Diff for /imach/src/imach.c between versions 1.50 and 1.140

version 1.50, 2002/06/26 23:25:02 version 1.140, 2011/09/02 10:37:54
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.140  2011/09/02 10:37:54  brouard
      Summary: times.h is ok with mingw32 now.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.139  2010/06/14 07:50:17  brouard
   first survey ("cross") where individuals from different ages are    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   interviewed on their health status or degree of disability (in the    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.138  2010/04/30 18:19:40  brouard
   (if any) in individual health status.  Health expectancies are    *** empty log message ***
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.137  2010/04/29 18:11:38  brouard
   Maximum Likelihood of the parameters involved in the model.  The    (Module): Checking covariates for more complex models
   simplest model is the multinomial logistic model where pij is the    than V1+V2. A lot of change to be done. Unstable.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.136  2010/04/26 20:30:53  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): merging some libgsl code. Fixing computation
   'age' is age and 'sex' is a covariate. If you want to have a more    of likelione (using inter/intrapolation if mle = 0) in order to
   complex model than "constant and age", you should modify the program    get same likelihood as if mle=1.
   where the markup *Covariates have to be included here again* invites    Some cleaning of code and comments added.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.134  2009/10/29 13:18:53  brouard
   identical for each individual. Also, if a individual missed an    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.132  2009/07/06 08:22:05  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    Many tings
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.131  2009/06/20 16:22:47  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    Some dimensions resccaled
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
   Also this programme outputs the covariance matrix of the parameters but also    lot of cleaning with variables initialized to 0. Trying to make
   of the life expectancies. It also computes the prevalence limits.    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.129  2007/08/31 13:49:27  lievre
            Institut national d'études démographiques, Paris.    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.128  2006/06/30 13:02:05  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Clarifications on computing e.j
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.127  2006/04/28 18:11:50  brouard
   **********************************************************************/    (Module): Yes the sum of survivors was wrong since
      imach-114 because nhstepm was no more computed in the age
 #include <math.h>    loop. Now we define nhstepma in the age loop.
 #include <stdio.h>    (Module): In order to speed up (in case of numerous covariates) we
 #include <stdlib.h>    compute health expectancies (without variances) in a first step
 #include <unistd.h>    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
 #define MAXLINE 256    computation.
 #define GNUPLOTPROGRAM "gnuplot"    In the future we should be able to stop the program is only health
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    expectancies and graph are needed without standard deviations.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.126  2006/04/28 17:23:28  brouard
 #define windows    (Module): Yes the sum of survivors was wrong since
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    imach-114 because nhstepm was no more computed in the age
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    loop. Now we define nhstepma in the age loop.
     Version 0.98h
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
 #define NINTERVMAX 8    Forecasting file added.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.124  2006/03/22 17:13:53  lievre
 #define NCOVMAX 8 /* Maximum number of covariates */    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #define MAXN 20000    The log-likelihood is printed in the log file
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.123  2006/03/20 10:52:43  brouard
 #define AGEBASE 40    * imach.c (Module): <title> changed, corresponds to .htm file
 #ifdef windows    name. <head> headers where missing.
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    * imach.c (Module): Weights can have a decimal point as for
 #else    English (a comma might work with a correct LC_NUMERIC environment,
 #define DIRSEPARATOR '/'    otherwise the weight is truncated).
 #define ODIRSEPARATOR '\\'    Modification of warning when the covariates values are not 0 or
 #endif    1.
     Version 0.98g
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.122  2006/03/20 09:45:41  brouard
 int nvar;    (Module): Weights can have a decimal point as for
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    English (a comma might work with a correct LC_NUMERIC environment,
 int npar=NPARMAX;    otherwise the weight is truncated).
 int nlstate=2; /* Number of live states */    Modification of warning when the covariates values are not 0 or
 int ndeath=1; /* Number of dead states */    1.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Version 0.98g
 int popbased=0;  
     Revision 1.121  2006/03/16 17:45:01  lievre
 int *wav; /* Number of waves for this individuual 0 is possible */    * imach.c (Module): Comments concerning covariates added
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    * imach.c (Module): refinements in the computation of lli if
 int mle, weightopt;    status=-2 in order to have more reliable computation if stepm is
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    not 1 month. Version 0.98f
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.120  2006/03/16 15:10:38  lievre
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): refinements in the computation of lli if
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    status=-2 in order to have more reliable computation if stepm is
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    not 1 month. Version 0.98f
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.119  2006/03/15 17:42:26  brouard
 FILE *ficresprobmorprev;    (Module): Bug if status = -2, the loglikelihood was
 FILE *fichtm; /* Html File */    computed as likelihood omitting the logarithm. Version O.98e
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.118  2006/03/14 18:20:07  brouard
 FILE  *ficresvij;    (Module): varevsij Comments added explaining the second
 char fileresv[FILENAMELENGTH];    table of variances if popbased=1 .
 FILE  *ficresvpl;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 char fileresvpl[FILENAMELENGTH];    (Module): Function pstamp added
 char title[MAXLINE];    (Module): Version 0.98d
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    table of variances if popbased=1 .
 char filelog[FILENAMELENGTH]; /* Log file */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 char filerest[FILENAMELENGTH];    (Module): Function pstamp added
 char fileregp[FILENAMELENGTH];    (Module): Version 0.98d
 char popfile[FILENAMELENGTH];  
     Revision 1.116  2006/03/06 10:29:27  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.115  2006/02/27 12:17:45  brouard
 #define FTOL 1.0e-10    (Module): One freematrix added in mlikeli! 0.98c
   
 #define NRANSI    Revision 1.114  2006/02/26 12:57:58  brouard
 #define ITMAX 200    (Module): Some improvements in processing parameter
     filename with strsep.
 #define TOL 2.0e-4  
     Revision 1.113  2006/02/24 14:20:24  brouard
 #define CGOLD 0.3819660    (Module): Memory leaks checks with valgrind and:
 #define ZEPS 1.0e-10    datafile was not closed, some imatrix were not freed and on matrix
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    allocation too.
   
 #define GOLD 1.618034    Revision 1.112  2006/01/30 09:55:26  brouard
 #define GLIMIT 100.0    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define TINY 1.0e-20  
     Revision 1.111  2006/01/25 20:38:18  brouard
 static double maxarg1,maxarg2;    (Module): Lots of cleaning and bugs added (Gompertz)
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Comments can be added in data file. Missing date values
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    can be a simple dot '.'.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.110  2006/01/25 00:51:50  brouard
 #define rint(a) floor(a+0.5)    (Module): Lots of cleaning and bugs added (Gompertz)
   
 static double sqrarg;    Revision 1.109  2006/01/24 19:37:15  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Comments (lines starting with a #) are allowed in data.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.108  2006/01/19 18:05:42  lievre
 int imx;    Gnuplot problem appeared...
 int stepm;    To be fixed
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.107  2006/01/19 16:20:37  brouard
 int estepm;    Test existence of gnuplot in imach path
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.106  2006/01/19 13:24:36  brouard
 int m,nb;    Some cleaning and links added in html output
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.105  2006/01/05 20:23:19  lievre
 double **pmmij, ***probs, ***mobaverage;    *** empty log message ***
 double dateintmean=0;  
     Revision 1.104  2005/09/30 16:11:43  lievre
 double *weight;    (Module): sump fixed, loop imx fixed, and simplifications.
 int **s; /* Status */    (Module): If the status is missing at the last wave but we know
 double *agedc, **covar, idx;    that the person is alive, then we can code his/her status as -2
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 double ftolhess; /* Tolerance for computing hessian */    the healthy state at last known wave). Version is 0.98
   
