Diff for /imach/src/imach.c between versions 1.50 and 1.137

version 1.50, 2002/06/26 23:25:02 version 1.137, 2010/04/29 18:11:38
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.137  2010/04/29 18:11:38  brouard
      (Module): Checking covariates for more complex models
   This program computes Healthy Life Expectancies from    than V1+V2. A lot of change to be done. Unstable.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.136  2010/04/26 20:30:53  brouard
   interviewed on their health status or degree of disability (in the    (Module): merging some libgsl code. Fixing computation
   case of a health survey which is our main interest) -2- at least a    of likelione (using inter/intrapolation if mle = 0) in order to
   second wave of interviews ("longitudinal") which measure each change    get same likelihood as if mle=1.
   (if any) in individual health status.  Health expectancies are    Some cleaning of code and comments added.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.135  2009/10/29 15:33:14  brouard
   Maximum Likelihood of the parameters involved in the model.  The    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.134  2009/10/29 13:18:53  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.133  2009/07/06 10:21:25  brouard
   complex model than "constant and age", you should modify the program    just nforces
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.132  2009/07/06 08:22:05  brouard
   convergence.    Many tings
   
   The advantage of this computer programme, compared to a simple    Revision 1.131  2009/06/20 16:22:47  brouard
   multinomial logistic model, is clear when the delay between waves is not    Some dimensions resccaled
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.130  2009/05/26 06:44:34  brouard
   account using an interpolation or extrapolation.      (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
   hPijx is the probability to be observed in state i at age x+h    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.129  2007/08/31 13:49:27  lievre
   states. This elementary transition (by month or quarter trimester,    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.128  2006/06/30 13:02:05  brouard
   and the contribution of each individual to the likelihood is simply    (Module): Clarifications on computing e.j
   hPijx.  
     Revision 1.127  2006/04/28 18:11:50  brouard
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Yes the sum of survivors was wrong since
   of the life expectancies. It also computes the prevalence limits.    imach-114 because nhstepm was no more computed in the age
      loop. Now we define nhstepma in the age loop.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): In order to speed up (in case of numerous covariates) we
            Institut national d'études démographiques, Paris.    compute health expectancies (without variances) in a first step
   This software have been partly granted by Euro-REVES, a concerted action    and then all the health expectancies with variances or standard
   from the European Union.    deviation (needs data from the Hessian matrices) which slows the
   It is copyrighted identically to a GNU software product, ie programme and    computation.
   software can be distributed freely for non commercial use. Latest version    In the future we should be able to stop the program is only health
   can be accessed at http://euroreves.ined.fr/imach .    expectancies and graph are needed without standard deviations.
   **********************************************************************/  
      Revision 1.126  2006/04/28 17:23:28  brouard
 #include <math.h>    (Module): Yes the sum of survivors was wrong since
 #include <stdio.h>    imach-114 because nhstepm was no more computed in the age
 #include <stdlib.h>    loop. Now we define nhstepma in the age loop.
 #include <unistd.h>    Version 0.98h
   
 #define MAXLINE 256    Revision 1.125  2006/04/04 15:20:31  lievre
 #define GNUPLOTPROGRAM "gnuplot"    Errors in calculation of health expectancies. Age was not initialized.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Forecasting file added.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.124  2006/03/22 17:13:53  lievre
 #define windows    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    The log-likelihood is printed in the log file
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.123  2006/03/20 10:52:43  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    * imach.c (Module): <title> changed, corresponds to .htm file
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    name. <head> headers where missing.
   
 #define NINTERVMAX 8    * imach.c (Module): Weights can have a decimal point as for
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    English (a comma might work with a correct LC_NUMERIC environment,
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    otherwise the weight is truncated).
 #define NCOVMAX 8 /* Maximum number of covariates */    Modification of warning when the covariates values are not 0 or
 #define MAXN 20000    1.
 #define YEARM 12. /* Number of months per year */    Version 0.98g
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.122  2006/03/20 09:45:41  brouard
 #ifdef windows    (Module): Weights can have a decimal point as for
 #define DIRSEPARATOR '\\'    English (a comma might work with a correct LC_NUMERIC environment,
 #define ODIRSEPARATOR '/'    otherwise the weight is truncated).
 #else    Modification of warning when the covariates values are not 0 or
 #define DIRSEPARATOR '/'    1.
 #define ODIRSEPARATOR '\\'    Version 0.98g
 #endif  
     Revision 1.121  2006/03/16 17:45:01  lievre
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    * imach.c (Module): Comments concerning covariates added
 int erreur; /* Error number */  
 int nvar;    * imach.c (Module): refinements in the computation of lli if
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    status=-2 in order to have more reliable computation if stepm is
 int npar=NPARMAX;    not 1 month. Version 0.98f
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.120  2006/03/16 15:10:38  lievre
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): refinements in the computation of lli if
 int popbased=0;    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.119  2006/03/15 17:42:26  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Bug if status = -2, the loglikelihood was
 int mle, weightopt;    computed as likelihood omitting the logarithm. Version O.98e
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.118  2006/03/14 18:20:07  brouard
 double jmean; /* Mean space between 2 waves */    (Module): varevsij Comments added explaining the second
 double **oldm, **newm, **savm; /* Working pointers to matrices */    table of variances if popbased=1 .
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Function pstamp added
 FILE *ficlog;    (Module): Version 0.98d
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficresprobmorprev;    Revision 1.117  2006/03/14 17:16:22  brouard
 FILE *fichtm; /* Html File */    (Module): varevsij Comments added explaining the second
 FILE *ficreseij;    table of variances if popbased=1 .
 char filerese[FILENAMELENGTH];    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 FILE  *ficresvij;    (Module): Function pstamp added
 char fileresv[FILENAMELENGTH];    (Module): Version 0.98d
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.116  2006/03/06 10:29:27  brouard
 char title[MAXLINE];    (Module): Variance-covariance wrong links and
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    varian-covariance of ej. is needed (Saito).
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.115  2006/02/27 12:17:45  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    (Module): One freematrix added in mlikeli! 0.98c
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.114  2006/02/26 12:57:58  brouard
 char fileregp[FILENAMELENGTH];    (Module): Some improvements in processing parameter
 char popfile[FILENAMELENGTH];    filename with strsep.
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 #define NR_END 1    datafile was not closed, some imatrix were not freed and on matrix
 #define FREE_ARG char*    allocation too.
 #define FTOL 1.0e-10  
     Revision 1.112  2006/01/30 09:55:26  brouard
 #define NRANSI    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define ITMAX 200  
     Revision 1.111  2006/01/25 20:38:18  brouard
 #define TOL 2.0e-4    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 #define CGOLD 0.3819660    can be a simple dot '.'.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.109  2006/01/24 19:37:15  brouard
 #define TINY 1.0e-20    (Module): Comments (lines starting with a #) are allowed in data.
   
 static double maxarg1,maxarg2;    Revision 1.108  2006/01/19 18:05:42  lievre
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Gnuplot problem appeared...
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    To be fixed
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.107  2006/01/19 16:20:37  brouard
 #define rint(a) floor(a+0.5)    Test existence of gnuplot in imach path
   
 static double sqrarg;    Revision 1.106  2006/01/19 13:24:36  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Some cleaning and links added in html output
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.105  2006/01/05 20:23:19  lievre
 int imx;    *** empty log message ***
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 int estepm;    (Module): If the status is missing at the last wave but we know
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 int m,nb;    contributions to the likelihood is 1 - Prob of dying from last
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    the healthy state at last known wave). Version is 0.98
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 double *weight;  
 int **s; /* Status */    Revision 1.102  2004/09/15 17:31:30  brouard
 double *agedc, **covar, idx;    Add the possibility to read data file including tab characters.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.101  2004/09/15 10:38:38  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Fix on curr_time
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.100  2004/07/12 18:29:06  brouard
 /**************** split *************************/    Add version for Mac OS X. Just define UNIX in Makefile
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.99  2004/06/05 08:57:40  brouard
    char *s;                             /* pointer */    *** empty log message ***
    int  l1, l2;                         /* length counters */  
     Revision 1.98  2004/05/16 15:05:56  brouard
    l1 = strlen( path );                 /* length of path */    New version 0.97 . First attempt to estimate force of mortality
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    directly from the data i.e. without the need of knowing the health
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    state at each age, but using a Gompertz model: log u =a + b*age .
    if ( s == NULL ) {                   /* no directory, so use current */    This is the basic analysis of mortality and should be done before any
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    other analysis, in order to test if the mortality estimated from the
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    cross-longitudinal survey is different from the mortality estimated
 #if     defined(__bsd__)                /* get current working directory */    from other sources like vital statistic data.
       extern char       *getwd( );  
     The same imach parameter file can be used but the option for mle should be -3.
       if ( getwd( dirc ) == NULL ) {  
 #else    Agnès, who wrote this part of the code, tried to keep most of the
       extern char       *getcwd( );    former routines in order to include the new code within the former code.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    The output is very simple: only an estimate of the intercept and of
 #endif    the slope with 95% confident intervals.
          return( GLOCK_ERROR_GETCWD );  
       }    Current limitations:
       strcpy( name, path );             /* we've got it */    A) Even if you enter covariates, i.e. with the
    } else {                             /* strip direcotry from path */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
       s++;                              /* after this, the filename */    B) There is no computation of Life Expectancy nor Life Table.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.97  2004/02/20 13:25:42  lievre
       strcpy( name, s );                /* save file name */    Version 0.96d. Population forecasting command line is (temporarily)
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    suppressed.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.96  2003/07/15 15:38:55  brouard
    l1 = strlen( dirc );                 /* length of directory */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #ifdef windows    rewritten within the same printf. Workaround: many printfs.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.95  2003/07/08 07:54:34  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    * imach.c (Repository):
 #endif    (Repository): Using imachwizard code to output a more meaningful covariance
    s = strrchr( name, '.' );            /* find last / */    matrix (cov(a12,c31) instead of numbers.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.94  2003/06/27 13:00:02  brouard
    l1= strlen( name);    Just cleaning
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.93  2003/06/25 16:33:55  brouard
    finame[l1-l2]= 0;    (Module): On windows (cygwin) function asctime_r doesn't
    return( 0 );                         /* we're done */    exist so I changed back to asctime which exists.
 }    (Module): Version 0.96b
   
     Revision 1.92  2003/06/25 16:30:45  brouard
 /******************************************/    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 void replace(char *s, char*t)  
 {    Revision 1.91  2003/06/25 15:30:29  brouard
   int i;    * imach.c (Repository): Duplicated warning errors corrected.
   int lg=20;    (Repository): Elapsed time after each iteration is now output. It
   i=0;    helps to forecast when convergence will be reached. Elapsed time
   lg=strlen(t);    is stamped in powell.  We created a new html file for the graphs
   for(i=0; i<= lg; i++) {    concerning matrix of covariance. It has extension -cov.htm.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.90  2003/06/24 12:34:15  brouard
   }    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int nbocc(char *s, char occ)  
 {    Revision 1.89  2003/06/24 12:30:52  brouard
   int i,j=0;    (Module): Some bugs corrected for windows. Also, when
   int lg=20;    mle=-1 a template is output in file "or"mypar.txt with the design
   i=0;    of the covariance matrix to be input.
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.88  2003/06/23 17:54:56  brouard
   if  (s[i] == occ ) j++;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   }  
   return j;    Revision 1.87  2003/06/18 12:26:01  brouard
 }    Version 0.96
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.86  2003/06/17 20:04:08  brouard
 {    (Module): Change position of html and gnuplot routines and added
   /* cuts string t into u and v where u is ended by char occ excluding it    routine fileappend.
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */    Revision 1.85  2003/06/17 13:12:43  brouard
   int i,lg,j,p=0;    * imach.c (Repository): Check when date of death was earlier that
   i=0;    current date of interview. It may happen when the death was just
   for(j=0; j<=strlen(t)-1; j++) {    prior to the death. In this case, dh was negative and likelihood
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    was wrong (infinity). We still send an "Error" but patch by
   }    assuming that the date of death was just one stepm after the
     interview.
   lg=strlen(t);    (Repository): Because some people have very long ID (first column)
   for(j=0; j<p; j++) {    we changed int to long in num[] and we added a new lvector for
     (u[j] = t[j]);    memory allocation. But we also truncated to 8 characters (left
   }    truncation)
      u[p]='\0';    (Repository): No more line truncation errors.
   
    for(j=0; j<= lg; j++) {    Revision 1.84  2003/06/13 21:44:43  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    * imach.c (Repository): Replace "freqsummary" at a correct
   }    place. It differs from routine "prevalence" which may be called
 }    many times. Probs is memory consuming and must be used with
     parcimony.
 /********************** nrerror ********************/    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 void nrerror(char error_text[])    Revision 1.83  2003/06/10 13:39:11  lievre
 {    *** empty log message ***
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.82  2003/06/05 15:57:20  brouard
   exit(1);    Add log in  imach.c and  fullversion number is now printed.
 }  
 /*********************** vector *******************/  */
 double *vector(int nl, int nh)  /*
 {     Interpolated Markov Chain
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Short summary of the programme:
   if (!v) nrerror("allocation failure in vector");    
   return v-nl+NR_END;    This program computes Healthy Life Expectancies from
 }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 /************************ free vector ******************/    interviewed on their health status or degree of disability (in the
 void free_vector(double*v, int nl, int nh)    case of a health survey which is our main interest) -2- at least a
 {    second wave of interviews ("longitudinal") which measure each change
   free((FREE_ARG)(v+nl-NR_END));    (if any) in individual health status.  Health expectancies are
 }    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 /************************ivector *******************************/    Maximum Likelihood of the parameters involved in the model.  The
 int *ivector(long nl,long nh)    simplest model is the multinomial logistic model where pij is the
 {    probability to be observed in state j at the second wave
   int *v;    conditional to be observed in state i at the first wave. Therefore
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   if (!v) nrerror("allocation failure in ivector");    'age' is age and 'sex' is a covariate. If you want to have a more
   return v-nl+NR_END;    complex model than "constant and age", you should modify the program
 }    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 /******************free ivector **************************/    convergence.
 void free_ivector(int *v, long nl, long nh)  
 {    The advantage of this computer programme, compared to a simple
   free((FREE_ARG)(v+nl-NR_END));    multinomial logistic model, is clear when the delay between waves is not
 }    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 /******************* imatrix *******************************/    account using an interpolation or extrapolation.  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    hPijx is the probability to be observed in state i at age x+h
 {    conditional to the observed state i at age x. The delay 'h' can be
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    split into an exact number (nh*stepm) of unobserved intermediate
   int **m;    states. This elementary transition (by month, quarter,
      semester or year) is modelled as a multinomial logistic.  The hPx
   /* allocate pointers to rows */    matrix is simply the matrix product of nh*stepm elementary matrices
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    and the contribution of each individual to the likelihood is simply
   if (!m) nrerror("allocation failure 1 in matrix()");    hPijx.
   m += NR_END;  
   m -= nrl;    Also this programme outputs the covariance matrix of the parameters but also
      of the life expectancies. It also computes the period (stable) prevalence. 
      
   /* allocate rows and set pointers to them */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));             Institut national d'études démographiques, Paris.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    This software have been partly granted by Euro-REVES, a concerted action
   m[nrl] += NR_END;    from the European Union.
   m[nrl] -= ncl;    It is copyrighted identically to a GNU software product, ie programme and
      software can be distributed freely for non commercial use. Latest version
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    can be accessed at http://euroreves.ined.fr/imach .
    
   /* return pointer to array of pointers to rows */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   return m;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
     **********************************************************************/
 /****************** free_imatrix *************************/  /*
 void free_imatrix(m,nrl,nrh,ncl,nch)    main
       int **m;    read parameterfile
       long nch,ncl,nrh,nrl;    read datafile
      /* free an int matrix allocated by imatrix() */    concatwav
 {    freqsummary
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    if (mle >= 1)
   free((FREE_ARG) (m+nrl-NR_END));      mlikeli
 }    print results files
     if mle==1 
 /******************* matrix *******************************/       computes hessian
 double **matrix(long nrl, long nrh, long ncl, long nch)    read end of parameter file: agemin, agemax, bage, fage, estepm
 {        begin-prev-date,...
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    open gnuplot file
   double **m;    open html file
     period (stable) prevalence
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));     for age prevalim()
   if (!m) nrerror("allocation failure 1 in matrix()");    h Pij x
   m += NR_END;    variance of p varprob
   m -= nrl;    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Variance-covariance of DFLE
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    prevalence()
   m[nrl] += NR_END;     movingaverage()
   m[nrl] -= ncl;    varevsij() 
     if popbased==1 varevsij(,popbased)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    total life expectancies
   return m;    Variance of period (stable) prevalence
 }   end
   */
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));   
   free((FREE_ARG)(m+nrl-NR_END));  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 /******************* ma3x *******************************/  #include <string.h>
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #include <unistd.h>
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #include <limits.h>
   double ***m;  #include <sys/types.h>
   #include <sys/stat.h>
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <errno.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  extern int errno;
   m += NR_END;  
   m -= nrl;  /* #include <sys/time.h> */
   #include <time.h>
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include "timeval.h"
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #ifdef GSL
   m[nrl] -= ncl;  #include <gsl/gsl_errno.h>
   #include <gsl/gsl_multimin.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #endif
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  /* #include <libintl.h> */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  /* #define _(String) gettext (String) */
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  #define MAXLINE 256
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  #define GNUPLOTPROGRAM "gnuplot"
    /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   for (i=nrl+1; i<=nrh; i++) {  #define FILENAMELENGTH 132
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       m[i][j]=m[i][j-1]+nlay;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   }  
   return m;  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
 }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 /*************************free ma3x ************************/  #define NINTERVMAX 8
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define NCOVMAX 20 /* Maximum number of covariates */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define MAXN 20000
   free((FREE_ARG)(m+nrl-NR_END));  #define YEARM 12. /* Number of months per year */
 }  #define AGESUP 130
   #define AGEBASE 40
 /***************** f1dim *************************/  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 extern int ncom;  #ifdef UNIX
 extern double *pcom,*xicom;  #define DIRSEPARATOR '/'
 extern double (*nrfunc)(double []);  #define CHARSEPARATOR "/"
    #define ODIRSEPARATOR '\\'
 double f1dim(double x)  #else
 {  #define DIRSEPARATOR '\\'
   int j;  #define CHARSEPARATOR "\\"
   double f;  #define ODIRSEPARATOR '/'
   double *xt;  #endif
    
   xt=vector(1,ncom);  /* $Id$ */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  /* $State$ */
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  char version[]="Imach version 0.98m, April 2010, INED-EUROREVES-Institut de longevite ";
   return f;  char fullversion[]="$Revision$ $Date$"; 
 }  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 /*****************brent *************************/  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int nvar=0, nforce=0; /* Number of variables, number of forces */
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
   int iter;  int npar=NPARMAX;
   double a,b,d,etemp;  int nlstate=2; /* Number of live states */
   double fu,fv,fw,fx;  int ndeath=1; /* Number of dead states */
   double ftemp;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int popbased=0;
   double e=0.0;  
    int *wav; /* Number of waves for this individuual 0 is possible */
   a=(ax < cx ? ax : cx);  int maxwav=0; /* Maxim number of waves */
   b=(ax > cx ? ax : cx);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   x=w=v=bx;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   fw=fv=fx=(*f)(x);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   for (iter=1;iter<=ITMAX;iter++) {                     to the likelihood and the sum of weights (done by funcone)*/
     xm=0.5*(a+b);  int mle=1, weightopt=0;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     printf(".");fflush(stdout);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     fprintf(ficlog,".");fflush(ficlog);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #ifdef DEBUG  double jmean=1; /* Mean space between 2 waves */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double **oldm, **newm, **savm; /* Working pointers to matrices */
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /*FILE *fic ; */ /* Used in readdata only */
 #endif  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  FILE *ficlog, *ficrespow;
       *xmin=x;  int globpr=0; /* Global variable for printing or not */
       return fx;  double fretone; /* Only one call to likelihood */
     }  long ipmx=0; /* Number of contributions */
     ftemp=fu;  double sw; /* Sum of weights */
     if (fabs(e) > tol1) {  char filerespow[FILENAMELENGTH];
       r=(x-w)*(fx-fv);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       q=(x-v)*(fx-fw);  FILE *ficresilk;
       p=(x-v)*q-(x-w)*r;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       q=2.0*(q-r);  FILE *ficresprobmorprev;
       if (q > 0.0) p = -p;  FILE *fichtm, *fichtmcov; /* Html File */
       q=fabs(q);  FILE *ficreseij;
       etemp=e;  char filerese[FILENAMELENGTH];
       e=d;  FILE *ficresstdeij;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char fileresstde[FILENAMELENGTH];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  FILE *ficrescveij;
       else {  char filerescve[FILENAMELENGTH];
         d=p/q;  FILE  *ficresvij;
         u=x+d;  char fileresv[FILENAMELENGTH];
         if (u-a < tol2 || b-u < tol2)  FILE  *ficresvpl;
           d=SIGN(tol1,xm-x);  char fileresvpl[FILENAMELENGTH];
       }  char title[MAXLINE];
     } else {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char command[FILENAMELENGTH];
     fu=(*f)(u);  int  outcmd=0;
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  char filelog[FILENAMELENGTH]; /* Log file */
         } else {  char filerest[FILENAMELENGTH];
           if (u < x) a=u; else b=u;  char fileregp[FILENAMELENGTH];
           if (fu <= fw || w == x) {  char popfile[FILENAMELENGTH];
             v=w;  
             w=u;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
             fv=fw;  
             fw=fu;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
           } else if (fu <= fv || v == x || v == w) {  struct timezone tzp;
             v=u;  extern int gettimeofday();
             fv=fu;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
           }  long time_value;
         }  extern long time();
   }  char strcurr[80], strfor[80];
   nrerror("Too many iterations in brent");  
   *xmin=x;  char *endptr;
   return fx;  long lval;
 }  double dval;
   
