Diff for /imach/src/imach.c between versions 1.2 and 1.138

version 1.2, 2001/03/13 18:10:26 version 1.138, 2010/04/30 18:19:40
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.138  2010/04/30 18:19:40  brouard
   individuals from different ages are interviewed on their health status    *** empty log message ***
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.137  2010/04/29 18:11:38  brouard
   Health expectancies are computed from the transistions observed between    (Module): Checking covariates for more complex models
   waves and are computed for each degree of severity of disability (number    than V1+V2. A lot of change to be done. Unstable.
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.136  2010/04/26 20:30:53  brouard
   The simplest model is the multinomial logistic model where pij is    (Module): merging some libgsl code. Fixing computation
   the probabibility to be observed in state j at the second wave conditional    of likelione (using inter/intrapolation if mle = 0) in order to
   to be observed in state i at the first wave. Therefore the model is:    get same likelihood as if mle=1.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Some cleaning of code and comments added.
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.135  2009/10/29 15:33:14  brouard
     *Covariates have to be included here again* invites you to do it.    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   More covariates you add, less is the speed of the convergence.  
     Revision 1.134  2009/10/29 13:18:53  brouard
   The advantage that this computer programme claims, comes from that if the    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   delay between waves is not identical for each individual, or if some  
   individual missed an interview, the information is not rounded or lost, but    Revision 1.133  2009/07/06 10:21:25  brouard
   taken into account using an interpolation or extrapolation.    just nforces
   hPijx is the probability to be  
   observed in state i at age x+h conditional to the observed state i at age    Revision 1.132  2009/07/06 08:22:05  brouard
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Many tings
   unobserved intermediate  states. This elementary transition (by month or  
   quarter trimester, semester or year) is model as a multinomial logistic.    Revision 1.131  2009/06/20 16:22:47  brouard
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Some dimensions resccaled
   and the contribution of each individual to the likelihood is simply hPijx.  
     Revision 1.130  2009/05/26 06:44:34  brouard
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Max Covariate is now set to 20 instead of 8. A
   of the life expectancies. It also computes the prevalence limits.    lot of cleaning with variables initialized to 0. Trying to make
      V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.129  2007/08/31 13:49:27  lievre
   This software have been partly granted by Euro-REVES, a concerted action    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.128  2006/06/30 13:02:05  brouard
   software can be distributed freely for non commercial use. Latest version    (Module): Clarifications on computing e.j
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.127  2006/04/28 18:11:50  brouard
      (Module): Yes the sum of survivors was wrong since
 #include <math.h>    imach-114 because nhstepm was no more computed in the age
 #include <stdio.h>    loop. Now we define nhstepma in the age loop.
 #include <stdlib.h>    (Module): In order to speed up (in case of numerous covariates) we
 #include <unistd.h>    compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
 #define MAXLINE 256    deviation (needs data from the Hessian matrices) which slows the
 #define FILENAMELENGTH 80    computation.
 /*#define DEBUG*/    In the future we should be able to stop the program is only health
 #define windows    expectancies and graph are needed without standard deviations.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.126  2006/04/28 17:23:28  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 #define NINTERVMAX 8    loop. Now we define nhstepma in the age loop.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Version 0.98h
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.125  2006/04/04 15:20:31  lievre
 #define MAXN 80000    Errors in calculation of health expectancies. Age was not initialized.
 #define YEARM 12. /* Number of months per year */    Forecasting file added.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
 int nvar;  
 static int cptcov;    Revision 1.123  2006/03/20 10:52:43  brouard
 int cptcovn;    * imach.c (Module): <title> changed, corresponds to .htm file
 int npar=NPARMAX;    name. <head> headers where missing.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    * imach.c (Module): Weights can have a decimal point as for
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 int *wav; /* Number of waves for this individuual 0 is possible */    Modification of warning when the covariates values are not 0 or
 int maxwav; /* Maxim number of waves */    1.
 int mle, weightopt;    Version 0.98g
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.122  2006/03/20 09:45:41  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Weights can have a decimal point as for
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    English (a comma might work with a correct LC_NUMERIC environment,
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    otherwise the weight is truncated).
 FILE *ficgp, *fichtm;    Modification of warning when the covariates values are not 0 or
 FILE *ficreseij;    1.
   char filerese[FILENAMELENGTH];    Version 0.98g
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.121  2006/03/16 17:45:01  lievre
  FILE  *ficresvpl;    * imach.c (Module): Comments concerning covariates added
   char fileresvpl[FILENAMELENGTH];  
     * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   
 #define NR_END 1    Revision 1.120  2006/03/16 15:10:38  lievre
 #define FREE_ARG char*    (Module): refinements in the computation of lli if
 #define FTOL 1.0e-10    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 #define NRANSI  
 #define ITMAX 200    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
 #define TOL 2.0e-4    computed as likelihood omitting the logarithm. Version O.98e
   
 #define CGOLD 0.3819660    Revision 1.118  2006/03/14 18:20:07  brouard
 #define ZEPS 1.0e-10    (Module): varevsij Comments added explaining the second
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define GOLD 1.618034    (Module): Function pstamp added
 #define GLIMIT 100.0    (Module): Version 0.98d
 #define TINY 1.0e-20  
     Revision 1.117  2006/03/14 17:16:22  brouard
 static double maxarg1,maxarg2;    (Module): varevsij Comments added explaining the second
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    table of variances if popbased=1 .
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
      (Module): Function pstamp added
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Module): Version 0.98d
 #define rint(a) floor(a+0.5)  
     Revision 1.116  2006/03/06 10:29:27  brouard
 static double sqrarg;    (Module): Variance-covariance wrong links and
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    varian-covariance of ej. is needed (Saito).
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.115  2006/02/27 12:17:45  brouard
 int imx;    (Module): One freematrix added in mlikeli! 0.98c
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
 int m,nb;    filename with strsep.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.113  2006/02/24 14:20:24  brouard
 double **pmmij;    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 double *weight;    allocation too.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.112  2006/01/30 09:55:26  brouard
 int **nbcode, *Tcode, *Tvar, **codtab;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.111  2006/01/25 20:38:18  brouard
 double ftolhess; /* Tolerance for computing hessian */    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 /******************************************/  
     Revision 1.110  2006/01/25 00:51:50  brouard
 void replace(char *s, char*t)    (Module): Lots of cleaning and bugs added (Gompertz)
 {  
   int i;    Revision 1.109  2006/01/24 19:37:15  brouard
   int lg=20;    (Module): Comments (lines starting with a #) are allowed in data.
   i=0;  
   lg=strlen(t);    Revision 1.108  2006/01/19 18:05:42  lievre
   for(i=0; i<= lg; i++) {    Gnuplot problem appeared...
     (s[i] = t[i]);    To be fixed
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.107  2006/01/19 16:20:37  brouard
 }    Test existence of gnuplot in imach path
   
 int nbocc(char *s, char occ)    Revision 1.106  2006/01/19 13:24:36  brouard
 {    Some cleaning and links added in html output
   int i,j=0;  
   int lg=20;    Revision 1.105  2006/01/05 20:23:19  lievre
   i=0;    *** empty log message ***
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.104  2005/09/30 16:11:43  lievre
   if  (s[i] == occ ) j++;    (Module): sump fixed, loop imx fixed, and simplifications.
   }    (Module): If the status is missing at the last wave but we know
   return j;    that the person is alive, then we can code his/her status as -2
 }    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 void cutv(char *u,char *v, char*t, char occ)    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 {    the healthy state at last known wave). Version is 0.98
   int i,lg,j,p;  
   i=0;    Revision 1.103  2005/09/30 15:54:49  lievre
   if (t[0]== occ) p=0;    (Module): sump fixed, loop imx fixed, and simplifications.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]==occ)) p=j+1;    Revision 1.102  2004/09/15 17:31:30  brouard
   }    Add the possibility to read data file including tab characters.
   
   lg=strlen(t);    Revision 1.101  2004/09/15 10:38:38  brouard
   for(j=0; j<p; j++) {    Fix on curr_time
     (u[j] = t[j]);  
     u[p]='\0';    Revision 1.100  2004/07/12 18:29:06  brouard
   }    Add version for Mac OS X. Just define UNIX in Makefile
   
    for(j=0; j<= lg; j++) {    Revision 1.99  2004/06/05 08:57:40  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    *** empty log message ***
   }  
 }    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 /********************** nrerror ********************/    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 void nrerror(char error_text[])    other analysis, in order to test if the mortality estimated from the
 {    cross-longitudinal survey is different from the mortality estimated
   fprintf(stderr,"ERREUR ...\n");    from other sources like vital statistic data.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    The same imach parameter file can be used but the option for mle should be -3.
 }  
 /*********************** vector *******************/    Agnès, who wrote this part of the code, tried to keep most of the
 double *vector(int nl, int nh)    former routines in order to include the new code within the former code.
 {  
   double *v;    The output is very simple: only an estimate of the intercept and of
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    the slope with 95% confident intervals.
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Current limitations:
 }    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 /************************ free vector ******************/    B) There is no computation of Life Expectancy nor Life Table.
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.97  2004/02/20 13:25:42  lievre
   free((FREE_ARG)(v+nl-NR_END));    Version 0.96d. Population forecasting command line is (temporarily)
 }    suppressed.
   
 /************************ivector *******************************/    Revision 1.96  2003/07/15 15:38:55  brouard
 int *ivector(long nl,long nh)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 {    rewritten within the same printf. Workaround: many printfs.
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.95  2003/07/08 07:54:34  brouard
   if (!v) nrerror("allocation failure in ivector");    * imach.c (Repository):
   return v-nl+NR_END;    (Repository): Using imachwizard code to output a more meaningful covariance
 }    matrix (cov(a12,c31) instead of numbers.
   
 /******************free ivector **************************/    Revision 1.94  2003/06/27 13:00:02  brouard
 void free_ivector(int *v, long nl, long nh)    Just cleaning
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.93  2003/06/25 16:33:55  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 /******************* imatrix *******************************/    (Module): Version 0.96b
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Revision 1.92  2003/06/25 16:30:45  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    exist so I changed back to asctime which exists.
   int **m;  
      Revision 1.91  2003/06/25 15:30:29  brouard
   /* allocate pointers to rows */    * imach.c (Repository): Duplicated warning errors corrected.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    (Repository): Elapsed time after each iteration is now output. It
   if (!m) nrerror("allocation failure 1 in matrix()");    helps to forecast when convergence will be reached. Elapsed time
   m += NR_END;    is stamped in powell.  We created a new html file for the graphs
   m -= nrl;    concerning matrix of covariance. It has extension -cov.htm.
    
      Revision 1.90  2003/06/24 12:34:15  brouard
   /* allocate rows and set pointers to them */    (Module): Some bugs corrected for windows. Also, when
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    mle=-1 a template is output in file "or"mypar.txt with the design
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    of the covariance matrix to be input.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.89  2003/06/24 12:30:52  brouard
      (Module): Some bugs corrected for windows. Also, when
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    mle=-1 a template is output in file "or"mypar.txt with the design
      of the covariance matrix to be input.
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.88  2003/06/23 17:54:56  brouard
 }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 /****************** free_imatrix *************************/    Revision 1.87  2003/06/18 12:26:01  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    Version 0.96
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.86  2003/06/17 20:04:08  brouard
      /* free an int matrix allocated by imatrix() */    (Module): Change position of html and gnuplot routines and added
 {    routine fileappend.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Revision 1.85  2003/06/17 13:12:43  brouard
 }    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 /******************* matrix *******************************/    prior to the death. In this case, dh was negative and likelihood
 double **matrix(long nrl, long nrh, long ncl, long nch)    was wrong (infinity). We still send an "Error" but patch by
 {    assuming that the date of death was just one stepm after the
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    interview.
   double **m;    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    memory allocation. But we also truncated to 8 characters (left
   if (!m) nrerror("allocation failure 1 in matrix()");    truncation)
   m += NR_END;    (Repository): No more line truncation errors.
   m -= nrl;  
     Revision 1.84  2003/06/13 21:44:43  brouard
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    * imach.c (Repository): Replace "freqsummary" at a correct
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    place. It differs from routine "prevalence" which may be called
   m[nrl] += NR_END;    many times. Probs is memory consuming and must be used with
   m[nrl] -= ncl;    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Revision 1.83  2003/06/10 13:39:11  lievre
 }    *** empty log message ***
   
 /*************************free matrix ************************/    Revision 1.82  2003/06/05 15:57:20  brouard
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Add log in  imach.c and  fullversion number is now printed.
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  */
   free((FREE_ARG)(m+nrl-NR_END));  /*
 }     Interpolated Markov Chain
   