 /**************** split *************************/    Revision 1.103  2005/09/30 15:54:49  lievre
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): sump fixed, loop imx fixed, and simplifications.
 {  
    char *s;                             /* pointer */    Revision 1.102  2004/09/15 17:31:30  brouard
    int  l1, l2;                         /* length counters */    Add the possibility to read data file including tab characters.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.101  2004/09/15 10:38:38  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Fix on curr_time
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.100  2004/07/12 18:29:06  brouard
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Add version for Mac OS X. Just define UNIX in Makefile
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.99  2004/06/05 08:57:40  brouard
       extern char       *getwd( );    *** empty log message ***
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.98  2004/05/16 15:05:56  brouard
 #else    New version 0.97 . First attempt to estimate force of mortality
       extern char       *getcwd( );    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    This is the basic analysis of mortality and should be done before any
 #endif    other analysis, in order to test if the mortality estimated from the
          return( GLOCK_ERROR_GETCWD );    cross-longitudinal survey is different from the mortality estimated
       }    from other sources like vital statistic data.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    The same imach parameter file can be used but the option for mle should be -3.
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Agnès, who wrote this part of the code, tried to keep most of the
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    former routines in order to include the new code within the former code.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    The output is very simple: only an estimate of the intercept and of
       dirc[l1-l2] = 0;                  /* add zero */    the slope with 95% confident intervals.
    }  
    l1 = strlen( dirc );                 /* length of directory */    Current limitations:
 #ifdef windows    A) Even if you enter covariates, i.e. with the
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #else    B) There is no computation of Life Expectancy nor Life Table.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.97  2004/02/20 13:25:42  lievre
    s = strrchr( name, '.' );            /* find last / */    Version 0.96d. Population forecasting command line is (temporarily)
    s++;    suppressed.
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.96  2003/07/15 15:38:55  brouard
    l2= strlen( s)+1;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
    strncpy( finame, name, l1-l2);    rewritten within the same printf. Workaround: many printfs.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.95  2003/07/08 07:54:34  brouard
 }    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 /******************************************/  
     Revision 1.94  2003/06/27 13:00:02  brouard
 void replace(char *s, char*t)    Just cleaning
 {  
   int i;    Revision 1.93  2003/06/25 16:33:55  brouard
   int lg=20;    (Module): On windows (cygwin) function asctime_r doesn't
   i=0;    exist so I changed back to asctime which exists.
   lg=strlen(t);    (Module): Version 0.96b
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.92  2003/06/25 16:30:45  brouard
     if (t[i]== '\\') s[i]='/';    (Module): On windows (cygwin) function asctime_r doesn't
   }    exist so I changed back to asctime which exists.
 }  
     Revision 1.91  2003/06/25 15:30:29  brouard
 int nbocc(char *s, char occ)    * imach.c (Repository): Duplicated warning errors corrected.
 {    (Repository): Elapsed time after each iteration is now output. It
   int i,j=0;    helps to forecast when convergence will be reached. Elapsed time
   int lg=20;    is stamped in powell.  We created a new html file for the graphs
   i=0;    concerning matrix of covariance. It has extension -cov.htm.
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.90  2003/06/24 12:34:15  brouard
   if  (s[i] == occ ) j++;    (Module): Some bugs corrected for windows. Also, when
   }    mle=-1 a template is output in file "or"mypar.txt with the design
   return j;    of the covariance matrix to be input.
 }  
     Revision 1.89  2003/06/24 12:30:52  brouard
 void cutv(char *u,char *v, char*t, char occ)    (Module): Some bugs corrected for windows. Also, when
 {    mle=-1 a template is output in file "or"mypar.txt with the design
   /* cuts string t into u and v where u is ended by char occ excluding it    of the covariance matrix to be input.
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */    Revision 1.88  2003/06/23 17:54:56  brouard
   int i,lg,j,p=0;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.87  2003/06/18 12:26:01  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Version 0.96
   }  
     Revision 1.86  2003/06/17 20:04:08  brouard
   lg=strlen(t);    (Module): Change position of html and gnuplot routines and added
   for(j=0; j<p; j++) {    routine fileappend.
     (u[j] = t[j]);  
   }    Revision 1.85  2003/06/17 13:12:43  brouard
      u[p]='\0';    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
    for(j=0; j<= lg; j++) {    prior to the death. In this case, dh was negative and likelihood
     if (j>=(p+1))(v[j-p-1] = t[j]);    was wrong (infinity). We still send an "Error" but patch by
   }    assuming that the date of death was just one stepm after the
 }    interview.
     (Repository): Because some people have very long ID (first column)
 /********************** nrerror ********************/    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 void nrerror(char error_text[])    truncation)
 {    (Repository): No more line truncation errors.
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.84  2003/06/13 21:44:43  brouard
   exit(1);    * imach.c (Repository): Replace "freqsummary" at a correct
 }    place. It differs from routine "prevalence" which may be called
 /*********************** vector *******************/    many times. Probs is memory consuming and must be used with
 double *vector(int nl, int nh)    parcimony.
 {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Revision 1.83  2003/06/10 13:39:11  lievre
   if (!v) nrerror("allocation failure in vector");    *** empty log message ***
   return v-nl+NR_END;  
 }    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  */
 {  /*
   free((FREE_ARG)(v+nl-NR_END));     Interpolated Markov Chain
 }  
     Short summary of the programme:
 /************************ivector *******************************/    
 int *ivector(long nl,long nh)    This program computes Healthy Life Expectancies from
 {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   int *v;    first survey ("cross") where individuals from different ages are
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    interviewed on their health status or degree of disability (in the
   if (!v) nrerror("allocation failure in ivector");    case of a health survey which is our main interest) -2- at least a
   return v-nl+NR_END;    second wave of interviews ("longitudinal") which measure each change
 }    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 /******************free ivector **************************/    model. More health states you consider, more time is necessary to reach the
 void free_ivector(int *v, long nl, long nh)    Maximum Likelihood of the parameters involved in the model.  The
 {    simplest model is the multinomial logistic model where pij is the
   free((FREE_ARG)(v+nl-NR_END));    probability to be observed in state j at the second wave
 }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /******************* imatrix *******************************/    'age' is age and 'sex' is a covariate. If you want to have a more
 int **imatrix(long nrl, long nrh, long ncl, long nch)    complex model than "constant and age", you should modify the program
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    where the markup *Covariates have to be included here again* invites
 {    you to do it.  More covariates you add, slower the
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    convergence.
   int **m;  
      The advantage of this computer programme, compared to a simple
   /* allocate pointers to rows */    multinomial logistic model, is clear when the delay between waves is not
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    identical for each individual. Also, if a individual missed an
   if (!m) nrerror("allocation failure 1 in matrix()");    intermediate interview, the information is lost, but taken into
   m += NR_END;    account using an interpolation or extrapolation.  
   m -= nrl;  
      hPijx is the probability to be observed in state i at age x+h
      conditional to the observed state i at age x. The delay 'h' can be
   /* allocate rows and set pointers to them */    split into an exact number (nh*stepm) of unobserved intermediate
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    states. This elementary transition (by month, quarter,
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    semester or year) is modelled as a multinomial logistic.  The hPx
   m[nrl] += NR_END;    matrix is simply the matrix product of nh*stepm elementary matrices
   m[nrl] -= ncl;    and the contribution of each individual to the likelihood is simply
      hPijx.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Also this programme outputs the covariance matrix of the parameters but also
   /* return pointer to array of pointers to rows */    of the life expectancies. It also computes the period (stable) prevalence. 
   return m;    
 }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 /****************** free_imatrix *************************/    This software have been partly granted by Euro-REVES, a concerted action
 void free_imatrix(m,nrl,nrh,ncl,nch)    from the European Union.
       int **m;    It is copyrighted identically to a GNU software product, ie programme and
       long nch,ncl,nrh,nrl;    software can be distributed freely for non commercial use. Latest version
      /* free an int matrix allocated by imatrix() */    can be accessed at http://euroreves.ined.fr/imach .
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   free((FREE_ARG) (m+nrl-NR_END));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
     **********************************************************************/
 /******************* matrix *******************************/  /*
 double **matrix(long nrl, long nrh, long ncl, long nch)    main
 {    read parameterfile
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    read datafile
   double **m;    concatwav
     freqsummary
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if (mle >= 1)
   if (!m) nrerror("allocation failure 1 in matrix()");      mlikeli
   m += NR_END;    print results files
   m -= nrl;    if mle==1 
        computes hessian
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    read end of parameter file: agemin, agemax, bage, fage, estepm
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");        begin-prev-date,...
   m[nrl] += NR_END;    open gnuplot file
   m[nrl] -= ncl;    open html file
     period (stable) prevalence
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;     for age prevalim()
   return m;    h Pij x
 }    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 /*************************free matrix ************************/    health expectancies
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Variance-covariance of DFLE
 {    prevalence()
   free((FREE_ARG)(m[nrl]+ncl-NR_END));     movingaverage()
   free((FREE_ARG)(m+nrl-NR_END));    varevsij() 
 }    if popbased==1 varevsij(,popbased)
     total life expectancies
 /******************* ma3x *******************************/    Variance of period (stable) prevalence
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)   end
 {  */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));   
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <math.h>
   m += NR_END;  #include <stdio.h>
   m -= nrl;  #include <stdlib.h>
   #include <string.h>
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include <unistd.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #include <limits.h>
   m[nrl] -= ncl;  #include <sys/types.h>
   #include <sys/stat.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <errno.h>
   extern int errno;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #include <sys/time.h>
   m[nrl][ncl] += NR_END;  /*
   m[nrl][ncl] -= nll;  #include <time.h>
   for (j=ncl+1; j<=nch; j++)  #include "timeval.h"
     m[nrl][j]=m[nrl][j-1]+nlay;  
    #ifdef GSL
   for (i=nrl+1; i<=nrh; i++) {  #include <gsl/gsl_errno.h>
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #include <gsl/gsl_multimin.h>
     for (j=ncl+1; j<=nch; j++)  #endif
       m[i][j]=m[i][j-1]+nlay;  
   }  /* #include <libintl.h> */
   return m;  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define FILENAMELENGTH 132
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /***************** f1dim *************************/  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
 extern int ncom;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  #define NINTERVMAX 8
    #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 double f1dim(double x)  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 {  #define NCOVMAX 20 /* Maximum number of covariates */
   int j;  #define MAXN 20000
   double f;  #define YEARM 12. /* Number of months per year */
   double *xt;  #define AGESUP 130
    #define AGEBASE 40
   xt=vector(1,ncom);  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #ifdef UNIX
   f=(*nrfunc)(xt);  #define DIRSEPARATOR '/'
   free_vector(xt,1,ncom);  #define CHARSEPARATOR "/"
   return f;  #define ODIRSEPARATOR '\\'
 }  #else
   #define DIRSEPARATOR '\\'
 /*****************brent *************************/  #define CHARSEPARATOR "\\"
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define ODIRSEPARATOR '/'
 {  #endif
   int iter;  
   double a,b,d,etemp;  /* $Id$ */
   double fu,fv,fw,fx;  /* $State$ */
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char version[]="Imach version 0.98m, April 2010, INED-EUROREVES-Institut de longevite ";
   double e=0.0;  char fullversion[]="$Revision$ $Date$"; 
    char strstart[80];
   a=(ax < cx ? ax : cx);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   b=(ax > cx ? ax : cx);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   x=w=v=bx;  int nvar=0, nforce=0; /* Number of variables, number of forces */
   fw=fv=fx=(*f)(x);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
   for (iter=1;iter<=ITMAX;iter++) {  int npar=NPARMAX;
     xm=0.5*(a+b);  int nlstate=2; /* Number of live states */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int ndeath=1; /* Number of dead states */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     printf(".");fflush(stdout);  int popbased=0;
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG  int *wav; /* Number of waves for this individuual 0 is possible */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int maxwav=0; /* Maxim number of waves */
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 #endif  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){                     to the likelihood and the sum of weights (done by funcone)*/
       *xmin=x;  int mle=1, weightopt=0;
       return fx;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     ftemp=fu;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     if (fabs(e) > tol1) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       r=(x-w)*(fx-fv);  double jmean=1; /* Mean space between 2 waves */
       q=(x-v)*(fx-fw);  double **oldm, **newm, **savm; /* Working pointers to matrices */
       p=(x-v)*q-(x-w)*r;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       q=2.0*(q-r);  /*FILE *fic ; */ /* Used in readdata only */
       if (q > 0.0) p = -p;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       q=fabs(q);  FILE *ficlog, *ficrespow;
       etemp=e;  int globpr=0; /* Global variable for printing or not */
       e=d;  double fretone; /* Only one call to likelihood */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  long ipmx=0; /* Number of contributions */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  double sw; /* Sum of weights */
       else {  char filerespow[FILENAMELENGTH];
         d=p/q;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
         u=x+d;  FILE *ficresilk;
         if (u-a < tol2 || b-u < tol2)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
           d=SIGN(tol1,xm-x);  FILE *ficresprobmorprev;
       }  FILE *fichtm, *fichtmcov; /* Html File */
     } else {  FILE *ficreseij;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char filerese[FILENAMELENGTH];
     }  FILE *ficresstdeij;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char fileresstde[FILENAMELENGTH];
     fu=(*f)(u);  FILE *ficrescveij;
     if (fu <= fx) {  char filerescve[FILENAMELENGTH];
       if (u >= x) a=x; else b=x;  FILE  *ficresvij;
       SHFT(v,w,x,u)  char fileresv[FILENAMELENGTH];
         SHFT(fv,fw,fx,fu)  FILE  *ficresvpl;
         } else {  char fileresvpl[FILENAMELENGTH];
           if (u < x) a=u; else b=u;  char title[MAXLINE];
           if (fu <= fw || w == x) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
             v=w;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
             w=u;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
             fv=fw;  char command[FILENAMELENGTH];
             fw=fu;  int  outcmd=0;
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
             fv=fu;  
           }  char filelog[FILENAMELENGTH]; /* Log file */
         }  char filerest[FILENAMELENGTH];
   }  char fileregp[FILENAMELENGTH];
   nrerror("Too many iterations in brent");  char popfile[FILENAMELENGTH];
   *xmin=x;  
   return fx;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 }  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 /****************** mnbrak ***********************/  struct timezone tzp;
   extern int gettimeofday();
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  struct tm tmg, tm, tmf, *gmtime(), *localtime();
             double (*func)(double))  long time_value;
 {  extern long time();
   double ulim,u,r,q, dum;  char strcurr[80], strfor[80];
   double fu;  
    char *endptr;
   *fa=(*func)(*ax);  long lval;
   *fb=(*func)(*bx);  double dval;
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  #define NR_END 1
       SHFT(dum,*fb,*fa,dum)  #define FREE_ARG char*
       }  #define FTOL 1.0e-10
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  #define NRANSI 
   while (*fb > *fc) {  #define ITMAX 200 
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  #define TOL 2.0e-4 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define CGOLD 0.3819660 
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define ZEPS 1.0e-10 
     if ((*bx-u)*(u-*cx) > 0.0) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define GOLD 1.618034 
       fu=(*func)(u);  #define GLIMIT 100.0 
       if (fu < *fc) {  #define TINY 1.0e-20 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  static double maxarg1,maxarg2;
           }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       u=ulim;    
       fu=(*func)(u);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     } else {  #define rint(a) floor(a+0.5)
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  static double sqrarg;
     }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     SHFT(*ax,*bx,*cx,u)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       SHFT(*fa,*fb,*fc,fu)  int agegomp= AGEGOMP;
       }  
 }  int imx; 
   int stepm=1;
 /*************** linmin ************************/  /* Stepm, step in month: minimum step interpolation*/
   
