation.      (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
   hPijx is the probability to be observed in state i at age x+h    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.129  2007/08/31 13:49:27  lievre
   states. This elementary transition (by month or quarter trimester,    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.128  2006/06/30 13:02:05  brouard
   and the contribution of each individual to the likelihood is simply    (Module): Clarifications on computing e.j
   hPijx.  
     Revision 1.127  2006/04/28 18:11:50  brouard
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Yes the sum of survivors was wrong since
   of the life expectancies. It also computes the prevalence limits.    imach-114 because nhstepm was no more computed in the age
      loop. Now we define nhstepma in the age loop.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): In order to speed up (in case of numerous covariates) we
            Institut national d'études démographiques, Paris.    compute health expectancies (without variances) in a first step
   This software have been partly granted by Euro-REVES, a concerted action    and then all the health expectancies with variances or standard
   from the European Union.    deviation (needs data from the Hessian matrices) which slows the
   It is copyrighted identically to a GNU software product, ie programme and    computation.
   software can be distributed freely for non commercial use. Latest version    In the future we should be able to stop the program is only health
   can be accessed at http://euroreves.ined.fr/imach .    expectancies and graph are needed without standard deviations.
   **********************************************************************/  
      Revision 1.126  2006/04/28 17:23:28  brouard
 #include <math.h>    (Module): Yes the sum of survivors was wrong since
 #include <stdio.h>    imach-114 because nhstepm was no more computed in the age
 #include <stdlib.h>    loop. Now we define nhstepma in the age loop.
 #include <unistd.h>    Version 0.98h
   
 #define MAXLINE 256    Revision 1.125  2006/04/04 15:20:31  lievre
 #define GNUPLOTPROGRAM "gnuplot"    Errors in calculation of health expectancies. Age was not initialized.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Forecasting file added.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.124  2006/03/22 17:13:53  lievre
 #define windows    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    The log-likelihood is printed in the log file
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.123  2006/03/20 10:52:43  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    * imach.c (Module): <title> changed, corresponds to .htm file
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    name. <head> headers where missing.
   
 #define NINTERVMAX 8    * imach.c (Module): Weights can have a decimal point as for
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    English (a comma might work with a correct LC_NUMERIC environment,
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    otherwise the weight is truncated).
 #define NCOVMAX 8 /* Maximum number of covariates */    Modification of warning when the covariates values are not 0 or
 #define MAXN 20000    1.
 #define YEARM 12. /* Number of months per year */    Version 0.98g
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.122  2006/03/20 09:45:41  brouard
 #ifdef windows    (Module): Weights can have a decimal point as for
 #define DIRSEPARATOR '\\'    English (a comma might work with a correct LC_NUMERIC environment,
 #else    otherwise the weight is truncated).
 #define DIRSEPARATOR '/'    Modification of warning when the covariates values are not 0 or
 #endif    1.
     Version 0.98g
 char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.121  2006/03/16 17:45:01  lievre
 int nvar;    * imach.c (Module): Comments concerning covariates added
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    * imach.c (Module): refinements in the computation of lli if
 int nlstate=2; /* Number of live states */    status=-2 in order to have more reliable computation if stepm is
 int ndeath=1; /* Number of dead states */    not 1 month. Version 0.98f
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 int *wav; /* Number of waves for this individuual 0 is possible */    status=-2 in order to have more reliable computation if stepm is
 int maxwav; /* Maxim number of waves */    not 1 month. Version 0.98f
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.119  2006/03/15 17:42:26  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Bug if status = -2, the loglikelihood was
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    computed as likelihood omitting the logarithm. Version O.98e
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.118  2006/03/14 18:20:07  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): varevsij Comments added explaining the second
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    table of variances if popbased=1 .
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 FILE *fichtm; /* Html File */    (Module): Function pstamp added
 FILE *ficreseij;    (Module): Version 0.98d
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.117  2006/03/14 17:16:22  brouard
 char fileresv[FILENAMELENGTH];    (Module): varevsij Comments added explaining the second
 FILE  *ficresvpl;    table of variances if popbased=1 .
 char fileresvpl[FILENAMELENGTH];    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 char title[MAXLINE];    (Module): Function pstamp added
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    (Module): Version 0.98d
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.116  2006/03/06 10:29:27  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.115  2006/02/27 12:17:45  brouard
 char popfile[FILENAMELENGTH];    (Module): One freematrix added in mlikeli! 0.98c
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
 #define NR_END 1    filename with strsep.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 #define NRANSI    datafile was not closed, some imatrix were not freed and on matrix
 #define ITMAX 200    allocation too.
   
 #define TOL 2.0e-4    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.111  2006/01/25 20:38:18  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 #define GOLD 1.618034    can be a simple dot '.'.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.109  2006/01/24 19:37:15  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Comments (lines starting with a #) are allowed in data.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.108  2006/01/19 18:05:42  lievre
 #define rint(a) floor(a+0.5)    Gnuplot problem appeared...
     To be fixed
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.107  2006/01/19 16:20:37  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Test existence of gnuplot in imach path
   
 int imx;    Revision 1.106  2006/01/19 13:24:36  brouard
 int stepm;    Some cleaning and links added in html output
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.105  2006/01/05 20:23:19  lievre
 int estepm;    *** empty log message ***
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.104  2005/09/30 16:11:43  lievre
 int m,nb;    (Module): sump fixed, loop imx fixed, and simplifications.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): If the status is missing at the last wave but we know
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    that the person is alive, then we can code his/her status as -2
 double **pmmij, ***probs, ***mobaverage;    (instead of missing=-1 in earlier versions) and his/her
 double dateintmean=0;    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 double *weight;    the healthy state at last known wave). Version is 0.98
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.103  2005/09/30 15:54:49  lievre
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (Module): sump fixed, loop imx fixed, and simplifications.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.102  2004/09/15 17:31:30  brouard
 double ftolhess; /* Tolerance for computing hessian */    Add the possibility to read data file including tab characters.
   
 /**************** split *************************/    Revision 1.101  2004/09/15 10:38:38  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Fix on curr_time
 {  
    char *s;                             /* pointer */    Revision 1.100  2004/07/12 18:29:06  brouard
    int  l1, l2;                         /* length counters */    Add version for Mac OS X. Just define UNIX in Makefile
   
    l1 = strlen( path );                 /* length of path */    Revision 1.99  2004/06/05 08:57:40  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    *** empty log message ***
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.98  2004/05/16 15:05:56  brouard
 #if     defined(__bsd__)                /* get current working directory */    New version 0.97 . First attempt to estimate force of mortality
       extern char       *getwd( );    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
       if ( getwd( dirc ) == NULL ) {    This is the basic analysis of mortality and should be done before any
 #else    other analysis, in order to test if the mortality estimated from the
       extern char       *getcwd( );    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    The same imach parameter file can be used but the option for mle should be -3.
          return( GLOCK_ERROR_GETCWD );  
       }    Agnès, who wrote this part of the code, tried to keep most of the
       strcpy( name, path );             /* we've got it */    former routines in order to include the new code within the former code.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    The output is very simple: only an estimate of the intercept and of
       l2 = strlen( s );                 /* length of filename */    the slope with 95% confident intervals.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Current limitations:
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    A) Even if you enter covariates, i.e. with the
       dirc[l1-l2] = 0;                  /* add zero */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
    }    B) There is no computation of Life Expectancy nor Life Table.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.97  2004/02/20 13:25:42  lievre
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Version 0.96d. Population forecasting command line is (temporarily)
 #else    suppressed.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.96  2003/07/15 15:38:55  brouard
    s = strrchr( name, '.' );            /* find last / */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
    s++;    rewritten within the same printf. Workaround: many printfs.
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.95  2003/07/08 07:54:34  brouard
    l2= strlen( s)+1;    * imach.c (Repository):
    strncpy( finame, name, l1-l2);    (Repository): Using imachwizard code to output a more meaningful covariance
    finame[l1-l2]= 0;    matrix (cov(a12,c31) instead of numbers.
    return( 0 );                         /* we're done */  
 }    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   
 /******************************************/    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 void replace(char *s, char*t)    exist so I changed back to asctime which exists.
 {    (Module): Version 0.96b
   int i;  
   int lg=20;    Revision 1.92  2003/06/25 16:30:45  brouard
   i=0;    (Module): On windows (cygwin) function asctime_r doesn't
   lg=strlen(t);    exist so I changed back to asctime which exists.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.91  2003/06/25 15:30:29  brouard
     if (t[i]== '\\') s[i]='/';    * imach.c (Repository): Duplicated warning errors corrected.
   }    (Repository): Elapsed time after each iteration is now output. It
 }    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 int nbocc(char *s, char occ)    concerning matrix of covariance. It has extension -cov.htm.
 {  
   int i,j=0;    Revision 1.90  2003/06/24 12:34:15  brouard
   int lg=20;    (Module): Some bugs corrected for windows. Also, when
   i=0;    mle=-1 a template is output in file "or"mypar.txt with the design
   lg=strlen(s);    of the covariance matrix to be input.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.89  2003/06/24 12:30:52  brouard
   }    (Module): Some bugs corrected for windows. Also, when
   return j;    mle=-1 a template is output in file "or"mypar.txt with the design
 }    of the covariance matrix to be input.
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.88  2003/06/23 17:54:56  brouard
 {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   int i,lg,j,p=0;  
   i=0;    Revision 1.87  2003/06/18 12:26:01  brouard
   for(j=0; j<=strlen(t)-1; j++) {    Version 0.96
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
   lg=strlen(t);    routine fileappend.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.85  2003/06/17 13:12:43  brouard
   }    * imach.c (Repository): Check when date of death was earlier that
      u[p]='\0';    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
    for(j=0; j<= lg; j++) {    was wrong (infinity). We still send an "Error" but patch by
     if (j>=(p+1))(v[j-p-1] = t[j]);    assuming that the date of death was just one stepm after the
   }    interview.
 }    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 /********************** nrerror ********************/    memory allocation. But we also truncated to 8 characters (left
     truncation)
 void nrerror(char error_text[])    (Repository): No more line truncation errors.
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.84  2003/06/13 21:44:43  brouard
   fprintf(stderr,"%s\n",error_text);    * imach.c (Repository): Replace "freqsummary" at a correct
   exit(1);    place. It differs from routine "prevalence" which may be called
 }    many times. Probs is memory consuming and must be used with
 /*********************** vector *******************/    parcimony.
 double *vector(int nl, int nh)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 {  
   double *v;    Revision 1.83  2003/06/10 13:39:11  lievre
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    *** empty log message ***
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.82  2003/06/05 15:57:20  brouard
 }    Add log in  imach.c and  fullversion number is now printed.
   
 /************************ free vector ******************/  */
 void free_vector(double*v, int nl, int nh)  /*
 {     Interpolated Markov Chain
   free((FREE_ARG)(v+nl-NR_END));  
 }    Short summary of the programme:
     
 /************************ivector *******************************/    This program computes Healthy Life Expectancies from
 int *ivector(long nl,long nh)    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 {    first survey ("cross") where individuals from different ages are
   int *v;    interviewed on their health status or degree of disability (in the
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    case of a health survey which is our main interest) -2- at least a
   if (!v) nrerror("allocation failure in ivector");    second wave of interviews ("longitudinal") which measure each change
   return v-nl+NR_END;    (if any) in individual health status.  Health expectancies are
 }    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 /******************free ivector **************************/    Maximum Likelihood of the parameters involved in the model.  The
 void free_ivector(int *v, long nl, long nh)    simplest model is the multinomial logistic model where pij is the
 {    probability to be observed in state j at the second wave
   free((FREE_ARG)(v+nl-NR_END));    conditional to be observed in state i at the first wave. Therefore
 }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 /******************* imatrix *******************************/    complex model than "constant and age", you should modify the program
 int **imatrix(long nrl, long nrh, long ncl, long nch)    where the markup *Covariates have to be included here again* invites
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    you to do it.  More covariates you add, slower the
 {    convergence.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    The advantage of this computer programme, compared to a simple
      multinomial logistic model, is clear when the delay between waves is not
   /* allocate pointers to rows */    identical for each individual. Also, if a individual missed an
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    intermediate interview, the information is lost, but taken into
   if (!m) nrerror("allocation failure 1 in matrix()");    account using an interpolation or extrapolation.  
   m += NR_END;  
   m -= nrl;    hPijx is the probability to be observed in state i at age x+h
      conditional to the observed state i at age x. The delay 'h' can be
      split into an exact number (nh*stepm) of unobserved intermediate
   /* allocate rows and set pointers to them */    states. This elementary transition (by month, quarter,
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    semester or year) is modelled as a multinomial logistic.  The hPx
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    matrix is simply the matrix product of nh*stepm elementary matrices
   m[nrl] += NR_END;    and the contribution of each individual to the likelihood is simply
   m[nrl] -= ncl;    hPijx.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Also this programme outputs the covariance matrix of the parameters but also
      of the life expectancies. It also computes the period (stable) prevalence. 
   /* return pointer to array of pointers to rows */    
   return m;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /****************** free_imatrix *************************/    from the European Union.
 void free_imatrix(m,nrl,nrh,ncl,nch)    It is copyrighted identically to a GNU software product, ie programme and
       int **m;    software can be distributed freely for non commercial use. Latest version
       long nch,ncl,nrh,nrl;    can be accessed at http://euroreves.ined.fr/imach .
      /* free an int matrix allocated by imatrix() */  
 {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   free((FREE_ARG) (m+nrl-NR_END));    
 }    **********************************************************************/
   /*
 /******************* matrix *******************************/    main
 double **matrix(long nrl, long nrh, long ncl, long nch)    read parameterfile
 {    read datafile
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    concatwav
   double **m;    freqsummary
     if (mle >= 1)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      mlikeli
   if (!m) nrerror("allocation failure 1 in matrix()");    print results files
   m += NR_END;    if mle==1 
   m -= nrl;       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));        begin-prev-date,...
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    open gnuplot file
   m[nrl] += NR_END;    open html file
   m[nrl] -= ncl;    period (stable) prevalence
      for age prevalim()
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    h Pij x
   return m;    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /*************************free matrix ************************/    Variance-covariance of DFLE
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    prevalence()
 {     movingaverage()
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    varevsij() 
   free((FREE_ARG)(m+nrl-NR_END));    if popbased==1 varevsij(,popbased)
 }    total life expectancies
     Variance of period (stable) prevalence
 /******************* ma3x *******************************/   end
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  */
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  
    
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <math.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <stdio.h>
   m += NR_END;  #include <stdlib.h>
   m -= nrl;  #include <string.h>
   #include <unistd.h>
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <limits.h>
   m[nrl] += NR_END;  #include <sys/types.h>
   m[nrl] -= ncl;  #include <sys/stat.h>
   #include <errno.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  extern int errno;
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  /* #include <sys/time.h> */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #include <time.h>
   m[nrl][ncl] += NR_END;  #include "timeval.h"
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  #ifdef GSL
     m[nrl][j]=m[nrl][j-1]+nlay;  #include <gsl/gsl_errno.h>
    #include <gsl/gsl_multimin.h>
   for (i=nrl+1; i<=nrh; i++) {  #endif
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  /* #include <libintl.h> */
       m[i][j]=m[i][j-1]+nlay;  /* #define _(String) gettext (String) */
   }  
   return m;  #define MAXLINE 256
 }  
   #define GNUPLOTPROGRAM "gnuplot"
 /*************************free ma3x ************************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define FILENAMELENGTH 132
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 /***************** f1dim *************************/  
 extern int ncom;  #define NINTERVMAX 8
 extern double *pcom,*xicom;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 extern double (*nrfunc)(double []);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    #define NCOVMAX 20 /* Maximum number of covariates */
 double f1dim(double x)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   int j;  #define AGESUP 130
   double f;  #define AGEBASE 40
   double *xt;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
    #ifdef UNIX
   xt=vector(1,ncom);  #define DIRSEPARATOR '/'
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define CHARSEPARATOR "/"
   f=(*nrfunc)(xt);  #define ODIRSEPARATOR '\\'
   free_vector(xt,1,ncom);  #else
   return f;  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 /*****************brent *************************/  #endif
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  /* $Id$ */
   int iter;  /* $State$ */
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  char version[]="Imach version 0.98m, April 2010, INED-EUROREVES-Institut de longevite ";
   double ftemp;  char fullversion[]="$Revision$ $Date$"; 
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char strstart[80];
   double e=0.0;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
    int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   a=(ax < cx ? ax : cx);  int nvar=0, nforce=0; /* Number of variables, number of forces */
   b=(ax > cx ? ax : cx);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
   x=w=v=bx;  int npar=NPARMAX;
   fw=fv=fx=(*f)(x);  int nlstate=2; /* Number of live states */
   for (iter=1;iter<=ITMAX;iter++) {  int ndeath=1; /* Number of dead states */
     xm=0.5*(a+b);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int popbased=0;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  int *wav; /* Number of waves for this individuual 0 is possible */
 #ifdef DEBUG  int maxwav=0; /* Maxim number of waves */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 #endif  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){                     to the likelihood and the sum of weights (done by funcone)*/
       *xmin=x;  int mle=1, weightopt=0;
       return fx;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     ftemp=fu;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     if (fabs(e) > tol1) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       r=(x-w)*(fx-fv);  double jmean=1; /* Mean space between 2 waves */
       q=(x-v)*(fx-fw);  double **oldm, **newm, **savm; /* Working pointers to matrices */
       p=(x-v)*q-(x-w)*r;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       q=2.0*(q-r);  /*FILE *fic ; */ /* Used in readdata only */
       if (q > 0.0) p = -p;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       q=fabs(q);  FILE *ficlog, *ficrespow;
       etemp=e;  int globpr=0; /* Global variable for printing or not */
       e=d;  double fretone; /* Only one call to likelihood */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  long ipmx=0; /* Number of contributions */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  double sw; /* Sum of weights */
       else {  char filerespow[FILENAMELENGTH];
         d=p/q;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
         u=x+d;  FILE *ficresilk;
         if (u-a < tol2 || b-u < tol2)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
           d=SIGN(tol1,xm-x);  FILE *ficresprobmorprev;
       }  FILE *fichtm, *fichtmcov; /* Html File */
     } else {  FILE *ficreseij;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char filerese[FILENAMELENGTH];
     }  FILE *ficresstdeij;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char fileresstde[FILENAMELENGTH];
     fu=(*f)(u);  FILE *ficrescveij;
     if (fu <= fx) {  char filerescve[FILENAMELENGTH];
       if (u >= x) a=x; else b=x;  FILE  *ficresvij;
       SHFT(v,w,x,u)  char fileresv[FILENAMELENGTH];
         SHFT(fv,fw,fx,fu)  FILE  *ficresvpl;
         } else {  char fileresvpl[FILENAMELENGTH];
           if (u < x) a=u; else b=u;  char title[MAXLINE];
           if (fu <= fw || w == x) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
             v=w;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
             w=u;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
             fv=fw;  char command[FILENAMELENGTH];
             fw=fu;  int  outcmd=0;
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
             fv=fu;  
           }  char filelog[FILENAMELENGTH]; /* Log file */
         }  char filerest[FILENAMELENGTH];
   }  char fileregp[FILENAMELENGTH];
   nrerror("Too many iterations in brent");  char popfile[FILENAMELENGTH];
   *xmin=x;  
   return fx;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 }  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 /****************** mnbrak ***********************/  struct timezone tzp;
   extern int gettimeofday();
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  struct tm tmg, tm, tmf, *gmtime(), *localtime();
             double (*func)(double))  long time_value;
 {  extern long time();
   double ulim,u,r,q, dum;  char strcurr[80], strfor[80];
   double fu;  
    char *endptr;
   *fa=(*func)(*ax);  long lval;
   *fb=(*func)(*bx);  double dval;
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  #define NR_END 1
       SHFT(dum,*fb,*fa,dum)  #define FREE_ARG char*
       }  #define FTOL 1.0e-10
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  #define NRANSI 
   while (*fb > *fc) {  #define ITMAX 200 
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  #define TOL 2.0e-4 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define CGOLD 0.3819660 
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define ZEPS 1.0e-10 
     if ((*bx-u)*(u-*cx) > 0.0) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define GOLD 1.618034 
       fu=(*func)(u);  #define GLIMIT 100.0 
       if (fu < *fc) {  #define TINY 1.0e-20 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  static double maxarg1,maxarg2;
           }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       u=ulim;    
       fu=(*func)(u);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     } else {  #define rint(a) floor(a+0.5)
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  static double sqrarg;
     }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     SHFT(*ax,*bx,*cx,u)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       SHFT(*fa,*fb,*fc,fu)  int agegomp= AGEGOMP;
       }  
 }  int imx; 
   int stepm=1;
 /*************** linmin ************************/  /* Stepm, step in month: minimum step interpolation*/
   