 /****************** mnbrak ***********************/  #define NR_END 1
   #define FREE_ARG char*
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define FTOL 1.0e-10
             double (*func)(double))  
 {  #define NRANSI 
   double ulim,u,r,q, dum;  #define ITMAX 200 
   double fu;  
    #define TOL 2.0e-4 
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  #define CGOLD 0.3819660 
   if (*fb > *fa) {  #define ZEPS 1.0e-10 
     SHFT(dum,*ax,*bx,dum)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       SHFT(dum,*fb,*fa,dum)  
       }  #define GOLD 1.618034 
   *cx=(*bx)+GOLD*(*bx-*ax);  #define GLIMIT 100.0 
   *fc=(*func)(*cx);  #define TINY 1.0e-20 
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  static double maxarg1,maxarg2;
     q=(*bx-*cx)*(*fb-*fa);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     if ((*bx-u)*(u-*cx) > 0.0) {  #define rint(a) floor(a+0.5)
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  static double sqrarg;
       fu=(*func)(u);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       if (fu < *fc) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  int agegomp= AGEGOMP;
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  int imx; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  int stepm=1;
       u=ulim;  /* Stepm, step in month: minimum step interpolation*/
       fu=(*func)(u);  
     } else {  int estepm;
       u=(*cx)+GOLD*(*cx-*bx);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       fu=(*func)(u);  
     }  int m,nb;
     SHFT(*ax,*bx,*cx,u)  long *num;
       SHFT(*fa,*fb,*fc,fu)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double *ageexmed,*agecens;
 /*************** linmin ************************/  double dateintmean=0;
   
 int ncom;  double *weight;
 double *pcom,*xicom;  int **s; /* Status */
 double (*nrfunc)(double []);  double *agedc, **covar, idx;
    int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  double *lsurv, *lpop, *tpop;
 {  
   double brent(double ax, double bx, double cx,  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
                double (*f)(double), double tol, double *xmin);  double ftolhess; /* Tolerance for computing hessian */
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  /**************** split *************************/
               double *fc, double (*func)(double));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   int j;  {
   double xx,xmin,bx,ax;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   double fx,fb,fa;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
      */ 
   ncom=n;    char  *ss;                            /* pointer */
   pcom=vector(1,n);    int   l1, l2;                         /* length counters */
   xicom=vector(1,n);  
   nrfunc=func;    l1 = strlen(path );                   /* length of path */
   for (j=1;j<=n;j++) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     pcom[j]=p[j];    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     xicom[j]=xi[j];    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   }      strcpy( name, path );               /* we got the fullname name because no directory */
   ax=0.0;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   xx=1.0;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      /* get current working directory */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      /*    extern  char* getcwd ( char *buf , int len);*/
 #ifdef DEBUG      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        return( GLOCK_ERROR_GETCWD );
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      }
 #endif      /* got dirc from getcwd*/
   for (j=1;j<=n;j++) {      printf(" DIRC = %s \n",dirc);
     xi[j] *= xmin;    } else {                              /* strip direcotry from path */
     p[j] += xi[j];      ss++;                               /* after this, the filename */
   }      l2 = strlen( ss );                  /* length of filename */
   free_vector(xicom,1,n);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   free_vector(pcom,1,n);      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /*************** powell ************************/      printf(" DIRC2 = %s \n",dirc);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    }
             double (*func)(double []))    /* We add a separator at the end of dirc if not exists */
 {    l1 = strlen( dirc );                  /* length of directory */
   void linmin(double p[], double xi[], int n, double *fret,    if( dirc[l1-1] != DIRSEPARATOR ){
               double (*func)(double []));      dirc[l1] =  DIRSEPARATOR;
   int i,ibig,j;      dirc[l1+1] = 0; 
   double del,t,*pt,*ptt,*xit;      printf(" DIRC3 = %s \n",dirc);
   double fp,fptt;    }
   double *xits;    ss = strrchr( name, '.' );            /* find last / */
   pt=vector(1,n);    if (ss >0){
   ptt=vector(1,n);      ss++;
   xit=vector(1,n);      strcpy(ext,ss);                     /* save extension */
   xits=vector(1,n);      l1= strlen( name);
   *fret=(*func)(p);      l2= strlen(ss)+1;
   for (j=1;j<=n;j++) pt[j]=p[j];      strncpy( finame, name, l1-l2);
   for (*iter=1;;++(*iter)) {      finame[l1-l2]= 0;
     fp=(*fret);    }
     ibig=0;  
     del=0.0;    return( 0 );                          /* we're done */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  }
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  /******************************************/
     fprintf(ficlog," %d %.12f",i, p[i]);  
     printf("\n");  void replace_back_to_slash(char *s, char*t)
     fprintf(ficlog,"\n");  {
     for (i=1;i<=n;i++) {    int i;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    int lg=0;
       fptt=(*fret);    i=0;
 #ifdef DEBUG    lg=strlen(t);
       printf("fret=%lf \n",*fret);    for(i=0; i<= lg; i++) {
       fprintf(ficlog,"fret=%lf \n",*fret);      (s[i] = t[i]);
 #endif      if (t[i]== '\\') s[i]='/';
       printf("%d",i);fflush(stdout);    }
       fprintf(ficlog,"%d",i);fflush(ficlog);  }
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  char *trimbb(char *out, char *in)
         del=fabs(fptt-(*fret));  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
         ibig=i;    char *s;
       }    s=out;
 #ifdef DEBUG    while (*in != '\0'){
       printf("%d %.12e",i,(*fret));      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       fprintf(ficlog,"%d %.12e",i,(*fret));        in++;
       for (j=1;j<=n;j++) {      }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      *out++ = *in++;
         printf(" x(%d)=%.12e",j,xit[j]);    }
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    *out='\0';
       }    return s;
       for(j=1;j<=n;j++) {  }
         printf(" p=%.12e",p[j]);  
         fprintf(ficlog," p=%.12e",p[j]);  char *cutv(char *blocc, char *alocc, char *in, char occ)
       }  {
       printf("\n");    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       fprintf(ficlog,"\n");       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 #endif       gives blocc="abcdef2ghi" and alocc="j".
     }       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    */
 #ifdef DEBUG    char *s, *t;
       int k[2],l;    t=in;s=in;
       k[0]=1;    while (*in != '\0'){
       k[1]=-1;      while( *in == occ){
       printf("Max: %.12e",(*func)(p));        *blocc++ = *in++;
       fprintf(ficlog,"Max: %.12e",(*func)(p));        s=in;
       for (j=1;j<=n;j++) {      }
         printf(" %.12e",p[j]);      *blocc++ = *in++;
         fprintf(ficlog," %.12e",p[j]);    }
       }    if (s == t) /* occ not found */
       printf("\n");      *(blocc-(in-s))='\0';
       fprintf(ficlog,"\n");    else
       for(l=0;l<=1;l++) {      *(blocc-(in-s)-1)='\0';
         for (j=1;j<=n;j++) {    in=s;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    while ( *in != '\0'){
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      *alocc++ = *in++;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    *alocc='\0';
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    return s;
       }  }
 #endif  
   int nbocc(char *s, char occ)
   {
       free_vector(xit,1,n);    int i,j=0;
       free_vector(xits,1,n);    int lg=20;
       free_vector(ptt,1,n);    i=0;
       free_vector(pt,1,n);    lg=strlen(s);
       return;    for(i=0; i<= lg; i++) {
     }    if  (s[i] == occ ) j++;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    }
     for (j=1;j<=n;j++) {    return j;
       ptt[j]=2.0*p[j]-pt[j];  }
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /* void cutv(char *u,char *v, char*t, char occ) */
     }  /* { */
     fptt=(*func)(ptt);  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     if (fptt < fp) {  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /*      gives u="abcdef2ghi" and v="j" *\/ */
       if (t < 0.0) {  /*   int i,lg,j,p=0; */
         linmin(p,xit,n,fret,func);  /*   i=0; */
         for (j=1;j<=n;j++) {  /*   lg=strlen(t); */
           xi[j][ibig]=xi[j][n];  /*   for(j=0; j<=lg-1; j++) { */
           xi[j][n]=xit[j];  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
         }  /*   } */
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /*   for(j=0; j<p; j++) { */
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /*     (u[j] = t[j]); */
         for(j=1;j<=n;j++){  /*   } */
           printf(" %.12e",xit[j]);  /*      u[p]='\0'; */
           fprintf(ficlog," %.12e",xit[j]);  
         }  /*    for(j=0; j<= lg; j++) { */
         printf("\n");  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
         fprintf(ficlog,"\n");  /*   } */
 #endif  /* } */
       }  
     }  /********************** nrerror ********************/
   }  
 }  void nrerror(char error_text[])
   {
 /**** Prevalence limit ****************/    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    exit(EXIT_FAILURE);
 {  }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /*********************** vector *******************/
      matrix by transitions matrix until convergence is reached */  double *vector(int nl, int nh)
   {
   int i, ii,j,k;    double *v;
   double min, max, maxmin, maxmax,sumnew=0.;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double **matprod2();    if (!v) nrerror("allocation failure in vector");
   double **out, cov[NCOVMAX], **pmij();    return v-nl+NR_END;
   double **newm;  }
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /************************ free vector ******************/
   for (ii=1;ii<=nlstate+ndeath;ii++)  void free_vector(double*v, int nl, int nh)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG)(v+nl-NR_END));
     }  }
   
    cov[1]=1.;  /************************ivector *******************************/
    int *ivector(long nl,long nh)
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  {
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    int *v;
     newm=savm;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     /* Covariates have to be included here again */    if (!v) nrerror("allocation failure in ivector");
      cov[2]=agefin;    return v-nl+NR_END;
    }
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /******************free ivector **************************/
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  void free_ivector(int *v, long nl, long nh)
       }  {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free((FREE_ARG)(v+nl-NR_END));
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /************************lvector *******************************/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  long *lvector(long nl,long nh)
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  {
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    long *v;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
     savm=oldm;    return v-nl+NR_END;
     oldm=newm;  }
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /******************free lvector **************************/
       min=1.;  void free_lvector(long *v, long nl, long nh)
       max=0.;  {
       for(i=1; i<=nlstate; i++) {    free((FREE_ARG)(v+nl-NR_END));
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  /******************* imatrix *******************************/
         max=FMAX(max,prlim[i][j]);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         min=FMIN(min,prlim[i][j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       }  { 
       maxmin=max-min;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       maxmax=FMAX(maxmax,maxmin);    int **m; 
     }    
     if(maxmax < ftolpl){    /* allocate pointers to rows */ 
       return prlim;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
   }    m += NR_END; 
 }    m -= nrl; 
     
 /*************** transition probabilities ***************/    
     /* allocate rows and set pointers to them */ 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double s1, s2;    m[nrl] += NR_END; 
   /*double t34;*/    m[nrl] -= ncl; 
   int i,j,j1, nc, ii, jj;    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     for(i=1; i<= nlstate; i++){    
     for(j=1; j<i;j++){    /* return pointer to array of pointers to rows */ 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return m; 
         /*s2 += param[i][j][nc]*cov[nc];*/  } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /****************** free_imatrix *************************/
       }  void free_imatrix(m,nrl,nrh,ncl,nch)
       ps[i][j]=s2;        int **m;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        long nch,ncl,nrh,nrl; 
     }       /* free an int matrix allocated by imatrix() */ 
     for(j=i+1; j<=nlstate+ndeath;j++){  { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free((FREE_ARG) (m+nrl-NR_END)); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  } 
       }  
       ps[i][j]=s2;  /******************* matrix *******************************/
     }  double **matrix(long nrl, long nrh, long ncl, long nch)
   }  {
     /*ps[3][2]=1;*/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
   for(i=1; i<= nlstate; i++){  
      s1=0;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(j=1; j<i; j++)    if (!m) nrerror("allocation failure 1 in matrix()");
       s1+=exp(ps[i][j]);    m += NR_END;
     for(j=i+1; j<=nlstate+ndeath; j++)    m -= nrl;
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(j=1; j<i; j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl] += NR_END;
     for(j=i+1; j<=nlstate+ndeath; j++)    m[nrl] -= ncl;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   } /* end i */    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){     */
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   }  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /******************* ma3x *******************************/
    }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     printf("\n ");  {
     }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     printf("\n ");printf("%lf ",cov[2]);*/    double ***m;
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   goto end;*/    if (!m) nrerror("allocation failure 1 in matrix()");
     return ps;    m += NR_END;
 }    m -= nrl;
   
 /**************** Product of 2 matrices ******************/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      a pointer to pointers identical to out */    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   long i, j, k;    m[nrl][ncl] += NR_END;
   for(i=nrl; i<= nrh; i++)    m[nrl][ncl] -= nll;
     for(k=ncolol; k<=ncoloh; k++)    for (j=ncl+1; j<=nch; j++) 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      m[nrl][j]=m[nrl][j-1]+nlay;
         out[i][k] +=in[i][j]*b[j][k];    
     for (i=nrl+1; i<=nrh; i++) {
   return out;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 }      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
     }
 /************* Higher Matrix Product ***************/    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 {    */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  }
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /*************************free ma3x ************************/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
      (typically every 2 years instead of every month which is too big).  {
      Model is determined by parameters x and covariates have to be    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      included manually here.    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
      */  }
   