 int ncom;  int estepm;
 double *pcom,*xicom;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 double (*nrfunc)(double []);  
    int m,nb;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  long *num;
 {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double brent(double ax, double bx, double cx,  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
                double (*f)(double), double tol, double *xmin);  double **pmmij, ***probs;
   double f1dim(double x);  double *ageexmed,*agecens;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  double dateintmean=0;
               double *fc, double (*func)(double));  
   int j;  double *weight;
   double xx,xmin,bx,ax;  int **s; /* Status */
   double fx,fb,fa;  double *agedc, **covar, idx;
    int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   ncom=n;  double *lsurv, *lpop, *tpop;
   pcom=vector(1,n);  
   xicom=vector(1,n);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   nrfunc=func;  double ftolhess; /* Tolerance for computing hessian */
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  /**************** split *************************/
     xicom[j]=xi[j];  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   }  {
   ax=0.0;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   xx=1.0;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    */ 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    char  *ss;                            /* pointer */
 #ifdef DEBUG    int   l1, l2;                         /* length counters */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    l1 = strlen(path );                   /* length of path */
 #endif    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (j=1;j<=n;j++) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     xi[j] *= xmin;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     p[j] += xi[j];      strcpy( name, path );               /* we got the fullname name because no directory */
   }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   free_vector(xicom,1,n);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   free_vector(pcom,1,n);      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 /*************** powell ************************/        return( GLOCK_ERROR_GETCWD );
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      }
             double (*func)(double []))      /* got dirc from getcwd*/
 {      printf(" DIRC = %s \n",dirc);
   void linmin(double p[], double xi[], int n, double *fret,    } else {                              /* strip direcotry from path */
               double (*func)(double []));      ss++;                               /* after this, the filename */
   int i,ibig,j;      l2 = strlen( ss );                  /* length of filename */
   double del,t,*pt,*ptt,*xit;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double fp,fptt;      strcpy( name, ss );         /* save file name */
   double *xits;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   pt=vector(1,n);      dirc[l1-l2] = 0;                    /* add zero */
   ptt=vector(1,n);      printf(" DIRC2 = %s \n",dirc);
   xit=vector(1,n);    }
   xits=vector(1,n);    /* We add a separator at the end of dirc if not exists */
   *fret=(*func)(p);    l1 = strlen( dirc );                  /* length of directory */
   for (j=1;j<=n;j++) pt[j]=p[j];    if( dirc[l1-1] != DIRSEPARATOR ){
   for (*iter=1;;++(*iter)) {      dirc[l1] =  DIRSEPARATOR;
     fp=(*fret);      dirc[l1+1] = 0; 
     ibig=0;      printf(" DIRC3 = %s \n",dirc);
     del=0.0;    }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    ss = strrchr( name, '.' );            /* find last / */
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if (ss >0){
     for (i=1;i<=n;i++)      ss++;
       printf(" %d %.12f",i, p[i]);      strcpy(ext,ss);                     /* save extension */
     fprintf(ficlog," %d %.12f",i, p[i]);      l1= strlen( name);
     printf("\n");      l2= strlen(ss)+1;
     fprintf(ficlog,"\n");      strncpy( finame, name, l1-l2);
     for (i=1;i<=n;i++) {      finame[l1-l2]= 0;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    }
       fptt=(*fret);  
 #ifdef DEBUG    return( 0 );                          /* we're done */
       printf("fret=%lf \n",*fret);  }
       fprintf(ficlog,"fret=%lf \n",*fret);  
 #endif  
       printf("%d",i);fflush(stdout);  /******************************************/
       fprintf(ficlog,"%d",i);fflush(ficlog);  
       linmin(p,xit,n,fret,func);  void replace_back_to_slash(char *s, char*t)
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    int i;
         ibig=i;    int lg=0;
       }    i=0;
 #ifdef DEBUG    lg=strlen(t);
       printf("%d %.12e",i,(*fret));    for(i=0; i<= lg; i++) {
       fprintf(ficlog,"%d %.12e",i,(*fret));      (s[i] = t[i]);
       for (j=1;j<=n;j++) {      if (t[i]== '\\') s[i]='/';
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    }
         printf(" x(%d)=%.12e",j,xit[j]);  }
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  
       }  char *trimbb(char *out, char *in)
       for(j=1;j<=n;j++) {  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
         printf(" p=%.12e",p[j]);    char *s;
         fprintf(ficlog," p=%.12e",p[j]);    s=out;
       }    while (*in != '\0'){
       printf("\n");      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       fprintf(ficlog,"\n");        in++;
 #endif      }
     }      *out++ = *in++;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    }
 #ifdef DEBUG    *out='\0';
       int k[2],l;    return s;
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  char *cutv(char *blocc, char *alocc, char *in, char occ)
       fprintf(ficlog,"Max: %.12e",(*func)(p));  {
       for (j=1;j<=n;j++) {    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
         printf(" %.12e",p[j]);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         fprintf(ficlog," %.12e",p[j]);       gives blocc="abcdef2ghi" and alocc="j".
       }       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       printf("\n");    */
       fprintf(ficlog,"\n");    char *s, *t;
       for(l=0;l<=1;l++) {    t=in;s=in;
         for (j=1;j<=n;j++) {    while (*in != '\0'){
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      while( *in == occ){
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        *blocc++ = *in++;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        s=in;
         }      }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      *blocc++ = *in++;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    }
       }    if (s == t) /* occ not found */
 #endif      *(blocc-(in-s))='\0';
     else
       *(blocc-(in-s)-1)='\0';
       free_vector(xit,1,n);    in=s;
       free_vector(xits,1,n);    while ( *in != '\0'){
       free_vector(ptt,1,n);      *alocc++ = *in++;
       free_vector(pt,1,n);    }
       return;  
     }    *alocc='\0';
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    return s;
     for (j=1;j<=n;j++) {  }
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  int nbocc(char *s, char occ)
       pt[j]=p[j];  {
     }    int i,j=0;
     fptt=(*func)(ptt);    int lg=20;
     if (fptt < fp) {    i=0;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    lg=strlen(s);
       if (t < 0.0) {    for(i=0; i<= lg; i++) {
         linmin(p,xit,n,fret,func);    if  (s[i] == occ ) j++;
         for (j=1;j<=n;j++) {    }
           xi[j][ibig]=xi[j][n];    return j;
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  /* void cutv(char *u,char *v, char*t, char occ) */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /* { */
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
         for(j=1;j<=n;j++){  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
           printf(" %.12e",xit[j]);  /*      gives u="abcdef2ghi" and v="j" *\/ */
           fprintf(ficlog," %.12e",xit[j]);  /*   int i,lg,j,p=0; */
         }  /*   i=0; */
         printf("\n");  /*   lg=strlen(t); */
         fprintf(ficlog,"\n");  /*   for(j=0; j<=lg-1; j++) { */
 #endif  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       }  /*   } */
     }  
   }  /*   for(j=0; j<p; j++) { */
 }  /*     (u[j] = t[j]); */
   /*   } */
 /**** Prevalence limit ****************/  /*      u[p]='\0'; */
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /*    for(j=0; j<= lg; j++) { */
 {  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /*   } */
      matrix by transitions matrix until convergence is reached */  /* } */
   