 int ncom;  int estepm;
 double *pcom,*xicom;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 double (*nrfunc)(double []);  
    int m,nb;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  long *num;
 {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double brent(double ax, double bx, double cx,  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
                double (*f)(double), double tol, double *xmin);  double **pmmij, ***probs;
   double f1dim(double x);  double *ageexmed,*agecens;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  double dateintmean=0;
               double *fc, double (*func)(double));  
   int j;  double *weight;
   double xx,xmin,bx,ax;  int **s; /* Status */
   double fx,fb,fa;  double *agedc, **covar, idx;
    int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   ncom=n;  double *lsurv, *lpop, *tpop;
   pcom=vector(1,n);  
   xicom=vector(1,n);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   nrfunc=func;  double ftolhess; /* Tolerance for computing hessian */
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  /**************** split *************************/
     xicom[j]=xi[j];  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   }  {
   ax=0.0;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   xx=1.0;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    */ 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    char  *ss;                            /* pointer */
 #ifdef DEBUG    int   l1, l2;                         /* length counters */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    l1 = strlen(path );                   /* length of path */
   for (j=1;j<=n;j++) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     xi[j] *= xmin;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     p[j] += xi[j];    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   }      strcpy( name, path );               /* we got the fullname name because no directory */
   free_vector(xicom,1,n);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   free_vector(pcom,1,n);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 /*************** powell ************************/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        return( GLOCK_ERROR_GETCWD );
             double (*func)(double []))      }
 {      /* got dirc from getcwd*/
   void linmin(double p[], double xi[], int n, double *fret,      printf(" DIRC = %s \n",dirc);
               double (*func)(double []));    } else {                              /* strip direcotry from path */
   int i,ibig,j;      ss++;                               /* after this, the filename */
   double del,t,*pt,*ptt,*xit;      l2 = strlen( ss );                  /* length of filename */
   double fp,fptt;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double *xits;      strcpy( name, ss );         /* save file name */
   pt=vector(1,n);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   ptt=vector(1,n);      dirc[l1-l2] = 0;                    /* add zero */
   xit=vector(1,n);      printf(" DIRC2 = %s \n",dirc);
   xits=vector(1,n);    }
   *fret=(*func)(p);    /* We add a separator at the end of dirc if not exists */
   for (j=1;j<=n;j++) pt[j]=p[j];    l1 = strlen( dirc );                  /* length of directory */
   for (*iter=1;;++(*iter)) {    if( dirc[l1-1] != DIRSEPARATOR ){
     fp=(*fret);      dirc[l1] =  DIRSEPARATOR;
     ibig=0;      dirc[l1+1] = 0; 
     del=0.0;      printf(" DIRC3 = %s \n",dirc);
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    }
     for (i=1;i<=n;i++)    ss = strrchr( name, '.' );            /* find last / */
       printf(" %d %.12f",i, p[i]);    if (ss >0){
     printf("\n");      ss++;
     for (i=1;i<=n;i++) {      strcpy(ext,ss);                     /* save extension */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      l1= strlen( name);
       fptt=(*fret);      l2= strlen(ss)+1;
 #ifdef DEBUG      strncpy( finame, name, l1-l2);
       printf("fret=%lf \n",*fret);      finame[l1-l2]= 0;
 #endif    }
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);    return( 0 );                          /* we're done */
       if (fabs(fptt-(*fret)) > del) {  }
         del=fabs(fptt-(*fret));  
         ibig=i;  
       }  /******************************************/
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  void replace_back_to_slash(char *s, char*t)
       for (j=1;j<=n;j++) {  {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    int i;
         printf(" x(%d)=%.12e",j,xit[j]);    int lg=0;
       }    i=0;
       for(j=1;j<=n;j++)    lg=strlen(t);
         printf(" p=%.12e",p[j]);    for(i=0; i<= lg; i++) {
       printf("\n");      (s[i] = t[i]);
 #endif      if (t[i]== '\\') s[i]='/';
     }    }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  }
 #ifdef DEBUG  
       int k[2],l;  char *trimbb(char *out, char *in)
       k[0]=1;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
       k[1]=-1;    char *s;
       printf("Max: %.12e",(*func)(p));    s=out;
       for (j=1;j<=n;j++)    while (*in != '\0'){
         printf(" %.12e",p[j]);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       printf("\n");        in++;
       for(l=0;l<=1;l++) {      }
         for (j=1;j<=n;j++) {      *out++ = *in++;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    }
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    *out='\0';
         }    return s;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  }
       }  
 #endif  char *cutv(char *blocc, char *alocc, char *in, char occ)
   {
     /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       free_vector(xit,1,n);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       free_vector(xits,1,n);       gives blocc="abcdef2ghi" and alocc="j".
       free_vector(ptt,1,n);       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       free_vector(pt,1,n);    */
       return;    char *s, *t;
     }    t=in;s=in;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    while (*in != '\0'){
     for (j=1;j<=n;j++) {      while( *in == occ){
       ptt[j]=2.0*p[j]-pt[j];        *blocc++ = *in++;
       xit[j]=p[j]-pt[j];        s=in;
       pt[j]=p[j];      }
     }      *blocc++ = *in++;
     fptt=(*func)(ptt);    }
     if (fptt < fp) {    if (s == t) /* occ not found */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      *(blocc-(in-s))='\0';
       if (t < 0.0) {    else
         linmin(p,xit,n,fret,func);      *(blocc-(in-s)-1)='\0';
         for (j=1;j<=n;j++) {    in=s;
           xi[j][ibig]=xi[j][n];    while ( *in != '\0'){
           xi[j][n]=xit[j];      *alocc++ = *in++;
         }    }
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    *alocc='\0';
         for(j=1;j<=n;j++)    return s;
           printf(" %.12e",xit[j]);  }
         printf("\n");  
 #endif  int nbocc(char *s, char occ)
       }  {
     }    int i,j=0;
   }    int lg=20;
 }    i=0;
     lg=strlen(s);
 /**** Prevalence limit ****************/    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    }
 {    return j;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  }
      matrix by transitions matrix until convergence is reached */  
   /* void cutv(char *u,char *v, char*t, char occ) */
   int i, ii,j,k;  /* { */
   double min, max, maxmin, maxmax,sumnew=0.;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   double **matprod2();  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   double **out, cov[NCOVMAX], **pmij();  /*      gives u="abcdef2ghi" and v="j" *\/ */
   double **newm;  /*   int i,lg,j,p=0; */
   double agefin, delaymax=50 ; /* Max number of years to converge */  /*   i=0; */
   /*   lg=strlen(t); */
   for (ii=1;ii<=nlstate+ndeath;ii++)  /*   for(j=0; j<=lg-1; j++) { */
     for (j=1;j<=nlstate+ndeath;j++){  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*   } */
     }  
   /*   for(j=0; j<p; j++) { */
    cov[1]=1.;  /*     (u[j] = t[j]); */
    /*   } */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*      u[p]='\0'; */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  /*    for(j=0; j<= lg; j++) { */
     /* Covariates have to be included here again */  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
      cov[2]=agefin;  /*   } */
    /* } */
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /********************** nrerror ********************/
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  void nrerror(char error_text[])
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    fprintf(stderr,"ERREUR ...\n");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  }
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /*********************** vector *******************/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  double *vector(int nl, int nh)
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  {
     double *v;
     savm=oldm;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     oldm=newm;    if (!v) nrerror("allocation failure in vector");
     maxmax=0.;    return v-nl+NR_END;
     for(j=1;j<=nlstate;j++){  }
       min=1.;  
       max=0.;  /************************ free vector ******************/
       for(i=1; i<=nlstate; i++) {  void free_vector(double*v, int nl, int nh)
         sumnew=0;  {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    free((FREE_ARG)(v+nl-NR_END));
         prlim[i][j]= newm[i][j]/(1-sumnew);  }
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  /************************ivector *******************************/
       }  int *ivector(long nl,long nh)
       maxmin=max-min;  {
       maxmax=FMAX(maxmax,maxmin);    int *v;
     }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if(maxmax < ftolpl){    if (!v) nrerror("allocation failure in ivector");
       return prlim;    return v-nl+NR_END;
     }  }
   }  
 }  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
 /*************** transition probabilities ***************/  {
     free((FREE_ARG)(v+nl-NR_END));
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  }
 {  
   double s1, s2;  /************************lvector *******************************/
   /*double t34;*/  long *lvector(long nl,long nh)
   int i,j,j1, nc, ii, jj;  {
     long *v;
     for(i=1; i<= nlstate; i++){    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     for(j=1; j<i;j++){    if (!v) nrerror("allocation failure in ivector");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return v-nl+NR_END;
         /*s2 += param[i][j][nc]*cov[nc];*/  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /******************free lvector **************************/
       }  void free_lvector(long *v, long nl, long nh)
       ps[i][j]=s2;  {
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    free((FREE_ARG)(v+nl-NR_END));
     }  }
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /******************* imatrix *******************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       }  { 
       ps[i][j]=s2;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     }    int **m; 
   }    
     /*ps[3][2]=1;*/    /* allocate pointers to rows */ 
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   for(i=1; i<= nlstate; i++){    if (!m) nrerror("allocation failure 1 in matrix()"); 
      s1=0;    m += NR_END; 
     for(j=1; j<i; j++)    m -= nrl; 
       s1+=exp(ps[i][j]);    
     for(j=i+1; j<=nlstate+ndeath; j++)    
       s1+=exp(ps[i][j]);    /* allocate rows and set pointers to them */ 
     ps[i][i]=1./(s1+1.);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     for(j=1; j<i; j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl] += NR_END; 
     for(j=i+1; j<=nlstate+ndeath; j++)    m[nrl] -= ncl; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   } /* end i */    
     /* return pointer to array of pointers to rows */ 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    return m; 
     for(jj=1; jj<= nlstate+ndeath; jj++){  } 
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  /****************** free_imatrix *************************/
     }  void free_imatrix(m,nrl,nrh,ncl,nch)
   }        int **m;
         long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  { 
     for(jj=1; jj<= nlstate+ndeath; jj++){    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      printf("%lf ",ps[ii][jj]);    free((FREE_ARG) (m+nrl-NR_END)); 
    }  } 
     printf("\n ");  
     }  /******************* matrix *******************************/
     printf("\n ");printf("%lf ",cov[2]);*/  double **matrix(long nrl, long nrh, long ncl, long nch)
 /*  {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   goto end;*/    double **m;
     return ps;  
 }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /**************** Product of 2 matrices ******************/    m += NR_END;
     m -= nrl;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    m[nrl] += NR_END;
   /* in, b, out are matrice of pointers which should have been initialized    m[nrl] -= ncl;
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   long i, j, k;    return m;
   for(i=nrl; i<= nrh; i++)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     for(k=ncolol; k<=ncoloh; k++)     */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  }
         out[i][k] +=in[i][j]*b[j][k];  
   /*************************free matrix ************************/
   return out;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 }  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 /************* Higher Matrix Product ***************/  }
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /******************* ma3x *******************************/
 {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  {
      duration (i.e. until    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    double ***m;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      Model is determined by parameters x and covariates have to be    if (!m) nrerror("allocation failure 1 in matrix()");
      included manually here.    m += NR_END;
     m -= nrl;
      */  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   int i, j, d, h, k;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double **out, cov[NCOVMAX];    m[nrl] += NR_END;
   double **newm;    m[nrl] -= ncl;
   
   /* Hstepm could be zero and should return the unit matrix */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       oldm[i][j]=(i==j ? 1.0 : 0.0);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       po[i][j][0]=(i==j ? 1.0 : 0.0);    m[nrl][ncl] += NR_END;
     }    m[nrl][ncl] -= nll;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    for (j=ncl+1; j<=nch; j++) 
   for(h=1; h <=nhstepm; h++){      m[nrl][j]=m[nrl][j-1]+nlay;
     for(d=1; d <=hstepm; d++){    
       newm=savm;    for (i=nrl+1; i<=nrh; i++) {
       /* Covariates have to be included here again */      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       cov[1]=1.;      for (j=ncl+1; j<=nch; j++) 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        m[i][j]=m[i][j-1]+nlay;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    }
       for (k=1; k<=cptcovage;k++)    return m; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for (k=1; k<=cptcovprod;k++)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    */
   }
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /*************************free ma3x ************************/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       savm=oldm;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       oldm=newm;    free((FREE_ARG)(m+nrl-NR_END));
     }  }
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  /*************** function subdirf ***********/
         po[i][j][h]=newm[i][j];  char *subdirf(char fileres[])
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  {
          */    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
   } /* end h */    strcat(tmpout,"/"); /* Add to the right */
   return po;    strcat(tmpout,fileres);
 }    return tmpout;
   }
   
 /*************** log-likelihood *************/  /*************** function subdirf2 ***********/
 double func( double *x)  char *subdirf2(char fileres[], char *preop)
 {  {
   int i, ii, j, k, mi, d, kk;    
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    /* Caution optionfilefiname is hidden */
   double **out;    strcpy(tmpout,optionfilefiname);
   double sw; /* Sum of weights */    strcat(tmpout,"/");
   double lli; /* Individual log likelihood */    strcat(tmpout,preop);
   long ipmx;    strcat(tmpout,fileres);
   /*extern weight */    return tmpout;
   /* We are differentiating ll according to initial status */  }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  /*************** function subdirf3 ***********/
     printf(" %d\n",s[4][i]);  char *subdirf3(char fileres[], char *preop, char *preop2)
   */  {
   cov[1]=1.;    
     /* Caution optionfilefiname is hidden */
   for(k=1; k<=nlstate; k++) ll[k]=0.;    strcpy(tmpout,optionfilefiname);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    strcat(tmpout,"/");
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    strcat(tmpout,preop);
     for(mi=1; mi<= wav[i]-1; mi++){    strcat(tmpout,preop2);
       for (ii=1;ii<=nlstate+ndeath;ii++)    strcat(tmpout,fileres);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return tmpout;
       for(d=0; d<dh[mi][i]; d++){  }
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /***************** f1dim *************************/
         for (kk=1; kk<=cptcovage;kk++) {  extern int ncom; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  extern double *pcom,*xicom;
         }  extern double (*nrfunc)(double []); 
           
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  double f1dim(double x) 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  { 
         savm=oldm;    int j; 
         oldm=newm;    double f;
            double *xt; 
           
       } /* end mult */    xt=vector(1,ncom); 
          for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    f=(*nrfunc)(xt); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    free_vector(xt,1,ncom); 
       ipmx +=1;    return f; 
       sw += weight[i];  } 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  /*****************brent *************************/
   } /* end of individual */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    int iter; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    double a,b,d,etemp;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double fu,fv,fw,fx;
   return -l;    double ftemp;
 }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
    