 /******************* ma3x *******************************/    Short summary of the programme:
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    
 {    This program computes Healthy Life Expectancies from
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   double ***m;    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    case of a health survey which is our main interest) -2- at least a
   if (!m) nrerror("allocation failure 1 in matrix()");    second wave of interviews ("longitudinal") which measure each change
   m += NR_END;    (if any) in individual health status.  Health expectancies are
   m -= nrl;    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Maximum Likelihood of the parameters involved in the model.  The
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    simplest model is the multinomial logistic model where pij is the
   m[nrl] += NR_END;    probability to be observed in state j at the second wave
   m[nrl] -= ncl;    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    where the markup *Covariates have to be included here again* invites
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    you to do it.  More covariates you add, slower the
   m[nrl][ncl] += NR_END;    convergence.
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    The advantage of this computer programme, compared to a simple
     m[nrl][j]=m[nrl][j-1]+nlay;    multinomial logistic model, is clear when the delay between waves is not
      identical for each individual. Also, if a individual missed an
   for (i=nrl+1; i<=nrh; i++) {    intermediate interview, the information is lost, but taken into
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    account using an interpolation or extrapolation.  
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;    hPijx is the probability to be observed in state i at age x+h
   }    conditional to the observed state i at age x. The delay 'h' can be
   return m;    split into an exact number (nh*stepm) of unobserved intermediate
 }    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 /*************************free ma3x ************************/    matrix is simply the matrix product of nh*stepm elementary matrices
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    and the contribution of each individual to the likelihood is simply
 {    hPijx.
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Also this programme outputs the covariance matrix of the parameters but also
   free((FREE_ARG)(m+nrl-NR_END));    of the life expectancies. It also computes the period (stable) prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /***************** f1dim *************************/             Institut national d'études démographiques, Paris.
 extern int ncom;    This software have been partly granted by Euro-REVES, a concerted action
 extern double *pcom,*xicom;    from the European Union.
 extern double (*nrfunc)(double []);    It is copyrighted identically to a GNU software product, ie programme and
      software can be distributed freely for non commercial use. Latest version
 double f1dim(double x)    can be accessed at http://euroreves.ined.fr/imach .
 {  
   int j;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   double f;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   double *xt;    
      **********************************************************************/
   xt=vector(1,ncom);  /*
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    main
   f=(*nrfunc)(xt);    read parameterfile
   free_vector(xt,1,ncom);    read datafile
   return f;    concatwav
 }    freqsummary
     if (mle >= 1)
 /*****************brent *************************/      mlikeli
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    print results files
 {    if mle==1 
   int iter;       computes hessian
   double a,b,d,etemp;    read end of parameter file: agemin, agemax, bage, fage, estepm
   double fu,fv,fw,fx;        begin-prev-date,...
   double ftemp;    open gnuplot file
   double p,q,r,tol1,tol2,u,v,w,x,xm;    open html file
   double e=0.0;    period (stable) prevalence
       for age prevalim()
   a=(ax < cx ? ax : cx);    h Pij x
   b=(ax > cx ? ax : cx);    variance of p varprob
   x=w=v=bx;    forecasting if prevfcast==1 prevforecast call prevalence()
   fw=fv=fx=(*f)(x);    health expectancies
   for (iter=1;iter<=ITMAX;iter++) {    Variance-covariance of DFLE
     xm=0.5*(a+b);    prevalence()
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     movingaverage()
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    varevsij() 
     printf(".");fflush(stdout);    if popbased==1 varevsij(,popbased)
 #ifdef DEBUG    total life expectancies
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Variance of period (stable) prevalence
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */   end
 #endif  */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  
       return fx;  
     }   
     ftemp=fu;  #include <math.h>
     if (fabs(e) > tol1) {  #include <stdio.h>
       r=(x-w)*(fx-fv);  #include <stdlib.h>
       q=(x-v)*(fx-fw);  #include <string.h>
       p=(x-v)*q-(x-w)*r;  #include <unistd.h>
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  #include <limits.h>
       q=fabs(q);  #include <sys/types.h>
       etemp=e;  #include <sys/stat.h>
       e=d;  #include <errno.h>
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  extern int errno;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  /* #include <sys/time.h> */
         d=p/q;  #include <time.h>
         u=x+d;  #include "timeval.h"
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  #ifdef GSL
       }  #include <gsl/gsl_errno.h>
     } else {  #include <gsl/gsl_multimin.h>
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #endif
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  /* #include <libintl.h> */
     fu=(*f)(u);  /* #define _(String) gettext (String) */
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  #define MAXLINE 256
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  #define GNUPLOTPROGRAM "gnuplot"
         } else {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
           if (u < x) a=u; else b=u;  #define FILENAMELENGTH 132
           if (fu <= fw || w == x) {  
             v=w;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
             w=u;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
             fv=fw;  
             fw=fu;  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
           } else if (fu <= fv || v == x || v == w) {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
             v=u;  
             fv=fu;  #define NINTERVMAX 8
           }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
         }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   }  #define NCOVMAX 20 /* Maximum number of covariates */
   nrerror("Too many iterations in brent");  #define MAXN 20000
   *xmin=x;  #define YEARM 12. /* Number of months per year */
   return fx;  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /****************** mnbrak ***********************/  #ifdef UNIX
   #define DIRSEPARATOR '/'
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define CHARSEPARATOR "/"
             double (*func)(double))  #define ODIRSEPARATOR '\\'
 {  #else
   double ulim,u,r,q, dum;  #define DIRSEPARATOR '\\'
   double fu;  #define CHARSEPARATOR "\\"
    #define ODIRSEPARATOR '/'
   *fa=(*func)(*ax);  #endif
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  /* $Id$ */
     SHFT(dum,*ax,*bx,dum)  /* $State$ */
       SHFT(dum,*fb,*fa,dum)  
       }  char version[]="Imach version 0.98m, April 2010, INED-EUROREVES-Institut de longevite ";
   *cx=(*bx)+GOLD*(*bx-*ax);  char fullversion[]="$Revision$ $Date$"; 
   *fc=(*func)(*cx);  char strstart[80];
   while (*fb > *fc) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     r=(*bx-*ax)*(*fb-*fc);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     q=(*bx-*cx)*(*fb-*fa);  int nvar=0, nforce=0; /* Number of variables, number of forces */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  int npar=NPARMAX;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int nlstate=2; /* Number of live states */
     if ((*bx-u)*(u-*cx) > 0.0) {  int ndeath=1; /* Number of dead states */
       fu=(*func)(u);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int popbased=0;
       fu=(*func)(u);  
       if (fu < *fc) {  int *wav; /* Number of waves for this individuual 0 is possible */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  int maxwav=0; /* Maxim number of waves */
           SHFT(*fb,*fc,fu,(*func)(u))  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
           }  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       u=ulim;                     to the likelihood and the sum of weights (done by funcone)*/
       fu=(*func)(u);  int mle=1, weightopt=0;
     } else {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       u=(*cx)+GOLD*(*cx-*bx);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       fu=(*func)(u);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     SHFT(*ax,*bx,*cx,u)  double jmean=1; /* Mean space between 2 waves */
       SHFT(*fa,*fb,*fc,fu)  double **oldm, **newm, **savm; /* Working pointers to matrices */
       }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  /*FILE *fic ; */ /* Used in readdata only */
   FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /*************** linmin ************************/  FILE *ficlog, *ficrespow;
   int globpr=0; /* Global variable for printing or not */
 int ncom;  double fretone; /* Only one call to likelihood */
 double *pcom,*xicom;  long ipmx=0; /* Number of contributions */
 double (*nrfunc)(double []);  double sw; /* Sum of weights */
    char filerespow[FILENAMELENGTH];
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 {  FILE *ficresilk;
   double brent(double ax, double bx, double cx,  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
                double (*f)(double), double tol, double *xmin);  FILE *ficresprobmorprev;
   double f1dim(double x);  FILE *fichtm, *fichtmcov; /* Html File */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  FILE *ficreseij;
               double *fc, double (*func)(double));  char filerese[FILENAMELENGTH];
   int j;  FILE *ficresstdeij;
   double xx,xmin,bx,ax;  char fileresstde[FILENAMELENGTH];
   double fx,fb,fa;  FILE *ficrescveij;
    char filerescve[FILENAMELENGTH];
   ncom=n;  FILE  *ficresvij;
   pcom=vector(1,n);  char fileresv[FILENAMELENGTH];
   xicom=vector(1,n);  FILE  *ficresvpl;
   nrfunc=func;  char fileresvpl[FILENAMELENGTH];
   for (j=1;j<=n;j++) {  char title[MAXLINE];
     pcom[j]=p[j];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     xicom[j]=xi[j];  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   ax=0.0;  char command[FILENAMELENGTH];
   xx=1.0;  int  outcmd=0;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  char filelog[FILENAMELENGTH]; /* Log file */
 #endif  char filerest[FILENAMELENGTH];
   for (j=1;j<=n;j++) {  char fileregp[FILENAMELENGTH];
     xi[j] *= xmin;  char popfile[FILENAMELENGTH];
     p[j] += xi[j];  
   }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 }  struct timezone tzp;
   extern int gettimeofday();
 /*************** powell ************************/  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  long time_value;
             double (*func)(double []))  extern long time();
 {  char strcurr[80], strfor[80];
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  char *endptr;
   int i,ibig,j;  long lval;
   double del,t,*pt,*ptt,*xit;  double dval;
   double fp,fptt;  
   double *xits;  #define NR_END 1
   pt=vector(1,n);  #define FREE_ARG char*
   ptt=vector(1,n);  #define FTOL 1.0e-10
   xit=vector(1,n);  
   xits=vector(1,n);  #define NRANSI 
   *fret=(*func)(p);  #define ITMAX 200 
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  #define TOL 2.0e-4 
     fp=(*fret);  
     ibig=0;  #define CGOLD 0.3819660 
     del=0.0;  #define ZEPS 1.0e-10 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  #define GOLD 1.618034 
     printf("\n");  #define GLIMIT 100.0 
     for (i=1;i<=n;i++) {  #define TINY 1.0e-20 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  static double maxarg1,maxarg2;
 #ifdef DEBUG  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       printf("fret=%lf \n",*fret);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 #endif    
       printf("%d",i);fflush(stdout);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       linmin(p,xit,n,fret,func);  #define rint(a) floor(a+0.5)
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  static double sqrarg;
         ibig=i;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 #ifdef DEBUG  int agegomp= AGEGOMP;
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  int imx; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  int stepm=1;
         printf(" x(%d)=%.12e",j,xit[j]);  /* Stepm, step in month: minimum step interpolation*/
       }  
       for(j=1;j<=n;j++)  int estepm;
         printf(" p=%.12e",p[j]);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       printf("\n");  
 #endif  int m,nb;
     }  long *num;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 #ifdef DEBUG  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       int k[2],l;  double **pmmij, ***probs;
       k[0]=1;  double *ageexmed,*agecens;
       k[1]=-1;  double dateintmean=0;
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  double *weight;
         printf(" %.12e",p[j]);  int **s; /* Status */
       printf("\n");  double *agedc, **covar, idx;
       for(l=0;l<=1;l++) {  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
         for (j=1;j<=n;j++) {  double *lsurv, *lpop, *tpop;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
         }  double ftolhess; /* Tolerance for computing hessian */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  /**************** split *************************/
 #endif  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       free_vector(xit,1,n);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       free_vector(xits,1,n);    */ 
       free_vector(ptt,1,n);    char  *ss;                            /* pointer */
       free_vector(pt,1,n);    int   l1, l2;                         /* length counters */
       return;  
     }    l1 = strlen(path );                   /* length of path */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     for (j=1;j<=n;j++) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       ptt[j]=2.0*p[j]-pt[j];    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       xit[j]=p[j]-pt[j];      strcpy( name, path );               /* we got the fullname name because no directory */
       pt[j]=p[j];      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     fptt=(*func)(ptt);      /* get current working directory */
     if (fptt < fp) {      /*    extern  char* getcwd ( char *buf , int len);*/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       if (t < 0.0) {        return( GLOCK_ERROR_GETCWD );
         linmin(p,xit,n,fret,func);      }
         for (j=1;j<=n;j++) {      /* got dirc from getcwd*/
           xi[j][ibig]=xi[j][n];      printf(" DIRC = %s \n",dirc);
           xi[j][n]=xit[j];    } else {                              /* strip direcotry from path */
         }      ss++;                               /* after this, the filename */
 #ifdef DEBUG      l2 = strlen( ss );                  /* length of filename */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         for(j=1;j<=n;j++)      strcpy( name, ss );         /* save file name */
           printf(" %.12e",xit[j]);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         printf("\n");      dirc[l1-l2] = 0;                    /* add zero */
 #endif      printf(" DIRC2 = %s \n",dirc);
       }    }
     }    /* We add a separator at the end of dirc if not exists */
   }    l1 = strlen( dirc );                  /* length of directory */
 }    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
 /**** Prevalence limit ****************/      dirc[l1+1] = 0; 
       printf(" DIRC3 = %s \n",dirc);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    }
 {    ss = strrchr( name, '.' );            /* find last / */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    if (ss >0){
      matrix by transitions matrix until convergence is reached */      ss++;
       strcpy(ext,ss);                     /* save extension */
   int i, ii,j,k;      l1= strlen( name);
   double min, max, maxmin, maxmax,sumnew=0.;      l2= strlen(ss)+1;
   double **matprod2();      strncpy( finame, name, l1-l2);
   double **out, cov[NCOVMAX], **pmij();      finame[l1-l2]= 0;
   double **newm;    }
   double agefin, delaymax=50 ; /* Max number of years to converge */  
     return( 0 );                          /* we're done */
   for (ii=1;ii<=nlstate+ndeath;ii++)  }
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /******************************************/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  void replace_back_to_slash(char *s, char*t)
     newm=savm;  {
     /* Covariates have to be included here again */    int i;
     cov[1]=1.;    int lg=0;
     cov[2]=agefin;    i=0;
     if (cptcovn>0){    lg=strlen(t);
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}    for(i=0; i<= lg; i++) {
     }      (s[i] = t[i]);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      if (t[i]== '\\') s[i]='/';
     }
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  char *trimbb(char *out, char *in)
     for(j=1;j<=nlstate;j++){  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
       min=1.;    char *s;
       max=0.;    s=out;
       for(i=1; i<=nlstate; i++) {    while (*in != '\0'){
         sumnew=0;      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        in++;
         prlim[i][j]= newm[i][j]/(1-sumnew);      }
         max=FMAX(max,prlim[i][j]);      *out++ = *in++;
         min=FMIN(min,prlim[i][j]);    }
       }    *out='\0';
       maxmin=max-min;    return s;
       maxmax=FMAX(maxmax,maxmin);  }
     }  
     if(maxmax < ftolpl){  char *cutv(char *blocc, char *alocc, char *in, char occ)
       return prlim;  {
     }    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   }       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 }       gives blocc="abcdef2ghi" and alocc="j".
        If occ is not found blocc is null and alocc is equal to in. Returns alocc
 /*************** transition probabilities **********/    */
     char *s, *t;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    t=in;s=in;
 {    while (*in != '\0'){
   double s1, s2;      while( *in == occ){
   /*double t34;*/        *blocc++ = *in++;
   int i,j,j1, nc, ii, jj;        s=in;
       }
     for(i=1; i<= nlstate; i++){      *blocc++ = *in++;
     for(j=1; j<i;j++){    }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    if (s == t) /* occ not found */
         /*s2 += param[i][j][nc]*cov[nc];*/      *(blocc-(in-s))='\0';
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    else
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      *(blocc-(in-s)-1)='\0';
       }    in=s;
       ps[i][j]=s2;    while ( *in != '\0'){
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      *alocc++ = *in++;
     }    }
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    *alocc='\0';
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return s;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  }
       }  
       ps[i][j]=s2;  int nbocc(char *s, char occ)
     }  {
   }    int i,j=0;
   for(i=1; i<= nlstate; i++){    int lg=20;
      s1=0;    i=0;
     for(j=1; j<i; j++)    lg=strlen(s);
       s1+=exp(ps[i][j]);    for(i=0; i<= lg; i++) {
     for(j=i+1; j<=nlstate+ndeath; j++)    if  (s[i] == occ ) j++;
       s1+=exp(ps[i][j]);    }
     ps[i][i]=1./(s1+1.);    return j;
     for(j=1; j<i; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)  /* void cutv(char *u,char *v, char*t, char occ) */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /* { */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   } /* end i */  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   /*      gives u="abcdef2ghi" and v="j" *\/ */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /*   int i,lg,j,p=0; */
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*   i=0; */
       ps[ii][jj]=0;  /*   lg=strlen(t); */
       ps[ii][ii]=1;  /*   for(j=0; j<=lg-1; j++) { */
     }  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   }  /*   } */
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /*   for(j=0; j<p; j++) { */
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*     (u[j] = t[j]); */
      printf("%lf ",ps[ii][jj]);  /*   } */
    }  /*      u[p]='\0'; */
     printf("\n ");  
     }  /*    for(j=0; j<= lg; j++) { */
     printf("\n ");printf("%lf ",cov[2]);*/  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
 /*  /*   } */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /* } */
   goto end;*/  
     return ps;  /********************** nrerror ********************/
 }  
   void nrerror(char error_text[])
 /**************** Product of 2 matrices ******************/  {
     fprintf(stderr,"ERREUR ...\n");
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    fprintf(stderr,"%s\n",error_text);
 {    exit(EXIT_FAILURE);
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /*********************** vector *******************/
   /* in, b, out are matrice of pointers which should have been initialized  double *vector(int nl, int nh)
      before: only the contents of out is modified. The function returns  {
      a pointer to pointers identical to out */    double *v;
   long i, j, k;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for(i=nrl; i<= nrh; i++)    if (!v) nrerror("allocation failure in vector");
     for(k=ncolol; k<=ncoloh; k++)    return v-nl+NR_END;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  }
         out[i][k] +=in[i][j]*b[j][k];  
   /************************ free vector ******************/
   return out;  void free_vector(double*v, int nl, int nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
   }
 /************* Higher Matrix Product ***************/  
   /************************ivector *******************************/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  int *ivector(long nl,long nh)
 {  {
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    int *v;
      duration (i.e. until    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    if (!v) nrerror("allocation failure in ivector");
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    return v-nl+NR_END;
      (typically every 2 years instead of every month which is too big).  }
      Model is determined by parameters x and covariates have to be  
      included manually here.  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
      */  {
     free((FREE_ARG)(v+nl-NR_END));
   int i, j, d, h, k;  }
   double **out, cov[NCOVMAX];  
   double **newm;  /************************lvector *******************************/
   long *lvector(long nl,long nh)
   /* Hstepm could be zero and should return the unit matrix */  {
   for (i=1;i<=nlstate+ndeath;i++)    long *v;
     for (j=1;j<=nlstate+ndeath;j++){    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       oldm[i][j]=(i==j ? 1.0 : 0.0);    if (!v) nrerror("allocation failure in ivector");
       po[i][j][0]=(i==j ? 1.0 : 0.0);    return v-nl+NR_END;
     }  }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /******************free lvector **************************/
     for(d=1; d <=hstepm; d++){  void free_lvector(long *v, long nl, long nh)
       newm=savm;  {
       /* Covariates have to be included here again */    free((FREE_ARG)(v+nl-NR_END));
       cov[1]=1.;  }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       if (cptcovn>0){  /******************* imatrix *******************************/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    int **m; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    
       savm=oldm;    /* allocate pointers to rows */ 
       oldm=newm;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     for(i=1; i<=nlstate+ndeath; i++)    m += NR_END; 
       for(j=1;j<=nlstate+ndeath;j++) {    m -= nrl; 
         po[i][j][h]=newm[i][j];    
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    
          */    /* allocate rows and set pointers to them */ 
       }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   } /* end h */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   return po;    m[nrl] += NR_END; 
 }    m[nrl] -= ncl; 
     