   int i, ii,j,k;  /********************** nrerror ********************/
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  void nrerror(char error_text[])
   double **out, cov[NCOVMAX], **pmij();  {
   double **newm;    fprintf(stderr,"ERREUR ...\n");
   double agefin, delaymax=50 ; /* Max number of years to converge */    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   for (ii=1;ii<=nlstate+ndeath;ii++)  }
     for (j=1;j<=nlstate+ndeath;j++){  /*********************** vector *******************/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double *vector(int nl, int nh)
     }  {
     double *v;
    cov[1]=1.;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      if (!v) nrerror("allocation failure in vector");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    return v-nl+NR_END;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  }
     newm=savm;  
     /* Covariates have to be included here again */  /************************ free vector ******************/
      cov[2]=agefin;  void free_vector(double*v, int nl, int nh)
    {
       for (k=1; k<=cptcovn;k++) {    free((FREE_ARG)(v+nl-NR_END));
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  /************************ivector *******************************/
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int *ivector(long nl,long nh)
       for (k=1; k<=cptcovprod;k++)  {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    if (!v) nrerror("allocation failure in ivector");
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    return v-nl+NR_END;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /******************free ivector **************************/
     savm=oldm;  void free_ivector(int *v, long nl, long nh)
     oldm=newm;  {
     maxmax=0.;    free((FREE_ARG)(v+nl-NR_END));
     for(j=1;j<=nlstate;j++){  }
       min=1.;  
       max=0.;  /************************lvector *******************************/
       for(i=1; i<=nlstate; i++) {  long *lvector(long nl,long nh)
         sumnew=0;  {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    long *v;
         prlim[i][j]= newm[i][j]/(1-sumnew);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         max=FMAX(max,prlim[i][j]);    if (!v) nrerror("allocation failure in ivector");
         min=FMIN(min,prlim[i][j]);    return v-nl+NR_END;
       }  }
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  /******************free lvector **************************/
     }  void free_lvector(long *v, long nl, long nh)
     if(maxmax < ftolpl){  {
       return prlim;    free((FREE_ARG)(v+nl-NR_END));
     }  }
   }  
 }  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
 /*************** transition probabilities ***************/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 {    int **m; 
   double s1, s2;    
   /*double t34;*/    /* allocate pointers to rows */ 
   int i,j,j1, nc, ii, jj;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
     for(i=1; i<= nlstate; i++){    m += NR_END; 
     for(j=1; j<i;j++){    m -= nrl; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    
         /*s2 += param[i][j][nc]*cov[nc];*/    
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* allocate rows and set pointers to them */ 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       ps[i][j]=s2;    m[nrl] += NR_END; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    m[nrl] -= ncl; 
     }    
     for(j=i+1; j<=nlstate+ndeath;j++){    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* return pointer to array of pointers to rows */ 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    return m; 
       }  } 
       ps[i][j]=s2;  
     }  /****************** free_imatrix *************************/
   }  void free_imatrix(m,nrl,nrh,ncl,nch)
     /*ps[3][2]=1;*/        int **m;
         long nch,ncl,nrh,nrl; 
   for(i=1; i<= nlstate; i++){       /* free an int matrix allocated by imatrix() */ 
      s1=0;  { 
     for(j=1; j<i; j++)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       s1+=exp(ps[i][j]);    free((FREE_ARG) (m+nrl-NR_END)); 
     for(j=i+1; j<=nlstate+ndeath; j++)  } 
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  /******************* matrix *******************************/
     for(j=1; j<i; j++)  double **matrix(long nrl, long nrh, long ncl, long nch)
       ps[i][j]= exp(ps[i][j])*ps[i][i];  {
     for(j=i+1; j<=nlstate+ndeath; j++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double **m;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    m += NR_END;
     for(jj=1; jj<= nlstate+ndeath; jj++){    m -= nrl;
       ps[ii][jj]=0;  
       ps[ii][ii]=1;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   }    m[nrl] += NR_END;
     m[nrl] -= ncl;
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for(jj=1; jj<= nlstate+ndeath; jj++){    return m;
      printf("%lf ",ps[ii][jj]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
    }     */
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /*************************free matrix ************************/
 /*  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  {
   goto end;*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     return ps;    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /**************** Product of 2 matrices ******************/  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  {
 {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double ***m;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      before: only the contents of out is modified. The function returns    if (!m) nrerror("allocation failure 1 in matrix()");
      a pointer to pointers identical to out */    m += NR_END;
   long i, j, k;    m -= nrl;
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         out[i][k] +=in[i][j]*b[j][k];    m[nrl] += NR_END;
     m[nrl] -= ncl;
   return out;  
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 /************* Higher Matrix Product ***************/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    m[nrl][ncl] -= nll;
 {    for (j=ncl+1; j<=nch; j++) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      m[nrl][j]=m[nrl][j-1]+nlay;
      duration (i.e. until    
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    for (i=nrl+1; i<=nrh; i++) {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
      (typically every 2 years instead of every month which is too big).      for (j=ncl+1; j<=nch; j++) 
      Model is determined by parameters x and covariates have to be        m[i][j]=m[i][j-1]+nlay;
      included manually here.    }
     return m; 
      */    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   int i, j, d, h, k;    */
   double **out, cov[NCOVMAX];  }
   double **newm;  
   /*************************free ma3x ************************/
   /* Hstepm could be zero and should return the unit matrix */  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for (i=1;i<=nlstate+ndeath;i++)  {
     for (j=1;j<=nlstate+ndeath;j++){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       oldm[i][j]=(i==j ? 1.0 : 0.0);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       po[i][j][0]=(i==j ? 1.0 : 0.0);    free((FREE_ARG)(m+nrl-NR_END));
     }  }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /*************** function subdirf ***********/
     for(d=1; d <=hstepm; d++){  char *subdirf(char fileres[])
       newm=savm;  {
       /* Covariates have to be included here again */    /* Caution optionfilefiname is hidden */
       cov[1]=1.;    strcpy(tmpout,optionfilefiname);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    strcat(tmpout,"/"); /* Add to the right */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcat(tmpout,fileres);
       for (k=1; k<=cptcovage;k++)    return tmpout;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
   {
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    /* Caution optionfilefiname is hidden */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    strcpy(tmpout,optionfilefiname);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    strcat(tmpout,"/");
       savm=oldm;    strcat(tmpout,preop);
       oldm=newm;    strcat(tmpout,fileres);
     }    return tmpout;
     for(i=1; i<=nlstate+ndeath; i++)  }
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  /*************** function subdirf3 ***********/
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  char *subdirf3(char fileres[], char *preop, char *preop2)
          */  {
       }    
   } /* end h */    /* Caution optionfilefiname is hidden */
   return po;    strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/");
     strcat(tmpout,preop);
     strcat(tmpout,preop2);
 /*************** log-likelihood *************/    strcat(tmpout,fileres);
 double func( double *x)    return tmpout;
 {  }
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  /***************** f1dim *************************/
   double **out;  extern int ncom; 
   double sw; /* Sum of weights */  extern double *pcom,*xicom;
   double lli; /* Individual log likelihood */  extern double (*nrfunc)(double []); 
   long ipmx;   
   /*extern weight */  double f1dim(double x) 
   /* We are differentiating ll according to initial status */  { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    int j; 
   /*for(i=1;i<imx;i++)    double f;
     printf(" %d\n",s[4][i]);    double *xt; 
   */   
   cov[1]=1.;    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    f=(*nrfunc)(xt); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    free_vector(xt,1,ncom); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    return f; 
     for(mi=1; mi<= wav[i]-1; mi++){  } 
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*****************brent *************************/
       for(d=0; d<dh[mi][i]; d++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         newm=savm;  { 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    int iter; 
         for (kk=1; kk<=cptcovage;kk++) {    double a,b,d,etemp;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double fu,fv,fw,fx;
         }    double ftemp;
            double p,q,r,tol1,tol2,u,v,w,x,xm; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double e=0.0; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));   
         savm=oldm;    a=(ax < cx ? ax : cx); 
         oldm=newm;    b=(ax > cx ? ax : cx); 
            x=w=v=bx; 
            fw=fv=fx=(*f)(x); 
       } /* end mult */    for (iter=1;iter<=ITMAX;iter++) { 
            xm=0.5*(a+b); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       ipmx +=1;      printf(".");fflush(stdout);
       sw += weight[i];      fprintf(ficlog,".");fflush(ficlog);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  #ifdef DEBUG
     } /* end of wave */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   } /* end of individual */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  #endif
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        *xmin=x; 
   return -l;        return fx; 
 }      } 
       ftemp=fu;
       if (fabs(e) > tol1) { 
 /*********** Maximum Likelihood Estimation ***************/        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        p=(x-v)*q-(x-w)*r; 
 {        q=2.0*(q-r); 
   int i,j, iter;        if (q > 0.0) p = -p; 
   double **xi,*delti;        q=fabs(q); 
   double fret;        etemp=e; 
   xi=matrix(1,npar,1,npar);        e=d; 
   for (i=1;i<=npar;i++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for (j=1;j<=npar;j++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       xi[i][j]=(i==j ? 1.0 : 0.0);        else { 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          d=p/q; 
   powell(p,xi,npar,ftol,&iter,&fret,func);          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));            d=SIGN(tol1,xm-x); 
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        } 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 }      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 /**** Computes Hessian and covariance matrix ***/      fu=(*f)(u); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      if (fu <= fx) { 
 {        if (u >= x) a=x; else b=x; 
   double  **a,**y,*x,pd;        SHFT(v,w,x,u) 
   double **hess;          SHFT(fv,fw,fx,fu) 
   int i, j,jk;          } else { 
   int *indx;            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
   double hessii(double p[], double delta, int theta, double delti[]);              v=w; 
   double hessij(double p[], double delti[], int i, int j);              w=u; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;              fv=fw; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
   hess=matrix(1,npar,1,npar);              v=u; 
               fv=fu; 
   printf("\nCalculation of the hessian matrix. Wait...\n");            } 
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          } 
   for (i=1;i<=npar;i++){    } 
     printf("%d",i);fflush(stdout);    nrerror("Too many iterations in brent"); 
     fprintf(ficlog,"%d",i);fflush(ficlog);    *xmin=x; 
     hess[i][i]=hessii(p,ftolhess,i,delti);    return fx; 
     /*printf(" %f ",p[i]);*/  } 
     /*printf(" %lf ",hess[i][i]);*/  
   }  /****************** mnbrak ***********************/
    