 /*********** Maximum Likelihood Estimation ***************/    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    x=w=v=bx; 
 {    fw=fv=fx=(*f)(x); 
   int i,j, iter;    for (iter=1;iter<=ITMAX;iter++) { 
   double **xi,*delti;      xm=0.5*(a+b); 
   double fret;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   xi=matrix(1,npar,1,npar);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for (i=1;i<=npar;i++)      printf(".");fflush(stdout);
     for (j=1;j<=npar;j++)      fprintf(ficlog,".");fflush(ficlog);
       xi[i][j]=(i==j ? 1.0 : 0.0);  #ifdef DEBUG
   printf("Powell\n");      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   powell(p,xi,npar,ftol,&iter,&fret,func);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  #endif
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 }        return fx; 
       } 
 /**** Computes Hessian and covariance matrix ***/      ftemp=fu;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      if (fabs(e) > tol1) { 
 {        r=(x-w)*(fx-fv); 
   double  **a,**y,*x,pd;        q=(x-v)*(fx-fw); 
   double **hess;        p=(x-v)*q-(x-w)*r; 
   int i, j,jk;        q=2.0*(q-r); 
   int *indx;        if (q > 0.0) p = -p; 
         q=fabs(q); 
   double hessii(double p[], double delta, int theta, double delti[]);        etemp=e; 
   double hessij(double p[], double delti[], int i, int j);        e=d; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   void ludcmp(double **a, int npar, int *indx, double *d) ;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
   hess=matrix(1,npar,1,npar);          d=p/q; 
           u=x+d; 
   printf("\nCalculation of the hessian matrix. Wait...\n");          if (u-a < tol2 || b-u < tol2) 
   for (i=1;i<=npar;i++){            d=SIGN(tol1,xm-x); 
     printf("%d",i);fflush(stdout);        } 
     hess[i][i]=hessii(p,ftolhess,i,delti);      } else { 
     /*printf(" %f ",p[i]);*/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     /*printf(" %lf ",hess[i][i]);*/      } 
   }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
        fu=(*f)(u); 
   for (i=1;i<=npar;i++) {      if (fu <= fx) { 
     for (j=1;j<=npar;j++)  {        if (u >= x) a=x; else b=x; 
       if (j>i) {        SHFT(v,w,x,u) 
         printf(".%d%d",i,j);fflush(stdout);          SHFT(fv,fw,fx,fu) 
         hess[i][j]=hessij(p,delti,i,j);          } else { 
         hess[j][i]=hess[i][j];                if (u < x) a=u; else b=u; 
         /*printf(" %lf ",hess[i][j]);*/            if (fu <= fw || w == x) { 
       }              v=w; 
     }              w=u; 
   }              fv=fw; 
   printf("\n");              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");              v=u; 
                fv=fu; 
   a=matrix(1,npar,1,npar);            } 
   y=matrix(1,npar,1,npar);          } 
   x=vector(1,npar);    } 
   indx=ivector(1,npar);    nrerror("Too many iterations in brent"); 
   for (i=1;i<=npar;i++)    *xmin=x; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    return fx; 
   ludcmp(a,npar,indx,&pd);  } 
   
   for (j=1;j<=npar;j++) {  /****************** mnbrak ***********************/
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     lubksb(a,npar,indx,x);              double (*func)(double)) 
     for (i=1;i<=npar;i++){  { 
       matcov[i][j]=x[i];    double ulim,u,r,q, dum;
     }    double fu; 
   }   
     *fa=(*func)(*ax); 
   printf("\n#Hessian matrix#\n");    *fb=(*func)(*bx); 
   for (i=1;i<=npar;i++) {    if (*fb > *fa) { 
     for (j=1;j<=npar;j++) {      SHFT(dum,*ax,*bx,dum) 
       printf("%.3e ",hess[i][j]);        SHFT(dum,*fb,*fa,dum) 
     }        } 
     printf("\n");    *cx=(*bx)+GOLD*(*bx-*ax); 
   }    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
   /* Recompute Inverse */      r=(*bx-*ax)*(*fb-*fc); 
   for (i=1;i<=npar;i++)      q=(*bx-*cx)*(*fb-*fa); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   ludcmp(a,npar,indx,&pd);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   /*  printf("\n#Hessian matrix recomputed#\n");      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
   for (j=1;j<=npar;j++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for (i=1;i<=npar;i++) x[i]=0;        fu=(*func)(u); 
     x[j]=1;        if (fu < *fc) { 
     lubksb(a,npar,indx,x);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     for (i=1;i<=npar;i++){            SHFT(*fb,*fc,fu,(*func)(u)) 
       y[i][j]=x[i];            } 
       printf("%.3e ",y[i][j]);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     }        u=ulim; 
     printf("\n");        fu=(*func)(u); 
   }      } else { 
   */        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   free_matrix(a,1,npar,1,npar);      } 
   free_matrix(y,1,npar,1,npar);      SHFT(*ax,*bx,*cx,u) 
   free_vector(x,1,npar);        SHFT(*fa,*fb,*fc,fu) 
   free_ivector(indx,1,npar);        } 
   free_matrix(hess,1,npar,1,npar);  } 
   
   /*************** linmin ************************/
 }  
   int ncom; 
 /*************** hessian matrix ****************/  double *pcom,*xicom;
 double hessii( double x[], double delta, int theta, double delti[])  double (*nrfunc)(double []); 
 {   
   int i;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   int l=1, lmax=20;  { 
   double k1,k2;    double brent(double ax, double bx, double cx, 
   double p2[NPARMAX+1];                 double (*f)(double), double tol, double *xmin); 
   double res;    double f1dim(double x); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double fx;                double *fc, double (*func)(double)); 
   int k=0,kmax=10;    int j; 
   double l1;    double xx,xmin,bx,ax; 
     double fx,fb,fa;
   fx=func(x);   
   for (i=1;i<=npar;i++) p2[i]=x[i];    ncom=n; 
   for(l=0 ; l <=lmax; l++){    pcom=vector(1,n); 
     l1=pow(10,l);    xicom=vector(1,n); 
     delts=delt;    nrfunc=func; 
     for(k=1 ; k <kmax; k=k+1){    for (j=1;j<=n;j++) { 
       delt = delta*(l1*k);      pcom[j]=p[j]; 
       p2[theta]=x[theta] +delt;      xicom[j]=xi[j]; 
       k1=func(p2)-fx;    } 
       p2[theta]=x[theta]-delt;    ax=0.0; 
       k2=func(p2)-fx;    xx=1.0; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
        #ifdef DEBUG
 #ifdef DEBUG    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 #endif  #endif
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    for (j=1;j<=n;j++) { 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      xi[j] *= xmin; 
         k=kmax;      p[j] += xi[j]; 
       }    } 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    free_vector(xicom,1,n); 
         k=kmax; l=lmax*10.;    free_vector(pcom,1,n); 
       }  } 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;  char *asc_diff_time(long time_sec, char ascdiff[])
       }  {
     }    long sec_left, days, hours, minutes;
   }    days = (time_sec) / (60*60*24);
   delti[theta]=delts;    sec_left = (time_sec) % (60*60*24);
   return res;    hours = (sec_left) / (60*60) ;
      sec_left = (sec_left) %(60*60);
 }    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
 double hessij( double x[], double delti[], int thetai,int thetaj)    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 {    return ascdiff;
   int i;  }
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  /*************** powell ************************/
   double p2[NPARMAX+1];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   int k;              double (*func)(double [])) 
   { 
   fx=func(x);    void linmin(double p[], double xi[], int n, double *fret, 
   for (k=1; k<=2; k++) {                double (*func)(double [])); 
     for (i=1;i<=npar;i++) p2[i]=x[i];    int i,ibig,j; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    double del,t,*pt,*ptt,*xit;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double fp,fptt;
     k1=func(p2)-fx;    double *xits;
      int niterf, itmp;
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    pt=vector(1,n); 
     k2=func(p2)-fx;    ptt=vector(1,n); 
      xit=vector(1,n); 
     p2[thetai]=x[thetai]-delti[thetai]/k;    xits=vector(1,n); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    *fret=(*func)(p); 
     k3=func(p2)-fx;    for (j=1;j<=n;j++) pt[j]=p[j]; 
      for (*iter=1;;++(*iter)) { 
     p2[thetai]=x[thetai]-delti[thetai]/k;      fp=(*fret); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      ibig=0; 
     k4=func(p2)-fx;      del=0.0; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      last_time=curr_time;
 #ifdef DEBUG      (void) gettimeofday(&curr_time,&tzp);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 #endif      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   return res;     for (i=1;i<=n;i++) {
 }        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
 /************** Inverse of matrix **************/        fprintf(ficrespow," %.12lf", p[i]);
 void ludcmp(double **a, int n, int *indx, double *d)      }
 {      printf("\n");
   int i,imax,j,k;      fprintf(ficlog,"\n");
   double big,dum,sum,temp;      fprintf(ficrespow,"\n");fflush(ficrespow);
   double *vv;      if(*iter <=3){
          tm = *localtime(&curr_time.tv_sec);
   vv=vector(1,n);        strcpy(strcurr,asctime(&tm));
   *d=1.0;  /*       asctime_r(&tm,strcurr); */
   for (i=1;i<=n;i++) {        forecast_time=curr_time; 
     big=0.0;        itmp = strlen(strcurr);
     for (j=1;j<=n;j++)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       if ((temp=fabs(a[i][j])) > big) big=temp;          strcurr[itmp-1]='\0';
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     vv[i]=1.0/big;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   }        for(niterf=10;niterf<=30;niterf+=10){
   for (j=1;j<=n;j++) {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     for (i=1;i<j;i++) {          tmf = *localtime(&forecast_time.tv_sec);
       sum=a[i][j];  /*      asctime_r(&tmf,strfor); */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          strcpy(strfor,asctime(&tmf));
       a[i][j]=sum;          itmp = strlen(strfor);
     }          if(strfor[itmp-1]=='\n')
     big=0.0;          strfor[itmp-1]='\0';
     for (i=j;i<=n;i++) {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       sum=a[i][j];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for (k=1;k<j;k++)        }
         sum -= a[i][k]*a[k][j];      }
       a[i][j]=sum;      for (i=1;i<=n;i++) { 
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         big=dum;        fptt=(*fret); 
         imax=i;  #ifdef DEBUG
       }        printf("fret=%lf \n",*fret);
     }        fprintf(ficlog,"fret=%lf \n",*fret);
     if (j != imax) {  #endif
       for (k=1;k<=n;k++) {        printf("%d",i);fflush(stdout);
         dum=a[imax][k];        fprintf(ficlog,"%d",i);fflush(ficlog);
         a[imax][k]=a[j][k];        linmin(p,xit,n,fret,func); 
         a[j][k]=dum;        if (fabs(fptt-(*fret)) > del) { 
       }          del=fabs(fptt-(*fret)); 
       *d = -(*d);          ibig=i; 
       vv[imax]=vv[j];        } 
     }  #ifdef DEBUG
     indx[j]=imax;        printf("%d %.12e",i,(*fret));
     if (a[j][j] == 0.0) a[j][j]=TINY;        fprintf(ficlog,"%d %.12e",i,(*fret));
     if (j != n) {        for (j=1;j<=n;j++) {
       dum=1.0/(a[j][j]);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          printf(" x(%d)=%.12e",j,xit[j]);
     }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   }        }
   free_vector(vv,1,n);  /* Doesn't work */        for(j=1;j<=n;j++) {
 ;          printf(" p=%.12e",p[j]);
 }          fprintf(ficlog," p=%.12e",p[j]);
         }
 void lubksb(double **a, int n, int *indx, double b[])        printf("\n");
 {        fprintf(ficlog,"\n");
   int i,ii=0,ip,j;  #endif
   double sum;      } 
        if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   for (i=1;i<=n;i++) {  #ifdef DEBUG
     ip=indx[i];        int k[2],l;
     sum=b[ip];        k[0]=1;
     b[ip]=b[i];        k[1]=-1;
     if (ii)        printf("Max: %.12e",(*func)(p));
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        fprintf(ficlog,"Max: %.12e",(*func)(p));
     else if (sum) ii=i;        for (j=1;j<=n;j++) {
     b[i]=sum;          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
   for (i=n;i>=1;i--) {        }
     sum=b[i];        printf("\n");
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        fprintf(ficlog,"\n");
     b[i]=sum/a[i][i];        for(l=0;l<=1;l++) {
   }          for (j=1;j<=n;j++) {
 }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 /************ Frequencies ********************/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          }
 {  /* Some frequencies */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        }
   double ***freq; /* Frequencies */  #endif
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;        free_vector(xit,1,n); 
   char fileresp[FILENAMELENGTH];        free_vector(xits,1,n); 
          free_vector(ptt,1,n); 
   pp=vector(1,nlstate);        free_vector(pt,1,n); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        return; 
   strcpy(fileresp,"p");      } 
   strcat(fileresp,fileres);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   if((ficresp=fopen(fileresp,"w"))==NULL) {      for (j=1;j<=n;j++) { 
     printf("Problem with prevalence resultfile: %s\n", fileresp);        ptt[j]=2.0*p[j]-pt[j]; 
     exit(0);        xit[j]=p[j]-pt[j]; 
   }        pt[j]=p[j]; 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      } 
   j1=0;      fptt=(*func)(ptt); 
        if (fptt < fp) { 
   j=cptcoveff;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        if (t < 0.0) { 
            linmin(p,xit,n,fret,func); 
   for(k1=1; k1<=j;k1++){          for (j=1;j<=n;j++) { 
     for(i1=1; i1<=ncodemax[k1];i1++){            xi[j][ibig]=xi[j][n]; 
       j1++;            xi[j][n]=xit[j]; 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          }
         scanf("%d", i);*/  #ifdef DEBUG
       for (i=-1; i<=nlstate+ndeath; i++)            printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for (jk=-1; jk<=nlstate+ndeath; jk++)            fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(m=agemin; m <= agemax+3; m++)          for(j=1;j<=n;j++){
             freq[i][jk][m]=0;            printf(" %.12e",xit[j]);
                  fprintf(ficlog," %.12e",xit[j]);
       dateintsum=0;          }
       k2cpt=0;          printf("\n");
       for (i=1; i<=imx; i++) {          fprintf(ficlog,"\n");
         bool=1;  #endif
         if  (cptcovn>0) {        }
           for (z1=1; z1<=cptcoveff; z1++)      } 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    } 
               bool=0;  } 
         }  
         if (bool==1) {  /**** Prevalence limit (stable or period prevalence)  ****************/
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  {
               if(agev[m][i]==0) agev[m][i]=agemax+1;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
               if(agev[m][i]==1) agev[m][i]=agemax+2;       matrix by transitions matrix until convergence is reached */
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    int i, ii,j,k;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    double min, max, maxmin, maxmax,sumnew=0.;
               }    double **matprod2();
                  double **out, cov[NCOVMAX+1], **pmij();
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    double **newm;
                 dateintsum=dateintsum+k2;    double agefin, delaymax=50 ; /* Max number of years to converge */
                 k2cpt++;  
               }    for (ii=1;ii<=nlstate+ndeath;ii++)
             }      for (j=1;j<=nlstate+ndeath;j++){
           }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }      }
       }  
             cov[1]=1.;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       if  (cptcovn>0) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         fprintf(ficresp, "\n#********** Variable ");      newm=savm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      /* Covariates have to be included here again */
         fprintf(ficresp, "**********\n#");       cov[2]=agefin;
       }    
       for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) {
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       fprintf(ficresp, "\n");          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
              }
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         if(i==(int)agemax+3)        for (k=1; k<=cptcovprod;k++)
           printf("Total");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         else  
           printf("Age %d", i);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         for(jk=1; jk <=nlstate ; jk++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
             pp[jk] += freq[jk][m][i];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         }  
         for(jk=1; jk <=nlstate ; jk++){      savm=oldm;
           for(m=-1, pos=0; m <=0 ; m++)      oldm=newm;
             pos += freq[jk][m][i];      maxmax=0.;
           if(pp[jk]>=1.e-10)      for(j=1;j<=nlstate;j++){
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        min=1.;
           else        max=0.;
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for(i=1; i<=nlstate; i++) {
         }          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         for(jk=1; jk <=nlstate ; jk++){          prlim[i][j]= newm[i][j]/(1-sumnew);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          max=FMAX(max,prlim[i][j]);
             pp[jk] += freq[jk][m][i];          min=FMIN(min,prlim[i][j]);
         }        }
         maxmin=max-min;
         for(jk=1,pos=0; jk <=nlstate ; jk++)        maxmax=FMAX(maxmax,maxmin);
           pos += pp[jk];      }
         for(jk=1; jk <=nlstate ; jk++){      if(maxmax < ftolpl){
           if(pos>=1.e-5)        return prlim;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      }
           else    }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  }
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  /*************** transition probabilities ***************/ 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  {
             }    double s1, s2;
             else    /*double t34;*/
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    int i,j,j1, nc, ii, jj;
           }  
         }      for(i=1; i<= nlstate; i++){
                for(j=1; j<i;j++){
         for(jk=-1; jk <=nlstate+ndeath; jk++)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           for(m=-1; m <=nlstate+ndeath; m++)            /*s2 += param[i][j][nc]*cov[nc];*/
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         if(i <= (int) agemax)  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           fprintf(ficresp,"\n");          }
         printf("\n");          ps[i][j]=s2;
       }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     }        }
   }        for(j=i+1; j<=nlstate+ndeath;j++){
   dateintmean=dateintsum/k2cpt;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   fclose(ficresp);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          }
   free_vector(pp,1,nlstate);          ps[i][j]=s2;
          }
   /* End of Freq */      }
 }      /*ps[3][2]=1;*/
       