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 /*************** log-likelihood *************/    
 double func( double *x)    /* return pointer to array of pointers to rows */ 
 {    return m; 
   int i, ii, j, k, mi, d;  } 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  /****************** free_imatrix *************************/
   double sw; /* Sum of weights */  void free_imatrix(m,nrl,nrh,ncl,nch)
   double lli; /* Individual log likelihood */        int **m;
   long ipmx;        long nch,ncl,nrh,nrl; 
   /*extern weight */       /* free an int matrix allocated by imatrix() */ 
   /* We are differentiating ll according to initial status */  { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   /*for(i=1;i<imx;i++)    free((FREE_ARG) (m+nrl-NR_END)); 
 printf(" %d\n",s[4][i]);  } 
   */  
   /******************* matrix *******************************/
   for(k=1; k<=nlstate; k++) ll[k]=0.;  double **matrix(long nrl, long nrh, long ncl, long nch)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  {
        for(mi=1; mi<= wav[i]-1; mi++){    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       for (ii=1;ii<=nlstate+ndeath;ii++)    double **m;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             for(d=0; d<dh[mi][i]; d++){    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         newm=savm;    if (!m) nrerror("allocation failure 1 in matrix()");
           cov[1]=1.;    m += NR_END;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    m -= nrl;
           if (cptcovn>0){  
             for (k=1; k<=cptcovn;k++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
               cov[2+k]=covar[Tvar[k]][i];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
               /* printf("k=%d cptcovn=%d %lf\n",k,cptcovn,covar[Tvar[k]][i]);*/    m[nrl] += NR_END;
             }    m[nrl] -= ncl;
             }  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    return m;
           savm=oldm;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
           oldm=newm;     */
       } /* end mult */  }
      
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /*************************free matrix ************************/
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       ipmx +=1;  {
       sw += weight[i];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    free((FREE_ARG)(m+nrl-NR_END));
     } /* end of wave */  }
   } /* end of individual */  
   /******************* ma3x *******************************/
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
   return -l;  
 }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 /*********** Maximum Likelihood Estimation ***************/    m -= nrl;
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   int i,j, iter;    m[nrl] += NR_END;
   double **xi,*delti;    m[nrl] -= ncl;
   double fret;  
   xi=matrix(1,npar,1,npar);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       xi[i][j]=(i==j ? 1.0 : 0.0);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   printf("Powell\n");    m[nrl][ncl] += NR_END;
   powell(p,xi,npar,ftol,&iter,&fret,func);    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      m[nrl][j]=m[nrl][j-1]+nlay;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    
     for (i=nrl+1; i<=nrh; i++) {
 }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
 /**** Computes Hessian and covariance matrix ***/        m[i][j]=m[i][j-1]+nlay;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    }
 {    return m; 
   double  **a,**y,*x,pd;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double **hess;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   int i, j,jk;    */
   int *indx;  }
   
   double hessii(double p[], double delta, int theta, double delti[]);  /*************************free ma3x ************************/
   double hessij(double p[], double delti[], int i, int j);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   void lubksb(double **a, int npar, int *indx, double b[]) ;  {
   void ludcmp(double **a, int npar, int *indx, double *d) ;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   hess=matrix(1,npar,1,npar);  }
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*************** function subdirf ***********/
   for (i=1;i<=npar;i++){  char *subdirf(char fileres[])
     printf("%d",i);fflush(stdout);  {
     hess[i][i]=hessii(p,ftolhess,i,delti);    /* Caution optionfilefiname is hidden */
     /*printf(" %f ",p[i]);*/    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   for (i=1;i<=npar;i++) {    return tmpout;
     for (j=1;j<=npar;j++)  {  }
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  /*************** function subdirf2 ***********/
         hess[i][j]=hessij(p,delti,i,j);  char *subdirf2(char fileres[], char *preop)
         hess[j][i]=hess[i][j];  {
       }    
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
   printf("\n");    strcat(tmpout,"/");
     strcat(tmpout,preop);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    strcat(tmpout,fileres);
      return tmpout;
   a=matrix(1,npar,1,npar);  }
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  /*************** function subdirf3 ***********/
   indx=ivector(1,npar);  char *subdirf3(char fileres[], char *preop, char *preop2)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    
   ludcmp(a,npar,indx,&pd);    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   for (j=1;j<=npar;j++) {    strcat(tmpout,"/");
     for (i=1;i<=npar;i++) x[i]=0;    strcat(tmpout,preop);
     x[j]=1;    strcat(tmpout,preop2);
     lubksb(a,npar,indx,x);    strcat(tmpout,fileres);
     for (i=1;i<=npar;i++){    return tmpout;
       matcov[i][j]=x[i];  }
     }  
   }  /***************** f1dim *************************/
   extern int ncom; 
   printf("\n#Hessian matrix#\n");  extern double *pcom,*xicom;
   for (i=1;i<=npar;i++) {  extern double (*nrfunc)(double []); 
     for (j=1;j<=npar;j++) {   
       printf("%.3e ",hess[i][j]);  double f1dim(double x) 
     }  { 
     printf("\n");    int j; 
   }    double f;
     double *xt; 
   /* Recompute Inverse */   
   for (i=1;i<=npar;i++)    xt=vector(1,ncom); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   ludcmp(a,npar,indx,&pd);    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
   /*  printf("\n#Hessian matrix recomputed#\n");    return f; 
   } 
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /*****************brent *************************/
     x[j]=1;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     lubksb(a,npar,indx,x);  { 
     for (i=1;i<=npar;i++){    int iter; 
       y[i][j]=x[i];    double a,b,d,etemp;
       printf("%.3e ",y[i][j]);    double fu,fv,fw,fx;
     }    double ftemp;
     printf("\n");    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   }    double e=0.0; 
   */   
     a=(ax < cx ? ax : cx); 
   free_matrix(a,1,npar,1,npar);    b=(ax > cx ? ax : cx); 
   free_matrix(y,1,npar,1,npar);    x=w=v=bx; 
   free_vector(x,1,npar);    fw=fv=fx=(*f)(x); 
   free_ivector(indx,1,npar);    for (iter=1;iter<=ITMAX;iter++) { 
   free_matrix(hess,1,npar,1,npar);      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 }      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
 /*************** hessian matrix ****************/  #ifdef DEBUG
 double hessii( double x[], double delta, int theta, double delti[])      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int i;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   int l=1, lmax=20;  #endif
   double k1,k2;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double p2[NPARMAX+1];        *xmin=x; 
   double res;        return fx; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      } 
   double fx;      ftemp=fu;
   int k=0,kmax=10;      if (fabs(e) > tol1) { 
   double l1;        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
   fx=func(x);        p=(x-v)*q-(x-w)*r; 
   for (i=1;i<=npar;i++) p2[i]=x[i];        q=2.0*(q-r); 
   for(l=0 ; l <=lmax; l++){        if (q > 0.0) p = -p; 
     l1=pow(10,l);        q=fabs(q); 
     delts=delt;        etemp=e; 
     for(k=1 ; k <kmax; k=k+1){        e=d; 
       delt = delta*(l1*k);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       p2[theta]=x[theta] +delt;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       k1=func(p2)-fx;        else { 
       p2[theta]=x[theta]-delt;          d=p/q; 
       k2=func(p2)-fx;          u=x+d; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */          if (u-a < tol2 || b-u < tol2) 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            d=SIGN(tol1,xm-x); 
              } 
 #ifdef DEBUG      } else { 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #endif      } 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      fu=(*f)(u); 
         k=kmax;      if (fu <= fx) { 
       }        if (u >= x) a=x; else b=x; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        SHFT(v,w,x,u) 
         k=kmax; l=lmax*10.;          SHFT(fv,fw,fx,fu) 
       }          } else { 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            if (u < x) a=u; else b=u; 
         delts=delt;            if (fu <= fw || w == x) { 
       }              v=w; 
     }              w=u; 
   }              fv=fw; 
   delti[theta]=delts;              fw=fu; 
   return res;              } else if (fu <= fv || v == x || v == w) { 
 }              v=u; 
               fv=fu; 
 double hessij( double x[], double delti[], int thetai,int thetaj)            } 
 {          } 
   int i;    } 
   int l=1, l1, lmax=20;    nrerror("Too many iterations in brent"); 
   double k1,k2,k3,k4,res,fx;    *xmin=x; 
   double p2[NPARMAX+1];    return fx; 
   int k;  } 
   