   for (i=1;i<=npar;i++) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for (j=1;j<=npar;j++)  {              double (*func)(double)) 
       if (j>i) {  { 
         printf(".%d%d",i,j);fflush(stdout);    double ulim,u,r,q, dum;
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    double fu; 
         hess[i][j]=hessij(p,delti,i,j);   
         hess[j][i]=hess[i][j];        *fa=(*func)(*ax); 
         /*printf(" %lf ",hess[i][j]);*/    *fb=(*func)(*bx); 
       }    if (*fb > *fa) { 
     }      SHFT(dum,*ax,*bx,dum) 
   }        SHFT(dum,*fb,*fa,dum) 
   printf("\n");        } 
   fprintf(ficlog,"\n");    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    while (*fb > *fc) { 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      r=(*bx-*ax)*(*fb-*fc); 
        q=(*bx-*cx)*(*fb-*fa); 
   a=matrix(1,npar,1,npar);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   y=matrix(1,npar,1,npar);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   x=vector(1,npar);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   indx=ivector(1,npar);      if ((*bx-u)*(u-*cx) > 0.0) { 
   for (i=1;i<=npar;i++)        fu=(*func)(u); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   ludcmp(a,npar,indx,&pd);        fu=(*func)(u); 
         if (fu < *fc) { 
   for (j=1;j<=npar;j++) {          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     for (i=1;i<=npar;i++) x[i]=0;            SHFT(*fb,*fc,fu,(*func)(u)) 
     x[j]=1;            } 
     lubksb(a,npar,indx,x);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for (i=1;i<=npar;i++){        u=ulim; 
       matcov[i][j]=x[i];        fu=(*func)(u); 
     }      } else { 
   }        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   printf("\n#Hessian matrix#\n");      } 
   fprintf(ficlog,"\n#Hessian matrix#\n");      SHFT(*ax,*bx,*cx,u) 
   for (i=1;i<=npar;i++) {        SHFT(*fa,*fb,*fc,fu) 
     for (j=1;j<=npar;j++) {        } 
       printf("%.3e ",hess[i][j]);  } 
       fprintf(ficlog,"%.3e ",hess[i][j]);  
     }  /*************** linmin ************************/
     printf("\n");  
     fprintf(ficlog,"\n");  int ncom; 
   }  double *pcom,*xicom;
   double (*nrfunc)(double []); 
   /* Recompute Inverse */   
   for (i=1;i<=npar;i++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  { 
   ludcmp(a,npar,indx,&pd);    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
   /*  printf("\n#Hessian matrix recomputed#\n");    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for (j=1;j<=npar;j++) {                double *fc, double (*func)(double)); 
     for (i=1;i<=npar;i++) x[i]=0;    int j; 
     x[j]=1;    double xx,xmin,bx,ax; 
     lubksb(a,npar,indx,x);    double fx,fb,fa;
     for (i=1;i<=npar;i++){   
       y[i][j]=x[i];    ncom=n; 
       printf("%.3e ",y[i][j]);    pcom=vector(1,n); 
       fprintf(ficlog,"%.3e ",y[i][j]);    xicom=vector(1,n); 
     }    nrfunc=func; 
     printf("\n");    for (j=1;j<=n;j++) { 
     fprintf(ficlog,"\n");      pcom[j]=p[j]; 
   }      xicom[j]=xi[j]; 
   */    } 
     ax=0.0; 
   free_matrix(a,1,npar,1,npar);    xx=1.0; 
   free_matrix(y,1,npar,1,npar);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   free_vector(x,1,npar);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   free_ivector(indx,1,npar);  #ifdef DEBUG
   free_matrix(hess,1,npar,1,npar);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
 }    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
 /*************** hessian matrix ****************/      p[j] += xi[j]; 
 double hessii( double x[], double delta, int theta, double delti[])    } 
 {    free_vector(xicom,1,n); 
   int i;    free_vector(pcom,1,n); 
   int l=1, lmax=20;  } 
   double k1,k2;  
   double p2[NPARMAX+1];  char *asc_diff_time(long time_sec, char ascdiff[])
   double res;  {
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    long sec_left, days, hours, minutes;
   double fx;    days = (time_sec) / (60*60*24);
   int k=0,kmax=10;    sec_left = (time_sec) % (60*60*24);
   double l1;    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   fx=func(x);    minutes = (sec_left) /60;
   for (i=1;i<=npar;i++) p2[i]=x[i];    sec_left = (sec_left) % (60);
   for(l=0 ; l <=lmax; l++){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     l1=pow(10,l);    return ascdiff;
     delts=delt;  }
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);  /*************** powell ************************/
       p2[theta]=x[theta] +delt;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       k1=func(p2)-fx;              double (*func)(double [])) 
       p2[theta]=x[theta]-delt;  { 
       k2=func(p2)-fx;    void linmin(double p[], double xi[], int n, double *fret, 
       /*res= (k1-2.0*fx+k2)/delt/delt; */                double (*func)(double [])); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    int i,ibig,j; 
          double del,t,*pt,*ptt,*xit;
 #ifdef DEBUG    double fp,fptt;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double *xits;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    int niterf, itmp;
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    pt=vector(1,n); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    ptt=vector(1,n); 
         k=kmax;    xit=vector(1,n); 
       }    xits=vector(1,n); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    *fret=(*func)(p); 
         k=kmax; l=lmax*10.;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       }    for (*iter=1;;++(*iter)) { 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      fp=(*fret); 
         delts=delt;      ibig=0; 
       }      del=0.0; 
     }      last_time=curr_time;
   }      (void) gettimeofday(&curr_time,&tzp);
   delti[theta]=delts;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   return res;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
    /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
 }     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 double hessij( double x[], double delti[], int thetai,int thetaj)        fprintf(ficlog," %d %.12lf",i, p[i]);
 {        fprintf(ficrespow," %.12lf", p[i]);
   int i;      }
   int l=1, l1, lmax=20;      printf("\n");
   double k1,k2,k3,k4,res,fx;      fprintf(ficlog,"\n");
   double p2[NPARMAX+1];      fprintf(ficrespow,"\n");fflush(ficrespow);
   int k;      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   fx=func(x);        strcpy(strcurr,asctime(&tm));
   for (k=1; k<=2; k++) {  /*       asctime_r(&tm,strcurr); */
     for (i=1;i<=npar;i++) p2[i]=x[i];        forecast_time=curr_time; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        itmp = strlen(strcurr);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     k1=func(p2)-fx;          strcurr[itmp-1]='\0';
          printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     p2[thetai]=x[thetai]+delti[thetai]/k;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(niterf=10;niterf<=30;niterf+=10){
     k2=func(p2)-fx;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
            tmf = *localtime(&forecast_time.tv_sec);
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*      asctime_r(&tmf,strfor); */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          strcpy(strfor,asctime(&tmf));
     k3=func(p2)-fx;          itmp = strlen(strfor);
            if(strfor[itmp-1]=='\n')
     p2[thetai]=x[thetai]-delti[thetai]/k;          strfor[itmp-1]='\0';
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     k4=func(p2)-fx;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        }
 #ifdef DEBUG      }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      for (i=1;i<=n;i++) { 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 #endif        fptt=(*fret); 
   }  #ifdef DEBUG
   return res;        printf("fret=%lf \n",*fret);
 }        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
 /************** Inverse of matrix **************/        printf("%d",i);fflush(stdout);
 void ludcmp(double **a, int n, int *indx, double *d)        fprintf(ficlog,"%d",i);fflush(ficlog);
 {        linmin(p,xit,n,fret,func); 
   int i,imax,j,k;        if (fabs(fptt-(*fret)) > del) { 
   double big,dum,sum,temp;          del=fabs(fptt-(*fret)); 
   double *vv;          ibig=i; 
          } 
   vv=vector(1,n);  #ifdef DEBUG
   *d=1.0;        printf("%d %.12e",i,(*fret));
   for (i=1;i<=n;i++) {        fprintf(ficlog,"%d %.12e",i,(*fret));
     big=0.0;        for (j=1;j<=n;j++) {
     for (j=1;j<=n;j++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       if ((temp=fabs(a[i][j])) > big) big=temp;          printf(" x(%d)=%.12e",j,xit[j]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     vv[i]=1.0/big;        }
   }        for(j=1;j<=n;j++) {
   for (j=1;j<=n;j++) {          printf(" p=%.12e",p[j]);
     for (i=1;i<j;i++) {          fprintf(ficlog," p=%.12e",p[j]);
       sum=a[i][j];        }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        printf("\n");
       a[i][j]=sum;        fprintf(ficlog,"\n");
     }  #endif
     big=0.0;      } 
     for (i=j;i<=n;i++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       sum=a[i][j];  #ifdef DEBUG
       for (k=1;k<j;k++)        int k[2],l;
         sum -= a[i][k]*a[k][j];        k[0]=1;
       a[i][j]=sum;        k[1]=-1;
       if ( (dum=vv[i]*fabs(sum)) >= big) {        printf("Max: %.12e",(*func)(p));
         big=dum;        fprintf(ficlog,"Max: %.12e",(*func)(p));
         imax=i;        for (j=1;j<=n;j++) {
       }          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
     if (j != imax) {        }
       for (k=1;k<=n;k++) {        printf("\n");
         dum=a[imax][k];        fprintf(ficlog,"\n");
         a[imax][k]=a[j][k];        for(l=0;l<=1;l++) {
         a[j][k]=dum;          for (j=1;j<=n;j++) {
       }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       *d = -(*d);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       vv[imax]=vv[j];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }          }
     indx[j]=imax;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     if (a[j][j] == 0.0) a[j][j]=TINY;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     if (j != n) {        }
       dum=1.0/(a[j][j]);  #endif
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }  
   }        free_vector(xit,1,n); 
   free_vector(vv,1,n);  /* Doesn't work */        free_vector(xits,1,n); 
 ;        free_vector(ptt,1,n); 
 }        free_vector(pt,1,n); 
         return; 
 void lubksb(double **a, int n, int *indx, double b[])      } 
 {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   int i,ii=0,ip,j;      for (j=1;j<=n;j++) { 
   double sum;        ptt[j]=2.0*p[j]-pt[j]; 
          xit[j]=p[j]-pt[j]; 
   for (i=1;i<=n;i++) {        pt[j]=p[j]; 
     ip=indx[i];      } 
     sum=b[ip];      fptt=(*func)(ptt); 
     b[ip]=b[i];      if (fptt < fp) { 
     if (ii)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        if (t < 0.0) { 
     else if (sum) ii=i;          linmin(p,xit,n,fret,func); 
     b[i]=sum;          for (j=1;j<=n;j++) { 
   }            xi[j][ibig]=xi[j][n]; 
   for (i=n;i>=1;i--) {            xi[j][n]=xit[j]; 
     sum=b[i];          }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  #ifdef DEBUG
     b[i]=sum/a[i][i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 }          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
 /************ Frequencies ********************/            fprintf(ficlog," %.12e",xit[j]);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          }
 {  /* Some frequencies */          printf("\n");
            fprintf(ficlog,"\n");
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  #endif
   int first;        }
   double ***freq; /* Frequencies */      } 
   double *pp;    } 
   double pos, k2, dateintsum=0,k2cpt=0;  } 
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];  /**** Prevalence limit (stable or period prevalence)  ****************/
    
   pp=vector(1,nlstate);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
   strcpy(fileresp,"p");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   strcat(fileresp,fileres);       matrix by transitions matrix until convergence is reached */
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);    int i, ii,j,k;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    double min, max, maxmin, maxmax,sumnew=0.;
     exit(0);    double **matprod2();
   }    double **out, cov[NCOVMAX+1], **pmij();
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double **newm;
   j1=0;    double agefin, delaymax=50 ; /* Max number of years to converge */
    
   j=cptcoveff;    for (ii=1;ii<=nlstate+ndeath;ii++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   first=1;      }
   
   for(k1=1; k1<=j;k1++){     cov[1]=1.;
     for(i1=1; i1<=ncodemax[k1];i1++){   
       j1++;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         scanf("%d", i);*/      newm=savm;
       for (i=-1; i<=nlstate+ndeath; i++)        /* Covariates have to be included here again */
         for (jk=-1; jk<=nlstate+ndeath; jk++)        cov[2]=agefin;
           for(m=agemin; m <= agemax+3; m++)      
             freq[i][jk][m]=0;      for (k=1; k<=cptcovn;k++) {
              cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       dateintsum=0;        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       k2cpt=0;      }
       for (i=1; i<=imx; i++) {      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         bool=1;      for (k=1; k<=cptcovprod;k++)
         if  (cptcovn>0) {        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for (z1=1; z1<=cptcoveff; z1++)      
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
               bool=0;      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         if (bool==1) {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
           for(m=firstpass; m<=lastpass; m++){      
             k2=anint[m][i]+(mint[m][i]/12.);      savm=oldm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      oldm=newm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;      maxmax=0.;
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for(j=1;j<=nlstate;j++){
               if (m<lastpass) {        min=1.;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        max=0.;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for(i=1; i<=nlstate; i++) {
               }          sumnew=0;
                        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          prlim[i][j]= newm[i][j]/(1-sumnew);
                 dateintsum=dateintsum+k2;          max=FMAX(max,prlim[i][j]);
                 k2cpt++;          min=FMIN(min,prlim[i][j]);
               }        }
             }        maxmin=max-min;
           }        maxmax=FMAX(maxmax,maxmin);
         }      }
       }      if(maxmax < ftolpl){
                return prlim;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      }
     }
       if  (cptcovn>0) {  }
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*************** transition probabilities ***************/ 
         fprintf(ficresp, "**********\n#");  
       }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for(i=1; i<=nlstate;i++)  {
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /* According to parameters values stored in x and the covariate's values stored in cov,
       fprintf(ficresp, "\n");       computes the probability to be observed in state j being in state i by appying the
             model to the ncovmodel covariates (including constant and age).
       for(i=(int)agemin; i <= (int)agemax+3; i++){       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         if(i==(int)agemax+3){       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
           fprintf(ficlog,"Total");       ncth covariate in the global vector x is given by the formula:
         }else{       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
           if(first==1){       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
             first=0;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
             printf("See log file for details...\n");       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
           }       Outputs ps[i][j] the probability to be observed in j being in j according to
           fprintf(ficlog,"Age %d", i);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         }    */
         for(jk=1; jk <=nlstate ; jk++){    double s1, lnpijopii;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /*double t34;*/
             pp[jk] += freq[jk][m][i];    int i,j,j1, nc, ii, jj;
         }  
         for(jk=1; jk <=nlstate ; jk++){      for(i=1; i<= nlstate; i++){
           for(m=-1, pos=0; m <=0 ; m++)        for(j=1; j<i;j++){
             pos += freq[jk][m][i];          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           if(pp[jk]>=1.e-10){            /*lnpijopii += param[i][j][nc]*cov[nc];*/
             if(first==1){            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             }          }
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           }else{  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             if(first==1)        }
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for(j=i+1; j<=nlstate+ndeath;j++){
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           }            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
         }            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             pp[jk] += freq[jk][m][i];        }
         }      }
       