   int i, j, d, h, k;  /*************** function subdirf ***********/
   double **out, cov[NCOVMAX];  char *subdirf(char fileres[])
   double **newm;  {
     /* Caution optionfilefiname is hidden */
   /* Hstepm could be zero and should return the unit matrix */    strcpy(tmpout,optionfilefiname);
   for (i=1;i<=nlstate+ndeath;i++)    strcat(tmpout,"/"); /* Add to the right */
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,fileres);
       oldm[i][j]=(i==j ? 1.0 : 0.0);    return tmpout;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  }
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************** function subdirf2 ***********/
   for(h=1; h <=nhstepm; h++){  char *subdirf2(char fileres[], char *preop)
     for(d=1; d <=hstepm; d++){  {
       newm=savm;    
       /* Covariates have to be included here again */    /* Caution optionfilefiname is hidden */
       cov[1]=1.;    strcpy(tmpout,optionfilefiname);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    strcat(tmpout,"/");
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcat(tmpout,preop);
       for (k=1; k<=cptcovage;k++)    strcat(tmpout,fileres);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return tmpout;
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  {
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    /* Caution optionfilefiname is hidden */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    strcpy(tmpout,optionfilefiname);
       savm=oldm;    strcat(tmpout,"/");
       oldm=newm;    strcat(tmpout,preop);
     }    strcat(tmpout,preop2);
     for(i=1; i<=nlstate+ndeath; i++)    strcat(tmpout,fileres);
       for(j=1;j<=nlstate+ndeath;j++) {    return tmpout;
         po[i][j][h]=newm[i][j];  }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  /***************** f1dim *************************/
       }  extern int ncom; 
   } /* end h */  extern double *pcom,*xicom;
   return po;  extern double (*nrfunc)(double []); 
 }   
   double f1dim(double x) 
   { 
 /*************** log-likelihood *************/    int j; 
 double func( double *x)    double f;
 {    double *xt; 
   int i, ii, j, k, mi, d, kk;   
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    xt=vector(1,ncom); 
   double **out;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double sw; /* Sum of weights */    f=(*nrfunc)(xt); 
   double lli; /* Individual log likelihood */    free_vector(xt,1,ncom); 
   long ipmx;    return f; 
   /*extern weight */  } 
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /*****************brent *************************/
   /*for(i=1;i<imx;i++)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     printf(" %d\n",s[4][i]);  { 
   */    int iter; 
   cov[1]=1.;    double a,b,d,etemp;
     double fu,fv,fw,fx;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    double ftemp;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    double e=0.0; 
     for(mi=1; mi<= wav[i]-1; mi++){   
       for (ii=1;ii<=nlstate+ndeath;ii++)    a=(ax < cx ? ax : cx); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    b=(ax > cx ? ax : cx); 
       for(d=0; d<dh[mi][i]; d++){    x=w=v=bx; 
         newm=savm;    fw=fv=fx=(*f)(x); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    for (iter=1;iter<=ITMAX;iter++) { 
         for (kk=1; kk<=cptcovage;kk++) {      xm=0.5*(a+b); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
              printf(".");fflush(stdout);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      fprintf(ficlog,".");fflush(ficlog);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #ifdef DEBUG
         savm=oldm;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         oldm=newm;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
              /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
          #endif
       } /* end mult */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
              *xmin=x; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        return fx; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      } 
       ipmx +=1;      ftemp=fu;
       sw += weight[i];      if (fabs(e) > tol1) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        r=(x-w)*(fx-fv); 
     } /* end of wave */        q=(x-v)*(fx-fw); 
   } /* end of individual */        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        if (q > 0.0) p = -p; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        q=fabs(q); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        etemp=e; 
   return -l;        e=d; 
 }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
 /*********** Maximum Likelihood Estimation ***************/          d=p/q; 
           u=x+d; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          if (u-a < tol2 || b-u < tol2) 
 {            d=SIGN(tol1,xm-x); 
   int i,j, iter;        } 
   double **xi,*delti;      } else { 
   double fret;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   xi=matrix(1,npar,1,npar);      } 
   for (i=1;i<=npar;i++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     for (j=1;j<=npar;j++)      fu=(*f)(u); 
       xi[i][j]=(i==j ? 1.0 : 0.0);      if (fu <= fx) { 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        if (u >= x) a=x; else b=x; 
   powell(p,xi,npar,ftol,&iter,&fret,func);        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          } else { 
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            if (u < x) a=u; else b=u; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            if (fu <= fw || w == x) { 
               v=w; 
 }              w=u; 
               fv=fw; 
 /**** Computes Hessian and covariance matrix ***/              fw=fu; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            } else if (fu <= fv || v == x || v == w) { 
 {              v=u; 
   double  **a,**y,*x,pd;              fv=fu; 
   double **hess;            } 
   int i, j,jk;          } 
   int *indx;    } 
     nrerror("Too many iterations in brent"); 
   double hessii(double p[], double delta, int theta, double delti[]);    *xmin=x; 
   double hessij(double p[], double delti[], int i, int j);    return fx; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;  } 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   /****************** mnbrak ***********************/
   hess=matrix(1,npar,1,npar);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   printf("\nCalculation of the hessian matrix. Wait...\n");              double (*func)(double)) 
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  { 
   for (i=1;i<=npar;i++){    double ulim,u,r,q, dum;
     printf("%d",i);fflush(stdout);    double fu; 
     fprintf(ficlog,"%d",i);fflush(ficlog);   
     hess[i][i]=hessii(p,ftolhess,i,delti);    *fa=(*func)(*ax); 
     /*printf(" %f ",p[i]);*/    *fb=(*func)(*bx); 
     /*printf(" %lf ",hess[i][i]);*/    if (*fb > *fa) { 
   }      SHFT(dum,*ax,*bx,dum) 
          SHFT(dum,*fb,*fa,dum) 
   for (i=1;i<=npar;i++) {        } 
     for (j=1;j<=npar;j++)  {    *cx=(*bx)+GOLD*(*bx-*ax); 
       if (j>i) {    *fc=(*func)(*cx); 
         printf(".%d%d",i,j);fflush(stdout);    while (*fb > *fc) { 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);      r=(*bx-*ax)*(*fb-*fc); 
         hess[i][j]=hessij(p,delti,i,j);      q=(*bx-*cx)*(*fb-*fa); 
         hess[j][i]=hess[i][j];          u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         /*printf(" %lf ",hess[i][j]);*/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     }      if ((*bx-u)*(u-*cx) > 0.0) { 
   }        fu=(*func)(u); 
   printf("\n");      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   fprintf(ficlog,"\n");        fu=(*func)(u); 
         if (fu < *fc) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");            SHFT(*fb,*fc,fu,(*func)(u)) 
              } 
   a=matrix(1,npar,1,npar);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   y=matrix(1,npar,1,npar);        u=ulim; 
   x=vector(1,npar);        fu=(*func)(u); 
   indx=ivector(1,npar);      } else { 
   for (i=1;i<=npar;i++)        u=(*cx)+GOLD*(*cx-*bx); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        fu=(*func)(u); 
   ludcmp(a,npar,indx,&pd);      } 
       SHFT(*ax,*bx,*cx,u) 
   for (j=1;j<=npar;j++) {        SHFT(*fa,*fb,*fc,fu) 
     for (i=1;i<=npar;i++) x[i]=0;        } 
     x[j]=1;  } 
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /*************** linmin ************************/
       matcov[i][j]=x[i];  
     }  int ncom; 
   }  double *pcom,*xicom;
   double (*nrfunc)(double []); 
   printf("\n#Hessian matrix#\n");   
   fprintf(ficlog,"\n#Hessian matrix#\n");  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   for (i=1;i<=npar;i++) {  { 
     for (j=1;j<=npar;j++) {    double brent(double ax, double bx, double cx, 
       printf("%.3e ",hess[i][j]);                 double (*f)(double), double tol, double *xmin); 
       fprintf(ficlog,"%.3e ",hess[i][j]);    double f1dim(double x); 
     }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     printf("\n");                double *fc, double (*func)(double)); 
     fprintf(ficlog,"\n");    int j; 
   }    double xx,xmin,bx,ax; 
     double fx,fb,fa;
   /* Recompute Inverse */   
   for (i=1;i<=npar;i++)    ncom=n; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    pcom=vector(1,n); 
   ludcmp(a,npar,indx,&pd);    xicom=vector(1,n); 
     nrfunc=func; 
   /*  printf("\n#Hessian matrix recomputed#\n");    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   for (j=1;j<=npar;j++) {      xicom[j]=xi[j]; 
     for (i=1;i<=npar;i++) x[i]=0;    } 
     x[j]=1;    ax=0.0; 
     lubksb(a,npar,indx,x);    xx=1.0; 
     for (i=1;i<=npar;i++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       y[i][j]=x[i];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       printf("%.3e ",y[i][j]);  #ifdef DEBUG
       fprintf(ficlog,"%.3e ",y[i][j]);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     printf("\n");  #endif
     fprintf(ficlog,"\n");    for (j=1;j<=n;j++) { 
   }      xi[j] *= xmin; 
   */      p[j] += xi[j]; 
     } 
   free_matrix(a,1,npar,1,npar);    free_vector(xicom,1,n); 
   free_matrix(y,1,npar,1,npar);    free_vector(pcom,1,n); 
   free_vector(x,1,npar);  } 
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);  char *asc_diff_time(long time_sec, char ascdiff[])
   {
     long sec_left, days, hours, minutes;
 }    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
 /*************** hessian matrix ****************/    hours = (sec_left) / (60*60) ;
 double hessii( double x[], double delta, int theta, double delti[])    sec_left = (sec_left) %(60*60);
 {    minutes = (sec_left) /60;
   int i;    sec_left = (sec_left) % (60);
   int l=1, lmax=20;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   double k1,k2;    return ascdiff;
   double p2[NPARMAX+1];  }
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /*************** powell ************************/
   double fx;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   int k=0,kmax=10;              double (*func)(double [])) 
   double l1;  { 
     void linmin(double p[], double xi[], int n, double *fret, 
   fx=func(x);                double (*func)(double [])); 
   for (i=1;i<=npar;i++) p2[i]=x[i];    int i,ibig,j; 
   for(l=0 ; l <=lmax; l++){    double del,t,*pt,*ptt,*xit;
     l1=pow(10,l);    double fp,fptt;
     delts=delt;    double *xits;
     for(k=1 ; k <kmax; k=k+1){    int niterf, itmp;
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;    pt=vector(1,n); 
       k1=func(p2)-fx;    ptt=vector(1,n); 
       p2[theta]=x[theta]-delt;    xit=vector(1,n); 
       k2=func(p2)-fx;    xits=vector(1,n); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    *fret=(*func)(p); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    for (j=1;j<=n;j++) pt[j]=p[j]; 
          for (*iter=1;;++(*iter)) { 
 #ifdef DEBUG      fp=(*fret); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      ibig=0; 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      del=0.0; 
 #endif      last_time=curr_time;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      (void) gettimeofday(&curr_time,&tzp);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         k=kmax;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */     for (i=1;i<=n;i++) {
         k=kmax; l=lmax*10.;        printf(" %d %.12f",i, p[i]);
       }        fprintf(ficlog," %d %.12lf",i, p[i]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        fprintf(ficrespow," %.12lf", p[i]);
         delts=delt;      }
       }      printf("\n");
     }      fprintf(ficlog,"\n");
   }      fprintf(ficrespow,"\n");fflush(ficrespow);
   delti[theta]=delts;      if(*iter <=3){
   return res;        tm = *localtime(&curr_time.tv_sec);
          strcpy(strcurr,asctime(&tm));
 }  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
 double hessij( double x[], double delti[], int thetai,int thetaj)        itmp = strlen(strcurr);
 {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   int i;          strcurr[itmp-1]='\0';
   int l=1, l1, lmax=20;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double k1,k2,k3,k4,res,fx;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double p2[NPARMAX+1];        for(niterf=10;niterf<=30;niterf+=10){
   int k;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
   fx=func(x);  /*      asctime_r(&tmf,strfor); */
   for (k=1; k<=2; k++) {          strcpy(strfor,asctime(&tmf));
     for (i=1;i<=npar;i++) p2[i]=x[i];          itmp = strlen(strfor);
     p2[thetai]=x[thetai]+delti[thetai]/k;          if(strfor[itmp-1]=='\n')
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          strfor[itmp-1]='\0';
     k1=func(p2)-fx;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
            fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      }
     k2=func(p2)-fx;      for (i=1;i<=n;i++) { 
          for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     p2[thetai]=x[thetai]-delti[thetai]/k;        fptt=(*fret); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  #ifdef DEBUG
     k3=func(p2)-fx;        printf("fret=%lf \n",*fret);
          fprintf(ficlog,"fret=%lf \n",*fret);
     p2[thetai]=x[thetai]-delti[thetai]/k;  #endif
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        printf("%d",i);fflush(stdout);
     k4=func(p2)-fx;        fprintf(ficlog,"%d",i);fflush(ficlog);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        linmin(p,xit,n,fret,func); 
 #ifdef DEBUG        if (fabs(fptt-(*fret)) > del) { 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          del=fabs(fptt-(*fret)); 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          ibig=i; 
 #endif        } 
   }  #ifdef DEBUG
   return res;        printf("%d %.12e",i,(*fret));
 }        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
 /************** Inverse of matrix **************/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 void ludcmp(double **a, int n, int *indx, double *d)          printf(" x(%d)=%.12e",j,xit[j]);
 {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   int i,imax,j,k;        }
   double big,dum,sum,temp;        for(j=1;j<=n;j++) {
   double *vv;          printf(" p=%.12e",p[j]);
            fprintf(ficlog," p=%.12e",p[j]);
   vv=vector(1,n);        }
   *d=1.0;        printf("\n");
   for (i=1;i<=n;i++) {        fprintf(ficlog,"\n");
     big=0.0;  #endif
     for (j=1;j<=n;j++)      } 
       if ((temp=fabs(a[i][j])) > big) big=temp;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  #ifdef DEBUG
     vv[i]=1.0/big;        int k[2],l;
   }        k[0]=1;
   for (j=1;j<=n;j++) {        k[1]=-1;
     for (i=1;i<j;i++) {        printf("Max: %.12e",(*func)(p));
       sum=a[i][j];        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for (j=1;j<=n;j++) {
       a[i][j]=sum;          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
     big=0.0;        }
     for (i=j;i<=n;i++) {        printf("\n");
       sum=a[i][j];        fprintf(ficlog,"\n");
       for (k=1;k<j;k++)        for(l=0;l<=1;l++) {
         sum -= a[i][k]*a[k][j];          for (j=1;j<=n;j++) {
       a[i][j]=sum;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       if ( (dum=vv[i]*fabs(sum)) >= big) {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         big=dum;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         imax=i;          }
       }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     if (j != imax) {        }
       for (k=1;k<=n;k++) {  #endif
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  
         a[j][k]=dum;        free_vector(xit,1,n); 
       }        free_vector(xits,1,n); 
       *d = -(*d);        free_vector(ptt,1,n); 
       vv[imax]=vv[j];        free_vector(pt,1,n); 
     }        return; 
     indx[j]=imax;      } 
     if (a[j][j] == 0.0) a[j][j]=TINY;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     if (j != n) {      for (j=1;j<=n;j++) { 
       dum=1.0/(a[j][j]);        ptt[j]=2.0*p[j]-pt[j]; 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        xit[j]=p[j]-pt[j]; 
     }        pt[j]=p[j]; 
   }      } 
   free_vector(vv,1,n);  /* Doesn't work */      fptt=(*func)(ptt); 
 ;      if (fptt < fp) { 
 }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
 void lubksb(double **a, int n, int *indx, double b[])          linmin(p,xit,n,fret,func); 
 {          for (j=1;j<=n;j++) { 
   int i,ii=0,ip,j;            xi[j][ibig]=xi[j][n]; 
   double sum;            xi[j][n]=xit[j]; 
            }
   for (i=1;i<=n;i++) {  #ifdef DEBUG
     ip=indx[i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     sum=b[ip];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     b[ip]=b[i];          for(j=1;j<=n;j++){
     if (ii)            printf(" %.12e",xit[j]);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            fprintf(ficlog," %.12e",xit[j]);
     else if (sum) ii=i;          }
     b[i]=sum;          printf("\n");
   }          fprintf(ficlog,"\n");
   for (i=n;i>=1;i--) {  #endif
     sum=b[i];        }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      } 
     b[i]=sum/a[i][i];    } 
   }  } 
 }  
   /**** Prevalence limit (stable or period prevalence)  ****************/
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  /* Some frequencies */  {
      /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;       matrix by transitions matrix until convergence is reached */
   int first;  
   double ***freq; /* Frequencies */    int i, ii,j,k;
   double *pp;    double min, max, maxmin, maxmax,sumnew=0.;
   double pos, k2, dateintsum=0,k2cpt=0;    double **matprod2();
   FILE *ficresp;    double **out, cov[NCOVMAX+1], **pmij();
   char fileresp[FILENAMELENGTH];    double **newm;
      double agefin, delaymax=50 ; /* Max number of years to converge */
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (ii=1;ii<=nlstate+ndeath;ii++)
   strcpy(fileresp,"p");      for (j=1;j<=nlstate+ndeath;j++){
   strcat(fileresp,fileres);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((ficresp=fopen(fileresp,"w"))==NULL) {      }
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);     cov[1]=1.;
     exit(0);   
   }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   j1=0;      newm=savm;
        /* Covariates have to be included here again */
   j=cptcoveff;       cov[2]=agefin;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    
         for (k=1; k<=cptcovn;k++) {
   first=1;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   for(k1=1; k1<=j;k1++){        }
     for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       j1++;        for (k=1; k<=cptcovprod;k++)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         scanf("%d", i);*/  
       for (i=-1; i<=nlstate+ndeath; i++)          /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         for (jk=-1; jk<=nlstate+ndeath; jk++)          /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           for(m=agemin; m <= agemax+3; m++)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
             freq[i][jk][m]=0;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
        
       dateintsum=0;      savm=oldm;
       k2cpt=0;      oldm=newm;
       for (i=1; i<=imx; i++) {      maxmax=0.;
         bool=1;      for(j=1;j<=nlstate;j++){
         if  (cptcovn>0) {        min=1.;
           for (z1=1; z1<=cptcoveff; z1++)        max=0.;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for(i=1; i<=nlstate; i++) {
               bool=0;          sumnew=0;
         }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         if (bool==1) {          prlim[i][j]= newm[i][j]/(1-sumnew);
           for(m=firstpass; m<=lastpass; m++){          max=FMAX(max,prlim[i][j]);
             k2=anint[m][i]+(mint[m][i]/12.);          min=FMIN(min,prlim[i][j]);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        }
               if(agev[m][i]==0) agev[m][i]=agemax+1;        maxmin=max-min;
               if(agev[m][i]==1) agev[m][i]=agemax+2;        maxmax=FMAX(maxmax,maxmin);
               if (m<lastpass) {      }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      if(maxmax < ftolpl){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        return prlim;
               }      }
                  }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  }
                 dateintsum=dateintsum+k2;  
                 k2cpt++;  /*************** transition probabilities ***************/ 
               }  
             }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           }  {
         }    double s1, s2;
       }    /*double t34;*/
            int i,j,j1, nc, ii, jj;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
       for(i=1; i<= nlstate; i++){
       if  (cptcovn>0) {        for(j=1; j<i;j++){
         fprintf(ficresp, "\n#********** Variable ");          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            /*s2 += param[i][j][nc]*cov[nc];*/
         fprintf(ficresp, "**********\n#");            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       for(i=1; i<=nlstate;i++)          }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          ps[i][j]=s2;
       fprintf(ficresp, "\n");  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
              }
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for(j=i+1; j<=nlstate+ndeath;j++){
         if(i==(int)agemax+3){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           fprintf(ficlog,"Total");            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         }else{  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           if(first==1){          }
             first=0;          ps[i][j]=s2;
             printf("See log file for details...\n");        }
           }      }
           fprintf(ficlog,"Age %d", i);      /*ps[3][2]=1;*/
         }      
         for(jk=1; jk <=nlstate ; jk++){      for(i=1; i<= nlstate; i++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        s1=0;
             pp[jk] += freq[jk][m][i];        for(j=1; j<i; j++){
         }          s1+=exp(ps[i][j]);
         for(jk=1; jk <=nlstate ; jk++){          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           for(m=-1, pos=0; m <=0 ; m++)        }
             pos += freq[jk][m][i];        for(j=i+1; j<=nlstate+ndeath; j++){
           if(pp[jk]>=1.e-10){          s1+=exp(ps[i][j]);
             if(first==1){          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        }
             }        ps[i][i]=1./(s1+1.);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for(j=1; j<i; j++)
           }else{          ps[i][j]= exp(ps[i][j])*ps[i][i];
             if(first==1)        for(j=i+1; j<=nlstate+ndeath; j++)
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          ps[i][j]= exp(ps[i][j])*ps[i][i];
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           }      } /* end i */
         }      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jk=1; jk <=nlstate ; jk++){        for(jj=1; jj<= nlstate+ndeath; jj++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          ps[ii][jj]=0;
             pp[jk] += freq[jk][m][i];          ps[ii][ii]=1;
         }        }
       }
         for(jk=1,pos=0; jk <=nlstate ; jk++)      
           pos += pp[jk];  
         for(jk=1; jk <=nlstate ; jk++){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           if(pos>=1.e-5){  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
             if(first==1)  /*         printf("ddd %lf ",ps[ii][jj]); */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  /*       } */
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  /*       printf("\n "); */
           }else{  /*        } */
             if(first==1)  /*        printf("\n ");printf("%lf ",cov[2]); */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);         /*
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           }        goto end;*/
           if( i <= (int) agemax){      return ps;
             if(pos>=1.e-5){  }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;  /**************** Product of 2 matrices ******************/
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  
             }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
             else  {
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         }    /* in, b, out are matrice of pointers which should have been initialized 
               before: only the contents of out is modified. The function returns
         for(jk=-1; jk <=nlstate+ndeath; jk++)       a pointer to pointers identical to out */
           for(m=-1; m <=nlstate+ndeath; m++)    long i, j, k;
             if(freq[jk][m][i] !=0 ) {    for(i=nrl; i<= nrh; i++)
             if(first==1)      for(k=ncolol; k<=ncoloh; k++)
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          out[i][k] +=in[i][j]*b[j][k];
             }  
         if(i <= (int) agemax)    return out;
           fprintf(ficresp,"\n");  }
         if(first==1)  
           printf("Others in log...\n");  
         fprintf(ficlog,"\n");  /************* Higher Matrix Product ***************/
       }  
     }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   }  {
   dateintmean=dateintsum/k2cpt;    /* Computes the transition matrix starting at age 'age' over 
         'nhstepm*hstepm*stepm' months (i.e. until
   fclose(ficresp);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);       nhstepm*hstepm matrices. 
   free_vector(pp,1,nlstate);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         (typically every 2 years instead of every month which is too big 
   /* End of Freq */       for the memory).
 }       Model is determined by parameters x and covariates have to be 
        included manually here. 
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)       */
 {  /* Some frequencies */  
      int i, j, d, h, k;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    double **out, cov[NCOVMAX+1];
   double ***freq; /* Frequencies */    double **newm;
   double *pp;  
   double pos, k2;    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
   pp=vector(1,nlstate);      for (j=1;j<=nlstate+ndeath;j++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        oldm[i][j]=(i==j ? 1.0 : 0.0);
          po[i][j][0]=(i==j ? 1.0 : 0.0);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      }
   j1=0;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(h=1; h <=nhstepm; h++){
   j=cptcoveff;      for(d=1; d <=hstepm; d++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        newm=savm;
          /* Covariates have to be included here again */
   for(k1=1; k1<=j;k1++){        cov[1]=1.;
     for(i1=1; i1<=ncodemax[k1];i1++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       j1++;        for (k=1; k<=cptcovn;k++) 
                cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovage;k++)
         for (jk=-1; jk<=nlstate+ndeath; jk++)            cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for(m=agemin; m <= agemax+3; m++)        for (k=1; k<=cptcovprod;k++)
             freq[i][jk][m]=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        
       for (i=1; i<=imx; i++) {  
         bool=1;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         if  (cptcovn>0) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           for (z1=1; z1<=cptcoveff; z1++)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])                     pmij(pmmij,cov,ncovmodel,x,nlstate));
               bool=0;        savm=oldm;
         }        oldm=newm;
         if (bool==1) {      }
           for(m=firstpass; m<=lastpass; m++){      for(i=1; i<=nlstate+ndeath; i++)
             k2=anint[m][i]+(mint[m][i]/12.);        for(j=1;j<=nlstate+ndeath;j++) {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          po[i][j][h]=newm[i][j];
               if(agev[m][i]==0) agev[m][i]=agemax+1;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
               if(agev[m][i]==1) agev[m][i]=agemax+2;        }
               if (m<lastpass) {      /*printf("h=%d ",h);*/
                 if (calagedate>0)    } /* end h */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  /*     printf("\n H=%d \n",h); */
                 else    return po;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  }
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  
               }  
             }  /*************** log-likelihood *************/
           }  double func( double *x)
         }  {
       }    int i, ii, j, k, mi, d, kk;
       for(i=(int)agemin; i <= (int)agemax+3; i++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         for(jk=1; jk <=nlstate ; jk++){    double **out;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double sw; /* Sum of weights */
             pp[jk] += freq[jk][m][i];    double lli; /* Individual log likelihood */
         }    int s1, s2;
         for(jk=1; jk <=nlstate ; jk++){    double bbh, survp;
           for(m=-1, pos=0; m <=0 ; m++)    long ipmx;
             pos += freq[jk][m][i];    /*extern weight */
         }    /* We are differentiating ll according to initial status */
            /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for(jk=1; jk <=nlstate ; jk++){    /*for(i=1;i<imx;i++) 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      printf(" %d\n",s[4][i]);
             pp[jk] += freq[jk][m][i];    */
         }    cov[1]=1.;
          