 /************ Prevalence ********************/      for(i=1; i<= nlstate; i++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        s1=0;
 {  /* Some frequencies */        for(j=1; j<i; j++){
            s1+=exp(ps[i][j]);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   double ***freq; /* Frequencies */        }
   double *pp;        for(j=i+1; j<=nlstate+ndeath; j++){
   double pos, k2;          s1+=exp(ps[i][j]);
           /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   pp=vector(1,nlstate);        }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        ps[i][i]=1./(s1+1.);
          for(j=1; j<i; j++)
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   j1=0;        for(j=i+1; j<=nlstate+ndeath; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
   j=cptcoveff;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      } /* end i */
        
   for(k1=1; k1<=j;k1++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for(i1=1; i1<=ncodemax[k1];i1++){        for(jj=1; jj<= nlstate+ndeath; jj++){
       j1++;          ps[ii][jj]=0;
                ps[ii][ii]=1;
       for (i=-1; i<=nlstate+ndeath; i++)          }
         for (jk=-1; jk<=nlstate+ndeath; jk++)        }
           for(m=agemin; m <= agemax+3; m++)      
             freq[i][jk][m]=0;  
        /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for (i=1; i<=imx; i++) {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         bool=1;  /*         printf("ddd %lf ",ps[ii][jj]); */
         if  (cptcovn>0) {  /*       } */
           for (z1=1; z1<=cptcoveff; z1++)  /*       printf("\n "); */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*        } */
               bool=0;  /*        printf("\n ");printf("%lf ",cov[2]); */
         }         /*
         if (bool==1) {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           for(m=firstpass; m<=lastpass; m++){        goto end;*/
             k2=anint[m][i]+(mint[m][i]/12.);      return ps;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  }
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;  /**************** Product of 2 matrices ******************/
               if (m<lastpass) {  
                 if (calagedate>0)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  {
                 else    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    /* in, b, out are matrice of pointers which should have been initialized 
               }       before: only the contents of out is modified. The function returns
             }       a pointer to pointers identical to out */
           }    long i, j, k;
         }    for(i=nrl; i<= nrh; i++)
       }      for(k=ncolol; k<=ncoloh; k++)
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         for(jk=1; jk <=nlstate ; jk++){          out[i][k] +=in[i][j]*b[j][k];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];    return out;
         }  }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  /************* Higher Matrix Product ***************/
         }  
          double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    /* Computes the transition matrix starting at age 'age' over 
             pp[jk] += freq[jk][m][i];       'nhstepm*hstepm*stepm' months (i.e. until
         }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
               nhstepm*hstepm matrices. 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
               (typically every 2 years instead of every month which is too big 
         for(jk=1; jk <=nlstate ; jk++){           for the memory).
           if( i <= (int) agemax){       Model is determined by parameters x and covariates have to be 
             if(pos>=1.e-5){       included manually here. 
               probs[i][jk][j1]= pp[jk]/pos;  
             }       */
           }  
         }    int i, j, d, h, k;
            double **out, cov[NCOVMAX+1];
       }    double **newm;
     }  
   }    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
        for (j=1;j<=nlstate+ndeath;j++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
 }  /* End of Freq */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
 /************* Waves Concatenation ***************/      for(d=1; d <=hstepm; d++){
         newm=savm;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        /* Covariates have to be included here again */
 {        cov[1]=1.;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
      Death is a valid wave (if date is known).        for (k=1; k<=cptcovn;k++) 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        for (k=1; k<=cptcovage;k++)
      and mw[mi+1][i]. dh depends on stepm.          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      */        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int i, mi, m;  
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   int j, k=0,jk, ju, jl;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   double sum=0.;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   jmin=1e+5;        savm=oldm;
   jmax=-1;        oldm=newm;
   jmean=0.;      }
   for(i=1; i<=imx; i++){      for(i=1; i<=nlstate+ndeath; i++)
     mi=0;        for(j=1;j<=nlstate+ndeath;j++) {
     m=firstpass;          po[i][j][h]=newm[i][j];
     while(s[m][i] <= nlstate){          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
       if(s[m][i]>=1)        }
         mw[++mi][i]=m;      /*printf("h=%d ",h);*/
       if(m >=lastpass)    } /* end h */
         break;  /*     printf("\n H=%d \n",h); */
       else    return po;
         m++;  }
     }/* end while */  
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */  /*************** log-likelihood *************/
       /* if(mi==0)  never been interviewed correctly before death */  double func( double *x)
          /* Only death is a correct wave */  {
       mw[mi][i]=m;    int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
     wav[i]=mi;    double sw; /* Sum of weights */
     if(mi==0)    double lli; /* Individual log likelihood */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    int s1, s2;
   }    double bbh, survp;
     long ipmx;
   for(i=1; i<=imx; i++){    /*extern weight */
     for(mi=1; mi<wav[i];mi++){    /* We are differentiating ll according to initial status */
       if (stepm <=0)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         dh[mi][i]=1;    /*for(i=1;i<imx;i++) 
       else{      printf(" %d\n",s[4][i]);
         if (s[mw[mi+1][i]][i] > nlstate) {    */
           if (agedc[i] < 2*AGESUP) {    cov[1]=1.;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */    for(k=1; k<=nlstate; k++) ll[k]=0.;
           k=k+1;  
           if (j >= jmax) jmax=j;    if(mle==1){
           if (j <= jmin) jmin=j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           sum=sum+j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
           }           is 6, Tvar[3=age*V3] should not been computed because of age Tvar[4=V3*V2] 
         }           has been calculated etc */
         else{        for(mi=1; mi<= wav[i]-1; mi++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          for (ii=1;ii<=nlstate+ndeath;ii++)
           k=k+1;            for (j=1;j<=nlstate+ndeath;j++){
           if (j >= jmax) jmax=j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           else if (j <= jmin)jmin=j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            }
           sum=sum+j;          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
         jk= j/stepm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         jl= j -jk*stepm;            for (kk=1; kk<=cptcovage;kk++) {
         ju= j -(jk+1)*stepm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
         if(jl <= -ju)            }
           dh[mi][i]=jk;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           dh[mi][i]=jk+1;            savm=oldm;
         if(dh[mi][i]==0)            oldm=newm;
           dh[mi][i]=1; /* At least one step */          } /* end mult */
       }        
     }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   }          /* But now since version 0.9 we anticipate for bias at large stepm.
   jmean=sum/k;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);           * (in months) between two waves is not a multiple of stepm, we rounded to 
  }           * the nearest (and in case of equal distance, to the lowest) interval but now
 /*********** Tricode ****************************/           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 void tricode(int *Tvar, int **nbcode, int imx)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 {           * probability in order to take into account the bias as a fraction of the way
   int Ndum[20],ij=1, k, j, i;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   int cptcode=0;           * -stepm/2 to stepm/2 .
   cptcoveff=0;           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   for (k=0; k<19; k++) Ndum[k]=0;           */
   for (k=1; k<=7; k++) ncodemax[k]=0;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          bbh=(double)bh[mi][i]/(double)stepm; 
     for (i=1; i<=imx; i++) {          /* bias bh is positive if real duration
       ij=(int)(covar[Tvar[j]][i]);           * is higher than the multiple of stepm and negative otherwise.
       Ndum[ij]++;           */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       if (ij > cptcode) cptcode=ij;          if( s2 > nlstate){ 
     }            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
     for (i=0; i<=cptcode; i++) {               die between last step unit time and current  step unit time, 
       if(Ndum[i]!=0) ncodemax[j]++;               which is also equal to probability to die before dh 
     }               minus probability to die before dh-stepm . 
     ij=1;               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
     for (i=1; i<=ncodemax[j]; i++) {          and not the date of a change in health state. The former idea was
       for (k=0; k<=19; k++) {          to consider that at each interview the state was recorded
         if (Ndum[k] != 0) {          (healthy, disable or death) and IMaCh was corrected; but when we
           nbcode[Tvar[j]][ij]=k;          introduced the exact date of death then we should have modified
                    the contribution of an exact death to the likelihood. This new
           ij++;          contribution is smaller and very dependent of the step unit
         }          stepm. It is no more the probability to die between last interview
         if (ij > ncodemax[j]) break;          and month of death but the probability to survive from last
       }            interview up to one month before death multiplied by the
     }          probability to die within a month. Thanks to Chris
   }            Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
  for (k=0; k<19; k++) Ndum[k]=0;          which slows down the processing. The difference can be up to 10%
           lower mortality.
  for (i=1; i<=ncovmodel-2; i++) {            */
       ij=Tvar[i];            lli=log(out[s1][s2] - savm[s1][s2]);
       Ndum[ij]++;  
     }  
           } else if  (s2==-2) {
  ij=1;            for (j=1,survp=0. ; j<=nlstate; j++) 
  for (i=1; i<=10; i++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    if((Ndum[i]!=0) && (i<=ncovcol)){            /*survp += out[s1][j]; */
      Tvaraff[ij]=i;            lli= log(survp);
      ij++;          }
    }          
  }          else if  (s2==-4) { 
              for (j=3,survp=0. ; j<=nlstate; j++)  
     cptcoveff=ij-1;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 }            lli= log(survp); 
           } 
 /*********** Health Expectancies ****************/  
           else if  (s2==-5) { 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 {            lli= log(survp); 
   /* Health expectancies */          } 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          
   double age, agelim, hf;          else{
   double ***p3mat,***varhe;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double **dnewm,**doldm;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double *xp;          } 
   double **gp, **gm;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   double ***gradg, ***trgradg;          /*if(lli ==000.0)*/
   int theta;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          sw += weight[i];
   xp=vector(1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   dnewm=matrix(1,nlstate*2,1,npar);        } /* end of wave */
   doldm=matrix(1,nlstate*2,1,nlstate*2);      } /* end of individual */
      }  else if(mle==2){
   fprintf(ficreseij,"# Health expectancies\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficreseij,"# Age");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
     for(j=1; j<=nlstate;j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficreseij,"\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if(estepm < stepm){            }
     printf ("Problem %d lower than %d\n",estepm, stepm);          for(d=0; d<=dh[mi][i]; d++){
   }            newm=savm;
   else  hstepm=estepm;              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* We compute the life expectancy from trapezoids spaced every estepm months            for (kk=1; kk<=cptcovage;kk++) {
    * This is mainly to measure the difference between two models: for example              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    * if stepm=24 months pijx are given only every 2 years and by summing them            }
    * we are calculating an estimate of the Life Expectancy assuming a linear            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    * progression inbetween and thus overestimating or underestimating according                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    * to the curvature of the survival function. If, for the same date, we            savm=oldm;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            oldm=newm;
    * to compare the new estimate of Life expectancy with the same linear          } /* end mult */
    * hypothesis. A more precise result, taking into account a more precise        
    * curvature will be obtained if estepm is as small as stepm. */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   /* For example we decided to compute the life expectancy with the smallest unit */          bbh=(double)bh[mi][i]/(double)stepm; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      nhstepm is the number of hstepm from age to agelim          ipmx +=1;
      nstepm is the number of stepm from age to agelin.          sw += weight[i];
      Look at hpijx to understand the reason of that which relies in memory size          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      and note for a fixed period like estepm months */        } /* end of wave */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      } /* end of individual */
      survival function given by stepm (the optimization length). Unfortunately it    }  else if(mle==3){  /* exponential inter-extrapolation */
      means that if the survival funtion is printed only each two years of age and if      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      results. So we changed our mind and took the option of the best precision.        for(mi=1; mi<= wav[i]-1; mi++){
   */          for (ii=1;ii<=nlstate+ndeath;ii++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   agelim=AGESUP;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }
     /* nhstepm age range expressed in number of stepm */          for(d=0; d<dh[mi][i]; d++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            newm=savm;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* if (stepm >= YEARM) hstepm=1;*/            for (kk=1; kk<=cptcovage;kk++) {
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     gp=matrix(0,nhstepm,1,nlstate*2);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gm=matrix(0,nhstepm,1,nlstate*2);            savm=oldm;
             oldm=newm;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          } /* end mult */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
     /* Computing Variances of health expectancies */          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      for(theta=1; theta <=npar; theta++){        } /* end of wave */
       for(i=1; i<=npar; i++){      } /* end of individual */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
       cptj=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<= nlstate; j++){            for (j=1;j<=nlstate+ndeath;j++){
         for(i=1; i<=nlstate; i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           cptj=cptj+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){            }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                  }
       for(i=1; i<=npar; i++)          
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                  savm=oldm;
       cptj=0;            oldm=newm;
       for(j=1; j<= nlstate; j++){          } /* end mult */
         for(i=1;i<=nlstate;i++){        
           cptj=cptj+1;          s1=s[mw[mi][i]][i];
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          s2=s[mw[mi+1][i]][i];
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          if( s2 > nlstate){ 
           }            lli=log(out[s1][s2] - savm[s1][s2]);
         }          }else{
       }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(j=1; j<= nlstate*2; j++)          }
         for(h=0; h<=nhstepm-1; h++){          ipmx +=1;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            } /* end of wave */
 /* End theta */      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      for(h=0; h<=nhstepm-1; h++)        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<=nlstate*2;j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(theta=1; theta <=npar; theta++)            for (j=1;j<=nlstate+ndeath;j++){
           trgradg[h][j][theta]=gradg[h][theta][j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
      for(i=1;i<=nlstate*2;i++)          for(d=0; d<dh[mi][i]; d++){
       for(j=1;j<=nlstate*2;j++)            newm=savm;
         varhe[i][j][(int)age] =0.;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
      printf("%d|",(int)age);fflush(stdout);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      for(h=0;h<=nhstepm-1;h++){            }
       for(k=0;k<=nhstepm-1;k++){          
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(i=1;i<=nlstate*2;i++)            savm=oldm;
           for(j=1;j<=nlstate*2;j++)            oldm=newm;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          } /* end mult */
       }        
     }          s1=s[mw[mi][i]][i];
     /* Computing expectancies */          s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(j=1; j<=nlstate;j++)          ipmx +=1;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          sw += weight[i];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                    /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        } /* end of wave */
       } /* end of individual */
         }    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     fprintf(ficreseij,"%3.0f",age );    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     cptj=0;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for(i=1; i<=nlstate;i++)    return -l;
       for(j=1; j<=nlstate;j++){  }
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  /*************** log-likelihood *************/
       }  double funcone( double *x)
     fprintf(ficreseij,"\n");  {
        /* Same as likeli but slower because of a lot of printf and if */
     free_matrix(gm,0,nhstepm,1,nlstate*2);    int i, ii, j, k, mi, d, kk;
     free_matrix(gp,0,nhstepm,1,nlstate*2);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    double **out;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    double lli; /* Individual log likelihood */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double llt;
   }    int s1, s2;
   printf("\n");    double bbh, survp;
     /*extern weight */
   free_vector(xp,1,npar);    /* We are differentiating ll according to initial status */
   free_matrix(dnewm,1,nlstate*2,1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    /*for(i=1;i<imx;i++) 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      printf(" %d\n",s[4][i]);
 }    */
     cov[1]=1.;
 /************ Variance ******************/  
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    for(k=1; k<=nlstate; k++) ll[k]=0.;
 {  
   /* Variance of health expectancies */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **newm;      for(mi=1; mi<= wav[i]-1; mi++){
   double **dnewm,**doldm;        for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, j, nhstepm, hstepm, h, nstepm ;          for (j=1;j<=nlstate+ndeath;j++){
   int k, cptcode;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *xp;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **gp, **gm;          }
   double ***gradg, ***trgradg;        for(d=0; d<dh[mi][i]; d++){
   double ***p3mat;          newm=savm;
   double age,agelim, hf;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int theta;          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          }
   fprintf(ficresvij,"# Age");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=nlstate;i++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(j=1; j<=nlstate;j++)          savm=oldm;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          oldm=newm;
   fprintf(ficresvij,"\n");        } /* end mult */
         
   xp=vector(1,npar);        s1=s[mw[mi][i]][i];
   dnewm=matrix(1,nlstate,1,npar);        s2=s[mw[mi+1][i]][i];
   doldm=matrix(1,nlstate,1,nlstate);        bbh=(double)bh[mi][i]/(double)stepm; 
          /* bias is positive if real duration
   if(estepm < stepm){         * is higher than the multiple of stepm and negative otherwise.
     printf ("Problem %d lower than %d\n",estepm, stepm);         */
   }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   else  hstepm=estepm;            lli=log(out[s1][s2] - savm[s1][s2]);
   /* For example we decided to compute the life expectancy with the smallest unit */        } else if  (s2==-2) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          for (j=1,survp=0. ; j<=nlstate; j++) 
      nhstepm is the number of hstepm from age to agelim            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      nstepm is the number of stepm from age to agelin.          lli= log(survp);
      Look at hpijx to understand the reason of that which relies in memory size        }else if (mle==1){
      and note for a fixed period like k years */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        } else if(mle==2){
      survival function given by stepm (the optimization length). Unfortunately it          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      means that if the survival funtion is printed only each two years of age and if        } else if(mle==3){  /* exponential inter-extrapolation */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      results. So we changed our mind and took the option of the best precision.        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   */          lli=log(out[s1][s2]); /* Original formula */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        } else{  /* mle=0 back to 1 */
   agelim = AGESUP;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          /*lli=log(out[s1][s2]); */ /* Original formula */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        } /* End of if */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        ipmx +=1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        sw += weight[i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     gp=matrix(0,nhstepm,1,nlstate);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     gm=matrix(0,nhstepm,1,nlstate);        if(globpr){
           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     for(theta=1; theta <=npar; theta++){   %11.6f %11.6f %11.6f ", \
       for(i=1; i<=npar; i++){ /* Computes gradient */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              llt +=ll[k]*gipmx/gsw;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
       if (popbased==1) {          fprintf(ficresilk," %10.6f\n", -llt);
         for(i=1; i<=nlstate;i++)        }
           prlim[i][i]=probs[(int)age][i][ij];      } /* end of wave */
       }    } /* end of individual */
      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(j=1; j<= nlstate; j++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(h=0; h<=nhstepm; h++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    if(globpr==0){ /* First time we count the contributions and weights */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      gipmx=ipmx;
         }      gsw=sw;
       }    }
        return -l;
       for(i=1; i<=npar; i++) /* Computes gradient */  }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /*************** function likelione ***********/
    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       if (popbased==1) {  {
         for(i=1; i<=nlstate;i++)    /* This routine should help understanding what is done with 
           prlim[i][i]=probs[(int)age][i][ij];       the selection of individuals/waves and
       }       to check the exact contribution to the likelihood.
        Plotting could be done.
       for(j=1; j<= nlstate; j++){     */
         for(h=0; h<=nhstepm; h++){    int k;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    if(*globpri !=0){ /* Just counts and sums, no printings */
         }      strcpy(fileresilk,"ilk"); 
       }      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for(j=1; j<= nlstate; j++)        printf("Problem with resultfile: %s\n", fileresilk);
         for(h=0; h<=nhstepm; h++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      }
         }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     } /* End theta */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     for(h=0; h<=nhstepm; h++)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       for(j=1; j<=nlstate;j++)    }
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    *fretone=(*funcone)(p);
     if(*globpri !=0){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      fclose(ficresilk);
     for(i=1;i<=nlstate;i++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       for(j=1;j<=nlstate;j++)      fflush(fichtm); 
         vareij[i][j][(int)age] =0.;    } 
     return;
     for(h=0;h<=nhstepm;h++){  }
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  /*********** Maximum Likelihood Estimation ***************/
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  {
       }    int i,j, iter;
     }    double **xi;
     double fret;
     fprintf(ficresvij,"%.0f ",age );    double fretone; /* Only one call to likelihood */
     for(i=1; i<=nlstate;i++)    /*  char filerespow[FILENAMELENGTH];*/
       for(j=1; j<=nlstate;j++){    xi=matrix(1,npar,1,npar);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
     fprintf(ficresvij,"\n");        xi[i][j]=(i==j ? 1.0 : 0.0);
     free_matrix(gp,0,nhstepm,1,nlstate);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     free_matrix(gm,0,nhstepm,1,nlstate);    strcpy(filerespow,"pow"); 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    strcat(filerespow,fileres);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with resultfile: %s\n", filerespow);
   } /* End age */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      }
   free_vector(xp,1,npar);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   free_matrix(doldm,1,nlstate,1,npar);    for (i=1;i<=nlstate;i++)
   free_matrix(dnewm,1,nlstate,1,nlstate);      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 }    fprintf(ficrespow,"\n");
   