         for(jk=1,pos=0; jk <=nlstate ; jk++)      for(i=1; i<= nlstate; i++){
           pos += pp[jk];        s1=0;
         for(jk=1; jk <=nlstate ; jk++){        for(j=1; j<i; j++){
           if(pos>=1.e-5){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             if(first==1)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        }
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for(j=i+1; j<=nlstate+ndeath; j++){
           }else{          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             if(first==1)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        }
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
           }        ps[i][i]=1./(s1+1.);
           if( i <= (int) agemax){        /* Computing other pijs */
             if(pos>=1.e-5){        for(j=1; j<i; j++)
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          ps[i][j]= exp(ps[i][j])*ps[i][i];
               probs[i][jk][j1]= pp[jk]/pos;        for(j=i+1; j<=nlstate+ndeath; j++)
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          ps[i][j]= exp(ps[i][j])*ps[i][i];
             }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
             else      } /* end i */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      
           }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         }        for(jj=1; jj<= nlstate+ndeath; jj++){
                  ps[ii][jj]=0;
         for(jk=-1; jk <=nlstate+ndeath; jk++)          ps[ii][ii]=1;
           for(m=-1; m <=nlstate+ndeath; m++)        }
             if(freq[jk][m][i] !=0 ) {      }
             if(first==1)      
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
             }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         if(i <= (int) agemax)  /*         printf("ddd %lf ",ps[ii][jj]); */
           fprintf(ficresp,"\n");  /*       } */
         if(first==1)  /*       printf("\n "); */
           printf("Others in log...\n");  /*        } */
         fprintf(ficlog,"\n");  /*        printf("\n ");printf("%lf ",cov[2]); */
       }         /*
     }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   }        goto end;*/
   dateintmean=dateintsum/k2cpt;      return ps;
    }
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /**************** Product of 2 matrices ******************/
   free_vector(pp,1,nlstate);  
    double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   /* End of Freq */  {
 }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 /************ Prevalence ********************/    /* in, b, out are matrice of pointers which should have been initialized 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)       before: only the contents of out is modified. The function returns
 {  /* Some frequencies */       a pointer to pointers identical to out */
      long i, j, k;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    for(i=nrl; i<= nrh; i++)
   double ***freq; /* Frequencies */      for(k=ncolol; k<=ncoloh; k++)
   double *pp;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   double pos, k2;          out[i][k] +=in[i][j]*b[j][k];
   
   pp=vector(1,nlstate);    return out;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  /************* Higher Matrix Product ***************/
    
   j=cptcoveff;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  {
      /* Computes the transition matrix starting at age 'age' over 
   for(k1=1; k1<=j;k1++){       'nhstepm*hstepm*stepm' months (i.e. until
     for(i1=1; i1<=ncodemax[k1];i1++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       j1++;       nhstepm*hstepm matrices. 
             Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       for (i=-1; i<=nlstate+ndeath; i++)         (typically every 2 years instead of every month which is too big 
         for (jk=-1; jk<=nlstate+ndeath; jk++)         for the memory).
           for(m=agemin; m <= agemax+3; m++)       Model is determined by parameters x and covariates have to be 
             freq[i][jk][m]=0;       included manually here. 
        
       for (i=1; i<=imx; i++) {       */
         bool=1;  
         if  (cptcovn>0) {    int i, j, d, h, k;
           for (z1=1; z1<=cptcoveff; z1++)    double **out, cov[NCOVMAX+1];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double **newm;
               bool=0;  
         }    /* Hstepm could be zero and should return the unit matrix */
         if (bool==1) {    for (i=1;i<=nlstate+ndeath;i++)
           for(m=firstpass; m<=lastpass; m++){      for (j=1;j<=nlstate+ndeath;j++){
             k2=anint[m][i]+(mint[m][i]/12.);        oldm[i][j]=(i==j ? 1.0 : 0.0);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;      }
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
               if (m<lastpass) {    for(h=1; h <=nhstepm; h++){
                 if (calagedate>0)      for(d=1; d <=hstepm; d++){
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        newm=savm;
                 else        /* Covariates have to be included here again */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        cov[1]=1.;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
               }        for (k=1; k<=cptcovn;k++) 
             }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           }        for (k=1; k<=cptcovage;k++)
         }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }        for (k=1; k<=cptcovprod;k++)
       for(i=(int)agemin; i <= (int)agemax+3; i++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         for(jk=1; jk <=nlstate ; jk++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           for(m=-1, pos=0; m <=0 ; m++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             pos += freq[jk][m][i];        savm=oldm;
         }        oldm=newm;
              }
         for(jk=1; jk <=nlstate ; jk++){      for(i=1; i<=nlstate+ndeath; i++)
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(j=1;j<=nlstate+ndeath;j++) {
             pp[jk] += freq[jk][m][i];          po[i][j][h]=newm[i][j];
         }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
                }
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      /*printf("h=%d ",h);*/
            } /* end h */
         for(jk=1; jk <=nlstate ; jk++){      /*     printf("\n H=%d \n",h); */
           if( i <= (int) agemax){    return po;
             if(pos>=1.e-5){  }
               probs[i][jk][j1]= pp[jk]/pos;  
             }  
           }  /*************** log-likelihood *************/
         }/* end jk */  double func( double *x)
       }/* end i */  {
     } /* end i1 */    int i, ii, j, k, mi, d, kk;
   } /* end k1 */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
      double sw; /* Sum of weights */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    double lli; /* Individual log likelihood */
   free_vector(pp,1,nlstate);    int s1, s2;
      double bbh, survp;
 }  /* End of Freq */    long ipmx;
     /*extern weight */
 /************* Waves Concatenation ***************/    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    /*for(i=1;i<imx;i++) 
 {      printf(" %d\n",s[4][i]);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    */
      Death is a valid wave (if date is known).    cov[1]=1.;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    for(k=1; k<=nlstate; k++) ll[k]=0.;
      and mw[mi+1][i]. dh depends on stepm.  
      */    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i, mi, m;        /* Computes the values of the ncovmodel covariates of the model
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
      double sum=0., jmean=0.;*/           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   int first;           to be observed in j being in i according to the model.
   int j, k=0,jk, ju, jl;         */
   double sum=0.;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   first=0;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   jmin=1e+5;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   jmax=-1;           has been calculated etc */
   jmean=0.;        for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=imx; i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     mi=0;            for (j=1;j<=nlstate+ndeath;j++){
     m=firstpass;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     while(s[m][i] <= nlstate){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(s[m][i]>=1)            }
         mw[++mi][i]=m;          for(d=0; d<dh[mi][i]; d++){
       if(m >=lastpass)            newm=savm;
         break;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else            for (kk=1; kk<=cptcovage;kk++) {
         m++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
     }/* end while */            }
     if (s[m][i] > nlstate){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       mi++;     /* Death is another wave */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /* if(mi==0)  never been interviewed correctly before death */            savm=oldm;
          /* Only death is a correct wave */            oldm=newm;
       mw[mi][i]=m;          } /* end mult */
     }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     wav[i]=mi;          /* But now since version 0.9 we anticipate for bias at large stepm.
     if(mi==0){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       if(first==0){           * (in months) between two waves is not a multiple of stepm, we rounded to 
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);           * the nearest (and in case of equal distance, to the lowest) interval but now
         first=1;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       if(first==1){           * probability in order to take into account the bias as a fraction of the way
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       }           * -stepm/2 to stepm/2 .
     } /* end mi==0 */           * For stepm=1 the results are the same as for previous versions of Imach.
   }           * For stepm > 1 the results are less biased than in previous versions. 
            */
   for(i=1; i<=imx; i++){          s1=s[mw[mi][i]][i];
     for(mi=1; mi<wav[i];mi++){          s2=s[mw[mi+1][i]][i];
       if (stepm <=0)          bbh=(double)bh[mi][i]/(double)stepm; 
         dh[mi][i]=1;          /* bias bh is positive if real duration
       else{           * is higher than the multiple of stepm and negative otherwise.
         if (s[mw[mi+1][i]][i] > nlstate) {           */
           if (agedc[i] < 2*AGESUP) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          if( s2 > nlstate){ 
           if(j==0) j=1;  /* Survives at least one month after exam */            /* i.e. if s2 is a death state and if the date of death is known 
           k=k+1;               then the contribution to the likelihood is the probability to 
           if (j >= jmax) jmax=j;               die between last step unit time and current  step unit time, 
           if (j <= jmin) jmin=j;               which is also equal to probability to die before dh 
           sum=sum+j;               minus probability to die before dh-stepm . 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */               In version up to 0.92 likelihood was computed
           }          as if date of death was unknown. Death was treated as any other
         }          health state: the date of the interview describes the actual state
         else{          and not the date of a change in health state. The former idea was
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          to consider that at each interview the state was recorded
           k=k+1;          (healthy, disable or death) and IMaCh was corrected; but when we
           if (j >= jmax) jmax=j;          introduced the exact date of death then we should have modified
           else if (j <= jmin)jmin=j;          the contribution of an exact death to the likelihood. This new
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          contribution is smaller and very dependent of the step unit
           sum=sum+j;          stepm. It is no more the probability to die between last interview
         }          and month of death but the probability to survive from last
         jk= j/stepm;          interview up to one month before death multiplied by the
         jl= j -jk*stepm;          probability to die within a month. Thanks to Chris
         ju= j -(jk+1)*stepm;          Jackson for correcting this bug.  Former versions increased
         if(jl <= -ju)          mortality artificially. The bad side is that we add another loop
           dh[mi][i]=jk;          which slows down the processing. The difference can be up to 10%
         else          lower mortality.
           dh[mi][i]=jk+1;            */
         if(dh[mi][i]==0)            lli=log(out[s1][s2] - savm[s1][s2]);
           dh[mi][i]=1; /* At least one step */  
       }  
     }          } else if  (s2==-2) {
   }            for (j=1,survp=0. ; j<=nlstate; j++) 
   jmean=sum/k;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            /*survp += out[s1][j]; */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            lli= log(survp);
  }          }
           