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    for(k=1; k<=nlstate; k++) ll[k]=0.;
          
         for(jk=1; jk <=nlstate ; jk++){        if(mle==1){
           if( i <= (int) agemax){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if(pos>=1.e-5){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               probs[i][jk][j1]= pp[jk]/pos;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
             }           is 6, Tvar[3=age*V3] should not been computed because of age Tvar[4=V3*V2] 
           }           has been calculated etc */
         }/* end jk */        for(mi=1; mi<= wav[i]-1; mi++){
       }/* end i */          for (ii=1;ii<=nlstate+ndeath;ii++)
     } /* end i1 */            for (j=1;j<=nlstate+ndeath;j++){
   } /* end k1 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          for(d=0; d<dh[mi][i]; d++){
   free_vector(pp,1,nlstate);            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }  /* End of Freq */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 /************* Waves Concatenation ***************/            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            oldm=newm;
      Death is a valid wave (if date is known).          } /* end mult */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
      and mw[mi+1][i]. dh depends on stepm.          /* But now since version 0.9 we anticipate for bias at large stepm.
      */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
   int i, mi, m;           * the nearest (and in case of equal distance, to the lowest) interval but now
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
      double sum=0., jmean=0.;*/           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   int first;           * probability in order to take into account the bias as a fraction of the way
   int j, k=0,jk, ju, jl;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   double sum=0.;           * -stepm/2 to stepm/2 .
   first=0;           * For stepm=1 the results are the same as for previous versions of Imach.
   jmin=1e+5;           * For stepm > 1 the results are less biased than in previous versions. 
   jmax=-1;           */
   jmean=0.;          s1=s[mw[mi][i]][i];
   for(i=1; i<=imx; i++){          s2=s[mw[mi+1][i]][i];
     mi=0;          bbh=(double)bh[mi][i]/(double)stepm; 
     m=firstpass;          /* bias bh is positive if real duration
     while(s[m][i] <= nlstate){           * is higher than the multiple of stepm and negative otherwise.
       if(s[m][i]>=1)           */
         mw[++mi][i]=m;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       if(m >=lastpass)          if( s2 > nlstate){ 
         break;            /* i.e. if s2 is a death state and if the date of death is known 
       else               then the contribution to the likelihood is the probability to 
         m++;               die between last step unit time and current  step unit time, 
     }/* end while */               which is also equal to probability to die before dh 
     if (s[m][i] > nlstate){               minus probability to die before dh-stepm . 
       mi++;     /* Death is another wave */               In version up to 0.92 likelihood was computed
       /* if(mi==0)  never been interviewed correctly before death */          as if date of death was unknown. Death was treated as any other
          /* Only death is a correct wave */          health state: the date of the interview describes the actual state
       mw[mi][i]=m;          and not the date of a change in health state. The former idea was
     }          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
     wav[i]=mi;          introduced the exact date of death then we should have modified
     if(mi==0){          the contribution of an exact death to the likelihood. This new
       if(first==0){          contribution is smaller and very dependent of the step unit
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);          stepm. It is no more the probability to die between last interview
         first=1;          and month of death but the probability to survive from last
       }          interview up to one month before death multiplied by the
       if(first==1){          probability to die within a month. Thanks to Chris
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);          Jackson for correcting this bug.  Former versions increased
       }          mortality artificially. The bad side is that we add another loop
     } /* end mi==0 */          which slows down the processing. The difference can be up to 10%
   }          lower mortality.
             */
   for(i=1; i<=imx; i++){            lli=log(out[s1][s2] - savm[s1][s2]);
     for(mi=1; mi<wav[i];mi++){  
       if (stepm <=0)  
         dh[mi][i]=1;          } else if  (s2==-2) {
       else{            for (j=1,survp=0. ; j<=nlstate; j++) 
         if (s[mw[mi+1][i]][i] > nlstate) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           if (agedc[i] < 2*AGESUP) {            /*survp += out[s1][j]; */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            lli= log(survp);
           if(j==0) j=1;  /* Survives at least one month after exam */          }
           k=k+1;          
           if (j >= jmax) jmax=j;          else if  (s2==-4) { 
           if (j <= jmin) jmin=j;            for (j=3,survp=0. ; j<=nlstate; j++)  
           sum=sum+j;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            lli= log(survp); 
           }          } 
         }  
         else{          else if  (s2==-5) { 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            for (j=1,survp=0. ; j<=2; j++)  
           k=k+1;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           if (j >= jmax) jmax=j;            lli= log(survp); 
           else if (j <= jmin)jmin=j;          } 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          
           sum=sum+j;          else{
         }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         jk= j/stepm;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         jl= j -jk*stepm;          } 
         ju= j -(jk+1)*stepm;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         if(jl <= -ju)          /*if(lli ==000.0)*/
           dh[mi][i]=jk;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         else          ipmx +=1;
           dh[mi][i]=jk+1;          sw += weight[i];
         if(dh[mi][i]==0)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           dh[mi][i]=1; /* At least one step */        } /* end of wave */
       }      } /* end of individual */
     }    }  else if(mle==2){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   jmean=sum/k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          for (ii=1;ii<=nlstate+ndeath;ii++)
  }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*********** Tricode ****************************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void tricode(int *Tvar, int **nbcode, int imx)            }
 {          for(d=0; d<=dh[mi][i]; d++){
   int Ndum[20],ij=1, k, j, i;            newm=savm;
   int cptcode=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   cptcoveff=0;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (k=0; k<19; k++) Ndum[k]=0;            }
   for (k=1; k<=7; k++) ncodemax[k]=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            savm=oldm;
     for (i=1; i<=imx; i++) {            oldm=newm;
       ij=(int)(covar[Tvar[j]][i]);          } /* end mult */
       Ndum[ij]++;        
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          s1=s[mw[mi][i]][i];
       if (ij > cptcode) cptcode=ij;          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for (i=0; i<=cptcode; i++) {          ipmx +=1;
       if(Ndum[i]!=0) ncodemax[j]++;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     ij=1;        } /* end of wave */
       } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
     for (i=1; i<=ncodemax[j]; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=0; k<=19; k++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (Ndum[k] != 0) {        for(mi=1; mi<= wav[i]-1; mi++){
           nbcode[Tvar[j]][ij]=k;          for (ii=1;ii<=nlstate+ndeath;ii++)
                      for (j=1;j<=nlstate+ndeath;j++){
           ij++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (ij > ncodemax[j]) break;            }
       }            for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
   }              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
  for (k=0; k<19; k++) Ndum[k]=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
  for (i=1; i<=ncovmodel-2; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    ij=Tvar[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    Ndum[ij]++;            savm=oldm;
  }            oldm=newm;
           } /* end mult */
  ij=1;        
  for (i=1; i<=10; i++) {          s1=s[mw[mi][i]][i];
    if((Ndum[i]!=0) && (i<=ncovcol)){          s2=s[mw[mi+1][i]][i];
      Tvaraff[ij]=i;          bbh=(double)bh[mi][i]/(double)stepm; 
      ij++;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
    }          ipmx +=1;
  }          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  cptcoveff=ij-1;        } /* end of wave */
 }      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
 /*********** Health Expectancies ****************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Health expectancies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age, agelim, hf;            }
   double ***p3mat,***varhe;          for(d=0; d<dh[mi][i]; d++){
   double **dnewm,**doldm;            newm=savm;
   double *xp;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **gp, **gm;            for (kk=1; kk<=cptcovage;kk++) {
   double ***gradg, ***trgradg;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int theta;            }
           
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   xp=vector(1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   dnewm=matrix(1,nlstate*2,1,npar);            savm=oldm;
   doldm=matrix(1,nlstate*2,1,nlstate*2);            oldm=newm;
            } /* end mult */
   fprintf(ficreseij,"# Health expectancies\n");        
   fprintf(ficreseij,"# Age");          s1=s[mw[mi][i]][i];
   for(i=1; i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
     for(j=1; j<=nlstate;j++)          if( s2 > nlstate){ 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            lli=log(out[s1][s2] - savm[s1][s2]);
   fprintf(ficreseij,"\n");          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   if(estepm < stepm){          }
     printf ("Problem %d lower than %d\n",estepm, stepm);          ipmx +=1;
   }          sw += weight[i];
   else  hstepm=estepm;            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* We compute the life expectancy from trapezoids spaced every estepm months  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    * This is mainly to measure the difference between two models: for example        } /* end of wave */
    * if stepm=24 months pijx are given only every 2 years and by summing them      } /* end of individual */
    * we are calculating an estimate of the Life Expectancy assuming a linear    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
    * progression inbetween and thus overestimating or underestimating according      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    * to the curvature of the survival function. If, for the same date, we        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        for(mi=1; mi<= wav[i]-1; mi++){
    * to compare the new estimate of Life expectancy with the same linear          for (ii=1;ii<=nlstate+ndeath;ii++)
    * hypothesis. A more precise result, taking into account a more precise            for (j=1;j<=nlstate+ndeath;j++){
    * curvature will be obtained if estepm is as small as stepm. */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* For example we decided to compute the life expectancy with the smallest unit */            }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          for(d=0; d<dh[mi][i]; d++){
      nhstepm is the number of hstepm from age to agelim            newm=savm;
      nstepm is the number of stepm from age to agelin.            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      Look at hpijx to understand the reason of that which relies in memory size            for (kk=1; kk<=cptcovage;kk++) {
      and note for a fixed period like estepm months */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            }
      survival function given by stepm (the optimization length). Unfortunately it          
      means that if the survival funtion is printed only each two years of age and if            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      results. So we changed our mind and took the option of the best precision.            savm=oldm;
   */            oldm=newm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          } /* end mult */
         
   agelim=AGESUP;          s1=s[mw[mi][i]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          s2=s[mw[mi+1][i]][i];
     /* nhstepm age range expressed in number of stepm */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          ipmx +=1;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          sw += weight[i];
     /* if (stepm >= YEARM) hstepm=1;*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } /* end of wave */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      } /* end of individual */
     gp=matrix(0,nhstepm,1,nlstate*2);    } /* End of if */
     gm=matrix(0,nhstepm,1,nlstate*2);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    return -l;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    }
    
   /*************** log-likelihood *************/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  double funcone( double *x)
   {
     /* Computing Variances of health expectancies */    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
      for(theta=1; theta <=npar; theta++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       for(i=1; i<=npar; i++){    double **out;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double lli; /* Individual log likelihood */
       }    double llt;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int s1, s2;
      double bbh, survp;
       cptj=0;    /*extern weight */
       for(j=1; j<= nlstate; j++){    /* We are differentiating ll according to initial status */
         for(i=1; i<=nlstate; i++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           cptj=cptj+1;    /*for(i=1;i<imx;i++) 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      printf(" %d\n",s[4][i]);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    */
           }    cov[1]=1.;
         }  
       }    for(k=1; k<=nlstate; k++) ll[k]=0.;
        
          for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1; i<=npar; i++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(mi=1; mi<= wav[i]-1; mi++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (ii=1;ii<=nlstate+ndeath;ii++)
                for (j=1;j<=nlstate+ndeath;j++){
       cptj=0;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1;i<=nlstate;i++){          }
           cptj=cptj+1;        for(d=0; d<dh[mi][i]; d++){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          newm=savm;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }          for (kk=1; kk<=cptcovage;kk++) {
         }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }          }
       for(j=1; j<= nlstate*2; j++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(h=0; h<=nhstepm-1; h++){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          savm=oldm;
         }          oldm=newm;
      }        } /* end mult */
            
 /* End theta */        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
      for(h=0; h<=nhstepm-1; h++)         * is higher than the multiple of stepm and negative otherwise.
       for(j=1; j<=nlstate*2;j++)         */
         for(theta=1; theta <=npar; theta++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           trgradg[h][j][theta]=gradg[h][theta][j];          lli=log(out[s1][s2] - savm[s1][s2]);
              } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
      for(i=1;i<=nlstate*2;i++)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=1;j<=nlstate*2;j++)          lli= log(survp);
         varhe[i][j][(int)age] =0.;        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      printf("%d|",(int)age);fflush(stdout);        } else if(mle==2){
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      for(h=0;h<=nhstepm-1;h++){        } else if(mle==3){  /* exponential inter-extrapolation */
       for(k=0;k<=nhstepm-1;k++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          lli=log(out[s1][s2]); /* Original formula */
         for(i=1;i<=nlstate*2;i++)        } else{  /* mle=0 back to 1 */
           for(j=1;j<=nlstate*2;j++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          /*lli=log(out[s1][s2]); */ /* Original formula */
       }        } /* End of if */
     }        ipmx +=1;
     /* Computing expectancies */        sw += weight[i];
     for(i=1; i<=nlstate;i++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<=nlstate;j++)        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        if(globpr){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
             %11.6f %11.6f %11.6f ", \
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
     fprintf(ficreseij,"%3.0f",age );            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     cptj=0;          }
     for(i=1; i<=nlstate;i++)          fprintf(ficresilk," %10.6f\n", -llt);
       for(j=1; j<=nlstate;j++){        }
         cptj++;      } /* end of wave */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    } /* end of individual */
       }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     fprintf(ficreseij,"\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
        l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     free_matrix(gm,0,nhstepm,1,nlstate*2);    if(globpr==0){ /* First time we count the contributions and weights */
     free_matrix(gp,0,nhstepm,1,nlstate*2);      gipmx=ipmx;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      gsw=sw;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    return -l;
   }  }
   printf("\n");  
   fprintf(ficlog,"\n");  
   /*************** function likelione ***********/
   free_vector(xp,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   free_matrix(dnewm,1,nlstate*2,1,npar);  {
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    /* This routine should help understanding what is done with 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);       the selection of individuals/waves and
 }       to check the exact contribution to the likelihood.
        Plotting could be done.
 /************ Variance ******************/     */
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)    int k;
 {  
   /* Variance of health expectancies */    if(*globpri !=0){ /* Just counts and sums, no printings */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      strcpy(fileresilk,"ilk"); 
   /* double **newm;*/      strcat(fileresilk,fileres);
   double **dnewm,**doldm;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double **dnewmp,**doldmp;        printf("Problem with resultfile: %s\n", fileresilk);
   int i, j, nhstepm, hstepm, h, nstepm ;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   int k, cptcode;      }
   double *xp;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double **gp, **gm;  /* for var eij */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double ***gradg, ***trgradg; /*for var eij */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double **gradgp, **trgradgp; /* for var p point j */      for(k=1; k<=nlstate; k++) 
   double *gpp, *gmp; /* for var p point j */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   double ***p3mat;    }
   double age,agelim, hf;  
   int theta;    *fretone=(*funcone)(p);
   char digit[4];    if(*globpri !=0){
   char digitp[16];      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   char fileresprobmorprev[FILENAMELENGTH];      fflush(fichtm); 
     } 
   if(popbased==1)    return;
     strcpy(digitp,"-populbased-");  }
   else  
     strcpy(digitp,"-stablbased-");  
   /*********** Maximum Likelihood Estimation ***************/
   strcpy(fileresprobmorprev,"prmorprev");  
   sprintf(digit,"%-d",ij);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/  {
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    int i,j, iter;
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    double **xi;
   strcat(fileresprobmorprev,fileres);    double fret;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    double fretone; /* Only one call to likelihood */
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    /*  char filerespow[FILENAMELENGTH];*/
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    xi=matrix(1,npar,1,npar);
   }    for (i=1;i<=npar;i++)
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      for (j=1;j<=npar;j++)
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        xi[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    strcpy(filerespow,"pow"); 
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    strcat(filerespow,fileres);
     fprintf(ficresprobmorprev," p.%-d SE",j);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     for(i=1; i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   }      }
   fprintf(ficresprobmorprev,"\n");    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    for (i=1;i<=nlstate;i++)
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      for(j=1;j<=nlstate+ndeath;j++)
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     exit(0);    fprintf(ficrespow,"\n");
   }  
   else{    powell(p,xi,npar,ftol,&iter,&fret,func);
     fprintf(ficgp,"\n# Routine varevsij");  
   }    free_matrix(xi,1,npar,1,npar);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    fclose(ficrespow);
     printf("Problem with html file: %s\n", optionfilehtm);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     exit(0);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   }  
   else{  }
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");  
   }  /**** Computes Hessian and covariance matrix ***/
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    double  **a,**y,*x,pd;
   fprintf(ficresvij,"# Age");    double **hess;
   for(i=1; i<=nlstate;i++)    int i, j,jk;
     for(j=1; j<=nlstate;j++)    int *indx;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   xp=vector(1,npar);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   dnewm=matrix(1,nlstate,1,npar);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   doldm=matrix(1,nlstate,1,nlstate);    double gompertz(double p[]);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    hess=matrix(1,npar,1,npar);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
     printf("\nCalculation of the hessian matrix. Wait...\n");
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   gpp=vector(nlstate+1,nlstate+ndeath);    for (i=1;i<=npar;i++){
   gmp=vector(nlstate+1,nlstate+ndeath);      printf("%d",i);fflush(stdout);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      fprintf(ficlog,"%d",i);fflush(ficlog);
       
   if(estepm < stepm){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     printf ("Problem %d lower than %d\n",estepm, stepm);      
   }      /*  printf(" %f ",p[i]);
   else  hstepm=estepm;            printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   /* For example we decided to compute the life expectancy with the smallest unit */    }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    
      nhstepm is the number of hstepm from age to agelim    for (i=1;i<=npar;i++) {
      nstepm is the number of stepm from age to agelin.      for (j=1;j<=npar;j++)  {
      Look at hpijx to understand the reason of that which relies in memory size        if (j>i) { 
      and note for a fixed period like k years */          printf(".%d%d",i,j);fflush(stdout);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      survival function given by stepm (the optimization length). Unfortunately it          hess[i][j]=hessij(p,delti,i,j,func,npar);
      means that if the survival funtion is printed only each two years of age and if          
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          hess[j][i]=hess[i][j];    
      results. So we changed our mind and took the option of the best precision.          /*printf(" %lf ",hess[i][j]);*/
   */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      }
   agelim = AGESUP;    }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    printf("\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficlog,"\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     gp=matrix(0,nhstepm,1,nlstate);    
     gm=matrix(0,nhstepm,1,nlstate);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     x=vector(1,npar);
     for(theta=1; theta <=npar; theta++){    indx=ivector(1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    for (i=1;i<=npar;i++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       }    ludcmp(a,npar,indx,&pd);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
       if (popbased==1) {      x[j]=1;
         for(i=1; i<=nlstate;i++)      lubksb(a,npar,indx,x);
           prlim[i][i]=probs[(int)age][i][ij];      for (i=1;i<=npar;i++){ 
       }        matcov[i][j]=x[i];
        }
       for(j=1; j<= nlstate; j++){    }
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    printf("\n#Hessian matrix#\n");
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    fprintf(ficlog,"\n#Hessian matrix#\n");
         }    for (i=1;i<=npar;i++) { 
       }      for (j=1;j<=npar;j++) { 
       /* This for computing forces of mortality (h=1)as a weighted average */        printf("%.3e ",hess[i][j]);
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){        fprintf(ficlog,"%.3e ",hess[i][j]);
         for(i=1; i<= nlstate; i++)      }
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      printf("\n");
       }          fprintf(ficlog,"\n");
       /* end force of mortality */    }
   
       for(i=1; i<=npar; i++) /* Computes gradient */    /* Recompute Inverse */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    ludcmp(a,npar,indx,&pd);
    