 /************ Variance of prevlim ******************/    powell(p,xi,npar,ftol,&iter,&fret,func);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    free_matrix(xi,1,npar,1,npar);
   /* Variance of prevalence limit */    fclose(ficrespow);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   double **newm;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double **dnewm,**doldm;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int i, j, nhstepm, hstepm;  
   int k, cptcode;  }
   double *xp;  
   double *gp, *gm;  /**** Computes Hessian and covariance matrix ***/
   double **gradg, **trgradg;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double age,agelim;  {
   int theta;    double  **a,**y,*x,pd;
        double **hess;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    int i, j,jk;
   fprintf(ficresvpl,"# Age");    int *indx;
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   fprintf(ficresvpl,"\n");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
   xp=vector(1,npar);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   dnewm=matrix(1,nlstate,1,npar);    double gompertz(double p[]);
   doldm=matrix(1,nlstate,1,nlstate);    hess=matrix(1,npar,1,npar);
    
   hstepm=1*YEARM; /* Every year of age */    printf("\nCalculation of the hessian matrix. Wait...\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   agelim = AGESUP;    for (i=1;i<=npar;i++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("%d",i);fflush(stdout);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"%d",i);fflush(ficlog);
     if (stepm >= YEARM) hstepm=1;     
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     gradg=matrix(1,npar,1,nlstate);      
     gp=vector(1,nlstate);      /*  printf(" %f ",p[i]);
     gm=vector(1,nlstate);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
     for(theta=1; theta <=npar; theta++){    
       for(i=1; i<=npar; i++){ /* Computes gradient */    for (i=1;i<=npar;i++) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (j=1;j<=npar;j++)  {
       }        if (j>i) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          printf(".%d%d",i,j);fflush(stdout);
       for(i=1;i<=nlstate;i++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         gp[i] = prlim[i][i];          hess[i][j]=hessij(p,delti,i,j,func,npar);
              
       for(i=1; i<=npar; i++) /* Computes gradient */          hess[j][i]=hess[i][j];    
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          /*printf(" %lf ",hess[i][j]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
       for(i=1;i<=nlstate;i++)      }
         gm[i] = prlim[i][i];    }
     printf("\n");
       for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\n");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     trgradg =matrix(1,nlstate,1,npar);    
     a=matrix(1,npar,1,npar);
     for(j=1; j<=nlstate;j++)    y=matrix(1,npar,1,npar);
       for(theta=1; theta <=npar; theta++)    x=vector(1,npar);
         trgradg[j][theta]=gradg[theta][j];    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
     for(i=1;i<=nlstate;i++)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       varpl[i][(int)age] =0.;    ludcmp(a,npar,indx,&pd);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    for (j=1;j<=npar;j++) {
     for(i=1;i<=nlstate;i++)      for (i=1;i<=npar;i++) x[i]=0;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      x[j]=1;
       lubksb(a,npar,indx,x);
     fprintf(ficresvpl,"%.0f ",age );      for (i=1;i<=npar;i++){ 
     for(i=1; i<=nlstate;i++)        matcov[i][j]=x[i];
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      }
     fprintf(ficresvpl,"\n");    }
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);    printf("\n#Hessian matrix#\n");
     free_matrix(gradg,1,npar,1,nlstate);    fprintf(ficlog,"\n#Hessian matrix#\n");
     free_matrix(trgradg,1,nlstate,1,npar);    for (i=1;i<=npar;i++) { 
   } /* End age */      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
   free_vector(xp,1,npar);        fprintf(ficlog,"%.3e ",hess[i][j]);
   free_matrix(doldm,1,nlstate,1,npar);      }
   free_matrix(dnewm,1,nlstate,1,nlstate);      printf("\n");
       fprintf(ficlog,"\n");
 }    }
   
 /************ Variance of one-step probabilities  ******************/    /* Recompute Inverse */
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    for (i=1;i<=npar;i++)
 {      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   int i, j,  i1, k1, l1;    ludcmp(a,npar,indx,&pd);
   int k2, l2, j1,  z1;  
   int k=0,l, cptcode;    /*  printf("\n#Hessian matrix recomputed#\n");
   int first=1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    for (j=1;j<=npar;j++) {
   double **dnewm,**doldm;      for (i=1;i<=npar;i++) x[i]=0;
   double *xp;      x[j]=1;
   double *gp, *gm;      lubksb(a,npar,indx,x);
   double **gradg, **trgradg;      for (i=1;i<=npar;i++){ 
   double **mu;        y[i][j]=x[i];
   double age,agelim, cov[NCOVMAX];        printf("%.3e ",y[i][j]);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        fprintf(ficlog,"%.3e ",y[i][j]);
   int theta;      }
   char fileresprob[FILENAMELENGTH];      printf("\n");
   char fileresprobcov[FILENAMELENGTH];      fprintf(ficlog,"\n");
   char fileresprobcor[FILENAMELENGTH];    }
     */
   double ***varpij;  
     free_matrix(a,1,npar,1,npar);
   strcpy(fileresprob,"prob");    free_matrix(y,1,npar,1,npar);
   strcat(fileresprob,fileres);    free_vector(x,1,npar);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    free_ivector(indx,1,npar);
     printf("Problem with resultfile: %s\n", fileresprob);    free_matrix(hess,1,npar,1,npar);
   }  
   strcpy(fileresprobcov,"probcov");  
   strcat(fileresprobcov,fileres);  }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcov);  /*************** hessian matrix ****************/
   }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   strcpy(fileresprobcor,"probcor");  {
   strcat(fileresprobcor,fileres);    int i;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    int l=1, lmax=20;
     printf("Problem with resultfile: %s\n", fileresprobcor);    double k1,k2;
   }    double p2[MAXPARM+1]; /* identical to x */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double res;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    double fx;
      int k=0,kmax=10;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    double l1;
   fprintf(ficresprob,"# Age");  
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    fx=func(x);
   fprintf(ficresprobcov,"# Age");    for (i=1;i<=npar;i++) p2[i]=x[i];
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    for(l=0 ; l <=lmax; l++){
   fprintf(ficresprobcov,"# Age");      l1=pow(10,l);
       delts=delt;
       for(k=1 ; k <kmax; k=k+1){
   for(i=1; i<=nlstate;i++)        delt = delta*(l1*k);
     for(j=1; j<=(nlstate+ndeath);j++){        p2[theta]=x[theta] +delt;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        k1=func(p2)-fx;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        p2[theta]=x[theta]-delt;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        k2=func(p2)-fx;
     }          /*res= (k1-2.0*fx+k2)/delt/delt; */
   fprintf(ficresprob,"\n");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   fprintf(ficresprobcov,"\n");        
   fprintf(ficresprobcor,"\n");  #ifdef DEBUGHESS
   xp=vector(1,npar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  #endif
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   first=1;          k=kmax;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     exit(0);          k=kmax; l=lmax*10.;
   }        }
   else{        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     fprintf(ficgp,"\n# Routine varprob");          delts=delt;
   }        }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      }
     printf("Problem with html file: %s\n", optionfilehtm);    }
     exit(0);    delti[theta]=delts;
   }    return res; 
   else{    
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");  }
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
   }    int i;
   cov[1]=1;    int l=1, l1, lmax=20;
   j=cptcoveff;    double k1,k2,k3,k4,res,fx;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double p2[MAXPARM+1];
   j1=0;    int k;
   for(k1=1; k1<=1;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    fx=func(x);
     j1++;    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
     if  (cptcovn>0) {      p2[thetai]=x[thetai]+delti[thetai]/k;
       fprintf(ficresprob, "\n#********** Variable ");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       fprintf(ficresprobcov, "\n#********** Variable ");      k1=func(p2)-fx;
       fprintf(ficgp, "\n#********** Variable ");    
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");      p2[thetai]=x[thetai]+delti[thetai]/k;
       fprintf(ficresprobcor, "\n#********** Variable ");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      k2=func(p2)-fx;
       fprintf(ficresprob, "**********\n#");    
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      p2[thetai]=x[thetai]-delti[thetai]/k;
       fprintf(ficresprobcov, "**********\n#");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      k3=func(p2)-fx;
       fprintf(ficgp, "**********\n#");    
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      p2[thetai]=x[thetai]-delti[thetai]/k;
       fprintf(ficgp, "**********\n#");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      k4=func(p2)-fx;
       fprintf(fichtm, "**********\n#");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     }  #ifdef DEBUG
          printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for (age=bage; age<=fage; age ++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         cov[2]=age;  #endif
         for (k=1; k<=cptcovn;k++) {    }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    return res;
         }  }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)  /************** Inverse of matrix **************/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void ludcmp(double **a, int n, int *indx, double *d) 
          { 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    int i,imax,j,k; 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    double big,dum,sum,temp; 
         gp=vector(1,(nlstate)*(nlstate+ndeath));    double *vv; 
         gm=vector(1,(nlstate)*(nlstate+ndeath));   
        vv=vector(1,n); 
         for(theta=1; theta <=npar; theta++){    *d=1.0; 
           for(i=1; i<=npar; i++)    for (i=1;i<=n;i++) { 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      big=0.0; 
                for (j=1;j<=n;j++) 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        if ((temp=fabs(a[i][j])) > big) big=temp; 
                if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           k=0;      vv[i]=1.0/big; 
           for(i=1; i<= (nlstate); i++){    } 
             for(j=1; j<=(nlstate+ndeath);j++){    for (j=1;j<=n;j++) { 
               k=k+1;      for (i=1;i<j;i++) { 
               gp[k]=pmmij[i][j];        sum=a[i][j]; 
             }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           }        a[i][j]=sum; 
                } 
           for(i=1; i<=npar; i++)      big=0.0; 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=j;i<=n;i++) { 
            sum=a[i][j]; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        for (k=1;k<j;k++) 
           k=0;          sum -= a[i][k]*a[k][j]; 
           for(i=1; i<=(nlstate); i++){        a[i][j]=sum; 
             for(j=1; j<=(nlstate+ndeath);j++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
               k=k+1;          big=dum; 
               gm[k]=pmmij[i][j];          imax=i; 
             }        } 
           }      } 
            if (j != imax) { 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        for (k=1;k<=n;k++) { 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            dum=a[imax][k]; 
         }          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        } 
           for(theta=1; theta <=npar; theta++)        *d = -(*d); 
             trgradg[j][theta]=gradg[theta][j];        vv[imax]=vv[j]; 
              } 
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      indx[j]=imax; 
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      if (a[j][j] == 0.0) a[j][j]=TINY; 
              if (j != n) { 
         pmij(pmmij,cov,ncovmodel,x,nlstate);        dum=1.0/(a[j][j]); 
                for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         k=0;      } 
         for(i=1; i<=(nlstate); i++){    } 
           for(j=1; j<=(nlstate+ndeath);j++){    free_vector(vv,1,n);  /* Doesn't work */
             k=k+1;  ;
             mu[k][(int) age]=pmmij[i][j];  } 
           }  
         }  void lubksb(double **a, int n, int *indx, double b[]) 
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  { 
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    int i,ii=0,ip,j; 
             varpij[i][j][(int)age] = doldm[i][j];    double sum; 
    
         /*printf("\n%d ",(int)age);    for (i=1;i<=n;i++) { 
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      ip=indx[i]; 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      sum=b[ip]; 
      }*/      b[ip]=b[i]; 
       if (ii) 
         fprintf(ficresprob,"\n%d ",(int)age);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficresprobcov,"\n%d ",(int)age);      else if (sum) ii=i; 
         fprintf(ficresprobcor,"\n%d ",(int)age);      b[i]=sum; 
     } 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    for (i=n;i>=1;i--) { 
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      sum=b[i]; 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      b[i]=sum/a[i][i]; 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    } 
         }  } 
         i=0;  
         for (k=1; k<=(nlstate);k++){  void pstamp(FILE *fichier)
           for (l=1; l<=(nlstate+ndeath);l++){  {
             i=i++;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){  /************ Frequencies ********************/
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  {  /* Some frequencies */
             }    
           }    int i, m, jk, k1,i1, j1, bool, z1,j;
         }/* end of loop for state */    int first;
       } /* end of loop for age */    double ***freq; /* Frequencies */
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    double *pp, **prop;
       for (k1=1; k1<=(nlstate);k1++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for (l1=1; l1<=(nlstate+ndeath);l1++){    char fileresp[FILENAMELENGTH];
           if(l1==k1) continue;    
           i=(k1-1)*(nlstate+ndeath)+l1;    pp=vector(1,nlstate);
           for (k2=1; k2<=(nlstate);k2++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
             for (l2=1; l2<=(nlstate+ndeath);l2++){    strcpy(fileresp,"p");
               if(l2==k2) continue;    strcat(fileresp,fileres);
               j=(k2-1)*(nlstate+ndeath)+l2;    if((ficresp=fopen(fileresp,"w"))==NULL) {
               if(j<=i) continue;      printf("Problem with prevalence resultfile: %s\n", fileresp);
               for (age=bage; age<=fage; age ++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                 if ((int)age %5==0){      exit(0);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    j1=0;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    
                   mu2=mu[j][(int) age]/stepm*YEARM;    j=cptcoveff;
                   /* Computing eigen value of matrix of covariance */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));  
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    first=1;
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);  
                   /* Eigen vectors */    for(k1=1; k1<=j;k1++){
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));      for(i1=1; i1<=ncodemax[k1];i1++){
                   v21=sqrt(1.-v11*v11);        j1++;
                   v12=-v21;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                   v22=v11;          scanf("%d", i);*/
                   /*printf(fignu*/        for (i=-5; i<=nlstate+ndeath; i++)  
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */            for(m=iagemin; m <= iagemax+3; m++)
                   if(first==1){              freq[i][jk][m]=0;
                     first=0;  
                     fprintf(ficgp,"\nset parametric;set nolabel");      for (i=1; i<=nlstate; i++)  
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);        for(m=iagemin; m <= iagemax+3; m++)
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          prop[i][m]=0;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);        
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);        dateintsum=0;
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);        k2cpt=0;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);        for (i=1; i<=imx; i++) {
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          bool=1;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          if  (cptcovn>0) {
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            for (z1=1; z1<=cptcoveff; z1++) 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                   }else{                bool=0;
                     first=0;          }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          if (bool==1){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            for(m=firstpass; m<=lastpass; m++){
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\              k2=anint[m][i]+(mint[m][i]/12.);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   }/* if first */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 } /* age mod 5 */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               } /* end loop age */                if (m<lastpass) {
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
               first=1;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
             } /*l12 */                }
           } /* k12 */                
         } /*l1 */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       }/* k1 */                  dateintsum=dateintsum+k2;
     } /* loop covariates */                  k2cpt++;
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                /*}*/
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);          }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);         
   }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   free_vector(xp,1,npar);        pstamp(ficresp);
   fclose(ficresprob);        if  (cptcovn>0) {
   fclose(ficresprobcov);          fprintf(ficresp, "\n#********** Variable "); 
   fclose(ficresprobcor);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fclose(ficgp);          fprintf(ficresp, "**********\n#");
   fclose(fichtm);        }
 }        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
 /******************* Printing html file ***********/        
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        for(i=iagemin; i <= iagemax+3; i++){
                   int lastpass, int stepm, int weightopt, char model[],\          if(i==iagemax+3){
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\            fprintf(ficlog,"Total");
                   int popforecast, int estepm ,\          }else{
                   double jprev1, double mprev1,double anprev1, \            if(first==1){
                   double jprev2, double mprev2,double anprev2){              first=0;
   int jj1, k1, i1, cpt;              printf("See log file for details...\n");
   /*char optionfilehtm[FILENAMELENGTH];*/            }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            fprintf(ficlog,"Age %d", i);
     printf("Problem with %s \n",optionfilehtm), exit(0);          }
   }          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n              pp[jk] += freq[jk][m][i]; 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n          for(jk=1; jk <=nlstate ; jk++){
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n            for(m=-1, pos=0; m <=0 ; m++)
  - Life expectancies by age and initial health status (estepm=%2d months):              pos += freq[jk][m][i];
    <a href=\"e%s\">e%s</a> <br>\n</li>", \            if(pp[jk]>=1.e-10){
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);              if(first==1){
                 printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n              }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            }else{
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n              if(first==1)
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n            }
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          }
   