   fx=func(x);  /****************** mnbrak ***********************/
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     p2[thetai]=x[thetai]+delti[thetai]/k;              double (*func)(double)) 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  { 
     k1=func(p2)-fx;    double ulim,u,r,q, dum;
      double fu; 
     p2[thetai]=x[thetai]+delti[thetai]/k;   
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    *fa=(*func)(*ax); 
     k2=func(p2)-fx;    *fb=(*func)(*bx); 
      if (*fb > *fa) { 
     p2[thetai]=x[thetai]-delti[thetai]/k;      SHFT(dum,*ax,*bx,dum) 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        SHFT(dum,*fb,*fa,dum) 
     k3=func(p2)-fx;        } 
      *cx=(*bx)+GOLD*(*bx-*ax); 
     p2[thetai]=x[thetai]-delti[thetai]/k;    *fc=(*func)(*cx); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    while (*fb > *fc) { 
     k4=func(p2)-fx;      r=(*bx-*ax)*(*fb-*fc); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      q=(*bx-*cx)*(*fb-*fa); 
 #ifdef DEBUG      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 #endif      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   }      if ((*bx-u)*(u-*cx) > 0.0) { 
   return res;        fu=(*func)(u); 
 }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
 /************** Inverse of matrix **************/        if (fu < *fc) { 
 void ludcmp(double **a, int n, int *indx, double *d)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 {            SHFT(*fb,*fc,fu,(*func)(u)) 
   int i,imax,j,k;            } 
   double big,dum,sum,temp;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double *vv;        u=ulim; 
          fu=(*func)(u); 
   vv=vector(1,n);      } else { 
   *d=1.0;        u=(*cx)+GOLD*(*cx-*bx); 
   for (i=1;i<=n;i++) {        fu=(*func)(u); 
     big=0.0;      } 
     for (j=1;j<=n;j++)      SHFT(*ax,*bx,*cx,u) 
       if ((temp=fabs(a[i][j])) > big) big=temp;        SHFT(*fa,*fb,*fc,fu) 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        } 
     vv[i]=1.0/big;  } 
   }  
   for (j=1;j<=n;j++) {  /*************** linmin ************************/
     for (i=1;i<j;i++) {  
       sum=a[i][j];  int ncom; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  double *pcom,*xicom;
       a[i][j]=sum;  double (*nrfunc)(double []); 
     }   
     big=0.0;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for (i=j;i<=n;i++) {  { 
       sum=a[i][j];    double brent(double ax, double bx, double cx, 
       for (k=1;k<j;k++)                 double (*f)(double), double tol, double *xmin); 
         sum -= a[i][k]*a[k][j];    double f1dim(double x); 
       a[i][j]=sum;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       if ( (dum=vv[i]*fabs(sum)) >= big) {                double *fc, double (*func)(double)); 
         big=dum;    int j; 
         imax=i;    double xx,xmin,bx,ax; 
       }    double fx,fb,fa;
     }   
     if (j != imax) {    ncom=n; 
       for (k=1;k<=n;k++) {    pcom=vector(1,n); 
         dum=a[imax][k];    xicom=vector(1,n); 
         a[imax][k]=a[j][k];    nrfunc=func; 
         a[j][k]=dum;    for (j=1;j<=n;j++) { 
       }      pcom[j]=p[j]; 
       *d = -(*d);      xicom[j]=xi[j]; 
       vv[imax]=vv[j];    } 
     }    ax=0.0; 
     indx[j]=imax;    xx=1.0; 
     if (a[j][j] == 0.0) a[j][j]=TINY;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     if (j != n) {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       dum=1.0/(a[j][j]);  #ifdef DEBUG
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }  #endif
   free_vector(vv,1,n);  /* Doesn't work */    for (j=1;j<=n;j++) { 
 ;      xi[j] *= xmin; 
 }      p[j] += xi[j]; 
     } 
 void lubksb(double **a, int n, int *indx, double b[])    free_vector(xicom,1,n); 
 {    free_vector(pcom,1,n); 
   int i,ii=0,ip,j;  } 
   double sum;  
    char *asc_diff_time(long time_sec, char ascdiff[])
   for (i=1;i<=n;i++) {  {
     ip=indx[i];    long sec_left, days, hours, minutes;
     sum=b[ip];    days = (time_sec) / (60*60*24);
     b[ip]=b[i];    sec_left = (time_sec) % (60*60*24);
     if (ii)    hours = (sec_left) / (60*60) ;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    sec_left = (sec_left) %(60*60);
     else if (sum) ii=i;    minutes = (sec_left) /60;
     b[i]=sum;    sec_left = (sec_left) % (60);
   }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   for (i=n;i>=1;i--) {    return ascdiff;
     sum=b[i];  }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  /*************** powell ************************/
   }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 }              double (*func)(double [])) 
   { 
 /************ Frequencies ********************/    void linmin(double p[], double xi[], int n, double *fret, 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)                double (*func)(double [])); 
 {  /* Some frequencies */    int i,ibig,j; 
      double del,t,*pt,*ptt,*xit;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    double fp,fptt;
   double ***freq; /* Frequencies */    double *xits;
   double *pp;    int niterf, itmp;
   double pos;  
   FILE *ficresp;    pt=vector(1,n); 
   char fileresp[FILENAMELENGTH];    ptt=vector(1,n); 
     xit=vector(1,n); 
   pp=vector(1,nlstate);    xits=vector(1,n); 
     *fret=(*func)(p); 
   strcpy(fileresp,"p");    for (j=1;j<=n;j++) pt[j]=p[j]; 
   strcat(fileresp,fileres);    for (*iter=1;;++(*iter)) { 
   if((ficresp=fopen(fileresp,"w"))==NULL) {      fp=(*fret); 
     printf("Problem with prevalence resultfile: %s\n", fileresp);      ibig=0; 
     exit(0);      del=0.0; 
   }      last_time=curr_time;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      (void) gettimeofday(&curr_time,&tzp);
   j1=0;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   j=cptcovn;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   for(k1=1; k1<=j;k1++){        fprintf(ficlog," %d %.12lf",i, p[i]);
    for(i1=1; i1<=ncodemax[k1];i1++){        fprintf(ficrespow," %.12lf", p[i]);
        j1++;      }
       printf("\n");
         for (i=-1; i<=nlstate+ndeath; i++)        fprintf(ficlog,"\n");
          for (jk=-1; jk<=nlstate+ndeath; jk++)        fprintf(ficrespow,"\n");fflush(ficrespow);
            for(m=agemin; m <= agemax+3; m++)      if(*iter <=3){
              freq[i][jk][m]=0;        tm = *localtime(&curr_time.tv_sec);
                strcpy(strcurr,asctime(&tm));
        for (i=1; i<=imx; i++) {  /*       asctime_r(&tm,strcurr); */
          bool=1;        forecast_time=curr_time; 
          if  (cptcovn>0) {        itmp = strlen(strcurr);
            for (z1=1; z1<=cptcovn; z1++)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;          strcurr[itmp-1]='\0';
          }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
           if (bool==1) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
            for(m=firstpass; m<=lastpass-1; m++){        for(niterf=10;niterf<=30;niterf+=10){
              if(agev[m][i]==0) agev[m][i]=agemax+1;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
              if(agev[m][i]==1) agev[m][i]=agemax+2;          tmf = *localtime(&forecast_time.tv_sec);
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*      asctime_r(&tmf,strfor); */
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          strcpy(strfor,asctime(&tmf));
            }          itmp = strlen(strfor);
          }          if(strfor[itmp-1]=='\n')
        }          strfor[itmp-1]='\0';
         if  (cptcovn>0) {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
          fprintf(ficresp, "\n#Variable");          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);        }
        }      }
        fprintf(ficresp, "\n#");      for (i=1;i<=n;i++) { 
        for(i=1; i<=nlstate;i++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        fptt=(*fret); 
        fprintf(ficresp, "\n");  #ifdef DEBUG
                printf("fret=%lf \n",*fret);
   for(i=(int)agemin; i <= (int)agemax+3; i++){        fprintf(ficlog,"fret=%lf \n",*fret);
     if(i==(int)agemax+3)  #endif
       printf("Total");        printf("%d",i);fflush(stdout);
     else        fprintf(ficlog,"%d",i);fflush(ficlog);
       printf("Age %d", i);        linmin(p,xit,n,fret,func); 
     for(jk=1; jk <=nlstate ; jk++){        if (fabs(fptt-(*fret)) > del) { 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          del=fabs(fptt-(*fret)); 
         pp[jk] += freq[jk][m][i];          ibig=i; 
     }        } 
     for(jk=1; jk <=nlstate ; jk++){  #ifdef DEBUG
       for(m=-1, pos=0; m <=0 ; m++)        printf("%d %.12e",i,(*fret));
         pos += freq[jk][m][i];        fprintf(ficlog,"%d %.12e",i,(*fret));
       if(pp[jk]>=1.e-10)        for (j=1;j<=n;j++) {
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       else          printf(" x(%d)=%.12e",j,xit[j]);
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     }        }
     for(jk=1; jk <=nlstate ; jk++){        for(j=1;j<=n;j++) {
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)          printf(" p=%.12e",p[j]);
         pp[jk] += freq[jk][m][i];          fprintf(ficlog," p=%.12e",p[j]);
     }        }
     for(jk=1,pos=0; jk <=nlstate ; jk++)        printf("\n");
       pos += pp[jk];        fprintf(ficlog,"\n");
     for(jk=1; jk <=nlstate ; jk++){  #endif
       if(pos>=1.e-5)      } 
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       else  #ifdef DEBUG
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        int k[2],l;
       if( i <= (int) agemax){        k[0]=1;
         if(pos>=1.e-5)        k[1]=-1;
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        printf("Max: %.12e",(*func)(p));
       else        fprintf(ficlog,"Max: %.12e",(*func)(p));
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        for (j=1;j<=n;j++) {
       }          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
     for(jk=-1; jk <=nlstate+ndeath; jk++)        }
       for(m=-1; m <=nlstate+ndeath; m++)        printf("\n");
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        fprintf(ficlog,"\n");
     if(i <= (int) agemax)        for(l=0;l<=1;l++) {
       fprintf(ficresp,"\n");          for (j=1;j<=n;j++) {
     printf("\n");            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  }          }
            printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   fclose(ficresp);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        }
   free_vector(pp,1,nlstate);  #endif
   