       if (popbased==1) {    /*  printf("\n#Hessian matrix recomputed#\n");
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
       for(j=1; j<= nlstate; j++){      lubksb(a,npar,indx,x);
         for(h=0; h<=nhstepm; h++){      for (i=1;i<=npar;i++){ 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        y[i][j]=x[i];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        printf("%.3e ",y[i][j]);
         }        fprintf(ficlog,"%.3e ",y[i][j]);
       }      }
       /* This for computing force of mortality (h=1)as a weighted average */      printf("\n");
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      fprintf(ficlog,"\n");
         for(i=1; i<= nlstate; i++)    }
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    */
       }      
       /* end force of mortality */    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
       for(j=1; j<= nlstate; j++) /* vareij */    free_vector(x,1,npar);
         for(h=0; h<=nhstepm; h++){    free_ivector(indx,1,npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    free_matrix(hess,1,npar,1,npar);
         }  
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */  
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];  }
       }  
   /*************** hessian matrix ****************/
     } /* End theta */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    int i;
     int l=1, lmax=20;
     for(h=0; h<=nhstepm; h++) /* veij */    double k1,k2;
       for(j=1; j<=nlstate;j++)    double p2[MAXPARM+1]; /* identical to x */
         for(theta=1; theta <=npar; theta++)    double res;
           trgradg[h][j][theta]=gradg[h][theta][j];    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    int k=0,kmax=10;
       for(theta=1; theta <=npar; theta++)    double l1;
         trgradgp[j][theta]=gradgp[theta][j];  
     fx=func(x);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(i=1;i<=nlstate;i++)    for(l=0 ; l <=lmax; l++){
       for(j=1;j<=nlstate;j++)      l1=pow(10,l);
         vareij[i][j][(int)age] =0.;      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
     for(h=0;h<=nhstepm;h++){        delt = delta*(l1*k);
       for(k=0;k<=nhstepm;k++){        p2[theta]=x[theta] +delt;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        k1=func(p2)-fx;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        p2[theta]=x[theta]-delt;
         for(i=1;i<=nlstate;i++)        k2=func(p2)-fx;
           for(j=1;j<=nlstate;j++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }        
     }  #ifdef DEBUGHESS
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     /* pptj */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  #endif
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          k=kmax;
         varppt[j][i]=doldmp[j][i];        }
     /* end ppptj */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);            k=kmax; l=lmax*10.;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        }
          else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     if (popbased==1) {          delts=delt;
       for(i=1; i<=nlstate;i++)        }
         prlim[i][i]=probs[(int)age][i][ij];      }
     }    }
        delti[theta]=delts;
     /* This for computing force of mortality (h=1)as a weighted average */    return res; 
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    
       for(i=1; i<= nlstate; i++)  }
         gmp[j] += prlim[i][i]*p3mat[i][j][1];  
     }      double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     /* end force of mortality */  {
     int i;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    int l=1, l1, lmax=20;
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    double k1,k2,k3,k4,res,fx;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    double p2[MAXPARM+1];
       for(i=1; i<=nlstate;i++){    int k;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }    fx=func(x);
     }    for (k=1; k<=2; k++) {
     fprintf(ficresprobmorprev,"\n");      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
     fprintf(ficresvij,"%.0f ",age );      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(i=1; i<=nlstate;i++)      k1=func(p2)-fx;
       for(j=1; j<=nlstate;j++){    
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      p2[thetai]=x[thetai]+delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     fprintf(ficresvij,"\n");      k2=func(p2)-fx;
     free_matrix(gp,0,nhstepm,1,nlstate);    
     free_matrix(gm,0,nhstepm,1,nlstate);      p2[thetai]=x[thetai]-delti[thetai]/k;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      k3=func(p2)-fx;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
   } /* End age */      p2[thetai]=x[thetai]-delti[thetai]/k;
   free_vector(gpp,nlstate+1,nlstate+ndeath);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   free_vector(gmp,nlstate+1,nlstate+ndeath);      k4=func(p2)-fx;
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  #ifdef DEBUG
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");  #endif
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    }
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    return res;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);  }
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);  
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  /************** Inverse of matrix **************/
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
   free_vector(xp,1,npar);    int i,imax,j,k; 
   free_matrix(doldm,1,nlstate,1,nlstate);    double big,dum,sum,temp; 
   free_matrix(dnewm,1,nlstate,1,npar);    double *vv; 
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);   
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    vv=vector(1,n); 
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    *d=1.0; 
   fclose(ficresprobmorprev);    for (i=1;i<=n;i++) { 
   fclose(ficgp);      big=0.0; 
   fclose(fichtm);      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
 }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
 /************ Variance of prevlim ******************/    } 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for (j=1;j<=n;j++) { 
 {      for (i=1;i<j;i++) { 
   /* Variance of prevalence limit */        sum=a[i][j]; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   double **newm;        a[i][j]=sum; 
   double **dnewm,**doldm;      } 
   int i, j, nhstepm, hstepm;      big=0.0; 
   int k, cptcode;      for (i=j;i<=n;i++) { 
   double *xp;        sum=a[i][j]; 
   double *gp, *gm;        for (k=1;k<j;k++) 
   double **gradg, **trgradg;          sum -= a[i][k]*a[k][j]; 
   double age,agelim;        a[i][j]=sum; 
   int theta;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
              big=dum; 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          imax=i; 
   fprintf(ficresvpl,"# Age");        } 
   for(i=1; i<=nlstate;i++)      } 
       fprintf(ficresvpl," %1d-%1d",i,i);      if (j != imax) { 
   fprintf(ficresvpl,"\n");        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   xp=vector(1,npar);          a[imax][k]=a[j][k]; 
   dnewm=matrix(1,nlstate,1,npar);          a[j][k]=dum; 
   doldm=matrix(1,nlstate,1,nlstate);        } 
          *d = -(*d); 
   hstepm=1*YEARM; /* Every year of age */        vv[imax]=vv[j]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      } 
   agelim = AGESUP;      indx[j]=imax; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      if (a[j][j] == 0.0) a[j][j]=TINY; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      if (j != n) { 
     if (stepm >= YEARM) hstepm=1;        dum=1.0/(a[j][j]); 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     gradg=matrix(1,npar,1,nlstate);      } 
     gp=vector(1,nlstate);    } 
     gm=vector(1,nlstate);    free_vector(vv,1,n);  /* Doesn't work */
   ;
     for(theta=1; theta <=npar; theta++){  } 
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  void lubksb(double **a, int n, int *indx, double b[]) 
       }  { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i,ii=0,ip,j; 
       for(i=1;i<=nlstate;i++)    double sum; 
         gp[i] = prlim[i][i];   
        for (i=1;i<=n;i++) { 
       for(i=1; i<=npar; i++) /* Computes gradient */      ip=indx[i]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      sum=b[ip]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      b[ip]=b[i]; 
       for(i=1;i<=nlstate;i++)      if (ii) 
         gm[i] = prlim[i][i];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
       for(i=1;i<=nlstate;i++)      b[i]=sum; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    } 
     } /* End theta */    for (i=n;i>=1;i--) { 
       sum=b[i]; 
     trgradg =matrix(1,nlstate,1,npar);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
     for(j=1; j<=nlstate;j++)    } 
       for(theta=1; theta <=npar; theta++)  } 
         trgradg[j][theta]=gradg[theta][j];  
   void pstamp(FILE *fichier)
     for(i=1;i<=nlstate;i++)  {
       varpl[i][(int)age] =0.;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)  /************ Frequencies ********************/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
     fprintf(ficresvpl,"%.0f ",age );    
     for(i=1; i<=nlstate;i++)    int i, m, jk, k1,i1, j1, bool, z1,j;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int first;
     fprintf(ficresvpl,"\n");    double ***freq; /* Frequencies */
     free_vector(gp,1,nlstate);    double *pp, **prop;
     free_vector(gm,1,nlstate);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     free_matrix(gradg,1,npar,1,nlstate);    char fileresp[FILENAMELENGTH];
     free_matrix(trgradg,1,nlstate,1,npar);    
   } /* End age */    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
   free_vector(xp,1,npar);    strcpy(fileresp,"p");
   free_matrix(doldm,1,nlstate,1,npar);    strcat(fileresp,fileres);
   free_matrix(dnewm,1,nlstate,1,nlstate);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
 }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
 /************ Variance of one-step probabilities  ******************/    }
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 {    j1=0;
   int i, j=0,  i1, k1, l1, t, tj;    
   int k2, l2, j1,  z1;    j=cptcoveff;
   int k=0,l, cptcode;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   int first=1, first1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    first=1;
   double **dnewm,**doldm;  
   double *xp;    for(k1=1; k1<=j;k1++){
   double *gp, *gm;      for(i1=1; i1<=ncodemax[k1];i1++){
   double **gradg, **trgradg;        j1++;
   double **mu;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double age,agelim, cov[NCOVMAX];          scanf("%d", i);*/
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        for (i=-5; i<=nlstate+ndeath; i++)  
   int theta;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   char fileresprob[FILENAMELENGTH];            for(m=iagemin; m <= iagemax+3; m++)
   char fileresprobcov[FILENAMELENGTH];              freq[i][jk][m]=0;
   char fileresprobcor[FILENAMELENGTH];  
       for (i=1; i<=nlstate; i++)  
   double ***varpij;        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
   strcpy(fileresprob,"prob");        
   strcat(fileresprob,fileres);        dateintsum=0;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        k2cpt=0;
     printf("Problem with resultfile: %s\n", fileresprob);        for (i=1; i<=imx; i++) {
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);          bool=1;
   }          if  (cptcovn>0) {
   strcpy(fileresprobcov,"probcov");            for (z1=1; z1<=cptcoveff; z1++) 
   strcat(fileresprobcov,fileres);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {                bool=0;
     printf("Problem with resultfile: %s\n", fileresprobcov);          }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);          if (bool==1){
   }            for(m=firstpass; m<=lastpass; m++){
   strcpy(fileresprobcor,"probcor");              k2=anint[m][i]+(mint[m][i]/12.);
   strcat(fileresprobcor,fileres);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     printf("Problem with resultfile: %s\n", fileresprobcor);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                if (m<lastpass) {
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                }
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                  dateintsum=dateintsum+k2;
                    k2cpt++;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");                }
   fprintf(ficresprob,"# Age");                /*}*/
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");            }
   fprintf(ficresprobcov,"# Age");          }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        }
   fprintf(ficresprobcov,"# Age");         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
   for(i=1; i<=nlstate;i++)        if  (cptcovn>0) {
     for(j=1; j<=(nlstate+ndeath);j++){          fprintf(ficresp, "\n#********** Variable "); 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          fprintf(ficresp, "**********\n#");
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        }
     }          for(i=1; i<=nlstate;i++) 
   fprintf(ficresprob,"\n");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   fprintf(ficresprobcov,"\n");        fprintf(ficresp, "\n");
   fprintf(ficresprobcor,"\n");        
   xp=vector(1,npar);        for(i=iagemin; i <= iagemax+3; i++){
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          if(i==iagemax+3){
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));            fprintf(ficlog,"Total");
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          }else{
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);            if(first==1){
   first=1;              first=0;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              printf("See log file for details...\n");
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            }
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            fprintf(ficlog,"Age %d", i);
     exit(0);          }
   }          for(jk=1; jk <=nlstate ; jk++){
   else{            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     fprintf(ficgp,"\n# Routine varprob");              pp[jk] += freq[jk][m][i]; 
   }          }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          for(jk=1; jk <=nlstate ; jk++){
     printf("Problem with html file: %s\n", optionfilehtm);            for(m=-1, pos=0; m <=0 ; m++)
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);              pos += freq[jk][m][i];
     exit(0);            if(pp[jk]>=1.e-10){
   }              if(first==1){
   else{                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");              }
     fprintf(fichtm,"\n");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");              if(first==1)
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
   }          }
   
            for(jk=1; jk <=nlstate ; jk++){
   cov[1]=1;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   tj=cptcoveff;              pp[jk] += freq[jk][m][i];
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}          }       
   j1=0;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   for(t=1; t<=tj;t++){            pos += pp[jk];
     for(i1=1; i1<=ncodemax[t];i1++){            posprop += prop[jk][i];
       j1++;          }
                for(jk=1; jk <=nlstate ; jk++){
       if  (cptcovn>0) {            if(pos>=1.e-5){
         fprintf(ficresprob, "\n#********** Variable ");              if(first==1)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         fprintf(ficresprob, "**********\n#");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         fprintf(ficresprobcov, "\n#********** Variable ");            }else{
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              if(first==1)
         fprintf(ficresprobcov, "**********\n#");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                      fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         fprintf(ficgp, "\n#********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            if( i <= iagemax){
         fprintf(ficgp, "**********\n#");              if(pos>=1.e-5){
                        fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                        /*probs[i][jk][j1]= pp[jk]/pos;*/
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              }
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");              else
                        fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         fprintf(ficresprobcor, "\n#********** Variable ");                }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
         fprintf(ficgp, "**********\n#");              
       }          for(jk=-1; jk <=nlstate+ndeath; jk++)
                  for(m=-1; m <=nlstate+ndeath; m++)
       for (age=bage; age<=fage; age ++){              if(freq[jk][m][i] !=0 ) {
         cov[2]=age;              if(first==1)
         for (k=1; k<=cptcovn;k++) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         }              }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          if(i <= iagemax)
         for (k=1; k<=cptcovprod;k++)            fprintf(ficresp,"\n");
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          if(first==1)
                    printf("Others in log...\n");
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          fprintf(ficlog,"\n");
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        }
         gp=vector(1,(nlstate)*(nlstate+ndeath));      }
         gm=vector(1,(nlstate)*(nlstate+ndeath));    }
        dateintmean=dateintsum/k2cpt; 
         for(theta=1; theta <=npar; theta++){   
           for(i=1; i<=npar; i++)    fclose(ficresp);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
              free_vector(pp,1,nlstate);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
              /* End of Freq */
           k=0;  }
           for(i=1; i<= (nlstate); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){  /************ Prevalence ********************/
               k=k+1;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
               gp[k]=pmmij[i][j];  {  
             }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           }       in each health status at the date of interview (if between dateprev1 and dateprev2).
                 We still use firstpass and lastpass as another selection.
           for(i=1; i<=npar; i++)    */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);   
        int i, m, jk, k1, i1, j1, bool, z1,j;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double ***freq; /* Frequencies */
           k=0;    double *pp, **prop;
           for(i=1; i<=(nlstate); i++){    double pos,posprop; 
             for(j=1; j<=(nlstate+ndeath);j++){    double  y2; /* in fractional years */
               k=k+1;    int iagemin, iagemax;
               gm[k]=pmmij[i][j];  
             }    iagemin= (int) agemin;
           }    iagemax= (int) agemax;
          /*pp=vector(1,nlstate);*/
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         }    j1=0;
     
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    j=cptcoveff;
           for(theta=1; theta <=npar; theta++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             trgradg[j][theta]=gradg[theta][j];    
            for(k1=1; k1<=j;k1++){
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      for(i1=1; i1<=ncodemax[k1];i1++){
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        j1++;
                
         pmij(pmmij,cov,ncovmodel,x,nlstate);        for (i=1; i<=nlstate; i++)  
                  for(m=iagemin; m <= iagemax+3; m++)
         k=0;            prop[i][m]=0.0;
         for(i=1; i<=(nlstate); i++){       
           for(j=1; j<=(nlstate+ndeath);j++){        for (i=1; i<=imx; i++) { /* Each individual */
             k=k+1;          bool=1;
             mu[k][(int) age]=pmmij[i][j];          if  (cptcovn>0) {
           }            for (z1=1; z1<=cptcoveff; z1++) 
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)                bool=0;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          } 
             varpij[i][j][(int)age] = doldm[i][j];          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         /*printf("\n%d ",(int)age);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                if(agev[m][i]==0) agev[m][i]=iagemax+1;
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      }*/                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
         fprintf(ficresprob,"\n%d ",(int)age);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         fprintf(ficresprobcov,"\n%d ",(int)age);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         fprintf(ficresprobcor,"\n%d ",(int)age);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)              }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            } /* end selection of waves */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        for(i=iagemin; i <= iagemax+3; i++){  
         }          
         i=0;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         for (k=1; k<=(nlstate);k++){            posprop += prop[jk][i]; 
           for (l=1; l<=(nlstate+ndeath);l++){          } 
             i=i++;  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          for(jk=1; jk <=nlstate ; jk++){     
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            if( i <=  iagemax){ 
             for (j=1; j<=i;j++){              if(posprop>=1.e-5){ 
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);                probs[i][jk][j1]= prop[jk][i]/posprop;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));              } else
             }                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
           }            } 
         }/* end of loop for state */          }/* end jk */ 
       } /* end of loop for age */        }/* end i */ 
       } /* end i1 */
       /* Confidence intervalle of pij  */    } /* end k1 */
       /*    
       fprintf(ficgp,"\nset noparametric;unset label");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    /*free_vector(pp,1,nlstate);*/
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  }  /* End of prevalence */
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  /************* Waves Concatenation ***************/
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  
       */  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       first1=1;       Death is a valid wave (if date is known).
       for (k1=1; k1<=(nlstate);k1++){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         for (l1=1; l1<=(nlstate+ndeath);l1++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           if(l1==k1) continue;       and mw[mi+1][i]. dh depends on stepm.
           i=(k1-1)*(nlstate+ndeath)+l1;       */
           for (k2=1; k2<=(nlstate);k2++){  
             for (l2=1; l2<=(nlstate+ndeath);l2++){    int i, mi, m;
               if(l2==k2) continue;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
               j=(k2-1)*(nlstate+ndeath)+l2;       double sum=0., jmean=0.;*/
               if(j<=i) continue;    int first;
               for (age=bage; age<=fage; age ++){    int j, k=0,jk, ju, jl;
                 if ((int)age %5==0){    double sum=0.;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    first=0;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    jmin=1e+5;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    jmax=-1;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    jmean=0.;
                   mu2=mu[j][(int) age]/stepm*YEARM;    for(i=1; i<=imx; i++){
                   /* Computing eigen value of matrix of covariance */      mi=0;
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));      m=firstpass;
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));      while(s[m][i] <= nlstate){
                   if(first1==1){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                     first1=0;          mw[++mi][i]=m;
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);        if(m >=lastpass)
                   }          break;
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);        else
                   /* Eigen vectors */          m++;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));      }/* end while */
                   v21=sqrt(1.-v11*v11);      if (s[m][i] > nlstate){
                   v12=-v21;        mi++;     /* Death is another wave */
                   v22=v11;        /* if(mi==0)  never been interviewed correctly before death */
                   /*printf(fignu*/           /* Only death is a correct wave */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        mw[mi][i]=m;
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */      }
                   if(first==1){  
                     first=0;      wav[i]=mi;
                     fprintf(ficgp,"\nset parametric;set nolabel");      if(mi==0){
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);        nbwarn++;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        if(first==0){
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);          first=1;
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);        }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);        if(first==1){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      } /* end mi==0 */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    } /* End individuals */
                     */  
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    for(i=1; i<=imx; i++){
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      for(mi=1; mi<wav[i];mi++){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));        if (stepm <=0)
                   }else{          dh[mi][i]=1;
                     first=0;        else{
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            if (agedc[i] < 2*AGESUP) {
                     /*              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\              if(j==0) j=1;  /* Survives at least one month after exam */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              else if(j<0){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);                nberr++;
                     */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                j=1; /* Temporary Dangerous patch */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   }/* if first */                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 } /* age mod 5 */              }
               } /* end loop age */              k=k+1;
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);              if (j >= jmax){
               first=1;                jmax=j;
             } /*l12 */                ijmax=i;
           } /* k12 */              }
         } /*l1 */              if (j <= jmin){
       }/* k1 */                jmin=j;
     } /* loop covariates */                ijmin=i;
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);              }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              sum=sum+j;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
   }          else{
   free_vector(xp,1,npar);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   fclose(ficresprob);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   fclose(ficresprobcov);  
   fclose(ficresprobcor);            k=k+1;
   fclose(ficgp);            if (j >= jmax) {
   fclose(fichtm);              jmax=j;
 }              ijmax=i;
             }
             else if (j <= jmin){
 /******************* Printing html file ***********/              jmin=j;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              ijmin=i;
                   int lastpass, int stepm, int weightopt, char model[],\            }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                   int popforecast, int estepm ,\            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                   double jprev1, double mprev1,double anprev1, \            if(j<0){
                   double jprev2, double mprev2,double anprev2){              nberr++;
   int jj1, k1, i1, cpt;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /*char optionfilehtm[FILENAMELENGTH];*/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            }
     printf("Problem with %s \n",optionfilehtm), exit(0);            sum=sum+j;
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          }
   }          jk= j/stepm;
           jl= j -jk*stepm;
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n          ju= j -(jk+1)*stepm;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n            if(jl==0){
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n              dh[mi][i]=jk;
  - Life expectancies by age and initial health status (estepm=%2d months):              bh[mi][i]=0;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \            }else{ /* We want a negative bias in order to only have interpolation ie
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);                    * to avoid the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");              bh[mi][i]=ju;
             }
  m=cptcoveff;          }else{
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            if(jl <= -ju){
               dh[mi][i]=jk;
  jj1=0;              bh[mi][i]=jl;       /* bias is positive if real duration
  for(k1=1; k1<=m;k1++){                                   * is higher than the multiple of stepm and negative otherwise.
    for(i1=1; i1<=ncodemax[k1];i1++){                                   */
      jj1++;            }
      if (cptcovn > 0) {            else{
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              dh[mi][i]=jk+1;
        for (cpt=1; cpt<=cptcoveff;cpt++)              bh[mi][i]=ju;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            if(dh[mi][i]==0){
      }              dh[mi][i]=1; /* At least one step */
      /* Pij */              bh[mi][i]=ju; /* At least one step */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                }
      /* Quasi-incidences */          } /* end if mle */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        }
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      } /* end wave */
        /* Stable prevalence in each health state */    }
        for(cpt=1; cpt<nlstate;cpt++){    jmean=sum/k;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
        }   }
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  /*********** Tricode ****************************/
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  void tricode(int *Tvar, int **nbcode, int imx)
      }  {
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    /* Uses cptcovn+2*cptcovprod as the number of covariates */
 health expectancies in states (1) and (2): e%s%d.png<br>    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
    } /* end i1 */    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
  }/* End k1 */    int modmaxcovj=0; /* Modality max of covariates j */
  fprintf(fichtm,"</ul>");    cptcoveff=0; 
    