 /*********** Tricode ****************************/          else if  (s2==-4) { 
 void tricode(int *Tvar, int **nbcode, int imx)            for (j=3,survp=0. ; j<=nlstate; j++)  
 {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int Ndum[20],ij=1, k, j, i;            lli= log(survp); 
   int cptcode=0;          } 
   cptcoveff=0;  
            else if  (s2==-5) { 
   for (k=0; k<19; k++) Ndum[k]=0;            for (j=1,survp=0. ; j<=2; j++)  
   for (k=1; k<=7; k++) ncodemax[k]=0;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          } 
     for (i=1; i<=imx; i++) {          
       ij=(int)(covar[Tvar[j]][i]);          else{
       Ndum[ij]++;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       if (ij > cptcode) cptcode=ij;          } 
     }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
     for (i=0; i<=cptcode; i++) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       if(Ndum[i]!=0) ncodemax[j]++;          ipmx +=1;
     }          sw += weight[i];
     ij=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       } /* end of individual */
     for (i=1; i<=ncodemax[j]; i++) {    }  else if(mle==2){
       for (k=0; k<=19; k++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if (Ndum[k] != 0) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           nbcode[Tvar[j]][ij]=k;        for(mi=1; mi<= wav[i]-1; mi++){
                    for (ii=1;ii<=nlstate+ndeath;ii++)
           ij++;            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (ij > ncodemax[j]) break;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              }
     }          for(d=0; d<=dh[mi][i]; d++){
   }              newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  for (k=0; k<19; k++) Ndum[k]=0;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  for (i=1; i<=ncovmodel-2; i++) {            }
    ij=Tvar[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    Ndum[ij]++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  }            savm=oldm;
             oldm=newm;
  ij=1;          } /* end mult */
  for (i=1; i<=10; i++) {        
    if((Ndum[i]!=0) && (i<=ncovcol)){          s1=s[mw[mi][i]][i];
      Tvaraff[ij]=i;          s2=s[mw[mi+1][i]][i];
      ij++;          bbh=(double)bh[mi][i]/(double)stepm; 
    }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
  }          ipmx +=1;
            sw += weight[i];
  cptcoveff=ij-1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        } /* end of wave */
       } /* end of individual */
 /*********** Health Expectancies ****************/    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 {          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Health expectancies */            for (j=1;j<=nlstate+ndeath;j++){
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age, agelim, hf;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***p3mat,***varhe;            }
   double **dnewm,**doldm;          for(d=0; d<dh[mi][i]; d++){
   double *xp;            newm=savm;
   double **gp, **gm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double ***gradg, ***trgradg;            for (kk=1; kk<=cptcovage;kk++) {
   int theta;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   xp=vector(1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   dnewm=matrix(1,nlstate*2,1,npar);            savm=oldm;
   doldm=matrix(1,nlstate*2,1,nlstate*2);            oldm=newm;
            } /* end mult */
   fprintf(ficreseij,"# Health expectancies\n");        
   fprintf(ficreseij,"# Age");          s1=s[mw[mi][i]][i];
   for(i=1; i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
     for(j=1; j<=nlstate;j++)          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   fprintf(ficreseij,"\n");          ipmx +=1;
           sw += weight[i];
   if(estepm < stepm){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf ("Problem %d lower than %d\n",estepm, stepm);        } /* end of wave */
   }      } /* end of individual */
   else  hstepm=estepm;      }else if (mle==4){  /* ml=4 no inter-extrapolation */
   /* We compute the life expectancy from trapezoids spaced every estepm months      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    * This is mainly to measure the difference between two models: for example        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    * if stepm=24 months pijx are given only every 2 years and by summing them        for(mi=1; mi<= wav[i]-1; mi++){
    * we are calculating an estimate of the Life Expectancy assuming a linear          for (ii=1;ii<=nlstate+ndeath;ii++)
    * progression inbetween and thus overestimating or underestimating according            for (j=1;j<=nlstate+ndeath;j++){
    * to the curvature of the survival function. If, for the same date, we              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    * to compare the new estimate of Life expectancy with the same linear            }
    * hypothesis. A more precise result, taking into account a more precise          for(d=0; d<dh[mi][i]; d++){
    * curvature will be obtained if estepm is as small as stepm. */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* For example we decided to compute the life expectancy with the smallest unit */            for (kk=1; kk<=cptcovage;kk++) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      nhstepm is the number of hstepm from age to agelim            }
      nstepm is the number of stepm from age to agelin.          
      Look at hpijx to understand the reason of that which relies in memory size            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      and note for a fixed period like estepm months */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            savm=oldm;
      survival function given by stepm (the optimization length). Unfortunately it            oldm=newm;
      means that if the survival funtion is printed only each two years of age and if          } /* end mult */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        
      results. So we changed our mind and took the option of the best precision.          s1=s[mw[mi][i]][i];
   */          s2=s[mw[mi+1][i]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
   agelim=AGESUP;          }else{
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     /* nhstepm age range expressed in number of stepm */          }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          ipmx +=1;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          sw += weight[i];
     /* if (stepm >= YEARM) hstepm=1;*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } /* end of wave */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      } /* end of individual */
     gp=matrix(0,nhstepm,1,nlstate*2);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     gm=matrix(0,nhstepm,1,nlstate*2);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        for(mi=1; mi<= wav[i]-1; mi++){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          for (ii=1;ii<=nlstate+ndeath;ii++)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            }
           for(d=0; d<dh[mi][i]; d++){
     /* Computing Variances of health expectancies */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      for(theta=1; theta <=npar; theta++){            for (kk=1; kk<=cptcovage;kk++) {
       for(i=1; i<=npar; i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            }
       }          
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       cptj=0;            savm=oldm;
       for(j=1; j<= nlstate; j++){            oldm=newm;
         for(i=1; i<=nlstate; i++){          } /* end mult */
           cptj=cptj+1;        
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          s1=s[mw[mi][i]][i];
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          s2=s[mw[mi+1][i]][i];
           }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          ipmx +=1;
       }          sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       for(i=1; i<=npar; i++)        } /* end of wave */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      } /* end of individual */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      } /* End of if */
          for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       cptj=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(j=1; j<= nlstate; j++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(i=1;i<=nlstate;i++){    return -l;
           cptj=cptj+1;  }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  /*************** log-likelihood *************/
           }  double funcone( double *x)
         }  {
       }    /* Same as likeli but slower because of a lot of printf and if */
       for(j=1; j<= nlstate*2; j++)    int i, ii, j, k, mi, d, kk;
         for(h=0; h<=nhstepm-1; h++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double **out;
         }    double lli; /* Individual log likelihood */
      }    double llt;
        int s1, s2;
 /* End theta */    double bbh, survp;
     /*extern weight */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      for(h=0; h<=nhstepm-1; h++)    /*for(i=1;i<imx;i++) 
       for(j=1; j<=nlstate*2;j++)      printf(" %d\n",s[4][i]);
         for(theta=1; theta <=npar; theta++)    */
           trgradg[h][j][theta]=gradg[h][theta][j];    cov[1]=1.;
        
     for(k=1; k<=nlstate; k++) ll[k]=0.;
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         varhe[i][j][(int)age] =0.;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
      printf("%d|",(int)age);fflush(stdout);        for (ii=1;ii<=nlstate+ndeath;ii++)
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          for (j=1;j<=nlstate+ndeath;j++){
      for(h=0;h<=nhstepm-1;h++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(k=0;k<=nhstepm-1;k++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        for(d=0; d<dh[mi][i]; d++){
         for(i=1;i<=nlstate*2;i++)          newm=savm;
           for(j=1;j<=nlstate*2;j++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          for (kk=1; kk<=cptcovage;kk++) {
       }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }          }
     /* Computing expectancies */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(i=1; i<=nlstate;i++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<=nlstate;j++)          savm=oldm;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          oldm=newm;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        } /* end mult */
                  
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
         }        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
     fprintf(ficreseij,"%3.0f",age );         * is higher than the multiple of stepm and negative otherwise.
     cptj=0;         */
     for(i=1; i<=nlstate;i++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       for(j=1; j<=nlstate;j++){          lli=log(out[s1][s2] - savm[s1][s2]);
         cptj++;        } else if  (s2==-2) {
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          for (j=1,survp=0. ; j<=nlstate; j++) 
       }            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     fprintf(ficreseij,"\n");          lli= log(survp);
            }else if (mle==1){
     free_matrix(gm,0,nhstepm,1,nlstate*2);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     free_matrix(gp,0,nhstepm,1,nlstate*2);        } else if(mle==2){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        } else if(mle==3){  /* exponential inter-extrapolation */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   printf("\n");          lli=log(out[s1][s2]); /* Original formula */
   fprintf(ficlog,"\n");        } else{  /* mle=0 back to 1 */
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   free_vector(xp,1,npar);          /*lli=log(out[s1][s2]); */ /* Original formula */
   free_matrix(dnewm,1,nlstate*2,1,npar);        } /* End of if */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        ipmx +=1;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        sw += weight[i];
 }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 /************ Variance ******************/        if(globpr){
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 {   %11.6f %11.6f %11.6f ", \
   /* Variance of health expectancies */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   /* double **newm;*/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double **dnewm,**doldm;            llt +=ll[k]*gipmx/gsw;
   double **dnewmp,**doldmp;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   int i, j, nhstepm, hstepm, h, nstepm ;          }
   int k, cptcode;          fprintf(ficresilk," %10.6f\n", -llt);
   double *xp;        }
   double **gp, **gm;  /* for var eij */      } /* end of wave */
   double ***gradg, ***trgradg; /*for var eij */    } /* end of individual */
   double **gradgp, **trgradgp; /* for var p point j */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double *gpp, *gmp; /* for var p point j */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double ***p3mat;    if(globpr==0){ /* First time we count the contributions and weights */
   double age,agelim, hf;      gipmx=ipmx;
   int theta;      gsw=sw;
   char digit[4];    }
   char digitp[16];    return -l;
   }
   char fileresprobmorprev[FILENAMELENGTH];  
   
   if(popbased==1)  /*************** function likelione ***********/
     strcpy(digitp,"-populbased-");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   else  {
     strcpy(digitp,"-stablbased-");    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
   strcpy(fileresprobmorprev,"prmorprev");       to check the exact contribution to the likelihood.
   sprintf(digit,"%-d",ij);       Plotting could be done.
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/     */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    int k;
   strcat(fileresprobmorprev,digitp); /* Popbased or not */  
   strcat(fileresprobmorprev,fileres);    if(*globpri !=0){ /* Just counts and sums, no printings */
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      strcpy(fileresilk,"ilk"); 
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      strcat(fileresilk,fileres);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   }        printf("Problem with resultfile: %s\n", fileresilk);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      }
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     fprintf(ficresprobmorprev," p.%-d SE",j);      for(k=1; k<=nlstate; k++) 
     for(i=1; i<=nlstate;i++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   }      }
   fprintf(ficresprobmorprev,"\n");  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    *fretone=(*funcone)(p);
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    if(*globpri !=0){
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      fclose(ficresilk);
     exit(0);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   }      fflush(fichtm); 
   else{    } 
     fprintf(ficgp,"\n# Routine varevsij");    return;
   }  }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  
     printf("Problem with html file: %s\n", optionfilehtm);  
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  /*********** Maximum Likelihood Estimation ***************/
     exit(0);  
   }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   else{  {
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    int i,j, iter;
   }    double **xi;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    double fret;
     double fretone; /* Only one call to likelihood */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    /*  char filerespow[FILENAMELENGTH];*/
   fprintf(ficresvij,"# Age");    xi=matrix(1,npar,1,npar);
   for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++)
     for(j=1; j<=nlstate;j++)      for (j=1;j<=npar;j++)
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        xi[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(ficresvij,"\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
   xp=vector(1,npar);    strcat(filerespow,fileres);
   dnewm=matrix(1,nlstate,1,npar);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   doldm=matrix(1,nlstate,1,nlstate);      printf("Problem with resultfile: %s\n", filerespow);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    for (i=1;i<=nlstate;i++)
   gpp=vector(nlstate+1,nlstate+ndeath);      for(j=1;j<=nlstate+ndeath;j++)
   gmp=vector(nlstate+1,nlstate+ndeath);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    fprintf(ficrespow,"\n");
    
   if(estepm < stepm){    powell(p,xi,npar,ftol,&iter,&fret,func);
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    free_matrix(xi,1,npar,1,npar);
   else  hstepm=estepm;      fclose(ficrespow);
   /* For example we decided to compute the life expectancy with the smallest unit */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      nhstepm is the number of hstepm from age to agelim    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  }
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  /**** Computes Hessian and covariance matrix ***/
      survival function given by stepm (the optimization length). Unfortunately it  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      means that if the survival funtion is printed only each two years of age and if  {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double  **a,**y,*x,pd;
      results. So we changed our mind and took the option of the best precision.    double **hess;
   */    int i, j,jk;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int *indx;
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    void lubksb(double **a, int npar, int *indx, double b[]) ;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double gompertz(double p[]);
     gp=matrix(0,nhstepm,1,nlstate);    hess=matrix(1,npar,1,npar);
     gm=matrix(0,nhstepm,1,nlstate);  
     printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for(theta=1; theta <=npar; theta++){    for (i=1;i<=npar;i++){
       for(i=1; i<=npar; i++){ /* Computes gradient */      printf("%d",i);fflush(stdout);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficlog,"%d",i);fflush(ficlog);
       }     
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      
       /*  printf(" %f ",p[i]);
       if (popbased==1) {          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         for(i=1; i<=nlstate;i++)    }
           prlim[i][i]=probs[(int)age][i][ij];    
       }    for (i=1;i<=npar;i++) {
        for (j=1;j<=npar;j++)  {
       for(j=1; j<= nlstate; j++){        if (j>i) { 
         for(h=0; h<=nhstepm; h++){          printf(".%d%d",i,j);fflush(stdout);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          hess[i][j]=hessij(p,delti,i,j,func,npar);
         }          
       }          hess[j][i]=hess[i][j];    
       /* This for computing forces of mortality (h=1)as a weighted average */          /*printf(" %lf ",hess[i][j]);*/
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){        }
         for(i=1; i<= nlstate; i++)      }
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    }
       }        printf("\n");
       /* end force of mortality */    fprintf(ficlog,"\n");
   