 }  /* End of Freq */  
         free_vector(xit,1,n); 
 /************* Waves Concatenation ***************/        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        free_vector(pt,1,n); 
 {        return; 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      } 
      Death is a valid wave (if date is known).      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for (j=1;j<=n;j++) { 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        ptt[j]=2.0*p[j]-pt[j]; 
      and mw[mi+1][i]. dh depends on stepm.        xit[j]=p[j]-pt[j]; 
      */        pt[j]=p[j]; 
       } 
   int i, mi, m;      fptt=(*func)(ptt); 
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      if (fptt < fp) { 
 float sum=0.;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
   for(i=1; i<=imx; i++){          linmin(p,xit,n,fret,func); 
     mi=0;          for (j=1;j<=n;j++) { 
     m=firstpass;            xi[j][ibig]=xi[j][n]; 
     while(s[m][i] <= nlstate){            xi[j][n]=xit[j]; 
       if(s[m][i]>=1)          }
         mw[++mi][i]=m;  #ifdef DEBUG
       if(m >=lastpass)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         break;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       else          for(j=1;j<=n;j++){
         m++;            printf(" %.12e",xit[j]);
     }/* end while */            fprintf(ficlog," %.12e",xit[j]);
     if (s[m][i] > nlstate){          }
       mi++;     /* Death is another wave */          printf("\n");
       /* if(mi==0)  never been interviewed correctly before death */          fprintf(ficlog,"\n");
          /* Only death is a correct wave */  #endif
       mw[mi][i]=m;        }
     }      } 
     } 
     wav[i]=mi;  } 
     if(mi==0)  
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  /**** Prevalence limit (stable or period prevalence)  ****************/
   }  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for(i=1; i<=imx; i++){  {
     for(mi=1; mi<wav[i];mi++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       if (stepm <=0)       matrix by transitions matrix until convergence is reached */
         dh[mi][i]=1;  
       else{    int i, ii,j,k;
         if (s[mw[mi+1][i]][i] > nlstate) {    double min, max, maxmin, maxmax,sumnew=0.;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    double **matprod2();
           if(j=0) j=1;  /* Survives at least one month after exam */    double **out, cov[NCOVMAX+1], **pmij();
         }    double **newm;
         else{    double agefin, delaymax=50 ; /* Max number of years to converge */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           /*printf("i=%d agevi+1=%lf agevi=%lf j=%d\n", i,agev[mw[mi+1][i]][i],agev[mw[mi][i]][i],j);*/    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
           k=k+1;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (j >= jmax) jmax=j;      }
           else if (j <= jmin)jmin=j;  
           sum=sum+j;     cov[1]=1.;
         }   
         jk= j/stepm;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         jl= j -jk*stepm;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         ju= j -(jk+1)*stepm;      newm=savm;
         if(jl <= -ju)      /* Covariates have to be included here again */
           dh[mi][i]=jk;      cov[2]=agefin;
         else      
           dh[mi][i]=jk+1;      for (k=1; k<=cptcovn;k++) {
         if(dh[mi][i]==0)        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           dh[mi][i]=1; /* At least one step */        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       }      }
     }      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }      for (k=1; k<=cptcovprod;k++)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 }      
 /*********** Tricode ****************************/      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 void tricode(int *Tvar, int **nbcode, int imx)      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 {      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   int Ndum[80],ij, k, j, i;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   int cptcode=0;      
   for (k=0; k<79; k++) Ndum[k]=0;      savm=oldm;
   for (k=1; k<=7; k++) ncodemax[k]=0;      oldm=newm;
        maxmax=0.;
   for (j=1; j<=cptcovn; j++) {      for(j=1;j<=nlstate;j++){
     for (i=1; i<=imx; i++) {        min=1.;
       ij=(int)(covar[Tvar[j]][i]);        max=0.;
       Ndum[ij]++;        for(i=1; i<=nlstate; i++) {
       if (ij > cptcode) cptcode=ij;          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/          prlim[i][j]= newm[i][j]/(1-sumnew);
     for (i=0; i<=cptcode; i++) {          max=FMAX(max,prlim[i][j]);
       if(Ndum[i]!=0) ncodemax[j]++;          min=FMIN(min,prlim[i][j]);
     }        }
          maxmin=max-min;
     ij=1;        maxmax=FMAX(maxmax,maxmin);
     for (i=1; i<=ncodemax[j]; i++) {      }
       for (k=0; k<=79; k++) {      if(maxmax < ftolpl){
         if (Ndum[k] != 0) {        return prlim;
           nbcode[Tvar[j]][ij]=k;      }
           ij++;    }
         }  }
         if (ij > ncodemax[j]) break;  
       }    /*************** transition probabilities ***************/ 
     }  
   }    double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
   }    /* According to parameters values stored in x and the covariate's values stored in cov,
        computes the probability to be observed in state j being in state i by appying the
 /*********** Health Expectancies ****************/       model to the ncovmodel covariates (including constant and age).
        lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 {       ncth covariate in the global vector x is given by the formula:
   /* Health expectancies */       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   int i, j, nhstepm, hstepm, h;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   double age, agelim,hf;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   double ***p3mat;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         Outputs ps[i][j] the probability to be observed in j being in j according to
   fprintf(ficreseij,"# Health expectancies\n");       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   fprintf(ficreseij,"# Age");    */
   for(i=1; i<=nlstate;i++)    double s1, lnpijopii;
     for(j=1; j<=nlstate;j++)    /*double t34;*/
       fprintf(ficreseij," %1d-%1d",i,j);    int i,j,j1, nc, ii, jj;
   fprintf(ficreseij,"\n");  
       for(i=1; i<= nlstate; i++){
   hstepm=1*YEARM; /*  Every j years of age (in month) */        for(j=1; j<i;j++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += param[i][j][nc]*cov[nc];*/
   agelim=AGESUP;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     /* nhstepm age range expressed in number of stepm */          }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     /* Typically if 20 years = 20*12/6=40 stepm */  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     if (stepm >= YEARM) hstepm=1;        }
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */        for(j=i+1; j<=nlstate+ndeath;j++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }
           ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++)      }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){      
           eij[i][j][(int)age] +=p3mat[i][j][h];      for(i=1; i<= nlstate; i++){
         }        s1=0;
            for(j=1; j<i; j++){
     hf=1;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     if (stepm >= YEARM) hf=stepm/YEARM;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     fprintf(ficreseij,"%.0f",age );        }
     for(i=1; i<=nlstate;i++)        for(j=i+1; j<=nlstate+ndeath; j++){
       for(j=1; j<=nlstate;j++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       }        }
     fprintf(ficreseij,"\n");        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        ps[i][i]=1./(s1+1.);
   }        /* Computing other pijs */
 }        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
 /************ Variance ******************/        for(j=i+1; j<=nlstate+ndeath; j++)
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          ps[i][j]= exp(ps[i][j])*ps[i][i];
 {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   /* Variance of health expectancies */      } /* end i */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      
   double **newm;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   double **dnewm,**doldm;        for(jj=1; jj<= nlstate+ndeath; jj++){
   int i, j, nhstepm, hstepm, h;          ps[ii][jj]=0;
   int k, cptcode;          ps[ii][ii]=1;
    double *xp;        }
   double **gp, **gm;      }
   double ***gradg, ***trgradg;      
   double ***p3mat;  
   double age,agelim;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   int theta;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
    fprintf(ficresvij,"# Covariances of life expectancies\n");  /*       } */
   fprintf(ficresvij,"# Age");  /*       printf("\n "); */
   for(i=1; i<=nlstate;i++)  /*        } */
     for(j=1; j<=nlstate;j++)  /*        printf("\n ");printf("%lf ",cov[2]); */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);         /*
   fprintf(ficresvij,"\n");        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
   xp=vector(1,npar);      return ps;
   dnewm=matrix(1,nlstate,1,npar);  }
   doldm=matrix(1,nlstate,1,nlstate);  
    /**************** Product of 2 matrices ******************/
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   agelim = AGESUP;  {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     if (stepm >= YEARM) hstepm=1;    /* in, b, out are matrice of pointers which should have been initialized 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       before: only the contents of out is modified. The function returns
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       a pointer to pointers identical to out */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    long i, j, k;
     gp=matrix(0,nhstepm,1,nlstate);    for(i=nrl; i<= nrh; i++)
     gm=matrix(0,nhstepm,1,nlstate);      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
     for(theta=1; theta <=npar; theta++){          out[i][k] +=in[i][j]*b[j][k];
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    return out;
       }  }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(j=1; j<= nlstate; j++){  /************* Higher Matrix Product ***************/
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  {
         }    /* Computes the transition matrix starting at age 'age' over 
       }       'nhstepm*hstepm*stepm' months (i.e. until
           age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       for(i=1; i<=npar; i++) /* Computes gradient */       nhstepm*hstepm matrices. 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         (typically every 2 years instead of every month which is too big 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       for the memory).
       for(j=1; j<= nlstate; j++){       Model is determined by parameters x and covariates have to be 
         for(h=0; h<=nhstepm; h++){       included manually here. 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];       */
         }  
       }    int i, j, d, h, k;
       for(j=1; j<= nlstate; j++)    double **out, cov[NCOVMAX+1];
         for(h=0; h<=nhstepm; h++){    double **newm;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    /* Hstepm could be zero and should return the unit matrix */
     } /* End theta */    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
     for(h=0; h<=nhstepm; h++)      }
       for(j=1; j<=nlstate;j++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for(theta=1; theta <=npar; theta++)    for(h=1; h <=nhstepm; h++){
           trgradg[h][j][theta]=gradg[h][theta][j];      for(d=1; d <=hstepm; d++){
         newm=savm;
     for(i=1;i<=nlstate;i++)        /* Covariates have to be included here again */
       for(j=1;j<=nlstate;j++)        cov[1]=1.;
         vareij[i][j][(int)age] =0.;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for(h=0;h<=nhstepm;h++){        for (k=1; k<=cptcovn;k++) 
       for(k=0;k<=nhstepm;k++){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        for (k=1; k<=cptcovage;k++)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for(i=1;i<=nlstate;i++)        for (k=1; k<=cptcovprod;k++)
           for(j=1;j<=nlstate;j++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             vareij[i][j][(int)age] += doldm[i][j];  
       }  
     }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     h=1;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     if (stepm >= YEARM) h=stepm/YEARM;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     fprintf(ficresvij,"%.0f ",age );                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(i=1; i<=nlstate;i++)        savm=oldm;
       for(j=1; j<=nlstate;j++){        oldm=newm;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);      }
       }      for(i=1; i<=nlstate+ndeath; i++)
     fprintf(ficresvij,"\n");        for(j=1;j<=nlstate+ndeath;j++) {
     free_matrix(gp,0,nhstepm,1,nlstate);          po[i][j][h]=newm[i][j];
     free_matrix(gm,0,nhstepm,1,nlstate);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      /*printf("h=%d ",h);*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } /* end h */
   } /* End age */  /*     printf("\n H=%d \n",h); */
      return po;
   free_vector(xp,1,npar);  }
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  
   /*************** log-likelihood *************/
 }  double func( double *x)
   {
 /************ Variance of prevlim ******************/    int i, ii, j, k, mi, d, kk;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 {    double **out;
   /* Variance of prevalence limit */    double sw; /* Sum of weights */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double lli; /* Individual log likelihood */
   double **newm;    int s1, s2;
   double **dnewm,**doldm;    double bbh, survp;
   int i, j, nhstepm, hstepm;    long ipmx;
   int k, cptcode;    /*extern weight */
   double *xp;    /* We are differentiating ll according to initial status */
   double *gp, *gm;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double **gradg, **trgradg;    /*for(i=1;i<imx;i++) 
   double age,agelim;      printf(" %d\n",s[4][i]);
   int theta;    */
        cov[1]=1.;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  
   fprintf(ficresvpl,"# Age");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);    if(mle==1){
   fprintf(ficresvpl,"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         /* Computes the values of the ncovmodel covariates of the model
   xp=vector(1,npar);           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   dnewm=matrix(1,nlstate,1,npar);           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   doldm=matrix(1,nlstate,1,nlstate);           to be observed in j being in i according to the model.
           */
   hstepm=1*YEARM; /* Every year of age */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   agelim = AGESUP;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */           has been calculated etc */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(mi=1; mi<= wav[i]-1; mi++){
     if (stepm >= YEARM) hstepm=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            for (j=1;j<=nlstate+ndeath;j++){
     gradg=matrix(1,npar,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gp=vector(1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gm=vector(1,nlstate);            }
           for(d=0; d<dh[mi][i]; d++){
     for(theta=1; theta <=npar; theta++){            newm=savm;
       for(i=1; i<=npar; i++){ /* Computes gradient */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
       for(i=1;i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         gp[i] = prlim[i][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                savm=oldm;
       for(i=1; i<=npar; i++) /* Computes gradient */            oldm=newm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          } /* end mult */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        
       for(i=1;i<=nlstate;i++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         gm[i] = prlim[i][i];          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for(i=1;i<=nlstate;i++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];           * the nearest (and in case of equal distance, to the lowest) interval but now
     } /* End theta */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     trgradg =matrix(1,nlstate,1,npar);           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     for(j=1; j<=nlstate;j++)           * -stepm/2 to stepm/2 .
       for(theta=1; theta <=npar; theta++)           * For stepm=1 the results are the same as for previous versions of Imach.
         trgradg[j][theta]=gradg[theta][j];           * For stepm > 1 the results are less biased than in previous versions. 
            */
     for(i=1;i<=nlstate;i++)          s1=s[mw[mi][i]][i];
       varpl[i][(int)age] =0.;          s2=s[mw[mi+1][i]][i];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          bbh=(double)bh[mi][i]/(double)stepm; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          /* bias bh is positive if real duration
     for(i=1;i<=nlstate;i++)           * is higher than the multiple of stepm and negative otherwise.
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     fprintf(ficresvpl,"%.0f ",age );          if( s2 > nlstate){ 
     for(i=1; i<=nlstate;i++)            /* i.e. if s2 is a death state and if the date of death is known 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));               then the contribution to the likelihood is the probability to 
     fprintf(ficresvpl,"\n");               die between last step unit time and current  step unit time, 
     free_vector(gp,1,nlstate);               which is also equal to probability to die before dh 
     free_vector(gm,1,nlstate);               minus probability to die before dh-stepm . 
     free_matrix(gradg,1,npar,1,nlstate);               In version up to 0.92 likelihood was computed
     free_matrix(trgradg,1,nlstate,1,npar);          as if date of death was unknown. Death was treated as any other
   } /* End age */          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   free_vector(xp,1,npar);          to consider that at each interview the state was recorded
   free_matrix(doldm,1,nlstate,1,npar);          (healthy, disable or death) and IMaCh was corrected; but when we
   free_matrix(dnewm,1,nlstate,1,nlstate);          introduced the exact date of death then we should have modified
           the contribution of an exact death to the likelihood. This new
 }          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
 /***********************************************/          probability to die within a month. Thanks to Chris
 /**************** Main Program *****************/          Jackson for correcting this bug.  Former versions increased
 /***********************************************/          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
 /*int main(int argc, char *argv[])*/          lower mortality.
 int main()            */
 {            lli=log(out[s1][s2] - savm[s1][s2]);
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;  
   double agedeb, agefin,hf;          } else if  (s2==-2) {
   double agemin=1.e20, agemax=-1.e20;            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double fret;            /*survp += out[s1][j]; */
   double **xi,tmp,delta;            lli= log(survp);
           }
   double dum; /* Dummy variable */          
   double ***p3mat;          else if  (s2==-4) { 
   int *indx;            for (j=3,survp=0. ; j<=nlstate; j++)  
   char line[MAXLINE], linepar[MAXLINE];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   char title[MAXLINE];            lli= log(survp); 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          } 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];  
   char filerest[FILENAMELENGTH];          else if  (s2==-5) { 
   char fileregp[FILENAMELENGTH];            for (j=1,survp=0. ; j<=2; j++)  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int firstobs=1, lastobs=10;            lli= log(survp); 
   int sdeb, sfin; /* Status at beginning and end */          } 
   int c,  h , cpt,l;          
   int ju,jl, mi;          else{
   int i1,j1, k1,jk,aa,bb, stepsize;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
            } 
   int hstepm, nhstepm;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   double bage, fage, age, agelim, agebase;          /*if(lli ==000.0)*/
   double ftolpl=FTOL;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   double **prlim;          ipmx +=1;
   double *severity;          sw += weight[i];
   double ***param; /* Matrix of parameters */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double  *p;        } /* end of wave */
   double **matcov; /* Matrix of covariance */      } /* end of individual */
   double ***delti3; /* Scale */    }  else if(mle==2){
   double *delti; /* Scale */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***eij, ***vareij;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **varpl; /* Variances of prevalence limits by age */        for(mi=1; mi<= wav[i]-1; mi++){
   double *epj, vepp;          for (ii=1;ii<=nlstate+ndeath;ii++)
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";            for (j=1;j<=nlstate+ndeath;j++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   char z[1]="c", occ;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 #include <sys/time.h>            }
 #include <time.h>          for(d=0; d<=dh[mi][i]; d++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            newm=savm;
   /* long total_usecs;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   struct timeval start_time, end_time;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   printf("\nIMACH, Version 0.63");            savm=oldm;
   printf("\nEnter the parameter file name: ");            oldm=newm;
           } /* end mult */
 #ifdef windows        
   scanf("%s",pathtot);          s1=s[mw[mi][i]][i];
   getcwd(pathcd, size);          s2=s[mw[mi+1][i]][i];
   cutv(path,optionfile,pathtot,'\\');          bbh=(double)bh[mi][i]/(double)stepm; 
   chdir(path);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   replace(pathc,path);          ipmx +=1;
 #endif          sw += weight[i];
 #ifdef unix          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   scanf("%s",optionfile);        } /* end of wave */
 #endif      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
 /*-------- arguments in the command line --------*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   strcpy(fileres,"r");        for(mi=1; mi<= wav[i]-1; mi++){
   strcat(fileres, optionfile);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   /*---------arguments file --------*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            }
     printf("Problem with optionfile %s\n",optionfile);          for(d=0; d<dh[mi][i]; d++){
     goto end;            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   strcpy(filereso,"o");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   strcat(filereso,fileres);            }
   if((ficparo=fopen(filereso,"w"))==NULL) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf("Problem with Output resultfile: %s\n", filereso);goto end;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
             oldm=newm;
   /* Reads comments: lines beginning with '#' */          } /* end mult */
   while((c=getc(ficpar))=='#' && c!= EOF){        
     ungetc(c,ficpar);          s1=s[mw[mi][i]][i];
     fgets(line, MAXLINE, ficpar);          s2=s[mw[mi+1][i]][i];
     puts(line);          bbh=(double)bh[mi][i]/(double)stepm; 
     fputs(line,ficparo);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }          ipmx +=1;
   ungetc(c,ficpar);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        } /* end of wave */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      } /* end of individual */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   covar=matrix(1,NCOVMAX,1,n);            for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   if (strlen(model)<=1) cptcovn=0;        for(mi=1; mi<= wav[i]-1; mi++){
   else {          for (ii=1;ii<=nlstate+ndeath;ii++)
     j=0;            for (j=1;j<=nlstate+ndeath;j++){
     j=nbocc(model,'+');              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     cptcovn=j+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<dh[mi][i]; d++){
   ncovmodel=2+cptcovn;            newm=savm;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   /* Read guess parameters */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* Reads comments: lines beginning with '#' */            }
   while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fgets(line, MAXLINE, ficpar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     puts(line);            savm=oldm;
     fputs(line,ficparo);            oldm=newm;
   }          } /* end mult */
   ungetc(c,ficpar);        
            s1=s[mw[mi][i]][i];
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          s2=s[mw[mi+1][i]][i];
     for(i=1; i <=nlstate; i++)          if( s2 > nlstate){ 
     for(j=1; j <=nlstate+ndeath-1; j++){            lli=log(out[s1][s2] - savm[s1][s2]);
       fscanf(ficpar,"%1d%1d",&i1,&j1);          }else{
       fprintf(ficparo,"%1d%1d",i1,j1);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       printf("%1d%1d",i,j);          }
       for(k=1; k<=ncovmodel;k++){          ipmx +=1;
         fscanf(ficpar," %lf",&param[i][j][k]);          sw += weight[i];
         printf(" %lf",param[i][j][k]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         fprintf(ficparo," %lf",param[i][j][k]);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       }        } /* end of wave */
       fscanf(ficpar,"\n");      } /* end of individual */
       printf("\n");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       fprintf(ficparo,"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          for (ii=1;ii<=nlstate+ndeath;ii++)
   p=param[1][1];            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Reads comments: lines beginning with '#' */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);          for(d=0; d<dh[mi][i]; d++){
     fgets(line, MAXLINE, ficpar);            newm=savm;
     puts(line);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fputs(line,ficparo);            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   ungetc(c,ficpar);            }
           