     for (k=0; k<maxncov; k++) Ndum[k]=0;
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n                                 modality of this covariate Vj*/ 
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n                                        modality of the nth covariate of individual i. */
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
  if(popforecast==1) fprintf(fichtm,"\n        if (ij > modmaxcovj) modmaxcovj=ij; 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        /* getting the maximum value of the modality of the covariate
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
         <br>",fileres,fileres,fileres,fileres);           female is 1, then modmaxcovj=1.*/
  else      }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
         if( Ndum[i] != 0 )
  m=cptcoveff;          ncodemax[j]++; 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        /* Number of modalities of the j th covariate. In fact
            ncodemax[j]=2 (dichotom. variables only) but it could be more for
  jj1=0;           historical reasons */
  for(k1=1; k1<=m;k1++){      } /* Ndum[-1] number of undefined modalities */
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
      if (cptcovn > 0) {      ij=1; 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
        for (cpt=1; cpt<=cptcoveff;cpt++)        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
      }                                       k is a modality. If we have model=V1+V1*sex 
      for(cpt=1; cpt<=nlstate;cpt++) {                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            ij++;
 interval) in state (%d): v%s%d%d.png <br>          }
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            if (ij > ncodemax[j]) break; 
      }        }  /* end of loop on */
    } /* end i1 */      } /* end of loop on modality */ 
  }/* End k1 */    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
  fprintf(fichtm,"</ul>");    
 fclose(fichtm);    for (k=0; k< maxncov; k++) Ndum[k]=0;
 }    
     for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
 /******************* Gnuplot file **************/     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
      Ndum[ij]++;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;   }
   int ng;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {   ij=1;
     printf("Problem with file %s",optionfilegnuplot);   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);     if((Ndum[i]!=0) && (i<=ncovcol)){
   }       Tvaraff[ij]=i; /*For printing */
        ij++;
 #ifdef windows     }
     fprintf(ficgp,"cd \"%s\" \n",pathc);   }
 #endif   ij--;
 m=pow(2,cptcoveff);   cptcoveff=ij; /*Number of simple covariates*/
    }
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {  /*********** Health Expectancies ****************/
    for (k1=1; k1<= m ; k1 ++) {  
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 #ifdef windows  
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  {
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    /* Health expectancies, no variances */
 #endif    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
 #ifdef unix    int nhstepma, nstepma; /* Decreasing with age */
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    double age, agelim, hf;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    double ***p3mat;
 #endif    double eip;
   
 for (i=1; i<= nlstate ; i ++) {    pstamp(ficreseij);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficreseij,"# Age");
 }    for(i=1; i<=nlstate;i++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      for(j=1; j<=nlstate;j++){
     for (i=1; i<= nlstate ; i ++) {        fprintf(ficreseij," e%1d%1d ",i,j);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficreseij," e%1d. ",i);
 }    }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficreseij,"\n");
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if(estepm < stepm){
 }        printf ("Problem %d lower than %d\n",estepm, stepm);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    }
 #ifdef unix    else  hstepm=estepm;   
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    /* We compute the life expectancy from trapezoids spaced every estepm months
 #endif     * This is mainly to measure the difference between two models: for example
    }     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
   /*2 eme*/     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   for (k1=1; k1<= m ; k1 ++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);     * to compare the new estimate of Life expectancy with the same linear 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);     * hypothesis. A more precise result, taking into account a more precise
         * curvature will be obtained if estepm is as small as stepm. */
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       for (j=1; j<= nlstate+1 ; j ++) {       nhstepm is the number of hstepm from age to agelim 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       nstepm is the number of stepm from age to agelin. 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       Look at hpijx to understand the reason of that which relies in memory size
 }         and note for a fixed period like estepm months */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       survival function given by stepm (the optimization length). Unfortunately it
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);       means that if the survival funtion is printed only each two years of age and if
       for (j=1; j<= nlstate+1 ; j ++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       results. So we changed our mind and took the option of the best precision.
         else fprintf(ficgp," \%%*lf (\%%*lf)");    */
 }      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    agelim=AGESUP;
       for (j=1; j<= nlstate+1 ; j ++) {    /* If stepm=6 months */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   else fprintf(ficgp," \%%*lf (\%%*lf)");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 }        
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  /* nhstepm age range expressed in number of stepm */
       else fprintf(ficgp,"\" t\"\" w l 0,");    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }    /* if (stepm >= YEARM) hstepm=1;*/
      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /*3eme*/    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   for (k1=1; k1<= m ; k1 ++) {    for (age=bage; age<=fage; age ++){ 
     for (cpt=1; cpt<= nlstate ; cpt ++) {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       k=2+nlstate*(2*cpt-2);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      /* If stepm=6 months */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
 */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for (i=1; i< nlstate ; i ++) {      
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       }      
     }      /* Computing expectancies */
   }      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
   /* CV preval stat */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     for (k1=1; k1<= m ; k1 ++) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     for (cpt=1; cpt<nlstate ; cpt ++) {            
       k=3;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          }
   
       for (i=1; i< nlstate ; i ++)      fprintf(ficreseij,"%3.0f",age );
         fprintf(ficgp,"+$%d",k+i+1);      for(i=1; i<=nlstate;i++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        eip=0;
              for(j=1; j<=nlstate;j++){
       l=3+(nlstate+ndeath)*cpt;          eip +=eij[i][j][(int)age];
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
       for (i=1; i< nlstate ; i ++) {        }
         l=3+(nlstate+ndeath)*cpt;        fprintf(ficreseij,"%9.4f", eip );
         fprintf(ficgp,"+$%d",l+i+1);      }
       }      fprintf(ficreseij,"\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        
     }    }
   }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
   /* proba elementaires */    fprintf(ficlog,"\n");
    for(i=1,jk=1; i <=nlstate; i++){    
     for(k=1; k <=(nlstate+ndeath); k++){  }
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;  {
           fprintf(ficgp,"\n");    /* Covariances of health expectancies eij and of total life expectancies according
         }     to initial status i, ei. .
       }    */
     }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
    }    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    double ***p3matp, ***p3matm, ***varhe;
      for(jk=1; jk <=m; jk++) {    double **dnewm,**doldm;
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    double *xp, *xm;
        if (ng==2)    double **gp, **gm;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    double ***gradg, ***trgradg;
        else    int theta;
          fprintf(ficgp,"\nset title \"Probability\"\n");  
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    double eip, vip;
        i=1;  
        for(k2=1; k2<=nlstate; k2++) {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
          k3=i;    xp=vector(1,npar);
          for(k=1; k<=(nlstate+ndeath); k++) {    xm=vector(1,npar);
            if (k != k2){    dnewm=matrix(1,nlstate*nlstate,1,npar);
              if(ng==2)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    
              else    pstamp(ficresstdeij);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
              ij=1;    fprintf(ficresstdeij,"# Age");
              for(j=3; j <=ncovmodel; j++) {    for(i=1; i<=nlstate;i++){
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      for(j=1; j<=nlstate;j++)
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                  ij++;      fprintf(ficresstdeij," e%1d. ",i);
                }    }
                else    fprintf(ficresstdeij,"\n");
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
              }    pstamp(ficrescveij);
              fprintf(ficgp,")/(1");    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
                  fprintf(ficrescveij,"# Age");
              for(k1=1; k1 <=nlstate; k1++){      for(i=1; i<=nlstate;i++)
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      for(j=1; j<=nlstate;j++){
                ij=1;        cptj= (j-1)*nlstate+i;
                for(j=3; j <=ncovmodel; j++){        for(i2=1; i2<=nlstate;i2++)
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          for(j2=1; j2<=nlstate;j2++){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            cptj2= (j2-1)*nlstate+i2;
                    ij++;            if(cptj2 <= cptj)
                  }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
                  else          }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      }
                }    fprintf(ficrescveij,"\n");
                fprintf(ficgp,")");    
              }    if(estepm < stepm){
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);      printf ("Problem %d lower than %d\n",estepm, stepm);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    }
              i=i+ncovmodel;    else  hstepm=estepm;   
            }    /* We compute the life expectancy from trapezoids spaced every estepm months
          } /* end k */     * This is mainly to measure the difference between two models: for example
        } /* end k2 */     * if stepm=24 months pijx are given only every 2 years and by summing them
      } /* end jk */     * we are calculating an estimate of the Life Expectancy assuming a linear 
    } /* end ng */     * progression in between and thus overestimating or underestimating according
    fclose(ficgp);     * to the curvature of the survival function. If, for the same date, we 
 }  /* end gnuplot */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
 /*************** Moving average **************/     * curvature will be obtained if estepm is as small as stepm. */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  
     /* For example we decided to compute the life expectancy with the smallest unit */
   int i, cpt, cptcod;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)       nhstepm is the number of hstepm from age to agelim 
       for (i=1; i<=nlstate;i++)       nstepm is the number of stepm from age to agelin. 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)       Look at hpijx to understand the reason of that which relies in memory size
           mobaverage[(int)agedeb][i][cptcod]=0.;       and note for a fixed period like estepm months */
        /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){       survival function given by stepm (the optimization length). Unfortunately it
       for (i=1; i<=nlstate;i++){       means that if the survival funtion is printed only each two years of age and if
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           for (cpt=0;cpt<=4;cpt++){       results. So we changed our mind and took the option of the best precision.
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    */
           }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }    /* If stepm=6 months */
       }    /* nhstepm age range expressed in number of stepm */
     }    agelim=AGESUP;
        nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 /************** Forecasting ******************/    
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   int *popage;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   double *popeffectif,*popcount;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
  agelim=AGESUP;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
        /* If stepm=6 months */
        /* Computed by stepm unit matrices, product of hstepma matrices, stored
   strcpy(fileresf,"f");         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   strcat(fileresf,fileres);      
   if((ficresf=fopen(fileresf,"w"))==NULL) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     printf("Problem with forecast resultfile: %s\n", fileresf);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      /* Computing  Variances of health expectancies */
   }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   printf("Computing forecasting: result on file '%s' \n", fileresf);         decrease memory allocation */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
   if (mobilav==1) {        }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   }    
         for(j=1; j<= nlstate; j++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for(i=1; i<=nlstate; i++){
   if (stepm<=12) stepsize=1;            for(h=0; h<=nhstepm-1; h++){
                gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   agelim=AGESUP;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
              }
   hstepm=1;          }
   hstepm=hstepm/stepm;        }
   yp1=modf(dateintmean,&yp);       
   anprojmean=yp;        for(ij=1; ij<= nlstate*nlstate; ij++)
   yp2=modf((yp1*12),&yp);          for(h=0; h<=nhstepm-1; h++){
   mprojmean=yp;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   yp1=modf((yp2*30.5),&yp);          }
   jprojmean=yp;      }/* End theta */
   if(jprojmean==0) jprojmean=1;      
   if(mprojmean==0) jprojmean=1;      
        for(h=0; h<=nhstepm-1; h++)
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   for(cptcov=1;cptcov<=i2;cptcov++){            trgradg[h][j][theta]=gradg[h][theta][j];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      
       k=k+1;  
       fprintf(ficresf,"\n#******");       for(ij=1;ij<=nlstate*nlstate;ij++)
       for(j=1;j<=cptcoveff;j++) {        for(ji=1;ji<=nlstate*nlstate;ji++)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          varhe[ij][ji][(int)age] =0.;
       }  
       fprintf(ficresf,"******\n");       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficresf,"# StartingAge FinalAge");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);       for(h=0;h<=nhstepm-1;h++){
              for(k=0;k<=nhstepm-1;k++){
                matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         fprintf(ficresf,"\n");          for(ij=1;ij<=nlstate*nlstate;ij++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);              for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      }
           nhstepm = nhstepm/hstepm;  
                /* Computing expectancies */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           oldm=oldms;savm=savms;      for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=1; j<=nlstate;j++)
                  for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           for (h=0; h<=nhstepm; h++){            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             if (h==(int) (calagedate+YEARM*cpt)) {            
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             }  
             for(j=1; j<=nlstate+ndeath;j++) {          }
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                    fprintf(ficresstdeij,"%3.0f",age );
                 if (mobilav==1)      for(i=1; i<=nlstate;i++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        eip=0.;
                 else {        vip=0.;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(j=1; j<=nlstate;j++){
                 }          eip += eij[i][j][(int)age];
                          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
               }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
               if (h==(int)(calagedate+12*cpt)){          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
                 fprintf(ficresf," %.3f", kk1);        }
                                fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
               }      }
             }      fprintf(ficresstdeij,"\n");
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficrescveij,"%3.0f",age );
         }      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++){
     }          cptj= (j-1)*nlstate+i;
   }          for(i2=1; i2<=nlstate;i2++)
                    for(j2=1; j2<=nlstate;j2++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
   fclose(ficresf);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 }            }
 /************** Forecasting ******************/        }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      fprintf(ficrescveij,"\n");
       
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    }
   int *popage;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   double *popeffectif,*popcount;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   double ***p3mat,***tabpop,***tabpopprev;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   char filerespop[FILENAMELENGTH];    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    printf("\n");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficlog,"\n");
   agelim=AGESUP;  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    free_vector(xm,1,npar);
      free_vector(xp,1,npar);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   strcpy(filerespop,"pop");  }
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  /************ Variance ******************/
     printf("Problem with forecast resultfile: %s\n", filerespop);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  {
   }    /* Variance of health expectancies */
   printf("Computing forecasting: result on file '%s' \n", filerespop);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    /* double **newm;*/
     double **dnewm,**doldm;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
   if (mobilav==1) {    int k, cptcode;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *xp;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    double **gp, **gm;  /* for var eij */
   }    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double *gpp, *gmp; /* for var p point j */
   if (stepm<=12) stepsize=1;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      double ***p3mat;
   agelim=AGESUP;    double age,agelim, hf;
      double ***mobaverage;
   hstepm=1;    int theta;
   hstepm=hstepm/stepm;    char digit[4];
      char digitp[25];
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {    char fileresprobmorprev[FILENAMELENGTH];
       printf("Problem with population file : %s\n",popfile);exit(0);  
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    if(popbased==1){
     }      if(mobilav!=0)
     popage=ivector(0,AGESUP);        strcpy(digitp,"-populbased-mobilav-");
     popeffectif=vector(0,AGESUP);      else strcpy(digitp,"-populbased-nomobil-");
     popcount=vector(0,AGESUP);    }
        else 
     i=1;        strcpy(digitp,"-stablbased-");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
        if (mobilav!=0) {
     imx=i;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   for(cptcov=1;cptcov<=i2;cptcov++){      }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }
       k=k+1;  
       fprintf(ficrespop,"\n#******");    strcpy(fileresprobmorprev,"prmorprev"); 
       for(j=1;j<=cptcoveff;j++) {    sprintf(digit,"%-d",ij);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       fprintf(ficrespop,"******\n");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       fprintf(ficrespop,"# Age");    strcat(fileresprobmorprev,fileres);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       if (popforecast==1)  fprintf(ficrespop," [Population]");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
            fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       for (cpt=0; cpt<=0;cpt++) {    }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    pstamp(ficresprobmorprev);
           nhstepm = nhstepm/hstepm;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
              fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           oldm=oldms;savm=savms;      fprintf(ficresprobmorprev," p.%-d SE",j);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(i=1; i<=nlstate;i++)
                fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           for (h=0; h<=nhstepm; h++){    }  
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficresprobmorprev,"\n");
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficgp,"\n# Routine varevsij");
             }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
               kk1=0.;kk2=0;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
               for(i=1; i<=nlstate;i++) {                /*   } */
                 if (mobilav==1)    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    pstamp(ficresvij);
                 else {    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    if(popbased==1)
                 }      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
               }    else
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    fprintf(ficresvij,"# Age");
                   /*fprintf(ficrespop," %.3f", kk1);    for(i=1; i<=nlstate;i++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      for(j=1; j<=nlstate;j++)
               }        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
             }    fprintf(ficresvij,"\n");
             for(i=1; i<=nlstate;i++){  
               kk1=0.;    xp=vector(1,npar);
                 for(j=1; j<=nlstate;j++){    dnewm=matrix(1,nlstate,1,npar);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    doldm=matrix(1,nlstate,1,nlstate);
                 }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             }  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    gpp=vector(nlstate+1,nlstate+ndeath);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    gmp=vector(nlstate+1,nlstate+ndeath);
           }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }    if(estepm < stepm){
       }      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   /******/    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         nhstepm is the number of hstepm from age to agelim 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       nstepm is the number of stepm from age to agelin. 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       Look at function hpijx to understand why (it is linked to memory size questions) */
           nhstepm = nhstepm/hstepm;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 survival function given by stepm (the optimization length). Unfortunately it
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       means that if the survival funtion is printed every two years of age and if
           oldm=oldms;savm=savms;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         results. So we changed our mind and took the option of the best precision.
           for (h=0; h<=nhstepm; h++){    */
             if (h==(int) (calagedate+YEARM*cpt)) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    agelim = AGESUP;
             }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             for(j=1; j<=nlstate+ndeath;j++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
               kk1=0.;kk2=0;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               for(i=1; i<=nlstate;i++) {                    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
               }      gp=matrix(0,nhstepm,1,nlstate);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      gm=matrix(0,nhstepm,1,nlstate);
             }  
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
    }        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
         if (popbased==1) {
   if (popforecast==1) {          if(mobilav ==0){
     free_ivector(popage,0,AGESUP);            for(i=1; i<=nlstate;i++)
     free_vector(popeffectif,0,AGESUP);              prlim[i][i]=probs[(int)age][i][ij];
     free_vector(popcount,0,AGESUP);          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              prlim[i][i]=mobaverage[(int)age][i][ij];
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   fclose(ficrespop);        }
 }    
         for(j=1; j<= nlstate; j++){
 /***********************************************/          for(h=0; h<=nhstepm; h++){
 /**************** Main Program *****************/            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 /***********************************************/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
 int main(int argc, char *argv[])        }
 {        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;           as a weighted average of prlim.
   double agedeb, agefin,hf;        */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   double fret;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   double **xi,tmp,delta;        }    
         /* end probability of death */
   double dum; /* Dummy variable */  
   double ***p3mat;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   int *indx;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   char line[MAXLINE], linepar[MAXLINE];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int firstobs=1, lastobs=10;   
   int sdeb, sfin; /* Status at beginning and end */        if (popbased==1) {
   int c,  h , cpt,l;          if(mobilav ==0){
   int ju,jl, mi;            for(i=1; i<=nlstate;i++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              prlim[i][i]=probs[(int)age][i][ij];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          }else{ /* mobilav */ 
   int mobilav=0,popforecast=0;            for(i=1; i<=nlstate;i++)
   int hstepm, nhstepm;              prlim[i][i]=mobaverage[(int)age][i][ij];
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          }
         }
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   double **prlim;          for(h=0; h<=nhstepm; h++){
   double *severity;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   double ***param; /* Matrix of parameters */              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   double  *p;          }
   double **matcov; /* Matrix of covariance */        }
   double ***delti3; /* Scale */        /* This for computing probability of death (h=1 means
   double *delti; /* Scale */           computed over hstepm matrices product = hstepm*stepm months) 
   double ***eij, ***vareij;           as a weighted average of prlim.
   double **varpl; /* Variances of prevalence limits by age */        */
   double *epj, vepp;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double kk1, kk2;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
         /* end probability of death */
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
   char z[1]="c", occ;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 #include <sys/time.h>          }
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   /* long total_usecs;        }
   struct timeval start_time, end_time;  
        } /* End theta */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
   printf("\n%s",version);      for(h=0; h<=nhstepm; h++) /* veij */
   if(argc <=1){        for(j=1; j<=nlstate;j++)
     printf("\nEnter the parameter file name: ");          for(theta=1; theta <=npar; theta++)
     scanf("%s",pathtot);            trgradg[h][j][theta]=gradg[h][theta][j];
   }  
   else{      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     strcpy(pathtot,argv[1]);        for(theta=1; theta <=npar; theta++)
   }          trgradgp[j][theta]=gradgp[theta][j];
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /* cutv(path,optionfile,pathtot,'\\');*/      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          vareij[i][j][(int)age] =0.;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);      for(h=0;h<=nhstepm;h++){
   replace(pathc,path);        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 /*-------- arguments in the command line --------*/          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
   /* Log file */            for(j=1;j<=nlstate;j++)
   strcat(filelog, optionfilefiname);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   strcat(filelog,".log");    /* */        }
   if((ficlog=fopen(filelog,"w"))==NULL)    {      }
     printf("Problem with logfile %s\n",filelog);    
     goto end;      /* pptj */
   }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   fprintf(ficlog,"Log filename:%s\n",filelog);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   fprintf(ficlog,"\n%s",version);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   fprintf(ficlog,"\nEnter the parameter file name: ");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          varppt[j][i]=doldmp[j][i];
   fflush(ficlog);      /* end ppptj */
       /*  x centered again */
   /* */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   strcpy(fileres,"r");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   strcat(fileres, optionfilefiname);   
   strcat(fileres,".txt");    /* Other files have txt extension */      if (popbased==1) {
         if(mobilav ==0){
   /*---------arguments file --------*/          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        }else{ /* mobilav */ 
     printf("Problem with optionfile %s\n",optionfile);          for(i=1; i<=nlstate;i++)
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);            prlim[i][i]=mobaverage[(int)age][i][ij];
     goto end;        }
   }      }
                