  if(popforecast==1) fprintf(fichtm,"\n          for(jk=1; jk <=nlstate ; jk++){
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              pp[jk] += freq[jk][m][i];
         <br>",fileres,fileres,fileres,fileres);          }       
  else          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            pos += pp[jk];
 fprintf(fichtm," <li>Graphs</li><p>");            posprop += prop[jk][i];
           }
  m=cptcoveff;          for(jk=1; jk <=nlstate ; jk++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            if(pos>=1.e-5){
               if(first==1)
  jj1=0;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
  for(k1=1; k1<=m;k1++){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    for(i1=1; i1<=ncodemax[k1];i1++){            }else{
      jj1++;              if(first==1)
      if (cptcovn > 0) {                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
        for (cpt=1; cpt<=cptcoveff;cpt++)            }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            if( i <= iagemax){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              if(pos>=1.e-5){
      }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
      /* Pij */                /*probs[i][jk][j1]= pp[jk]/pos;*/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  }
      /* Quasi-incidences */              else
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            }
        /* Stable prevalence in each health state */          }
        for(cpt=1; cpt<nlstate;cpt++){          
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          for(jk=-1; jk <=nlstate+ndeath; jk++)
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            for(m=-1; m <=nlstate+ndeath; m++)
        }              if(freq[jk][m][i] !=0 ) {
     for(cpt=1; cpt<=nlstate;cpt++) {              if(first==1)
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 interval) in state (%d): v%s%d%d.png <br>                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                }
      }          if(i <= iagemax)
      for(cpt=1; cpt<=nlstate;cpt++) {            fprintf(ficresp,"\n");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          if(first==1)
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            printf("Others in log...\n");
      }          fprintf(ficlog,"\n");
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        }
 health expectancies in states (1) and (2): e%s%d.png<br>      }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    }
    }    dateintmean=dateintsum/k2cpt; 
  }   
 fclose(fichtm);    fclose(ficresp);
 }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
 /******************* Gnuplot file **************/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    /* End of Freq */
   }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;  /************ Prevalence ********************/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     printf("Problem with file %s",optionfilegnuplot);  {  
   }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
 #ifdef windows       We still use firstpass and lastpass as another selection.
     fprintf(ficgp,"cd \"%s\" \n",pathc);    */
 #endif   
 m=pow(2,cptcoveff);    int i, m, jk, k1, i1, j1, bool, z1,j;
      double ***freq; /* Frequencies */
  /* 1eme*/    double *pp, **prop;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    double pos,posprop; 
    for (k1=1; k1<= m ; k1 ++) {    double  y2; /* in fractional years */
     int iagemin, iagemax;
 #ifdef windows  
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    iagemin= (int) agemin;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    iagemax= (int) agemax;
 #endif    /*pp=vector(1,nlstate);*/
 #ifdef unix    prop=matrix(1,nlstate,iagemin,iagemax+3); 
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    j1=0;
 #endif    
     j=cptcoveff;
 for (i=1; i<= nlstate ; i ++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(k1=1; k1<=j;k1++){
 }      for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        j1++;
     for (i=1; i<= nlstate ; i ++) {        
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for (i=1; i<=nlstate; i++)  
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(m=iagemin; m <= iagemax+3; m++)
 }            prop[i][m]=0.0;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);       
      for (i=1; i<= nlstate ; i ++) {        for (i=1; i<=imx; i++) { /* Each individual */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          bool=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if  (cptcovn>0) {
 }              for (z1=1; z1<=cptcoveff; z1++) 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 #ifdef unix                bool=0;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          } 
 #endif          if (bool==1) { 
    }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   /*2 eme*/              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   for (k1=1; k1<= m ; k1 ++) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                      /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     for (i=1; i<= nlstate+1 ; i ++) {                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       k=2*i;                  prop[s[m][i]][iagemax+3] += weight[i]; 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                } 
       for (j=1; j<= nlstate+1 ; j ++) {              }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            } /* end selection of waves */
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }          }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        for(i=iagemin; i <= iagemax+3; i++){  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       for (j=1; j<= nlstate+1 ; j ++) {            posprop += prop[jk][i]; 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          } 
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }            for(jk=1; jk <=nlstate ; jk++){     
       fprintf(ficgp,"\" t\"\" w l 0,");            if( i <=  iagemax){ 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              if(posprop>=1.e-5){ 
       for (j=1; j<= nlstate+1 ; j ++) {                probs[i][jk][j1]= prop[jk][i]/posprop;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              } else
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
 }              } 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          }/* end jk */ 
       else fprintf(ficgp,"\" t\"\" w l 0,");        }/* end i */ 
     }      } /* end i1 */
   }    } /* end k1 */
      
   /*3eme*/    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
   for (k1=1; k1<= m ; k1 ++) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     for (cpt=1; cpt<= nlstate ; cpt ++) {  }  /* End of prevalence */
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  /************* Waves Concatenation ***************/
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       Death is a valid wave (if date is known).
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
 */       */
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       }       double sum=0., jmean=0.;*/
     }    int first;
   }    int j, k=0,jk, ju, jl;
      double sum=0.;
   /* CV preval stat */    first=0;
     for (k1=1; k1<= m ; k1 ++) {    jmin=1e+5;
     for (cpt=1; cpt<nlstate ; cpt ++) {    jmax=-1;
       k=3;    jmean=0.;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    for(i=1; i<=imx; i++){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      mi=0;
       m=firstpass;
       for (i=1; i< nlstate ; i ++)      while(s[m][i] <= nlstate){
         fprintf(ficgp,"+$%d",k+i+1);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          mw[++mi][i]=m;
              if(m >=lastpass)
       l=3+(nlstate+ndeath)*cpt;          break;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        else
       for (i=1; i< nlstate ; i ++) {          m++;
         l=3+(nlstate+ndeath)*cpt;      }/* end while */
         fprintf(ficgp,"+$%d",l+i+1);      if (s[m][i] > nlstate){
       }        mi++;     /* Death is another wave */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          /* if(mi==0)  never been interviewed correctly before death */
     }           /* Only death is a correct wave */
   }          mw[mi][i]=m;
        }
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){      wav[i]=mi;
     for(k=1; k <=(nlstate+ndeath); k++){      if(mi==0){
       if (k != i) {        nbwarn++;
         for(j=1; j <=ncovmodel; j++){        if(first==0){
                  printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          first=1;
           jk++;        }
           fprintf(ficgp,"\n");        if(first==1){
         }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       }        }
     }      } /* end mi==0 */
    }    } /* End individuals */
   
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    for(i=1; i<=imx; i++){
      for(jk=1; jk <=m; jk++) {      for(mi=1; mi<wav[i];mi++){
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        if (stepm <=0)
        if (ng==2)          dh[mi][i]=1;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        else{
        else          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
          fprintf(ficgp,"\nset title \"Probability\"\n");            if (agedc[i] < 2*AGESUP) {
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
        i=1;              if(j==0) j=1;  /* Survives at least one month after exam */
        for(k2=1; k2<=nlstate; k2++) {              else if(j<0){
          k3=i;                nberr++;
          for(k=1; k<=(nlstate+ndeath); k++) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
            if (k != k2){                j=1; /* Temporary Dangerous patch */
              if(ng==2)                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              else                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              }
              ij=1;              k=k+1;
              for(j=3; j <=ncovmodel; j++) {              if (j >= jmax){
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                jmax=j;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                ijmax=i;
                  ij++;              }
                }              if (j <= jmin){
                else                jmin=j;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                ijmin=i;
              }              }
              fprintf(ficgp,")/(1");              sum=sum+j;
                            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
              for(k1=1; k1 <=nlstate; k1++){                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            }
                ij=1;          }
                for(j=3; j <=ncovmodel; j++){          else{
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
                    ij++;  
                  }            k=k+1;
                  else            if (j >= jmax) {
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              jmax=j;
                }              ijmax=i;
                fprintf(ficgp,")");            }
              }            else if (j <= jmin){
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);              jmin=j;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              ijmin=i;
              i=i+ncovmodel;            }
            }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
          }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
        }            if(j<0){
      }              nberr++;
    }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    fclose(ficgp);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }  /* end gnuplot */            }
             sum=sum+j;
           }
 /*************** Moving average **************/          jk= j/stepm;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
   int i, cpt, cptcod;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            if(jl==0){
       for (i=1; i<=nlstate;i++)              dh[mi][i]=jk;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              bh[mi][i]=0;
           mobaverage[(int)agedeb][i][cptcod]=0.;            }else{ /* We want a negative bias in order to only have interpolation ie
                        * to avoid the price of an extra matrix product in likelihood */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){              dh[mi][i]=jk+1;
       for (i=1; i<=nlstate;i++){              bh[mi][i]=ju;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            }
           for (cpt=0;cpt<=4;cpt++){          }else{
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            if(jl <= -ju){
           }              dh[mi][i]=jk;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;              bh[mi][i]=jl;       /* bias is positive if real duration
         }                                   * is higher than the multiple of stepm and negative otherwise.
       }                                   */
     }            }
                else{
 }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
 /************** Forecasting ******************/            if(dh[mi][i]==0){
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){              dh[mi][i]=1; /* At least one step */
                bh[mi][i]=ju; /* At least one step */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   int *popage;            }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          } /* end if mle */
   double *popeffectif,*popcount;        }
   double ***p3mat;      } /* end wave */
   char fileresf[FILENAMELENGTH];    }
     jmean=sum/k;
  agelim=AGESUP;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
    /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx)
   strcpy(fileresf,"f");  {
   strcat(fileresf,fileres);    /* Uses cptcovn+2*cptcovprod as the number of covariates */
   if((ficresf=fopen(fileresf,"w"))==NULL) {    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
     printf("Problem with forecast resultfile: %s\n", fileresf);  
   }    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    int modmaxcovj=0; /* Modality max of covariates j */
     cptcoveff=0; 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
   if (mobilav==1) {    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
   }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
                                  modality of this covariate Vj*/ 
   stepsize=(int) (stepm+YEARM-1)/YEARM;        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
   if (stepm<=12) stepsize=1;                                        modality of the nth covariate of individual i. */
          Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   agelim=AGESUP;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
          if (ij > modmaxcovj) modmaxcovj=ij; 
   hstepm=1;        /* getting the maximum value of the modality of the covariate
   hstepm=hstepm/stepm;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   yp1=modf(dateintmean,&yp);           female is 1, then modmaxcovj=1.*/
   anprojmean=yp;      }
   yp2=modf((yp1*12),&yp);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   mprojmean=yp;      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
   yp1=modf((yp2*30.5),&yp);        if( Ndum[i] != 0 )
   jprojmean=yp;          ncodemax[j]++; 
   if(jprojmean==0) jprojmean=1;        /* Number of modalities of the j th covariate. In fact
   if(mprojmean==0) jprojmean=1;           ncodemax[j]=2 (dichotom. variables only) but it could be more for
             historical reasons */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      } /* Ndum[-1] number of undefined modalities */
    
   for(cptcov=1;cptcov<=i2;cptcov++){      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      ij=1; 
       k=k+1;      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
       fprintf(ficresf,"\n#******");        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
       for(j=1;j<=cptcoveff;j++) {          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
       }                                       k is a modality. If we have model=V1+V1*sex 
       fprintf(ficresf,"******\n");                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       fprintf(ficresf,"# StartingAge FinalAge");            ij++;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          }
                if (ij > ncodemax[j]) break; 
              }  /* end of loop on */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      } /* end of loop on modality */ 
         fprintf(ficresf,"\n");    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      
     for (k=0; k< maxncov; k++) Ndum[k]=0;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
           nhstepm = nhstepm/hstepm;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
               ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     Ndum[ij]++;
           oldm=oldms;savm=savms;   }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           ij=1;
           for (h=0; h<=nhstepm; h++){   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
             if (h==(int) (calagedate+YEARM*cpt)) {     if((Ndum[i]!=0) && (i<=ncovcol)){
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);       Tvaraff[ij]=i; /*For printing */
             }       ij++;
             for(j=1; j<=nlstate+ndeath;j++) {     }
               kk1=0.;kk2=0;   }
               for(i=1; i<=nlstate;i++) {                 ij--;
                 if (mobilav==1)   cptcoveff=ij; /*Number of simple covariates*/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  }
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  /*********** Health Expectancies ****************/
                 }  
                  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
               }  
               if (h==(int)(calagedate+12*cpt)){  {
                 fprintf(ficresf," %.3f", kk1);    /* Health expectancies, no variances */
                            int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
               }    int nhstepma, nstepma; /* Decreasing with age */
             }    double age, agelim, hf;
           }    double ***p3mat;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double eip;
         }  
       }    pstamp(ficreseij);
     }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   }    fprintf(ficreseij,"# Age");
            for(i=1; i<=nlstate;i++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
   fclose(ficresf);      }
 }      fprintf(ficreseij," e%1d. ",i);
 /************** Forecasting ******************/    }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    fprintf(ficreseij,"\n");
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    
   int *popage;    if(estepm < stepm){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      printf ("Problem %d lower than %d\n",estepm, stepm);
   double *popeffectif,*popcount;    }
   double ***p3mat,***tabpop,***tabpopprev;    else  hstepm=estepm;   
   char filerespop[FILENAMELENGTH];    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * if stepm=24 months pijx are given only every 2 years and by summing them
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   agelim=AGESUP;     * progression in between and thus overestimating or underestimating according
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;     * to the curvature of the survival function. If, for the same date, we 
       * estimate the model with stepm=1 month, we can keep estepm to 24 months
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);    /* For example we decided to compute the life expectancy with the smallest unit */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     printf("Problem with forecast resultfile: %s\n", filerespop);       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
   printf("Computing forecasting: result on file '%s' \n", filerespop);       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   if (mobilav==1) {       means that if the survival funtion is printed only each two years of age and if
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     movingaverage(agedeb, fage, ageminpar, mobaverage);       results. So we changed our mind and took the option of the best precision.
   }    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    agelim=AGESUP;
      /* If stepm=6 months */
   agelim=AGESUP;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   hstepm=1;      
   hstepm=hstepm/stepm;  /* nhstepm age range expressed in number of stepm */
      nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   if (popforecast==1) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     if((ficpop=fopen(popfile,"r"))==NULL) {    /* if (stepm >= YEARM) hstepm=1;*/
       printf("Problem with population file : %s\n",popfile);exit(0);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);    for (age=bage; age<=fage; age ++){ 
     popcount=vector(0,AGESUP);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
          /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     i=1;        /* if (stepm >= YEARM) hstepm=1;*/
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
      
     imx=i;      /* If stepm=6 months */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
   for(cptcov=1;cptcov<=i2;cptcov++){      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      
       k=k+1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficrespop,"\n#******");      
       for(j=1;j<=cptcoveff;j++) {      printf("%d|",(int)age);fflush(stdout);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       }      
       fprintf(ficrespop,"******\n");      /* Computing expectancies */
       fprintf(ficrespop,"# Age");      for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        for(j=1; j<=nlstate;j++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       for (cpt=0; cpt<=0;cpt++) {            
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;      fprintf(ficreseij,"%3.0f",age );
                for(i=1; i<=nlstate;i++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        eip=0;
           oldm=oldms;savm=savms;        for(j=1; j<=nlstate;j++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            eip +=eij[i][j][(int)age];
                  fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedate+YEARM*cpt)) {        fprintf(ficreseij,"%9.4f", eip );
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      }
             }      fprintf(ficreseij,"\n");
             for(j=1; j<=nlstate+ndeath;j++) {      
               kk1=0.;kk2=0;    }
               for(i=1; i<=nlstate;i++) {                  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 if (mobilav==1)    printf("\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficlog,"\n");
                 else {    
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  }
                 }  
               }  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  {
                   /*fprintf(ficrespop," %.3f", kk1);    /* Covariances of health expectancies eij and of total life expectancies according
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/     to initial status i, ei. .
               }    */
             }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
             for(i=1; i<=nlstate;i++){    int nhstepma, nstepma; /* Decreasing with age */
               kk1=0.;    double age, agelim, hf;
                 for(j=1; j<=nlstate;j++){    double ***p3matp, ***p3matm, ***varhe;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    double **dnewm,**doldm;
                 }    double *xp, *xm;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    double **gp, **gm;
             }    double ***gradg, ***trgradg;
     int theta;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    double eip, vip;
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         }    xp=vector(1,npar);
       }    xm=vector(1,npar);
      dnewm=matrix(1,nlstate*nlstate,1,npar);
   /******/    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    pstamp(ficresstdeij);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficresstdeij,"# Age");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    for(i=1; i<=nlstate;i++){
           nhstepm = nhstepm/hstepm;      for(j=1; j<=nlstate;j++)
                  fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresstdeij," e%1d. ",i);
           oldm=oldms;savm=savms;    }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresstdeij,"\n");
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    pstamp(ficrescveij);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
             }    fprintf(ficrescveij,"# Age");
             for(j=1; j<=nlstate+ndeath;j++) {    for(i=1; i<=nlstate;i++)
               kk1=0.;kk2=0;      for(j=1; j<=nlstate;j++){
               for(i=1; i<=nlstate;i++) {                      cptj= (j-1)*nlstate+i;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            for(i2=1; i2<=nlstate;i2++)
               }          for(j2=1; j2<=nlstate;j2++){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            cptj2= (j2-1)*nlstate+i2;
             }            if(cptj2 <= cptj)
           }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
         }      }
       }    fprintf(ficrescveij,"\n");
    }    
   }    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
     else  hstepm=estepm;   
   if (popforecast==1) {    /* We compute the life expectancy from trapezoids spaced every estepm months
     free_ivector(popage,0,AGESUP);     * This is mainly to measure the difference between two models: for example
     free_vector(popeffectif,0,AGESUP);     * if stepm=24 months pijx are given only every 2 years and by summing them
     free_vector(popcount,0,AGESUP);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   }     * progression in between and thus overestimating or underestimating according
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * to the curvature of the survival function. If, for the same date, we 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   fclose(ficrespop);     * to compare the new estimate of Life expectancy with the same linear 
 }     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
 /***********************************************/  
 /**************** Main Program *****************/    /* For example we decided to compute the life expectancy with the smallest unit */
 /***********************************************/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
 int main(int argc, char *argv[])       nstepm is the number of stepm from age to agelin. 
 {       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double agedeb, agefin,hf;       survival function given by stepm (the optimization length). Unfortunately it
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   double fret;       results. So we changed our mind and took the option of the best precision.
   double **xi,tmp,delta;    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   double dum; /* Dummy variable */  
   double ***p3mat;    /* If stepm=6 months */
   int *indx;    /* nhstepm age range expressed in number of stepm */
   char line[MAXLINE], linepar[MAXLINE];    agelim=AGESUP;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   int firstobs=1, lastobs=10;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   int sdeb, sfin; /* Status at beginning and end */    /* if (stepm >= YEARM) hstepm=1;*/
   int c,  h , cpt,l;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   int ju,jl, mi;    
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int mobilav=0,popforecast=0;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   int hstepm, nhstepm;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;    for (age=bage; age<=fage; age ++){ 
   double **prlim;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   double *severity;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   double ***param; /* Matrix of parameters */      /* if (stepm >= YEARM) hstepm=1;*/
   double  *p;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */      /* If stepm=6 months */
   double *delti; /* Scale */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   double ***eij, ***vareij;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   double **varpl; /* Variances of prevalence limits by age */      
   double *epj, vepp;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      /* Computing  Variances of health expectancies */
        /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   char z[1]="c", occ;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
 #include <sys/time.h>        }
 #include <time.h>        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
      