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i <=nlstate; i++){            savm=oldm;
     for(j=1; j <=nlstate+ndeath-1; j++){            oldm=newm;
       fscanf(ficpar,"%1d%1d",&i1,&j1);          } /* end mult */
       printf("%1d%1d",i,j);        
       fprintf(ficparo,"%1d%1d",i1,j1);          s1=s[mw[mi][i]][i];
       for(k=1; k<=ncovmodel;k++){          s2=s[mw[mi+1][i]][i];
         fscanf(ficpar,"%le",&delti3[i][j][k]);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         printf(" %le",delti3[i][j][k]);          ipmx +=1;
         fprintf(ficparo," %le",delti3[i][j][k]);          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fscanf(ficpar,"\n");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       printf("\n");        } /* end of wave */
       fprintf(ficparo,"\n");      } /* end of individual */
     }    } /* End of if */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   delti=delti3[1][1];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /* Reads comments: lines beginning with '#' */    return -l;
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /*************** log-likelihood *************/
     puts(line);  double funcone( double *x)
     fputs(line,ficparo);  {
   }    /* Same as likeli but slower because of a lot of printf and if */
   ungetc(c,ficpar);    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   matcov=matrix(1,npar,1,npar);    double **out;
   for(i=1; i <=npar; i++){    double lli; /* Individual log likelihood */
     fscanf(ficpar,"%s",&str);    double llt;
     printf("%s",str);    int s1, s2;
     fprintf(ficparo,"%s",str);    double bbh, survp;
     for(j=1; j <=i; j++){    /*extern weight */
       fscanf(ficpar," %le",&matcov[i][j]);    /* We are differentiating ll according to initial status */
       printf(" %.5le",matcov[i][j]);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       fprintf(ficparo," %.5le",matcov[i][j]);    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     fscanf(ficpar,"\n");    */
     printf("\n");    cov[1]=1.;
     fprintf(ficparo,"\n");  
   }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       matcov[i][j]=matcov[j][i];      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   printf("\n");        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    if(mle==1){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     /*-------- data file ----------*/          }
     if((ficres =fopen(fileres,"w"))==NULL) {        for(d=0; d<dh[mi][i]; d++){
       printf("Problem with resultfile: %s\n", fileres);goto end;          newm=savm;
     }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficres,"#%s\n",version);          for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if((fic=fopen(datafile,"r"))==NULL)    {          }
       printf("Problem with datafile: %s\n", datafile);goto end;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
     n= lastobs;          oldm=newm;
     severity = vector(1,maxwav);        } /* end mult */
     outcome=imatrix(1,maxwav+1,1,n);        
     num=ivector(1,n);        s1=s[mw[mi][i]][i];
     moisnais=vector(1,n);        s2=s[mw[mi+1][i]][i];
     annais=vector(1,n);        bbh=(double)bh[mi][i]/(double)stepm; 
     moisdc=vector(1,n);        /* bias is positive if real duration
     andc=vector(1,n);         * is higher than the multiple of stepm and negative otherwise.
     agedc=vector(1,n);         */
     cod=ivector(1,n);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     weight=vector(1,n);          lli=log(out[s1][s2] - savm[s1][s2]);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        } else if  (s2==-2) {
     mint=matrix(1,maxwav,1,n);          for (j=1,survp=0. ; j<=nlstate; j++) 
     anint=matrix(1,maxwav,1,n);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     s=imatrix(1,maxwav+1,1,n);          lli= log(survp);
     adl=imatrix(1,maxwav+1,1,n);            }else if (mle==1){
     tab=ivector(1,NCOVMAX);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     ncodemax=ivector(1,NCOVMAX);        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     i=1;        } else if(mle==3){  /* exponential inter-extrapolation */
     while (fgets(line, MAXLINE, fic) != NULL)    {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       if ((i >= firstobs) && (i <=lastobs)) {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
                  lli=log(out[s1][s2]); /* Original formula */
         for (j=maxwav;j>=1;j--){        } else{  /* mle=0 back to 1 */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           strcpy(line,stra);          /*lli=log(out[s1][s2]); */ /* Original formula */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        } /* End of if */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        ipmx +=1;
         }        sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        if(globpr){
           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);   %11.6f %11.6f %11.6f ", \
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         for (j=ncov;j>=1;j--){            llt +=ll[k]*gipmx/gsw;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         }          }
         num[i]=atol(stra);          fprintf(ficresilk," %10.6f\n", -llt);
         }
         /* printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/      } /* end of wave */
     } /* end of individual */
         /*printf("%d %.lf %.lf %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),(covar[3][i]), (covar[4][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]));*/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         i=i+1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    if(globpr==0){ /* First time we count the contributions and weights */
     }      gipmx=ipmx;
     /*scanf("%d",i);*/      gsw=sw;
     }
   imx=i-1; /* Number of individuals */    return -l;
    }
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,8);      
      /*************** function likelione ***********/
   if (strlen(model) >1){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     j=0;  {
     j=nbocc(model,'+');    /* This routine should help understanding what is done with 
     cptcovn=j+1;       the selection of individuals/waves and
         to check the exact contribution to the likelihood.
     strcpy(modelsav,model);       Plotting could be done.
     if (j==0) {     */
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);    int k;
     }  
     else {    if(*globpri !=0){ /* Just counts and sums, no printings */
       for(i=j; i>=1;i--){      strcpy(fileresilk,"ilk"); 
         cutv(stra,strb,modelsav,'+');      strcat(fileresilk,fileres);
         if (strchr(strb,'*')) {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           cutv(strd,strc,strb,'*');        printf("Problem with resultfile: %s\n", fileresilk);
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           cutv(strb,strc,strd,'V');      }
           for (k=1; k<=lastobs;k++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         else {      for(k=1; k<=nlstate; k++) 
           cutv(strd,strc,strb,'V');        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           Tvar[i+1]=atoi(strc);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         }    }
         strcpy(modelsav,stra);    
       }    *fretone=(*funcone)(p);
       /*cutv(strd,strc,stra,'V');*/    if(*globpri !=0){
       Tvar[1]=atoi(strc);      fclose(ficresilk);
     }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   }      fflush(fichtm); 
   /*printf("tvar=%d ",Tvar[1]);*/    } 
   /*scanf("%d ",i);*/    return;
     fclose(fic);  }
   
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;  /*********** Maximum Likelihood Estimation ***************/
     }  
     /*-calculation of age at interview from date of interview and age at death -*/  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     agev=matrix(1,maxwav,1,imx);  {
        int i,j, iter;
     for (i=1; i<=imx; i++)  {    double **xi;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    double fret;
       for(m=1; (m<= maxwav); m++){    double fretone; /* Only one call to likelihood */
         if (mint[m][i]==99 || anint[m][i]==9999) s[m][i]=-1;      /*  char filerespow[FILENAMELENGTH];*/
         if(s[m][i] >0){    xi=matrix(1,npar,1,npar);
           if (s[m][i] == nlstate+1) {    for (i=1;i<=npar;i++)
             if(agedc[i]>0)      for (j=1;j<=npar;j++)
               if(moisdc[i]!=99 && andc[i]!=9999)        xi[i][j]=(i==j ? 1.0 : 0.0);
               agev[m][i]=agedc[i];    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             else{    strcpy(filerespow,"pow"); 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    strcat(filerespow,fileres);
               agev[m][i]=-1;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
             }      printf("Problem with resultfile: %s\n", filerespow);
           }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           else if(s[m][i] !=9){ /* Should no more exist */    }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
             if(mint[m][i]==99 || anint[m][i]==9999){    for (i=1;i<=nlstate;i++)
               agev[m][i]=1;      for(j=1;j<=nlstate+ndeath;j++)
               /* printf("i=%d m=%d agev=%lf \n",i,m, agev[m][i]);    */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
             }    fprintf(ficrespow,"\n");
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];    powell(p,xi,npar,ftol,&iter,&fret,func);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }    free_matrix(xi,1,npar,1,npar);
             else if(agev[m][i] >agemax){    fclose(ficrespow);
               agemax=agev[m][i];    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/  }
           }  
           else { /* =9 */  /**** Computes Hessian and covariance matrix ***/
             agev[m][i]=1;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
             s[m][i]=-1;  {
           }    double  **a,**y,*x,pd;
         }    double **hess;
         else /*= 0 Unknown */    int i, j,jk;
           agev[m][i]=1;    int *indx;
       }  
        double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     for (i=1; i<=imx; i++)  {    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(m=1; (m<= maxwav); m++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
         if (s[m][i] > (nlstate+ndeath)) {    double gompertz(double p[]);
           printf("Error: Wrong value in nlstate or ndeath\n");      hess=matrix(1,npar,1,npar);
           goto end;  
         }    printf("\nCalculation of the hessian matrix. Wait...\n");
       }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     }    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      fprintf(ficlog,"%d",i);fflush(ficlog);
      