   strcpy(filereso,"o");      /* This for computing probability of death (h=1 means
   strcat(filereso,fileres);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   if((ficparo=fopen(filereso,"w"))==NULL) {         as a weighted average of prlim.
     printf("Problem with Output resultfile: %s\n", filereso);      */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     goto end;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
   /* Reads comments: lines beginning with '#' */      /* end probability of death */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     fgets(line, MAXLINE, ficpar);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     puts(line);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     fputs(line,ficparo);        for(i=1; i<=nlstate;i++){
   }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   ungetc(c,ficpar);        }
       } 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      fprintf(ficresprobmorprev,"\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      fprintf(ficresvij,"%.0f ",age );
 while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        for(j=1; j<=nlstate;j++){
     fgets(line, MAXLINE, ficpar);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     puts(line);        }
     fputs(line,ficparo);      fprintf(ficresvij,"\n");
   }      free_matrix(gp,0,nhstepm,1,nlstate);
   ungetc(c,ficpar);      free_matrix(gm,0,nhstepm,1,nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
          free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   covar=matrix(0,NCOVMAX,1,n);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   cptcovn=0;    } /* End age */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
   ncovmodel=2+cptcovn;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
   /* Read guess parameters */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   /* Reads comments: lines beginning with '#' */    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   while((c=getc(ficpar))=='#' && c!= EOF){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     ungetc(c,ficpar);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fgets(line, MAXLINE, ficpar);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     puts(line);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fputs(line,ficparo);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   ungetc(c,ficpar);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     for(i=1; i <=nlstate; i++)  */
     for(j=1; j <=nlstate+ndeath-1; j++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fprintf(ficparo,"%1d%1d",i1,j1);  
       if(mle==1)    free_vector(xp,1,npar);
         printf("%1d%1d",i,j);    free_matrix(doldm,1,nlstate,1,nlstate);
       fprintf(ficlog,"%1d%1d",i,j);    free_matrix(dnewm,1,nlstate,1,npar);
       for(k=1; k<=ncovmodel;k++){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fscanf(ficpar," %lf",&param[i][j][k]);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         if(mle==1){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           printf(" %lf",param[i][j][k]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficlog," %lf",param[i][j][k]);    fclose(ficresprobmorprev);
         }    fflush(ficgp);
         else    fflush(fichtm); 
           fprintf(ficlog," %lf",param[i][j][k]);  }  /* end varevsij */
         fprintf(ficparo," %lf",param[i][j][k]);  
       }  /************ Variance of prevlim ******************/
       fscanf(ficpar,"\n");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       if(mle==1)  {
         printf("\n");    /* Variance of prevalence limit */
       fprintf(ficlog,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       fprintf(ficparo,"\n");    double **newm;
     }    double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    int k, cptcode;
     double *xp;
   p=param[1][1];    double *gp, *gm;
      double **gradg, **trgradg;
   /* Reads comments: lines beginning with '#' */    double age,agelim;
   while((c=getc(ficpar))=='#' && c!= EOF){    int theta;
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    pstamp(ficresvpl);
     puts(line);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fputs(line,ficparo);    fprintf(ficresvpl,"# Age");
   }    for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    xp=vector(1,npar);
   for(i=1; i <=nlstate; i++){    dnewm=matrix(1,nlstate,1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    doldm=matrix(1,nlstate,1,nlstate);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    
       printf("%1d%1d",i,j);    hstepm=1*YEARM; /* Every year of age */
       fprintf(ficparo,"%1d%1d",i1,j1);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       for(k=1; k<=ncovmodel;k++){    agelim = AGESUP;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         printf(" %le",delti3[i][j][k]);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         fprintf(ficparo," %le",delti3[i][j][k]);      if (stepm >= YEARM) hstepm=1;
       }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       fscanf(ficpar,"\n");      gradg=matrix(1,npar,1,nlstate);
       printf("\n");      gp=vector(1,nlstate);
       fprintf(ficparo,"\n");      gm=vector(1,nlstate);
     }  
   }      for(theta=1; theta <=npar; theta++){
   delti=delti3[1][1];        for(i=1; i<=npar; i++){ /* Computes gradient */
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);          gp[i] = prlim[i][i];
     puts(line);      
     fputs(line,ficparo);        for(i=1; i<=npar; i++) /* Computes gradient */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   matcov=matrix(1,npar,1,npar);          gm[i] = prlim[i][i];
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);        for(i=1;i<=nlstate;i++)
     if(mle==1)          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       printf("%s",str);      } /* End theta */
     fprintf(ficlog,"%s",str);  
     fprintf(ficparo,"%s",str);      trgradg =matrix(1,nlstate,1,npar);
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);      for(j=1; j<=nlstate;j++)
       if(mle==1){        for(theta=1; theta <=npar; theta++)
         printf(" %.5le",matcov[i][j]);          trgradg[j][theta]=gradg[theta][j];
         fprintf(ficlog," %.5le",matcov[i][j]);  
       }      for(i=1;i<=nlstate;i++)
       else        varpl[i][(int)age] =0.;
         fprintf(ficlog," %.5le",matcov[i][j]);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficparo," %.5le",matcov[i][j]);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     }      for(i=1;i<=nlstate;i++)
     fscanf(ficpar,"\n");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     if(mle==1)  
       printf("\n");      fprintf(ficresvpl,"%.0f ",age );
     fprintf(ficlog,"\n");      for(i=1; i<=nlstate;i++)
     fprintf(ficparo,"\n");        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   }      fprintf(ficresvpl,"\n");
   for(i=1; i <=npar; i++)      free_vector(gp,1,nlstate);
     for(j=i+1;j<=npar;j++)      free_vector(gm,1,nlstate);
       matcov[i][j]=matcov[j][i];      free_matrix(gradg,1,npar,1,nlstate);
          free_matrix(trgradg,1,nlstate,1,npar);
   if(mle==1)    } /* End age */
     printf("\n");  
   fprintf(ficlog,"\n");    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */  }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
      strcat(rfileres,".");    /* */  /************ Variance of one-step probabilities  ******************/
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     if((ficres =fopen(rfileres,"w"))==NULL) {  {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    int i, j=0,  i1, k1, l1, t, tj;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    int k2, l2, j1,  z1;
     }    int k=0,l, cptcode;
     fprintf(ficres,"#%s\n",version);    int first=1, first1;
        double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     /*-------- data file ----------*/    double **dnewm,**doldm;
     if((fic=fopen(datafile,"r"))==NULL)    {    double *xp;
       printf("Problem with datafile: %s\n", datafile);goto end;    double *gp, *gm;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    double **gradg, **trgradg;
     }    double **mu;
     double age,agelim, cov[NCOVMAX];
     n= lastobs;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     severity = vector(1,maxwav);    int theta;
     outcome=imatrix(1,maxwav+1,1,n);    char fileresprob[FILENAMELENGTH];
     num=ivector(1,n);    char fileresprobcov[FILENAMELENGTH];
     moisnais=vector(1,n);    char fileresprobcor[FILENAMELENGTH];
     annais=vector(1,n);  
     moisdc=vector(1,n);    double ***varpij;
     andc=vector(1,n);  
     agedc=vector(1,n);    strcpy(fileresprob,"prob"); 
     cod=ivector(1,n);    strcat(fileresprob,fileres);
     weight=vector(1,n);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      printf("Problem with resultfile: %s\n", fileresprob);
     mint=matrix(1,maxwav,1,n);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     anint=matrix(1,maxwav,1,n);    }
     s=imatrix(1,maxwav+1,1,n);    strcpy(fileresprobcov,"probcov"); 
     adl=imatrix(1,maxwav+1,1,n);        strcat(fileresprobcov,fileres);
     tab=ivector(1,NCOVMAX);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     ncodemax=ivector(1,8);      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     i=1;    }
     while (fgets(line, MAXLINE, fic) != NULL)    {    strcpy(fileresprobcor,"probcor"); 
       if ((i >= firstobs) && (i <=lastobs)) {    strcat(fileresprobcor,fileres);
            if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         for (j=maxwav;j>=1;j--){      printf("Problem with resultfile: %s\n", fileresprobcor);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           strcpy(line,stra);    }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
            fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         for (j=ncovcol;j>=1;j--){    fprintf(ficresprobcov,"# Age");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    pstamp(ficresprobcor);
         }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         num[i]=atol(stra);    fprintf(ficresprobcor,"# Age");
          
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         i=i+1;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     /* printf("ii=%d", ij);      }  
        scanf("%d",i);*/   /* fprintf(ficresprob,"\n");
   imx=i-1; /* Number of individuals */    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
   /* for (i=1; i<=imx; i++){   */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    xp=vector(1,npar);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     }*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
    /*  for (i=1; i<=imx; i++){    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      if (s[4][i]==9)  s[4][i]=-1;    first=1;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    fprintf(ficgp,"\n# Routine varprob");
      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
      fprintf(fichtm,"\n");
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   Tprod=ivector(1,15);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   Tvaraff=ivector(1,15);    file %s<br>\n",optionfilehtmcov);
   Tvard=imatrix(1,15,1,2);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   Tage=ivector(1,15);        and drawn. It helps understanding how is the covariance between two incidences.\
       They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   if (strlen(model) >1){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     j=0, j1=0, k1=1, k2=1;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     j=nbocc(model,'+');  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     j1=nbocc(model,'*');  standard deviations wide on each axis. <br>\
     cptcovn=j+1;   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     cptcovprod=j1;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    cov[1]=1;
       printf("Error. Non available option model=%s ",model);    tj=cptcoveff;
       fprintf(ficlog,"Error. Non available option model=%s ",model);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       goto end;    j1=0;
     }    for(t=1; t<=tj;t++){
          for(i1=1; i1<=ncodemax[t];i1++){ 
     for(i=(j+1); i>=1;i--){        j1++;
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */        if  (cptcovn>0) {
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */          fprintf(ficresprob, "\n#********** Variable "); 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       /*scanf("%d",i);*/          fprintf(ficresprob, "**********\n#\n");
       if (strchr(strb,'*')) {  /* Model includes a product */          fprintf(ficresprobcov, "\n#********** Variable "); 
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         if (strcmp(strc,"age")==0) { /* Vn*age */          fprintf(ficresprobcov, "**********\n#\n");
           cptcovprod--;          
           cutv(strb,stre,strd,'V');          fprintf(ficgp, "\n#********** Variable "); 
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cptcovage++;          fprintf(ficgp, "**********\n#\n");
             Tage[cptcovage]=i;          
             /*printf("stre=%s ", stre);*/          
         }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         else if (strcmp(strd,"age")==0) { /* or age*Vn */          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cptcovprod--;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           cutv(strb,stre,strc,'V');          
           Tvar[i]=atoi(stre);          fprintf(ficresprobcor, "\n#********** Variable ");    
           cptcovage++;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           Tage[cptcovage]=i;          fprintf(ficresprobcor, "**********\n#");    
         }        }
         else {  /* Age is not in the model */        
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/        for (age=bage; age<=fage; age ++){ 
           Tvar[i]=ncovcol+k1;          cov[2]=age;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */          for (k=1; k<=cptcovn;k++) {
           Tprod[k1]=i;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           Tvard[k1][1]=atoi(strc); /* m*/          }
           Tvard[k1][2]=atoi(stre); /* n */          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           Tvar[cptcovn+k2]=Tvard[k1][1];          for (k=1; k<=cptcovprod;k++)
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for (k=1; k<=lastobs;k++)          
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           k1++;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           k2=k2+2;          gp=vector(1,(nlstate)*(nlstate+ndeath));
         }          gm=vector(1,(nlstate)*(nlstate+ndeath));
       }      
       else { /* no more sum */          for(theta=1; theta <=npar; theta++){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            for(i=1; i<=npar; i++)
        /*  scanf("%d",i);*/              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       cutv(strd,strc,strb,'V');            
       Tvar[i]=atoi(strc);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       }            
       strcpy(modelsav,stra);              k=0;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            for(i=1; i<= (nlstate); i++){
         scanf("%d",i);*/              for(j=1; j<=(nlstate+ndeath);j++){
     } /* end of loop + */                k=k+1;
   } /* end model */                gp[k]=pmmij[i][j];
                }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            }
   printf("cptcovprod=%d ", cptcovprod);            
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);            for(i=1; i<=npar; i++)
   scanf("%d ",i);*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     fclose(fic);      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
     /*  if(mle==1){*/            k=0;
     if (weightopt != 1) { /* Maximisation without weights*/            for(i=1; i<=(nlstate); i++){
       for(i=1;i<=n;i++) weight[i]=1.0;              for(j=1; j<=(nlstate+ndeath);j++){
     }                k=k+1;
     /*-calculation of age at interview from date of interview and age at death -*/                gm[k]=pmmij[i][j];
     agev=matrix(1,maxwav,1,imx);              }
             }
     for (i=1; i<=imx; i++) {       
       for(m=2; (m<= maxwav); m++) {            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
          anint[m][i]=9999;          }
          s[m][i]=-1;  
        }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;            for(theta=1; theta <=npar; theta++)
       }              trgradg[j][theta]=gradg[theta][j];
     }          
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     for (i=1; i<=imx; i++)  {          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       for(m=1; (m<= maxwav); m++){          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         if(s[m][i] >0){          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           if (s[m][i] >= nlstate+1) {          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)          pmij(pmmij,cov,ncovmodel,x,nlstate);
                 agev[m][i]=agedc[i];          
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          k=0;
            else {          for(i=1; i<=(nlstate); i++){
               if (andc[i]!=9999){            for(j=1; j<=(nlstate+ndeath);j++){
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              k=k+1;
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);              mu[k][(int) age]=pmmij[i][j];
               agev[m][i]=-1;            }
               }          }
             }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           else if(s[m][i] !=9){ /* Should no more exist */              varpij[i][j][(int)age] = doldm[i][j];
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)          /*printf("\n%d ",(int)age);
               agev[m][i]=1;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             else if(agev[m][i] <agemin){            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               agemin=agev[m][i];            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            }*/
             }  
             else if(agev[m][i] >agemax){          fprintf(ficresprob,"\n%d ",(int)age);
               agemax=agev[m][i];          fprintf(ficresprobcov,"\n%d ",(int)age);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          fprintf(ficresprobcor,"\n%d ",(int)age);
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             /*   agev[m][i] = age[i]+2*m;*/            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           else { /* =9 */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             agev[m][i]=1;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
             s[m][i]=-1;          }
           }          i=0;
         }          for (k=1; k<=(nlstate);k++){
         else /*= 0 Unknown */            for (l=1; l<=(nlstate+ndeath);l++){ 
           agev[m][i]=1;              i=i++;
       }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                  fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     }              for (j=1; j<=i;j++){
     for (i=1; i<=imx; i++)  {                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       for(m=1; (m<= maxwav); m++){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         if (s[m][i] > (nlstate+ndeath)) {              }
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              }
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);            }/* end of loop for state */
           goto end;        } /* end of loop for age */
         }  
       }        /* Confidence intervalle of pij  */
     }        /*
           fprintf(ficgp,"\nunset parametric;unset label");
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     free_vector(severity,1,maxwav);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     free_imatrix(outcome,1,maxwav+1,1,n);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     free_vector(moisnais,1,n);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     free_vector(annais,1,n);        */
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     free_vector(moisdc,1,n);        first1=1;
     free_vector(andc,1,n);        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                if(l2==k2) continue;
     wav=ivector(1,imx);            j=(k2-1)*(nlstate+ndeath)+l2;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            for (k1=1; k1<=(nlstate);k1++){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                    if(l1==k1) continue;
     /* Concatenates waves */                i=(k1-1)*(nlstate+ndeath)+l1;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
       Tcode=ivector(1,100);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       ncodemax[1]=1;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                          mu2=mu[j][(int) age]/stepm*YEARM;
    codtab=imatrix(1,100,1,10);                    c12=cv12/sqrt(v1*v2);
    h=0;                    /* Computing eigen value of matrix of covariance */
    m=pow(2,cptcoveff);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    for(k=1;k<=cptcoveff; k++){                    if ((lc2 <0) || (lc1 <0) ){
      for(i=1; i <=(m/pow(2,k));i++){                      printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
        for(j=1; j <= ncodemax[k]; j++){                      fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                      lc1=fabs(lc1);
            h++;                      lc2=fabs(lc2);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                    }
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
          }                    /* Eigen vectors */
        }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
      }                    /*v21=sqrt(1.-v11*v11); *//* error */
    }                    v21=(lc1-v1)/cv12*v11;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                    v12=-v21;
       codtab[1][2]=1;codtab[2][2]=2; */                    v22=v11;
    /* for(i=1; i <=m ;i++){                    tnalp=v21/v11;
       for(k=1; k <=cptcovn; k++){                    if(first1==1){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                      first1=0;
       }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       printf("\n");                    }
       }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       scanf("%d",i);*/                    /*printf(fignu*/
                        /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
    /* Calculates basic frequencies. Computes observed prevalence at single age                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
        and prints on file fileres'p'. */                    if(first==1){
                       first=0;
                          fprintf(ficgp,"\nset parametric;unset label");
                          fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     /* For Powell, parameters are in a vector p[] starting at p[1]                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     if(mle==1){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                  mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     /*--------- results files --------------*/                    }else{
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                      first=0;
                        fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
    jk=1;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
    for(i=1,jk=1; i <=nlstate; i++){                    }/* if first */
      for(k=1; k <=(nlstate+ndeath); k++){                  } /* age mod 5 */
        if (k != i)                } /* end loop age */
          {                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
            printf("%d%d ",i,k);                first=1;
            fprintf(ficlog,"%d%d ",i,k);              } /*l12 */
            fprintf(ficres,"%1d%1d ",i,k);            } /* k12 */
            for(j=1; j <=ncovmodel; j++){          } /*l1 */
              printf("%f ",p[jk]);        }/* k1 */
              fprintf(ficlog,"%f ",p[jk]);      } /* loop covariates */
              fprintf(ficres,"%f ",p[jk]);    }
              jk++;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
            }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
            printf("\n");    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
            fprintf(ficlog,"\n");    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
            fprintf(ficres,"\n");    free_vector(xp,1,npar);
          }    fclose(ficresprob);
      }    fclose(ficresprobcov);
    }    fclose(ficresprobcor);
    if(mle==1){    fflush(ficgp);
      /* Computing hessian and covariance matrix */    fflush(fichtmcov);
      ftolhess=ftol; /* Usually correct */  }
      hesscov(matcov, p, npar, delti, ftolhess, func);  
    }  
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  /******************* Printing html file ***********/
    printf("# Scales (for hessian or gradient estimation)\n");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");                    int lastpass, int stepm, int weightopt, char model[],\
    for(i=1,jk=1; i <=nlstate; i++){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
      for(j=1; j <=nlstate+ndeath; j++){                    int popforecast, int estepm ,\
        if (j!=i) {                    double jprev1, double mprev1,double anprev1, \
          fprintf(ficres,"%1d%1d",i,j);                    double jprev2, double mprev2,double anprev2){
          printf("%1d%1d",i,j);    int jj1, k1, i1, cpt;
          fprintf(ficlog,"%1d%1d",i,j);  
          for(k=1; k<=ncovmodel;k++){     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
            printf(" %.5e",delti[jk]);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
            fprintf(ficlog," %.5e",delti[jk]);  </ul>");
            fprintf(ficres," %.5e",delti[jk]);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
            jk++;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
          }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
          printf("\n");     fprintf(fichtm,"\
          fprintf(ficlog,"\n");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
          fprintf(ficres,"\n");             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
        }     fprintf(fichtm,"\
      }   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
    }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
         fprintf(fichtm,"\
    k=1;   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     <a href=\"%s\">%s</a> <br>\n",
    if(mle==1)             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     fprintf(fichtm,"\
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   - Population projections by age and states: \
    for(i=1;i<=npar;i++){     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
      /*  if (k>nlstate) k=1;  
          i1=(i-1)/(ncovmodel*nlstate)+1;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
          printf("%s%d%d",alph[k],i1,tab[i]);*/   m=cptcoveff;
      fprintf(ficres,"%3d",i);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      if(mle==1)  
        printf("%3d",i);   jj1=0;
      fprintf(ficlog,"%3d",i);   for(k1=1; k1<=m;k1++){
      for(j=1; j<=i;j++){     for(i1=1; i1<=ncodemax[k1];i1++){
        fprintf(ficres," %.5e",matcov[i][j]);       jj1++;
        if(mle==1)       if (cptcovn > 0) {
          printf(" %.5e",matcov[i][j]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        fprintf(ficlog," %.5e",matcov[i][j]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
      }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
      fprintf(ficres,"\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
      if(mle==1)       }
        printf("\n");       /* Pij */
      fprintf(ficlog,"\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
      k++;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
    }       /* Quasi-incidences */
           fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    while((c=getc(ficpar))=='#' && c!= EOF){   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
      ungetc(c,ficpar);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
      fgets(line, MAXLINE, ficpar);         /* Period (stable) prevalence in each health state */
      puts(line);         for(cpt=1; cpt<nlstate;cpt++){
      fputs(line,ficparo);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
    }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
    ungetc(c,ficpar);         }
    estepm=0;       for(cpt=1; cpt<=nlstate;cpt++) {
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
    if (estepm==0 || estepm < stepm) estepm=stepm;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
    if (fage <= 2) {       }
      bage = ageminpar;     } /* end i1 */
      fage = agemaxpar;   }/* End k1 */
    }   fprintf(fichtm,"</ul>");
      