   /* long total_usecs;        for(j=1; j<= nlstate; j++){
   struct timeval start_time, end_time;          for(i=1; i<=nlstate; i++){
              for(h=0; h<=nhstepm-1; h++){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   getcwd(pathcd, size);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
   printf("\n%s",version);          }
   if(argc <=1){        }
     printf("\nEnter the parameter file name: ");       
     scanf("%s",pathtot);        for(ij=1; ij<= nlstate*nlstate; ij++)
   }          for(h=0; h<=nhstepm-1; h++){
   else{            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     strcpy(pathtot,argv[1]);          }
   }      }/* End theta */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      
   /*cygwin_split_path(pathtot,path,optionfile);      
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      for(h=0; h<=nhstepm-1; h++)
   /* cutv(path,optionfile,pathtot,'\\');*/        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            trgradg[h][j][theta]=gradg[h][theta][j];
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      
   chdir(path);  
   replace(pathc,path);       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
 /*-------- arguments in the command line --------*/          varhe[ij][ji][(int)age] =0.;
   
   strcpy(fileres,"r");       printf("%d|",(int)age);fflush(stdout);
   strcat(fileres, optionfilefiname);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   strcat(fileres,".txt");    /* Other files have txt extension */       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
   /*---------arguments file --------*/          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          for(ij=1;ij<=nlstate*nlstate;ij++)
     printf("Problem with optionfile %s\n",optionfile);            for(ji=1;ji<=nlstate*nlstate;ji++)
     goto end;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   }        }
       }
   strcpy(filereso,"o");  
   strcat(filereso,fileres);      /* Computing expectancies */
   if((ficparo=fopen(filereso,"w"))==NULL) {      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /* Reads comments: lines beginning with '#' */            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   while((c=getc(ficpar))=='#' && c!= EOF){            
     ungetc(c,ficpar);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fgets(line, MAXLINE, ficpar);  
     puts(line);          }
     fputs(line,ficparo);  
   }      fprintf(ficresstdeij,"%3.0f",age );
   ungetc(c,ficpar);      for(i=1; i<=nlstate;i++){
         eip=0.;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        vip=0.;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        for(j=1; j<=nlstate;j++){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          eip += eij[i][j][(int)age];
 while((c=getc(ficpar))=='#' && c!= EOF){          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     ungetc(c,ficpar);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     fgets(line, MAXLINE, ficpar);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     puts(line);        }
     fputs(line,ficparo);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   }      }
   ungetc(c,ficpar);      fprintf(ficresstdeij,"\n");
    
          fprintf(ficrescveij,"%3.0f",age );
   covar=matrix(0,NCOVMAX,1,n);      for(i=1; i<=nlstate;i++)
   cptcovn=0;        for(j=1; j<=nlstate;j++){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
   ncovmodel=2+cptcovn;            for(j2=1; j2<=nlstate;j2++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */              cptj2= (j2-1)*nlstate+i2;
                if(cptj2 <= cptj)
   /* Read guess parameters */                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   /* Reads comments: lines beginning with '#' */            }
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      fprintf(ficrescveij,"\n");
     fgets(line, MAXLINE, ficpar);     
     puts(line);    }
     fputs(line,ficparo);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   }    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   ungetc(c,ficpar);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=1; i <=nlstate; i++)    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(j=1; j <=nlstate+ndeath-1; j++){    printf("\n");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficlog,"\n");
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);    free_vector(xm,1,npar);
       for(k=1; k<=ncovmodel;k++){    free_vector(xp,1,npar);
         fscanf(ficpar," %lf",&param[i][j][k]);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         printf(" %lf",param[i][j][k]);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficparo," %lf",param[i][j][k]);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       }  }
       fscanf(ficpar,"\n");  
       printf("\n");  /************ Variance ******************/
       fprintf(ficparo,"\n");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     }  {
      /* Variance of health expectancies */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
   p=param[1][1];    double **dnewm,**doldm;
      double **dnewmp,**doldmp;
   /* Reads comments: lines beginning with '#' */    int i, j, nhstepm, hstepm, h, nstepm ;
   while((c=getc(ficpar))=='#' && c!= EOF){    int k, cptcode;
     ungetc(c,ficpar);    double *xp;
     fgets(line, MAXLINE, ficpar);    double **gp, **gm;  /* for var eij */
     puts(line);    double ***gradg, ***trgradg; /*for var eij */
     fputs(line,ficparo);    double **gradgp, **trgradgp; /* for var p point j */
   }    double *gpp, *gmp; /* for var p point j */
   ungetc(c,ficpar);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double age,agelim, hf;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    double ***mobaverage;
   for(i=1; i <=nlstate; i++){    int theta;
     for(j=1; j <=nlstate+ndeath-1; j++){    char digit[4];
       fscanf(ficpar,"%1d%1d",&i1,&j1);    char digitp[25];
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);    char fileresprobmorprev[FILENAMELENGTH];
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);    if(popbased==1){
         printf(" %le",delti3[i][j][k]);      if(mobilav!=0)
         fprintf(ficparo," %le",delti3[i][j][k]);        strcpy(digitp,"-populbased-mobilav-");
       }      else strcpy(digitp,"-populbased-nomobil-");
       fscanf(ficpar,"\n");    }
       printf("\n");    else 
       fprintf(ficparo,"\n");      strcpy(digitp,"-stablbased-");
     }  
   }    if (mobilav!=0) {
   delti=delti3[1][1];      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   /* Reads comments: lines beginning with '#' */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   while((c=getc(ficpar))=='#' && c!= EOF){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);    }
     puts(line);  
     fputs(line,ficparo);    strcpy(fileresprobmorprev,"prmorprev"); 
   }    sprintf(digit,"%-d",ij);
   ungetc(c,ficpar);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      strcat(fileresprobmorprev,digit); /* Tvar to be done */
   matcov=matrix(1,npar,1,npar);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   for(i=1; i <=npar; i++){    strcat(fileresprobmorprev,fileres);
     fscanf(ficpar,"%s",&str);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     printf("%s",str);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     fprintf(ficparo,"%s",str);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     for(j=1; j <=i; j++){    }
       fscanf(ficpar," %le",&matcov[i][j]);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       printf(" %.5le",matcov[i][j]);   
       fprintf(ficparo," %.5le",matcov[i][j]);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     }    pstamp(ficresprobmorprev);
     fscanf(ficpar,"\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     printf("\n");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     fprintf(ficparo,"\n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }      fprintf(ficresprobmorprev," p.%-d SE",j);
   for(i=1; i <=npar; i++)      for(i=1; i<=nlstate;i++)
     for(j=i+1;j<=npar;j++)        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       matcov[i][j]=matcov[j][i];    }  
        fprintf(ficresprobmorprev,"\n");
   printf("\n");    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     /*-------- Rewriting paramater file ----------*/    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      strcpy(rfileres,"r");    /* "Rparameterfile */  /*   } */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      strcat(rfileres,".");    /* */    pstamp(ficresvij);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if((ficres =fopen(rfileres,"w"))==NULL) {    if(popbased==1)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     }    else
     fprintf(ficres,"#%s\n",version);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
        fprintf(ficresvij,"# Age");
     /*-------- data file ----------*/    for(i=1; i<=nlstate;i++)
     if((fic=fopen(datafile,"r"))==NULL)    {      for(j=1; j<=nlstate;j++)
       printf("Problem with datafile: %s\n", datafile);goto end;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     }    fprintf(ficresvij,"\n");
   
     n= lastobs;    xp=vector(1,npar);
     severity = vector(1,maxwav);    dnewm=matrix(1,nlstate,1,npar);
     outcome=imatrix(1,maxwav+1,1,n);    doldm=matrix(1,nlstate,1,nlstate);
     num=ivector(1,n);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     moisnais=vector(1,n);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     annais=vector(1,n);  
     moisdc=vector(1,n);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     andc=vector(1,n);    gpp=vector(nlstate+1,nlstate+ndeath);
     agedc=vector(1,n);    gmp=vector(nlstate+1,nlstate+ndeath);
     cod=ivector(1,n);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     weight=vector(1,n);    
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    if(estepm < stepm){
     mint=matrix(1,maxwav,1,n);      printf ("Problem %d lower than %d\n",estepm, stepm);
     anint=matrix(1,maxwav,1,n);    }
     s=imatrix(1,maxwav+1,1,n);    else  hstepm=estepm;   
     adl=imatrix(1,maxwav+1,1,n);        /* For example we decided to compute the life expectancy with the smallest unit */
     tab=ivector(1,NCOVMAX);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     ncodemax=ivector(1,8);       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
     i=1;       Look at function hpijx to understand why (it is linked to memory size questions) */
     while (fgets(line, MAXLINE, fic) != NULL)    {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       if ((i >= firstobs) && (i <=lastobs)) {       survival function given by stepm (the optimization length). Unfortunately it
               means that if the survival funtion is printed every two years of age and if
         for (j=maxwav;j>=1;j--){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);       results. So we changed our mind and took the option of the best precision.
           strcpy(line,stra);    */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
              nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      gp=matrix(0,nhstepm,1,nlstate);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      gm=matrix(0,nhstepm,1,nlstate);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncovcol;j>=1;j--){      for(theta=1; theta <=npar; theta++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         num[i]=atol(stra);        }
                hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
         if (popbased==1) {
         i=i+1;          if(mobilav ==0){
       }            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
     /* printf("ii=%d", ij);          }else{ /* mobilav */ 
        scanf("%d",i);*/            for(i=1; i<=nlstate;i++)
   imx=i-1; /* Number of individuals */              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   /* for (i=1; i<=imx; i++){        }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        for(j=1; j<= nlstate; j++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          for(h=0; h<=nhstepm; h++){
     }*/            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
    /*  for (i=1; i<=imx; i++){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
      if (s[4][i]==9)  s[4][i]=-1;          }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        }
          /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   /* Calculation of the number of parameter from char model*/           as a weighted average of prlim.
   Tvar=ivector(1,15);        */
   Tprod=ivector(1,15);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   Tvaraff=ivector(1,15);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   Tvard=imatrix(1,15,1,2);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   Tage=ivector(1,15);              }    
            /* end probability of death */
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     j=nbocc(model,'+');          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     j1=nbocc(model,'*');        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     cptcovn=j+1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     cptcovprod=j1;   
            if (popbased==1) {
     strcpy(modelsav,model);          if(mobilav ==0){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            for(i=1; i<=nlstate;i++)
       printf("Error. Non available option model=%s ",model);              prlim[i][i]=probs[(int)age][i][ij];
       goto end;          }else{ /* mobilav */ 
     }            for(i=1; i<=nlstate;i++)
                  prlim[i][i]=mobaverage[(int)age][i][ij];
     for(i=(j+1); i>=1;i--){          }
       cutv(stra,strb,modelsav,'+');        }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
       /*scanf("%d",i);*/          for(h=0; h<=nhstepm; h++){
       if (strchr(strb,'*')) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         cutv(strd,strc,strb,'*');              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         if (strcmp(strc,"age")==0) {          }
           cptcovprod--;        }
           cutv(strb,stre,strd,'V');        /* This for computing probability of death (h=1 means
           Tvar[i]=atoi(stre);           computed over hstepm matrices product = hstepm*stepm months) 
           cptcovage++;           as a weighted average of prlim.
             Tage[cptcovage]=i;        */
             /*printf("stre=%s ", stre);*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         else if (strcmp(strd,"age")==0) {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           cptcovprod--;        }    
           cutv(strb,stre,strc,'V');        /* end probability of death */
           Tvar[i]=atoi(stre);  
           cptcovage++;        for(j=1; j<= nlstate; j++) /* vareij */
           Tage[cptcovage]=i;          for(h=0; h<=nhstepm; h++){
         }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         else {          }
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncovcol+k1;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           cutv(strb,strc,strd,'V');          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           Tprod[k1]=i;        }
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);      } /* End theta */
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for(h=0; h<=nhstepm; h++) /* veij */
           k1++;        for(j=1; j<=nlstate;j++)
           k2=k2+2;          for(theta=1; theta <=npar; theta++)
         }            trgradg[h][j][theta]=gradg[h][theta][j];
       }  
       else {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        for(theta=1; theta <=npar; theta++)
        /*  scanf("%d",i);*/          trgradgp[j][theta]=gradgp[theta][j];
       cutv(strd,strc,strb,'V');    
       Tvar[i]=atoi(strc);  
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       strcpy(modelsav,stra);        for(i=1;i<=nlstate;i++)
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        for(j=1;j<=nlstate;j++)
         scanf("%d",i);*/          vareij[i][j][(int)age] =0.;
     }  
 }      for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   printf("cptcovprod=%d ", cptcovprod);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   scanf("%d ",i);*/          for(i=1;i<=nlstate;i++)
     fclose(fic);            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     /*  if(mle==1){*/        }
     if (weightopt != 1) { /* Maximisation without weights*/      }
       for(i=1;i<=n;i++) weight[i]=1.0;    
     }      /* pptj */
     /*-calculation of age at interview from date of interview and age at death -*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     agev=matrix(1,maxwav,1,imx);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
     for (i=1; i<=imx; i++) {        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       for(m=2; (m<= maxwav); m++) {          varppt[j][i]=doldmp[j][i];
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      /* end ppptj */
          anint[m][i]=9999;      /*  x centered again */
          s[m][i]=-1;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;   
       }      if (popbased==1) {
     }        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
     for (i=1; i<=imx; i++)  {            prlim[i][i]=probs[(int)age][i][ij];
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        }else{ /* mobilav */ 
       for(m=1; (m<= maxwav); m++){          for(i=1; i<=nlstate;i++)
         if(s[m][i] >0){            prlim[i][i]=mobaverage[(int)age][i][ij];
           if (s[m][i] >= nlstate+1) {        }
             if(agedc[i]>0)      }
               if(moisdc[i]!=99 && andc[i]!=9999)               
                 agev[m][i]=agedc[i];      /* This for computing probability of death (h=1 means
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
            else {         as a weighted average of prlim.
               if (andc[i]!=9999){      */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
               agev[m][i]=-1;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
               }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
             }      }    
           }      /* end probability of death */
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
             if(mint[m][i]==99 || anint[m][i]==9999)      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               agev[m][i]=1;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             else if(agev[m][i] <agemin){        for(i=1; i<=nlstate;i++){
               agemin=agev[m][i];          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        }
             }      } 
             else if(agev[m][i] >agemax){      fprintf(ficresprobmorprev,"\n");
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      fprintf(ficresvij,"%.0f ",age );
             }      for(i=1; i<=nlstate;i++)
             /*agev[m][i]=anint[m][i]-annais[i];*/        for(j=1; j<=nlstate;j++){
             /*   agev[m][i] = age[i]+2*m;*/          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           }        }
           else { /* =9 */      fprintf(ficresvij,"\n");
             agev[m][i]=1;      free_matrix(gp,0,nhstepm,1,nlstate);
             s[m][i]=-1;      free_matrix(gm,0,nhstepm,1,nlstate);
           }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         else /*= 0 Unknown */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           agev[m][i]=1;    } /* End age */
       }    free_vector(gpp,nlstate+1,nlstate+ndeath);
        free_vector(gmp,nlstate+1,nlstate+ndeath);
     }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     for (i=1; i<=imx; i++)  {    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for(m=1; (m<= maxwav); m++){    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
         if (s[m][i] > (nlstate+ndeath)) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           printf("Error: Wrong value in nlstate or ndeath\n");      fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           goto end;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     free_vector(severity,1,maxwav);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     free_imatrix(outcome,1,maxwav+1,1,n);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     free_vector(moisnais,1,n);  */
     free_vector(annais,1,n);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     /* free_matrix(mint,1,maxwav,1,n);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);    free_vector(xp,1,npar);
     free_vector(andc,1,n);    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
        free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     wav=ivector(1,imx);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        fclose(ficresprobmorprev);
     /* Concatenates waves */    fflush(ficgp);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    fflush(fichtm); 
   }  /* end varevsij */
   