     free_vector(severity,1,maxwav);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     free_imatrix(outcome,1,maxwav+1,1,n);      
     free_vector(moisnais,1,n);      /*  printf(" %f ",p[i]);
     free_vector(annais,1,n);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     free_matrix(mint,1,maxwav,1,n);    }
     free_matrix(anint,1,maxwav,1,n);    
     free_vector(moisdc,1,n);    for (i=1;i<=npar;i++) {
     free_vector(andc,1,n);      for (j=1;j<=npar;j++)  {
         if (j>i) { 
              printf(".%d%d",i,j);fflush(stdout);
     wav=ivector(1,imx);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          
              hess[j][i]=hess[i][j];    
     /* Concatenates waves */          /*printf(" %lf ",hess[i][j]);*/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        }
       }
     }
 Tcode=ivector(1,100);    printf("\n");
    nbcode=imatrix(1,nvar,1,8);      fprintf(ficlog,"\n");
    ncodemax[1]=1;  
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
    codtab=imatrix(1,100,1,10);    
    h=0;    a=matrix(1,npar,1,npar);
    m=pow(2,cptcovn);    y=matrix(1,npar,1,npar);
      x=vector(1,npar);
    for(k=1;k<=cptcovn; k++){    indx=ivector(1,npar);
      for(i=1; i <=(m/pow(2,k));i++){    for (i=1;i<=npar;i++)
        for(j=1; j <= ncodemax[k]; j++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){    ludcmp(a,npar,indx,&pd);
            h++;  
            if (h>m) h=1;codtab[h][k]=j;    for (j=1;j<=npar;j++) {
          }      for (i=1;i<=npar;i++) x[i]=0;
        }      x[j]=1;
      }      lubksb(a,npar,indx,x);
    }      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
    /*for(i=1; i <=m ;i++){      }
      for(k=1; k <=cptcovn; k++){    }
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);  
      }    printf("\n#Hessian matrix#\n");
      printf("\n");    fprintf(ficlog,"\n#Hessian matrix#\n");
    }    for (i=1;i<=npar;i++) { 
   scanf("%d",i);*/      for (j=1;j<=npar;j++) { 
            printf("%.3e ",hess[i][j]);
    /* Calculates basic frequencies. Computes observed prevalence at single age        fprintf(ficlog,"%.3e ",hess[i][j]);
        and prints on file fileres'p'. */      }
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);      printf("\n");
       fprintf(ficlog,"\n");
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Recompute Inverse */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (i=1;i<=npar;i++)
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
        ludcmp(a,npar,indx,&pd);
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    /*  printf("\n#Hessian matrix recomputed#\n");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
     /*scanf("%d",i);*/    for (j=1;j<=npar;j++) {
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
          lubksb(a,npar,indx,x);
     /*--------- results files --------------*/      for (i=1;i<=npar;i++){ 
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);        y[i][j]=x[i];
            printf("%.3e ",y[i][j]);
    jk=1;        fprintf(ficlog,"%.3e ",y[i][j]);
    fprintf(ficres,"# Parameters\n");      }
    printf("# Parameters\n");      printf("\n");
    for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficlog,"\n");
      for(k=1; k <=(nlstate+ndeath); k++){    }
        if (k != i)    */
          {  
            printf("%d%d ",i,k);    free_matrix(a,1,npar,1,npar);
            fprintf(ficres,"%1d%1d ",i,k);    free_matrix(y,1,npar,1,npar);
            for(j=1; j <=ncovmodel; j++){    free_vector(x,1,npar);
              printf("%f ",p[jk]);    free_ivector(indx,1,npar);
              fprintf(ficres,"%f ",p[jk]);    free_matrix(hess,1,npar,1,npar);
              jk++;  
            }  
            printf("\n");  }
            fprintf(ficres,"\n");  
          }  /*************** hessian matrix ****************/
      }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
    }  {
     int i;
     /* Computing hessian and covariance matrix */    int l=1, lmax=20;
     ftolhess=ftol; /* Usually correct */    double k1,k2;
     hesscov(matcov, p, npar, delti, ftolhess, func);    double p2[MAXPARM+1]; /* identical to x */
     fprintf(ficres,"# Scales\n");    double res;
     printf("# Scales\n");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      for(i=1,jk=1; i <=nlstate; i++){    double fx;
       for(j=1; j <=nlstate+ndeath; j++){    int k=0,kmax=10;
         if (j!=i) {    double l1;
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);    fx=func(x);
           for(k=1; k<=ncovmodel;k++){    for (i=1;i<=npar;i++) p2[i]=x[i];
             printf(" %.5e",delti[jk]);    for(l=0 ; l <=lmax; l++){
             fprintf(ficres," %.5e",delti[jk]);      l1=pow(10,l);
             jk++;      delts=delt;
           }      for(k=1 ; k <kmax; k=k+1){
           printf("\n");        delt = delta*(l1*k);
           fprintf(ficres,"\n");        p2[theta]=x[theta] +delt;
         }        k1=func(p2)-fx;
       }        p2[theta]=x[theta]-delt;
       }        k2=func(p2)-fx;
            /*res= (k1-2.0*fx+k2)/delt/delt; */
     k=1;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     fprintf(ficres,"# Covariance\n");        
     printf("# Covariance\n");  #ifdef DEBUGHESS
     for(i=1;i<=npar;i++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       /*  if (k>nlstate) k=1;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       i1=(i-1)/(ncovmodel*nlstate)+1;  #endif
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       printf("%s%d%d",alph[k],i1,tab[i]);*/        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       fprintf(ficres,"%3d",i);          k=kmax;
       printf("%3d",i);        }
       for(j=1; j<=i;j++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         fprintf(ficres," %.5e",matcov[i][j]);          k=kmax; l=lmax*10.;
         printf(" %.5e",matcov[i][j]);        }
       }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       fprintf(ficres,"\n");          delts=delt;
       printf("\n");        }
       k++;      }
     }    }
        delti[theta]=delts;
     while((c=getc(ficpar))=='#' && c!= EOF){    return res; 
       ungetc(c,ficpar);    
       fgets(line, MAXLINE, ficpar);  }
       puts(line);  
       fputs(line,ficparo);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     }  {
     ungetc(c,ficpar);    int i;
      int l=1, l1, lmax=20;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    double k1,k2,k3,k4,res,fx;
        double p2[MAXPARM+1];
     if (fage <= 2) {    int k;
       bage = agemin;  
       fage = agemax;    fx=func(x);
     }    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 /*------------ gnuplot -------------*/      k1=func(p2)-fx;
 chdir(pathcd);    
   if((ficgp=fopen("graph.plt","w"))==NULL) {      p2[thetai]=x[thetai]+delti[thetai]/k;
     printf("Problem with file graph.gp");goto end;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k2=func(p2)-fx;
 #ifdef windows    
   fprintf(ficgp,"cd \"%s\" \n",pathc);      p2[thetai]=x[thetai]-delti[thetai]/k;
 #endif      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 m=pow(2,cptcovn);      k3=func(p2)-fx;
      
  /* 1eme*/      p2[thetai]=x[thetai]-delti[thetai]/k;
   for (cpt=1; cpt<= nlstate ; cpt ++) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
    for (k1=1; k1<= m ; k1 ++) {      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 #ifdef windows  #ifdef DEBUG
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 #endif      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 #ifdef unix  #endif
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    }
 #endif    return res;
   }
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  /************** Inverse of matrix **************/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  void ludcmp(double **a, int n, int *indx, double *d) 
 }  { 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    int i,imax,j,k; 
     for (i=1; i<= nlstate ; i ++) {    double big,dum,sum,temp; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double *vv; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");   
 }    vv=vector(1,n); 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    *d=1.0; 
      for (i=1; i<= nlstate ; i ++) {    for (i=1;i<=n;i++) { 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      big=0.0; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (j=1;j<=n;j++) 
 }          if ((temp=fabs(a[i][j])) > big) big=temp; 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 #ifdef unix      vv[i]=1.0/big; 
 fprintf(ficgp,"\nset ter gif small size 400,300");    } 
 #endif    for (j=1;j<=n;j++) { 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for (i=1;i<j;i++) { 
    }        sum=a[i][j]; 
   }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   /*2 eme*/        a[i][j]=sum; 
       } 
   for (k1=1; k1<= m ; k1 ++) {      big=0.0; 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      for (i=j;i<=n;i++) { 
            sum=a[i][j]; 
     for (i=1; i<= nlstate+1 ; i ++) {        for (k=1;k<j;k++) 
       k=2*i;          sum -= a[i][k]*a[k][j]; 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        a[i][j]=sum; 
       for (j=1; j<= nlstate+1 ; j ++) {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          big=dum; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          imax=i; 
 }          } 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      } 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      if (j != imax) { 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        for (k=1;k<=n;k++) { 
       for (j=1; j<= nlstate+1 ; j ++) {          dum=a[imax][k]; 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          a[imax][k]=a[j][k]; 
         else fprintf(ficgp," \%%*lf (\%%*lf)");          a[j][k]=dum; 
 }          } 
       fprintf(ficgp,"\" t\"\" w l 0,");        *d = -(*d); 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        vv[imax]=vv[j]; 
       for (j=1; j<= nlstate+1 ; j ++) {      } 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      indx[j]=imax; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if (a[j][j] == 0.0) a[j][j]=TINY; 
 }        if (j != n) { 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        dum=1.0/(a[j][j]); 
       else fprintf(ficgp,"\" t\"\" w l 0,");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     }      } 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    } 
   }    free_vector(vv,1,n);  /* Doesn't work */
    ;
   /*3eme*/  } 
   
   for (k1=1; k1<= m ; k1 ++) {  void lubksb(double **a, int n, int *indx, double b[]) 
     for (cpt=1; cpt<= nlstate ; cpt ++) {  { 
       k=2+nlstate*(cpt-1);    int i,ii=0,ip,j; 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    double sum; 
       for (i=1; i< nlstate ; i ++) {   
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    for (i=1;i<=n;i++) { 
       }      ip=indx[i]; 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      sum=b[ip]; 
     }      b[ip]=b[i]; 
   }      if (ii) 
          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   /* CV preval stat */      else if (sum) ii=i; 
   for (k1=1; k1<= m ; k1 ++) {      b[i]=sum; 
     for (cpt=1; cpt<nlstate ; cpt ++) {    } 
       k=3;    for (i=n;i>=1;i--) { 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);      sum=b[i]; 
       for (i=1; i< nlstate ; i ++)      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficgp,"+$%d",k+i+1);      b[i]=sum/a[i][i]; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    } 
        } 
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  void pstamp(FILE *fichier)
       for (i=1; i< nlstate ; i ++) {  {
         l=3+(nlstate+ndeath)*cpt;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         fprintf(ficgp,"+$%d",l+i+1);  }
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    /************ Frequencies ********************/
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     }  {  /* Some frequencies */
   }    
     int i, m, jk, k1,i1, j1, bool, z1,j;
   /* proba elementaires */    int first;
   for(i=1,jk=1; i <=nlstate; i++){    double ***freq; /* Frequencies */
     for(k=1; k <=(nlstate+ndeath); k++){    double *pp, **prop;
       if (k != i) {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/    char fileresp[FILENAMELENGTH];
         for(j=1; j <=ncovmodel; j++){    
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);    pp=vector(1,nlstate);
           jk++;    prop=matrix(1,nlstate,iagemin,iagemax+3);
           fprintf(ficgp,"\n");    strcpy(fileresp,"p");
         }    strcat(fileresp,fileres);
       }    if((ficresp=fopen(fileresp,"w"))==NULL) {
     }      printf("Problem with prevalence resultfile: %s\n", fileresp);
   }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   for(jk=1; jk <=m; jk++) {      exit(0);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    }
   for(i=1; i <=nlstate; i++) {    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     for(k=1; k <=(nlstate+ndeath); k++){    j1=0;
       if (k != i) {    
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);    j=cptcoveff;
         for(j=3; j <=ncovmodel; j++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         fprintf(ficgp,")/(1");    first=1;
         for(k1=1; k1 <=(nlstate+ndeath); k1++)  
           if (k1 != i) {    for(k1=1; k1<=j;k1++){
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);      for(i1=1; i1<=ncodemax[k1];i1++){
             for(j=3; j <=ncovmodel; j++)        j1++;
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             fprintf(ficgp,")");          scanf("%d", i);*/
           }        for (i=-5; i<=nlstate+ndeath; i++)  
         fprintf(ficgp,") t \"p%d%d\" ", i,k);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            for(m=iagemin; m <= iagemax+3; m++)
       }              freq[i][jk][m]=0;
     }  
   }      for (i=1; i<=nlstate; i++)  
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          for(m=iagemin; m <= iagemax+3; m++)
   }          prop[i][m]=0;
   fclose(ficgp);        
            dateintsum=0;
 chdir(path);        k2cpt=0;
     free_matrix(agev,1,maxwav,1,imx);        for (i=1; i<=imx; i++) {
     free_ivector(wav,1,imx);          bool=1;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          if  (cptcovn>0) {
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            for (z1=1; z1<=cptcoveff; z1++) 
                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_imatrix(s,1,maxwav+1,1,n);                bool=0;
              }
              if (bool==1){
     free_ivector(num,1,n);            for(m=firstpass; m<=lastpass; m++){
     free_vector(agedc,1,n);              k2=anint[m][i]+(mint[m][i]/12.);
     free_vector(weight,1,n);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     fclose(ficparo);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fclose(ficres);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
    }                if (m<lastpass) {
                      freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
    /*________fin mle=1_________*/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                    }
                 
                  if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     /* No more information from the sample is required now */                  dateintsum=dateintsum+k2;
   /* Reads comments: lines beginning with '#' */                  k2cpt++;
   while((c=getc(ficpar))=='#' && c!= EOF){                }
     ungetc(c,ficpar);                /*}*/
     fgets(line, MAXLINE, ficpar);            }
     puts(line);          }
     fputs(line,ficparo);        }
   }         
   ungetc(c,ficpar);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
          pstamp(ficresp);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        if  (cptcovn>0) {
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          fprintf(ficresp, "\n#********** Variable "); 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /*--------- index.htm --------*/          fprintf(ficresp, "**********\n#");
         }
   if((fichtm=fopen("index.htm","w"))==NULL)    {        for(i=1; i<=nlstate;i++) 
     printf("Problem with index.htm \n");goto end;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   }        fprintf(ficresp, "\n");
         