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   fprintf(fichtm,"\
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
    while((c=getc(ficpar))=='#' && c!= EOF){  
      ungetc(c,ficpar);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
      fgets(line, MAXLINE, ficpar);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
      puts(line);   fprintf(fichtm,"\
      fputs(line,ficparo);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
    ungetc(c,ficpar);  
     fprintf(fichtm,"\
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   fprintf(fichtm,"\
       - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
    while((c=getc(ficpar))=='#' && c!= EOF){     <a href=\"%s\">%s</a> <br>\n</li>",
      ungetc(c,ficpar);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
      fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"\
      puts(line);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      fputs(line,ficparo);     <a href=\"%s\">%s</a> <br>\n</li>",
    }             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    ungetc(c,ficpar);   fprintf(fichtm,"\
     - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    dateprev1=anprev1+mprev1/12.+jprev1/365.;   fprintf(fichtm,"\
    dateprev2=anprev2+mprev2/12.+jprev2/365.;   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   fscanf(ficpar,"pop_based=%d\n",&popbased);   fprintf(fichtm,"\
   fprintf(ficparo,"pop_based=%d\n",popbased);     - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   fprintf(ficres,"pop_based=%d\n",popbased);             subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
    
   while((c=getc(ficpar))=='#' && c!= EOF){  /*  if(popforecast==1) fprintf(fichtm,"\n */
     ungetc(c,ficpar);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     fgets(line, MAXLINE, ficpar);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     puts(line);  /*      <br>",fileres,fileres,fileres,fileres); */
     fputs(line,ficparo);  /*  else  */
   }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   ungetc(c,ficpar);   fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   m=cptcoveff;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
 while((c=getc(ficpar))=='#' && c!= EOF){   for(k1=1; k1<=m;k1++){
     ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
     fgets(line, MAXLINE, ficpar);       jj1++;
     puts(line);       if (cptcovn > 0) {
     fputs(line,ficparo);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   }         for (cpt=1; cpt<=cptcoveff;cpt++) 
   ungetc(c,ficpar);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);       }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       for(cpt=1; cpt<=nlstate;cpt++) {
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
 /*------------ gnuplot -------------*/       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   strcpy(optionfilegnuplot,optionfilefiname);  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   strcat(optionfilegnuplot,".gp");  true period expectancies (those weighted with period prevalences are also\
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {   drawn in addition to the population based expectancies computed using\
     printf("Problem with file %s",optionfilegnuplot);   observed and cahotic prevalences: %s%d.png<br>\
   }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   fclose(ficgp);     } /* end i1 */
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);   }/* End k1 */
 /*--------- index.htm --------*/   fprintf(fichtm,"</ul>");
    fflush(fichtm);
   strcpy(optionfilehtm,optionfile);  }
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  /******************* Gnuplot file **************/
     printf("Problem with %s \n",optionfilehtm), exit(0);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   }  
     char dirfileres[132],optfileres[132];
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    int ng=0;
 \n  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 Total number of observations=%d <br>\n  /*     printf("Problem with file %s",optionfilegnuplot); */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 <hr  size=\"2\" color=\"#EC5E5E\">  /*   } */
  <ul><li><h4>Parameter files</h4>\n  
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    /*#ifdef windows */
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    fprintf(ficgp,"cd \"%s\" \n",pathc);
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);      /*#endif */
   fclose(fichtm);    m=pow(2,cptcoveff);
   
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    strcpy(dirfileres,optionfilefiname);
      strcpy(optfileres,"vpl");
 /*------------ free_vector  -------------*/   /* 1eme*/
  chdir(path);    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) {
  free_ivector(wav,1,imx);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         fprintf(ficgp,"set xlabel \"Age\" \n\
  free_ivector(num,1,n);  set ylabel \"Probability\" \n\
  free_vector(agedc,1,n);  set ter png small\n\
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  set size 0.65,0.65\n\
  fclose(ficparo);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
  fclose(ficres);  
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /*--------------- Prevalence limit --------------*/         else        fprintf(ficgp," \%%*lf (\%%*lf)");
         }
   strcpy(filerespl,"pl");       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   strcat(filerespl,fileres);       for (i=1; i<= nlstate ; i ++) {
   if((ficrespl=fopen(filerespl,"w"))==NULL) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;       } 
   }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);       for (i=1; i<= nlstate ; i ++) {
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fprintf(ficrespl,"#Prevalence limit\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficrespl,"#Age ");       }  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   fprintf(ficrespl,"\n");     }
      }
   prlim=matrix(1,nlstate,1,nlstate);    /*2 eme*/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (k1=1; k1<= m ; k1 ++) { 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      
   k=0;      for (i=1; i<= nlstate+1 ; i ++) {
   agebase=ageminpar;        k=2*i;
   agelim=agemaxpar;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   ftolpl=1.e-10;        for (j=1; j<= nlstate+1 ; j ++) {
   i1=cptcoveff;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   if (cptcovn < 1){i1=1;}          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
   for(cptcov=1;cptcov<=i1;cptcov++){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         k=k+1;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficrespl,"\n#******");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         printf("\n#******");          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficlog,"\n#******");        }   
         for(j=1;j<=cptcoveff;j++) {        fprintf(ficgp,"\" t\"\" w l 0,");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (j=1; j<= nlstate+1 ; j ++) {
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         }          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficrespl,"******\n");        }   
         printf("******\n");        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         fprintf(ficlog,"******\n");        else fprintf(ficgp,"\" t\"\" w l 0,");
              }
         for (age=agebase; age<=agelim; age++){    }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    
           fprintf(ficrespl,"%.0f",age );    /*3eme*/
           for(i=1; i<=nlstate;i++)    
           fprintf(ficrespl," %.5f", prlim[i][i]);    for (k1=1; k1<= m ; k1 ++) { 
           fprintf(ficrespl,"\n");      for (cpt=1; cpt<= nlstate ; cpt ++) {
         }        /*       k=2+nlstate*(2*cpt-2); */
       }        k=2+(nlstate+1)*(cpt-1);
     }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   fclose(ficrespl);        fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   /*------------- h Pij x at various ages ------------*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
          /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   printf("Computing pij: result on file '%s' \n", filerespij);          
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);        */
          for (i=1; i< nlstate ; i ++) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   /*if (stepm<=24) stepsize=2;*/          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
   agelim=AGESUP;        } 
   hstepm=stepsize*YEARM; /* Every year of age */        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      }
     }
   /* hstepm=1;   aff par mois*/    
     /* CV preval stable (period) */
   k=0;    for (k1=1; k1<= m ; k1 ++) { 
   for(cptcov=1;cptcov<=i1;cptcov++){      for (cpt=1; cpt<=nlstate ; cpt ++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        k=3;
       k=k+1;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficrespij,"\n#****** ");        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
         for(j=1;j<=cptcoveff;j++)  set ter png small\nset size 0.65,0.65\n\
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  unset log y\n\
         fprintf(ficrespij,"******\n");  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
                
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        for (i=1; i< nlstate ; i ++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficgp,"+$%d",k+i+1);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
           /*      nhstepm=nhstepm*YEARM; aff par mois*/        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (i=1; i< nlstate ; i ++) {
           oldm=oldms;savm=savms;          l=3+(nlstate+ndeath)*cpt;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficgp,"+$%d",l+i+1);
           fprintf(ficrespij,"# Age");        }
           for(i=1; i<=nlstate;i++)        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
             for(j=1; j<=nlstate+ndeath;j++)      } 
               fprintf(ficrespij," %1d-%1d",i,j);    }  
           fprintf(ficrespij,"\n");    
            for (h=0; h<=nhstepm; h++){    /* proba elementaires */
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    for(i=1,jk=1; i <=nlstate; i++){
             for(i=1; i<=nlstate;i++)      for(k=1; k <=(nlstate+ndeath); k++){
               for(j=1; j<=nlstate+ndeath;j++)        if (k != i) {
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          for(j=1; j <=ncovmodel; j++){
             fprintf(ficrespij,"\n");            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
              }            jk++; 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficgp,"\n");
           fprintf(ficrespij,"\n");          }
         }        }
     }      }
   }     }
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
   fclose(ficrespij);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   /*---------- Forecasting ------------------*/         else
   if((stepm == 1) && (strcmp(model,".")==0)){           fprintf(ficgp,"\nset title \"Probability\"\n");
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);         i=1;
   }         for(k2=1; k2<=nlstate; k2++) {
   else{           k3=i;
     erreur=108;           for(k=1; k<=(nlstate+ndeath); k++) {
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);             if (k != k2){
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);               if(ng==2)
   }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                 else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   /*---------- Health expectancies and variances ------------*/               ij=1;
                for(j=3; j <=ncovmodel; j++) {
   strcpy(filerest,"t");                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   strcat(filerest,fileres);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   if((ficrest=fopen(filerest,"w"))==NULL) {                   ij++;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                 }
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;                 else
   }                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);               }
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);               fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
   strcpy(filerese,"e");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   strcat(filerese,fileres);                 ij=1;
   if((ficreseij=fopen(filerese,"w"))==NULL) {                 for(j=3; j <=ncovmodel; j++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   }                     ij++;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                   }
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);                   else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   strcpy(fileresv,"v");                 }
   strcat(fileresv,fileres);                 fprintf(ficgp,")");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {               }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   }               i=i+ncovmodel;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);             }
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);           } /* end k */
   calagedate=-1;         } /* end k2 */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       } /* end jk */
      } /* end ng */
   k=0;     fflush(ficgp); 
   for(cptcov=1;cptcov<=i1;cptcov++){  }  /* end gnuplot */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  
       fprintf(ficrest,"\n#****** ");  /*************** Moving average **************/
       for(j=1;j<=cptcoveff;j++)  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    int i, cpt, cptcod;
     int modcovmax =1;
       fprintf(ficreseij,"\n#****** ");    int mobilavrange, mob;
       for(j=1;j<=cptcoveff;j++)    double age;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
       fprintf(ficresvij,"\n#****** ");    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       fprintf(ficresvij,"******\n");      if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for (age=bage; age<=fage; age++)
       oldm=oldms;savm=savms;        for (i=1; i<=nlstate;i++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            for (cptcod=1;cptcod<=modcovmax;cptcod++)
              mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      /* We keep the original values on the extreme ages bage, fage and for 
       oldm=oldms;savm=savms;         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);         we use a 5 terms etc. until the borders are no more concerned. 
       if(popbased==1){      */ 
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);      for (mob=3;mob <=mobilavrange;mob=mob+2){
        }        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
              for (cptcod=1;cptcod<=modcovmax;cptcod++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       fprintf(ficrest,"\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       epj=vector(1,nlstate+1);                }
       for(age=bage; age <=fage ;age++){              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            }
         if (popbased==1) {          }
           for(i=1; i<=nlstate;i++)        }/* end age */
             prlim[i][i]=probs[(int)age][i][k];      }/* end mob */
         }    }else return -1;
            return 0;
         fprintf(ficrest," %4.0f",age);  }/* End movingaverage */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  /************** Forecasting ******************/
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
           }    /* proj1, year, month, day of starting projection 
           epj[nlstate+1] +=epj[j];       agemin, agemax range of age
         }       dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
         for(i=1, vepp=0.;i <=nlstate;i++)    */
           for(j=1;j <=nlstate;j++)    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
             vepp += vareij[i][j][(int)age];    int *popage;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    double agec; /* generic age */
         for(j=1;j <=nlstate;j++){    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    double *popeffectif,*popcount;
         }    double ***p3mat;
         fprintf(ficrest,"\n");    double ***mobaverage;
       }    char fileresf[FILENAMELENGTH];
     }  
   }    agelim=AGESUP;
 free_matrix(mint,1,maxwav,1,n);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   
     free_vector(weight,1,n);    strcpy(fileresf,"f"); 
   fclose(ficreseij);    strcat(fileresf,fileres);
   fclose(ficresvij);    if((ficresf=fopen(fileresf,"w"))==NULL) {
   fclose(ficrest);      printf("Problem with forecast resultfile: %s\n", fileresf);
   fclose(ficpar);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   free_vector(epj,1,nlstate+1);    }
      printf("Computing forecasting: result on file '%s' \n", fileresf);
   /*------- Variance limit prevalence------*/      fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
   strcpy(fileresvpl,"vpl");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    if (mobilav!=0) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     exit(0);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    stepsize=(int) (stepm+YEARM-1)/YEARM;
       k=k+1;    if (stepm<=12) stepsize=1;
       fprintf(ficresvpl,"\n#****** ");    if(estepm < stepm){
       for(j=1;j<=cptcoveff;j++)      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficresvpl,"******\n");    else  hstepm=estepm;   
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    hstepm=hstepm/stepm; 
       oldm=oldms;savm=savms;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                                 fractional in yp1 */
     }    anprojmean=yp;
  }    yp2=modf((yp1*12),&yp);
     mprojmean=yp;
   fclose(ficresvpl);    yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
   /*---------- End : free ----------------*/    if(jprojmean==0) jprojmean=1;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    if(mprojmean==0) jprojmean=1;
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    i1=cptcoveff;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if (cptcovn < 1){i1=1;}
      
      fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresf,"#****** Routine prevforecast **\n");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  /*            if (h==(int)(YEARM*yearp)){ */
      for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   free_matrix(matcov,1,npar,1,npar);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   free_vector(delti,1,npar);        k=k+1;
   free_matrix(agev,1,maxwav,1,imx);        fprintf(ficresf,"\n#******");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fprintf(fichtm,"\n</body>");        }
   fclose(fichtm);        fprintf(ficresf,"******\n");
   fclose(ficgp);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
          for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
   if(erreur >0){            fprintf(ficresf," p%d%d",i,j);
     printf("End of Imach with error or warning %d\n",erreur);          fprintf(ficresf," p.%d",j);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);        }
   }else{        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
    printf("End of Imach\n");          fprintf(ficresf,"\n");
    fprintf(ficlog,"End of Imach\n");          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   }  
   printf("See log file on %s\n",filelog);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   fclose(ficlog);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            nhstepm = nhstepm/hstepm; 
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            oldm=oldms;savm=savms;
   /*printf("Total time was %d uSec.\n", total_usecs);*/            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   /*------ End -----------*/          
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
  end:                fprintf(ficresf,"\n");
 #ifdef windows                for(j=1;j<=cptcoveff;j++) 
   /* chdir(pathcd);*/                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 #endif                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
  /*system("wgnuplot graph.plt");*/              } 
  /*system("../gp37mgw/wgnuplot graph.plt");*/              for(j=1; j<=nlstate+ndeath;j++) {
  /*system("cd ../gp37mgw");*/                ppij=0.;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                for(i=1; i<=nlstate;i++) {
  strcpy(plotcmd,GNUPLOTPROGRAM);                  if (mobilav==1) 
  strcat(plotcmd," ");                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
  strcat(plotcmd,optionfilegnuplot);                  else {
  system(plotcmd);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
 #ifdef windows                  if (h*hstepm/YEARM*stepm== yearp) {
   while (z[0] != 'q') {                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     /* chdir(path); */                  }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                } /* end i */
     scanf("%s",z);                if (h*hstepm/YEARM*stepm==yearp) {
     if (z[0] == 'c') system("./imach");                  fprintf(ficresf," %.3f", ppij);
     else if (z[0] == 'e') system(optionfilehtm);                }
     else if (z[0] == 'g') system(plotcmd);              }/* end j */
     else if (z[0] == 'q') exit(0);            } /* end h */
   }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #endif          } /* end agec */
 }        } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8); /* hard coded ? */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); 
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* For V3*V2 Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) {
               h=1;
               codtab[h][k]=j;
               codtab[h][Tvar[k]]=j;
             }
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.137


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>