       Tcode=ivector(1,100);  /************ Variance of prevlim ******************/
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       ncodemax[1]=1;  {
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    /* Variance of prevalence limit */
          /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
    codtab=imatrix(1,100,1,10);    double **newm;
    h=0;    double **dnewm,**doldm;
    m=pow(2,cptcoveff);    int i, j, nhstepm, hstepm;
      int k, cptcode;
    for(k=1;k<=cptcoveff; k++){    double *xp;
      for(i=1; i <=(m/pow(2,k));i++){    double *gp, *gm;
        for(j=1; j <= ncodemax[k]; j++){    double **gradg, **trgradg;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    double age,agelim;
            h++;    int theta;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    pstamp(ficresvpl);
          }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
        }    fprintf(ficresvpl,"# Age");
      }    for(i=1; i<=nlstate;i++)
    }        fprintf(ficresvpl," %1d-%1d",i,i);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    fprintf(ficresvpl,"\n");
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){    xp=vector(1,npar);
       for(k=1; k <=cptcovn; k++){    dnewm=matrix(1,nlstate,1,npar);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    doldm=matrix(1,nlstate,1,nlstate);
       }    
       printf("\n");    hstepm=1*YEARM; /* Every year of age */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       scanf("%d",i);*/    agelim = AGESUP;
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    /* Calculates basic frequencies. Computes observed prevalence at single age      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        and prints on file fileres'p'. */      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
          gradg=matrix(1,npar,1,nlstate);
          gp=vector(1,nlstate);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      gm=vector(1,nlstate);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(theta=1; theta <=npar; theta++){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1; i<=npar; i++){ /* Computes gradient */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
              }
     /* For Powell, parameters are in a vector p[] starting at p[1]        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        for(i=1;i<=nlstate;i++)
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          gp[i] = prlim[i][i];
       
     if(mle==1){        for(i=1; i<=npar; i++) /* Computes gradient */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
            for(i=1;i<=nlstate;i++)
     /*--------- results files --------------*/          gm[i] = prlim[i][i];
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
          for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
    jk=1;      } /* End theta */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      trgradg =matrix(1,nlstate,1,npar);
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){      for(j=1; j<=nlstate;j++)
        if (k != i)        for(theta=1; theta <=npar; theta++)
          {          trgradg[j][theta]=gradg[theta][j];
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);      for(i=1;i<=nlstate;i++)
            for(j=1; j <=ncovmodel; j++){        varpl[i][(int)age] =0.;
              printf("%f ",p[jk]);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
              fprintf(ficres,"%f ",p[jk]);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
              jk++;      for(i=1;i<=nlstate;i++)
            }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
            printf("\n");  
            fprintf(ficres,"\n");      fprintf(ficresvpl,"%.0f ",age );
          }      for(i=1; i<=nlstate;i++)
      }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
    }      fprintf(ficresvpl,"\n");
  if(mle==1){      free_vector(gp,1,nlstate);
     /* Computing hessian and covariance matrix */      free_vector(gm,1,nlstate);
     ftolhess=ftol; /* Usually correct */      free_matrix(gradg,1,npar,1,nlstate);
     hesscov(matcov, p, npar, delti, ftolhess, func);      free_matrix(trgradg,1,nlstate,1,npar);
  }    } /* End age */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");    free_vector(xp,1,npar);
      for(i=1,jk=1; i <=nlstate; i++){    free_matrix(doldm,1,nlstate,1,npar);
       for(j=1; j <=nlstate+ndeath; j++){    free_matrix(dnewm,1,nlstate,1,nlstate);
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);  }
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){  /************ Variance of one-step probabilities  ******************/
             printf(" %.5e",delti[jk]);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
             fprintf(ficres," %.5e",delti[jk]);  {
             jk++;    int i, j=0,  i1, k1, l1, t, tj;
           }    int k2, l2, j1,  z1;
           printf("\n");    int k=0,l, cptcode;
           fprintf(ficres,"\n");    int first=1, first1;
         }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       }    double **dnewm,**doldm;
      }    double *xp;
        double *gp, *gm;
     k=1;    double **gradg, **trgradg;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double **mu;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double age,agelim, cov[NCOVMAX];
     for(i=1;i<=npar;i++){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       /*  if (k>nlstate) k=1;    int theta;
       i1=(i-1)/(ncovmodel*nlstate)+1;    char fileresprob[FILENAMELENGTH];
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    char fileresprobcov[FILENAMELENGTH];
       printf("%s%d%d",alph[k],i1,tab[i]);*/    char fileresprobcor[FILENAMELENGTH];
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);    double ***varpij;
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);    strcpy(fileresprob,"prob"); 
         printf(" %.5e",matcov[i][j]);    strcat(fileresprob,fileres);
       }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       fprintf(ficres,"\n");      printf("Problem with resultfile: %s\n", fileresprob);
       printf("\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       k++;    }
     }    strcpy(fileresprobcov,"probcov"); 
        strcat(fileresprobcov,fileres);
     while((c=getc(ficpar))=='#' && c!= EOF){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprobcov);
       fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       puts(line);    }
       fputs(line,ficparo);    strcpy(fileresprobcor,"probcor"); 
     }    strcat(fileresprobcor,fileres);
     ungetc(c,ficpar);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     estepm=0;      printf("Problem with resultfile: %s\n", fileresprobcor);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     if (estepm==0 || estepm < stepm) estepm=stepm;    }
     if (fage <= 2) {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       bage = ageminpar;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fage = agemaxpar;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
        printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    pstamp(ficresprob);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      fprintf(ficresprob,"# Age");
     while((c=getc(ficpar))=='#' && c!= EOF){    pstamp(ficresprobcov);
     ungetc(c,ficpar);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobcov,"# Age");
     puts(line);    pstamp(ficresprobcor);
     fputs(line,ficparo);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   }    fprintf(ficresprobcor,"# Age");
   ungetc(c,ficpar);  
    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    for(i=1; i<=nlstate;i++)
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(j=1; j<=(nlstate+ndeath);j++){
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
              fprintf(ficresprobcov," p%1d-%1d ",i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     ungetc(c,ficpar);      }  
     fgets(line, MAXLINE, ficpar);   /* fprintf(ficresprob,"\n");
     puts(line);    fprintf(ficresprobcov,"\n");
     fputs(line,ficparo);    fprintf(ficresprobcor,"\n");
   }   */
   ungetc(c,ficpar);    xp=vector(1,npar);
      dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
   fscanf(ficpar,"pop_based=%d\n",&popbased);    fprintf(ficgp,"\n# Routine varprob");
   fprintf(ficparo,"pop_based=%d\n",popbased);      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   fprintf(ficres,"pop_based=%d\n",popbased);      fprintf(fichtm,"\n");
    
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     ungetc(c,ficpar);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     fgets(line, MAXLINE, ficpar);    file %s<br>\n",optionfilehtmcov);
     puts(line);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     fputs(line,ficparo);  and drawn. It helps understanding how is the covariance between two incidences.\
   }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   ungetc(c,ficpar);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  standard deviations wide on each axis. <br>\
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    cov[1]=1;
     fgets(line, MAXLINE, ficpar);    tj=cptcoveff;
     puts(line);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     fputs(line,ficparo);    j1=0;
   }    for(t=1; t<=tj;t++){
   ungetc(c,ficpar);      for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        if  (cptcovn>0) {
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          fprintf(ficresprob, "\n#********** Variable "); 
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /*------------ gnuplot -------------*/          fprintf(ficresprobcov, "**********\n#\n");
   strcpy(optionfilegnuplot,optionfilefiname);          
   strcat(optionfilegnuplot,".gp");          fprintf(ficgp, "\n#********** Variable "); 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     printf("Problem with file %s",optionfilegnuplot);          fprintf(ficgp, "**********\n#\n");
   }          
   fclose(ficgp);          
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 /*--------- index.htm --------*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   strcpy(optionfilehtm,optionfile);          
   strcat(optionfilehtm,".htm");          fprintf(ficresprobcor, "\n#********** Variable ");    
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     printf("Problem with %s \n",optionfilehtm), exit(0);          fprintf(ficresprobcor, "**********\n#");    
   }        }
         
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        for (age=bage; age<=fage; age ++){ 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          cov[2]=age;
 \n          for (k=1; k<=cptcovn;k++) {
 Total number of observations=%d <br>\n            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          }
 <hr  size=\"2\" color=\"#EC5E5E\">          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  <ul><li>Parameter files<br>\n          for (k=1; k<=cptcovprod;k++)
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);          
   fclose(fichtm);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          gp=vector(1,(nlstate)*(nlstate+ndeath));
            gm=vector(1,(nlstate)*(nlstate+ndeath));
 /*------------ free_vector  -------------*/      
  chdir(path);          for(theta=1; theta <=npar; theta++){
              for(i=1; i<=npar; i++)
  free_ivector(wav,1,imx);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              pmij(pmmij,cov,ncovmodel,xp,nlstate);
  free_ivector(num,1,n);            
  free_vector(agedc,1,n);            k=0;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/            for(i=1; i<= (nlstate); i++){
  fclose(ficparo);              for(j=1; j<=(nlstate+ndeath);j++){
  fclose(ficres);                k=k+1;
                 gp[k]=pmmij[i][j];
               }
   /*--------------- Prevalence limit --------------*/            }
              
   strcpy(filerespl,"pl");            for(i=1; i<=npar; i++)
   strcat(filerespl,fileres);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   }            k=0;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            for(i=1; i<=(nlstate); i++){
   fprintf(ficrespl,"#Prevalence limit\n");              for(j=1; j<=(nlstate+ndeath);j++){
   fprintf(ficrespl,"#Age ");                k=k+1;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                gm[k]=pmmij[i][j];
   fprintf(ficrespl,"\n");              }
              }
   prlim=matrix(1,nlstate,1,nlstate);       
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   k=0;            for(theta=1; theta <=npar; theta++)
   agebase=ageminpar;              trgradg[j][theta]=gradg[theta][j];
   agelim=agemaxpar;          
   ftolpl=1.e-10;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   i1=cptcoveff;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   if (cptcovn < 1){i1=1;}          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   for(cptcov=1;cptcov<=i1;cptcov++){          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          pmij(pmmij,cov,ncovmodel,x,nlstate);
         fprintf(ficrespl,"\n#******");          
         for(j=1;j<=cptcoveff;j++)          k=0;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(i=1; i<=(nlstate); i++){
         fprintf(ficrespl,"******\n");            for(j=1; j<=(nlstate+ndeath);j++){
                      k=k+1;
         for (age=agebase; age<=agelim; age++){              mu[k][(int) age]=pmmij[i][j];
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            }
           fprintf(ficrespl,"%.0f",age );          }
           for(i=1; i<=nlstate;i++)          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           fprintf(ficrespl," %.5f", prlim[i][i]);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           fprintf(ficrespl,"\n");              varpij[i][j][(int)age] = doldm[i][j];
         }  
       }          /*printf("\n%d ",(int)age);
     }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fclose(ficrespl);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   /*------------- h Pij x at various ages ------------*/            }*/
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          fprintf(ficresprob,"\n%d ",(int)age);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          fprintf(ficresprobcov,"\n%d ",(int)age);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          fprintf(ficresprobcor,"\n%d ",(int)age);
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
              fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   /*if (stepm<=24) stepsize=2;*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   agelim=AGESUP;          }
   hstepm=stepsize*YEARM; /* Every year of age */          i=0;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          for (k=1; k<=(nlstate);k++){
              for (l=1; l<=(nlstate+ndeath);l++){ 
   k=0;              i=i++;
   for(cptcov=1;cptcov<=i1;cptcov++){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       k=k+1;              for (j=1; j<=i;j++){
         fprintf(ficrespij,"\n#****** ");                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         for(j=1;j<=cptcoveff;j++)                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              }
         fprintf(ficrespij,"******\n");            }
                  }/* end of loop for state */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        } /* end of loop for age */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        /* Confidence intervalle of pij  */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*
           oldm=oldms;savm=savms;          fprintf(ficgp,"\nunset parametric;unset label");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficrespij,"# Age");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           for(i=1; i<=nlstate;i++)          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
             for(j=1; j<=nlstate+ndeath;j++)          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
               fprintf(ficrespij," %1d-%1d",i,j);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficrespij,"\n");          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
            for (h=0; h<=nhstepm; h++){        */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
               for(j=1; j<=nlstate+ndeath;j++)        first1=1;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        for (k2=1; k2<=(nlstate);k2++){
             fprintf(ficrespij,"\n");          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
              }            if(l2==k2) continue;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            j=(k2-1)*(nlstate+ndeath)+l2;
           fprintf(ficrespij,"\n");            for (k1=1; k1<=(nlstate);k1++){
         }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     }                if(l1==k1) continue;
   }                i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
   fclose(ficrespij);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   /*---------- Forecasting ------------------*/                    mu1=mu[i][(int) age]/stepm*YEARM ;
   if((stepm == 1) && (strcmp(model,".")==0)){                    mu2=mu[j][(int) age]/stepm*YEARM;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                    c12=cv12/sqrt(v1*v2);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                    /* Computing eigen value of matrix of covariance */
   }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   else{                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     erreur=108;                    if ((lc2 <0) || (lc1 <0) ){
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                      printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
   }                      fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                        lc1=fabs(lc1);
                       lc2=fabs(lc2);
   /*---------- Health expectancies and variances ------------*/                    }
   
   strcpy(filerest,"t");                    /* Eigen vectors */
   strcat(filerest,fileres);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   if((ficrest=fopen(filerest,"w"))==NULL) {                    /*v21=sqrt(1.-v11*v11); *//* error */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                    v21=(lc1-v1)/cv12*v11;
   }                    v12=-v21;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                    v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
   strcpy(filerese,"e");                      first1=0;
   strcat(filerese,fileres);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   if((ficreseij=fopen(filerese,"w"))==NULL) {                    }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   }                    /*printf(fignu*/
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
  strcpy(fileresv,"v");                    if(first==1){
   strcat(fileresv,fileres);                      first=0;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                      fprintf(ficgp,"\nset parametric;unset label");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   calagedate=-1;   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   k=0;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   for(cptcov=1;cptcov<=i1;cptcov++){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       k=k+1;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficrest,"\n#****** ");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       fprintf(ficrest,"******\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficreseij,"\n#****** ");                    }else{
       for(j=1;j<=cptcoveff;j++)                      first=0;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       fprintf(ficreseij,"******\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       fprintf(ficresvij,"\n#****** ");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       for(j=1;j<=cptcoveff;j++)                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficresvij,"******\n");                    }/* if first */
                   } /* age mod 5 */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                } /* end loop age */
       oldm=oldms;savm=savms;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                  first=1;
                } /*l12 */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            } /* k12 */
       oldm=oldms;savm=savms;          } /*l1 */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        }/* k1 */
          } /* loop covariates */
     }
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       fprintf(ficrest,"\n");    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
       epj=vector(1,nlstate+1);    fclose(ficresprob);
       for(age=bage; age <=fage ;age++){    fclose(ficresprobcov);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fclose(ficresprobcor);
         if (popbased==1) {    fflush(ficgp);
           for(i=1; i<=nlstate;i++)    fflush(fichtmcov);
             prlim[i][i]=probs[(int)age][i][k];  }
         }  
          
         fprintf(ficrest," %4.0f",age);  /******************* Printing html file ***********/
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                    int lastpass, int stepm, int weightopt, char model[],\
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                    int popforecast, int estepm ,\
           }                    double jprev1, double mprev1,double anprev1, \
           epj[nlstate+1] +=epj[j];                    double jprev2, double mprev2,double anprev2){
         }    int jj1, k1, i1, cpt;
   
         for(i=1, vepp=0.;i <=nlstate;i++)     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
           for(j=1;j <=nlstate;j++)     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
             vepp += vareij[i][j][(int)age];  </ul>");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
         for(j=1;j <=nlstate;j++){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
         }     fprintf(fichtm,"\
         fprintf(ficrest,"\n");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     }     fprintf(fichtm,"\
   }   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 free_matrix(mint,1,maxwav,1,n);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);     fprintf(fichtm,"\
     free_vector(weight,1,n);   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   fclose(ficreseij);     <a href=\"%s\">%s</a> <br>\n",
   fclose(ficresvij);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   fclose(ficrest);     fprintf(fichtm,"\
   fclose(ficpar);   - Population projections by age and states: \
   free_vector(epj,1,nlstate+1);     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
    
   /*------- Variance limit prevalence------*/    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
   strcpy(fileresvpl,"vpl");   m=cptcoveff;
   strcat(fileresvpl,fileres);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   jj1=0;
     exit(0);   for(k1=1; k1<=m;k1++){
   }     for(i1=1; i1<=ncodemax[k1];i1++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);       jj1++;
        if (cptcovn > 0) {
   k=0;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   for(cptcov=1;cptcov<=i1;cptcov++){         for (cpt=1; cpt<=cptcoveff;cpt++) 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       k=k+1;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficresvpl,"\n#****** ");       }
       for(j=1;j<=cptcoveff;j++)       /* Pij */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
       fprintf(ficresvpl,"******\n");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
             /* Quasi-incidences */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       oldm=oldms;savm=savms;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     }         /* Period (stable) prevalence in each health state */
  }         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   fclose(ficresvpl);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
   /*---------- End : free ----------------*/       for(cpt=1; cpt<=nlstate;cpt++) {
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);     } /* end i1 */
     }/* End k1 */
     fprintf(fichtm,"</ul>");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   fprintf(fichtm,"\
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   free_matrix(agev,1,maxwav,1,imx);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);   fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fprintf(fichtm,"\n</body>");           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   fclose(fichtm);  
   fclose(ficgp);   fprintf(fichtm,"\
     - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   if(erreur >0)   fprintf(fichtm,"\
     printf("End of Imach with error or warning %d\n",erreur);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   else   printf("End of Imach\n");     <a href=\"%s\">%s</a> <br>\n</li>",
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     fprintf(fichtm,"\
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   /*printf("Total time was %d uSec.\n", total_usecs);*/     <a href=\"%s\">%s</a> <br>\n</li>",
   /*------ End -----------*/             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
  end:           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 #ifdef windows   fprintf(fichtm,"\
   /* chdir(pathcd);*/   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
 #endif           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
  /*system("wgnuplot graph.plt");*/   fprintf(fichtm,"\
  /*system("../gp37mgw/wgnuplot graph.plt");*/   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
  /*system("cd ../gp37mgw");*/           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);  /*  if(popforecast==1) fprintf(fichtm,"\n */
  strcat(plotcmd," ");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
  strcat(plotcmd,optionfilegnuplot);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
  system(plotcmd);  /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
 #ifdef windows  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   while (z[0] != 'q') {   fflush(fichtm);
     /* chdir(path); */   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);   m=cptcoveff;
     if (z[0] == 'c') system("./imach");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);   jj1=0;
     else if (z[0] == 'q') exit(0);   for(k1=1; k1<=m;k1++){
   }     for(i1=1; i1<=ncodemax[k1];i1++){
 #endif       jj1++;
 }       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8); /* hard coded ? */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); 
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* For V3*V2 Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) {
               h=1;
               codtab[h][k]=j;
               codtab[h][Tvar[k]]=j;
             }
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.47  
changed lines
  Added in v.1.137


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>