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n        for(i=iagemin; i <= iagemax+3; i++){
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          if(i==iagemax+3){
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>            fprintf(ficlog,"Total");
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>          }else{
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>            if(first==1){
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>              first=0;
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>              printf("See log file for details...\n");
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>            }
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>            fprintf(ficlog,"Age %d", i);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          }
           for(jk=1; jk <=nlstate ; jk++){
  fprintf(fichtm," <li>Graphs</li>\n<p>");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
  m=cptcovn;          }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
  j1=0;              pos += freq[jk][m][i];
  for(k1=1; k1<=m;k1++){            if(pp[jk]>=1.e-10){
    for(i1=1; i1<=ncodemax[k1];i1++){              if(first==1){
        j1++;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
        if (cptcovn > 0) {              }
          fprintf(fichtm,"<hr>************ Results for covariates");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
          for (cpt=1; cpt<=cptcovn;cpt++)            }else{
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);              if(first==1)
          fprintf(fichtm," ************\n<hr>");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
        }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);              }
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          for(jk=1; jk <=nlstate ; jk++){
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
        }              pp[jk] += freq[jk][m][i];
     for(cpt=1; cpt<=nlstate;cpt++) {          }       
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 interval) in state (%d): v%s%d%d.gif <br>            pos += pp[jk];
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              posprop += prop[jk][i];
      }          }
      for(cpt=1; cpt<=nlstate;cpt++) {          for(jk=1; jk <=nlstate ; jk++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            if(pos>=1.e-5){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              if(first==1)
      }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 health expectancies in states (1) and (2): e%s%d.gif<br>            }else{
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);              if(first==1)
 fprintf(fichtm,"\n</body>");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
    }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  }            }
 fclose(fichtm);            if( i <= iagemax){
               if(pos>=1.e-5){
   /*--------------- Prevalence limit --------------*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                  /*probs[i][jk][j1]= pp[jk]/pos;*/
   strcpy(filerespl,"pl");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   strcat(filerespl,fileres);              }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              else
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   }            }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          }
   fprintf(ficrespl,"#Prevalence limit\n");          
   fprintf(ficrespl,"#Age ");          for(jk=-1; jk <=nlstate+ndeath; jk++)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            for(m=-1; m <=nlstate+ndeath; m++)
   fprintf(ficrespl,"\n");              if(freq[jk][m][i] !=0 ) {
                if(first==1)
   prlim=matrix(1,nlstate,1,nlstate);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if(i <= iagemax)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            fprintf(ficresp,"\n");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          if(first==1)
   k=0;            printf("Others in log...\n");
   agebase=agemin;          fprintf(ficlog,"\n");
   agelim=agemax;        }
   ftolpl=1.e-10;      }
   i1=cptcovn;    }
   if (cptcovn < 1){i1=1;}    dateintmean=dateintsum/k2cpt; 
    
   for(cptcov=1;cptcov<=i1;cptcov++){    fclose(ficresp);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
         k=k+1;    free_vector(pp,1,nlstate);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         fprintf(ficrespl,"\n#****** ");    /* End of Freq */
         for(j=1;j<=cptcovn;j++)  }
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");  /************ Prevalence ********************/
          void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         for (age=agebase; age<=agelim; age++){  {  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           fprintf(ficrespl,"%.0f",age );       in each health status at the date of interview (if between dateprev1 and dateprev2).
           for(i=1; i<=nlstate;i++)       We still use firstpass and lastpass as another selection.
           fprintf(ficrespl," %.5f", prlim[i][i]);    */
           fprintf(ficrespl,"\n");   
         }    int i, m, jk, k1, i1, j1, bool, z1,j;
       }    double ***freq; /* Frequencies */
     }    double *pp, **prop;
   fclose(ficrespl);    double pos,posprop; 
   /*------------- h Pij x at various ages ------------*/    double  y2; /* in fractional years */
      int iagemin, iagemax;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    iagemin= (int) agemin;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    iagemax= (int) agemax;
   }    /*pp=vector(1,nlstate);*/
   printf("Computing pij: result on file '%s' \n", filerespij);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;    j1=0;
   if (stepm<=24) stepsize=2;    
     j=cptcoveff;
   agelim=AGESUP;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   hstepm=stepsize*YEARM; /* Every year of age */    
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    for(k1=1; k1<=j;k1++){
        for(i1=1; i1<=ncodemax[k1];i1++){
   k=0;        j1++;
   for(cptcov=1;cptcov<=i1;cptcov++){        
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for (i=1; i<=nlstate; i++)  
       k=k+1;          for(m=iagemin; m <= iagemax+3; m++)
         fprintf(ficrespij,"\n#****** ");            prop[i][m]=0.0;
         for(j=1;j<=cptcovn;j++)       
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        for (i=1; i<=imx; i++) { /* Each individual */
         fprintf(ficrespij,"******\n");          bool=1;
                  if  (cptcovn>0) {
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            for (z1=1; z1<=cptcoveff; z1++) 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                bool=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } 
           oldm=oldms;savm=savms;          if (bool==1) { 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           fprintf(ficrespij,"# Age");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           for(i=1; i<=nlstate;i++)              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
             for(j=1; j<=nlstate+ndeath;j++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               fprintf(ficrespij," %1d-%1d",i,j);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           fprintf(ficrespij,"\n");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           for (h=0; h<=nhstepm; h++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             for(i=1; i<=nlstate;i++)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
               for(j=1; j<=nlstate+ndeath;j++)                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                } 
             fprintf(ficrespij,"\n");              }
           }            } /* end selection of waves */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           fprintf(ficrespij,"\n");        }
         }        for(i=iagemin; i <= iagemax+3; i++){  
     }          
   }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
   fclose(ficrespij);          } 
   
   /*---------- Health expectancies and variances ------------*/          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
   strcpy(filerest,"t");              if(posprop>=1.e-5){ 
   strcat(filerest,fileres);                probs[i][jk][j1]= prop[jk][i]/posprop;
   if((ficrest=fopen(filerest,"w"))==NULL) {              } else
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
   }            } 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          }/* end jk */ 
         }/* end i */ 
       } /* end i1 */
   strcpy(filerese,"e");    } /* end k1 */
   strcat(filerese,fileres);    
   if((ficreseij=fopen(filerese,"w"))==NULL) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    /*free_vector(pp,1,nlstate);*/
   }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  }  /* End of prevalence */
   
  strcpy(fileresv,"v");  /************* Waves Concatenation ***************/
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  {
   }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   k=0;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   for(cptcov=1;cptcov<=i1;cptcov++){       and mw[mi+1][i]. dh depends on stepm.
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       */
       k=k+1;  
       fprintf(ficrest,"\n#****** ");    int i, mi, m;
       for(j=1;j<=cptcovn;j++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);       double sum=0., jmean=0.;*/
       fprintf(ficrest,"******\n");    int first;
     int j, k=0,jk, ju, jl;
       fprintf(ficreseij,"\n#****** ");    double sum=0.;
       for(j=1;j<=cptcovn;j++)    first=0;
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    jmin=1e+5;
       fprintf(ficreseij,"******\n");    jmax=-1;
     jmean=0.;
       fprintf(ficresvij,"\n#****** ");    for(i=1; i<=imx; i++){
       for(j=1;j<=cptcovn;j++)      mi=0;
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      m=firstpass;
       fprintf(ficresvij,"******\n");      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          mw[++mi][i]=m;
       oldm=oldms;savm=savms;        if(m >=lastpass)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            break;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        else
       oldm=oldms;savm=savms;          m++;
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      }/* end while */
            if (s[m][i] > nlstate){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        mi++;     /* Death is another wave */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        /* if(mi==0)  never been interviewed correctly before death */
       fprintf(ficrest,"\n");           /* Only death is a correct wave */
                mw[mi][i]=m;
       hf=1;      }
       if (stepm >= YEARM) hf=stepm/YEARM;  
       epj=vector(1,nlstate+1);      wav[i]=mi;
       for(age=bage; age <=fage ;age++){      if(mi==0){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        nbwarn++;
         fprintf(ficrest," %.0f",age);        if(first==0){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          first=1;
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];        }
           }        if(first==1){
           epj[nlstate+1] +=epj[j];          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }        }
         for(i=1, vepp=0.;i <=nlstate;i++)      } /* end mi==0 */
           for(j=1;j <=nlstate;j++)    } /* End individuals */
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    for(i=1; i<=imx; i++){
         for(j=1;j <=nlstate;j++){      for(mi=1; mi<wav[i];mi++){
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));        if (stepm <=0)
         }          dh[mi][i]=1;
         fprintf(ficrest,"\n");        else{
       }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     }            if (agedc[i] < 2*AGESUP) {
   }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                      if(j==0) j=1;  /* Survives at least one month after exam */
  fclose(ficreseij);              else if(j<0){
  fclose(ficresvij);                nberr++;
   fclose(ficrest);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fclose(ficpar);                j=1; /* Temporary Dangerous patch */
   free_vector(epj,1,nlstate+1);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   /*  scanf("%d ",i); */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   /*------- Variance limit prevalence------*/                }
               k=k+1;
 strcpy(fileresvpl,"vpl");              if (j >= jmax){
   strcat(fileresvpl,fileres);                jmax=j;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                ijmax=i;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              }
     exit(0);              if (j <= jmin){
   }                jmin=j;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                ijmin=i;
               }
  k=0;              sum=sum+j;
  for(cptcov=1;cptcov<=i1;cptcov++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      k=k+1;            }
      fprintf(ficresvpl,"\n#****** ");          }
      for(j=1;j<=cptcovn;j++)          else{
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      fprintf(ficresvpl,"******\n");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
        
      varpl=matrix(1,nlstate,(int) bage, (int) fage);            k=k+1;
      oldm=oldms;savm=savms;            if (j >= jmax) {
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              jmax=j;
    }              ijmax=i;
  }            }
             else if (j <= jmin){
   fclose(ficresvpl);              jmin=j;
               ijmin=i;
   /*---------- End : free ----------------*/            }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            if(j<0){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              nberr++;
                printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            sum=sum+j;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          jk= j/stepm;
            jl= j -jk*stepm;
   free_matrix(matcov,1,npar,1,npar);          ju= j -(jk+1)*stepm;
   free_vector(delti,1,npar);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              if(jl==0){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);              dh[mi][i]=jk;
               bh[mi][i]=0;
   printf("End of Imach\n");            }else{ /* We want a negative bias in order to only have interpolation ie
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                    * to avoid the price of an extra matrix product in likelihood */
                dh[mi][i]=jk+1;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/              bh[mi][i]=ju;
   /*printf("Total time was %d uSec.\n", total_usecs);*/            }
   /*------ End -----------*/          }else{
             if(jl <= -ju){
  end:              dh[mi][i]=jk;
 #ifdef windows              bh[mi][i]=jl;       /* bias is positive if real duration
  chdir(pathcd);                                   * is higher than the multiple of stepm and negative otherwise.
 #endif                                   */
  system("wgnuplot ../gp37mgw/graph.plt");            }
             else{
 #ifdef windows              dh[mi][i]=jk+1;
   while (z[0] != 'q') {              bh[mi][i]=ju;
     chdir(pathcd);            }
     printf("\nType e to edit output files, c to start again, and q for exiting: ");            if(dh[mi][i]==0){
     scanf("%s",z);              dh[mi][i]=1; /* At least one step */
     if (z[0] == 'c') system("./imach");              bh[mi][i]=ju; /* At least one step */
     else if (z[0] == 'e') {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       chdir(path);            }
       system("index.htm");          } /* end if mle */
     }        }
     else if (z[0] == 'q') exit(0);      } /* end wave */
   }    }
 #endif    jmean=sum/k;
 }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   
   /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
   {
     /* Uses cptcovn+2*cptcovprod as the number of covariates */
     /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
   
     int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int modmaxcovj=0; /* Modality max of covariates j */
     cptcoveff=0; 
    
     for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
   
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
                                  modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                         modality of the nth covariate of individual i. */
         Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > modmaxcovj) modmaxcovj=ij; 
         /* getting the maximum value of the modality of the covariate
            (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
            female is 1, then modmaxcovj=1.*/
       }
       /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
       for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
         if( Ndum[i] != 0 )
           ncodemax[j]++; 
         /* Number of modalities of the j th covariate. In fact
            ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons */
       } /* Ndum[-1] number of undefined modalities */
   
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       ij=1; 
       for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
         for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
           if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
                                        then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             ij++;
           }
           if (ij > ncodemax[j]) break; 
         }  /* end of loop on */
       } /* end of loop on modality */ 
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
     for (k=0; k< maxncov; k++) Ndum[k]=0;
     
     for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
      Ndum[ij]++;
    }
   
    ij=1;
    for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
        ij++;
      }
    }
    ij--;
    cptcoveff=ij; /*Number of simple covariates*/
   }
   
   /*********** Health Expectancies ****************/
   
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   {
     /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3mat;
     double eip;
   
     pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
                       lc2=fabs(lc2);
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8); /* hard coded ? */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); 
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* For V3*V2 Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) {
               h=1;
               codtab[h][k]=j;
               codtab[h][Tvar[k]]=j;
             }
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.2  
changed lines
  Added in v.1.138


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>