       for(i=1; i<=npar; i++) /* Computes gradient */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    a=matrix(1,npar,1,npar);
      y=matrix(1,npar,1,npar);
       if (popbased==1) {    x=vector(1,npar);
         for(i=1; i<=nlstate;i++)    indx=ivector(1,npar);
           prlim[i][i]=probs[(int)age][i][ij];    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    for (j=1;j<=npar;j++) {
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      for (i=1;i<=npar;i++) x[i]=0;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      x[j]=1;
         }      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
       /* This for computing force of mortality (h=1)as a weighted average */        matcov[i][j]=x[i];
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      }
         for(i=1; i<= nlstate; i++)    }
           gmp[j] += prlim[i][i]*p3mat[i][j][1];  
       }        printf("\n#Hessian matrix#\n");
       /* end force of mortality */    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
       for(j=1; j<= nlstate; j++) /* vareij */      for (j=1;j<=npar;j++) { 
         for(h=0; h<=nhstepm; h++){        printf("%.3e ",hess[i][j]);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        fprintf(ficlog,"%.3e ",hess[i][j]);
         }      }
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      printf("\n");
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      fprintf(ficlog,"\n");
       }    }
   
     } /* End theta */    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
     for(h=0; h<=nhstepm; h++) /* veij */  
       for(j=1; j<=nlstate;j++)    /*  printf("\n#Hessian matrix recomputed#\n");
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */      x[j]=1;
       for(theta=1; theta <=npar; theta++)      lubksb(a,npar,indx,x);
         trgradgp[j][theta]=gradgp[theta][j];      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        printf("%.3e ",y[i][j]);
     for(i=1;i<=nlstate;i++)        fprintf(ficlog,"%.3e ",y[i][j]);
       for(j=1;j<=nlstate;j++)      }
         vareij[i][j][(int)age] =0.;      printf("\n");
       fprintf(ficlog,"\n");
     for(h=0;h<=nhstepm;h++){    }
       for(k=0;k<=nhstepm;k++){    */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    free_matrix(a,1,npar,1,npar);
         for(i=1;i<=nlstate;i++)    free_matrix(y,1,npar,1,npar);
           for(j=1;j<=nlstate;j++)    free_vector(x,1,npar);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    free_ivector(indx,1,npar);
       }    free_matrix(hess,1,npar,1,npar);
     }  
   
     /* pptj */  }
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  /*************** hessian matrix ****************/
     for(j=nlstate+1;j<=nlstate+ndeath;j++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  {
         varppt[j][i]=doldmp[j][i];    int i;
     /* end ppptj */    int l=1, lmax=20;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      double k1,k2;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    double p2[MAXPARM+1]; /* identical to x */
      double res;
     if (popbased==1) {    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(i=1; i<=nlstate;i++)    double fx;
         prlim[i][i]=probs[(int)age][i][ij];    int k=0,kmax=10;
     }    double l1;
      
     /* This for computing force of mortality (h=1)as a weighted average */    fx=func(x);
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1; i<= nlstate; i++)    for(l=0 ; l <=lmax; l++){
         gmp[j] += prlim[i][i]*p3mat[i][j][1];      l1=pow(10,l);
     }          delts=delt;
     /* end force of mortality */      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);        p2[theta]=x[theta] +delt;
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        k1=func(p2)-fx;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        p2[theta]=x[theta]-delt;
       for(i=1; i<=nlstate;i++){        k2=func(p2)-fx;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        /*res= (k1-2.0*fx+k2)/delt/delt; */
       }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     }        
     fprintf(ficresprobmorprev,"\n");  #ifdef DEBUGHESS
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fprintf(ficresvij,"%.0f ",age );        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(i=1; i<=nlstate;i++)  #endif
       for(j=1; j<=nlstate;j++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       }          k=kmax;
     fprintf(ficresvij,"\n");        }
     free_matrix(gp,0,nhstepm,1,nlstate);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     free_matrix(gm,0,nhstepm,1,nlstate);          k=kmax; l=lmax*10.;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          delts=delt;
   } /* End age */        }
   free_vector(gpp,nlstate+1,nlstate+ndeath);      }
   free_vector(gmp,nlstate+1,nlstate+ndeath);    }
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    delti[theta]=delts;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    return res; 
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */  }
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");  
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);  {
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    int i;
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    int l=1, l1, lmax=20;
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    double k1,k2,k3,k4,res,fx;
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    double p2[MAXPARM+1];
     int k;
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,nlstate);    fx=func(x);
   free_matrix(dnewm,1,nlstate,1,npar);    for (k=1; k<=2; k++) {
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for (i=1;i<=npar;i++) p2[i]=x[i];
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fclose(ficresprobmorprev);      k1=func(p2)-fx;
   fclose(ficgp);    
   fclose(fichtm);      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 }      k2=func(p2)-fx;
     
 /************ Variance of prevlim ******************/      p2[thetai]=x[thetai]-delti[thetai]/k;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 {      k3=func(p2)-fx;
   /* Variance of prevalence limit */    
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      p2[thetai]=x[thetai]-delti[thetai]/k;
   double **newm;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double **dnewm,**doldm;      k4=func(p2)-fx;
   int i, j, nhstepm, hstepm;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   int k, cptcode;  #ifdef DEBUG
   double *xp;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double *gp, *gm;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double **gradg, **trgradg;  #endif
   double age,agelim;    }
   int theta;    return res;
      }
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");  
   fprintf(ficresvpl,"# Age");  /************** Inverse of matrix **************/
   for(i=1; i<=nlstate;i++)  void ludcmp(double **a, int n, int *indx, double *d) 
       fprintf(ficresvpl," %1d-%1d",i,i);  { 
   fprintf(ficresvpl,"\n");    int i,imax,j,k; 
     double big,dum,sum,temp; 
   xp=vector(1,npar);    double *vv; 
   dnewm=matrix(1,nlstate,1,npar);   
   doldm=matrix(1,nlstate,1,nlstate);    vv=vector(1,n); 
      *d=1.0; 
   hstepm=1*YEARM; /* Every year of age */    for (i=1;i<=n;i++) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      big=0.0; 
   agelim = AGESUP;      for (j=1;j<=n;j++) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if ((temp=fabs(a[i][j])) > big) big=temp; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     if (stepm >= YEARM) hstepm=1;      vv[i]=1.0/big; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    } 
     gradg=matrix(1,npar,1,nlstate);    for (j=1;j<=n;j++) { 
     gp=vector(1,nlstate);      for (i=1;i<j;i++) { 
     gm=vector(1,nlstate);        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     for(theta=1; theta <=npar; theta++){        a[i][j]=sum; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      big=0.0; 
       }      for (i=j;i<=n;i++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        sum=a[i][j]; 
       for(i=1;i<=nlstate;i++)        for (k=1;k<j;k++) 
         gp[i] = prlim[i][i];          sum -= a[i][k]*a[k][j]; 
            a[i][j]=sum; 
       for(i=1; i<=npar; i++) /* Computes gradient */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          big=dum; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          imax=i; 
       for(i=1;i<=nlstate;i++)        } 
         gm[i] = prlim[i][i];      } 
       if (j != imax) { 
       for(i=1;i<=nlstate;i++)        for (k=1;k<=n;k++) { 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          dum=a[imax][k]; 
     } /* End theta */          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
     trgradg =matrix(1,nlstate,1,npar);        } 
         *d = -(*d); 
     for(j=1; j<=nlstate;j++)        vv[imax]=vv[j]; 
       for(theta=1; theta <=npar; theta++)      } 
         trgradg[j][theta]=gradg[theta][j];      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
     for(i=1;i<=nlstate;i++)      if (j != n) { 
       varpl[i][(int)age] =0.;        dum=1.0/(a[j][j]); 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      } 
     for(i=1;i<=nlstate;i++)    } 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    free_vector(vv,1,n);  /* Doesn't work */
   ;
     fprintf(ficresvpl,"%.0f ",age );  } 
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  void lubksb(double **a, int n, int *indx, double b[]) 
     fprintf(ficresvpl,"\n");  { 
     free_vector(gp,1,nlstate);    int i,ii=0,ip,j; 
     free_vector(gm,1,nlstate);    double sum; 
     free_matrix(gradg,1,npar,1,nlstate);   
     free_matrix(trgradg,1,nlstate,1,npar);    for (i=1;i<=n;i++) { 
   } /* End age */      ip=indx[i]; 
       sum=b[ip]; 
   free_vector(xp,1,npar);      b[ip]=b[i]; 
   free_matrix(doldm,1,nlstate,1,npar);      if (ii) 
   free_matrix(dnewm,1,nlstate,1,nlstate);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
 }      b[i]=sum; 
     } 
 /************ Variance of one-step probabilities  ******************/    for (i=n;i>=1;i--) { 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      sum=b[i]; 
 {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   int i, j=0,  i1, k1, l1, t, tj;      b[i]=sum/a[i][i]; 
   int k2, l2, j1,  z1;    } 
   int k=0,l, cptcode;  } 
   int first=1, first1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;  void pstamp(FILE *fichier)
   double **dnewm,**doldm;  {
   double *xp;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   double *gp, *gm;  }
   double **gradg, **trgradg;  
   double **mu;  /************ Frequencies ********************/
   double age,agelim, cov[NCOVMAX];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  {  /* Some frequencies */
   int theta;    
   char fileresprob[FILENAMELENGTH];    int i, m, jk, k1,i1, j1, bool, z1,j;
   char fileresprobcov[FILENAMELENGTH];    int first;
   char fileresprobcor[FILENAMELENGTH];    double ***freq; /* Frequencies */
     double *pp, **prop;
   double ***varpij;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     char fileresp[FILENAMELENGTH];
   strcpy(fileresprob,"prob");    
   strcat(fileresprob,fileres);    pp=vector(1,nlstate);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
     printf("Problem with resultfile: %s\n", fileresprob);    strcpy(fileresp,"p");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    strcat(fileresp,fileres);
   }    if((ficresp=fopen(fileresp,"w"))==NULL) {
   strcpy(fileresprobcov,"probcov");      printf("Problem with prevalence resultfile: %s\n", fileresp);
   strcat(fileresprobcov,fileres);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      exit(0);
     printf("Problem with resultfile: %s\n", fileresprobcov);    }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   }    j1=0;
   strcpy(fileresprobcor,"probcor");    
   strcat(fileresprobcor,fileres);    j=cptcoveff;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    first=1;
   }  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    for(k1=1; k1<=j;k1++){
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      for(i1=1; i1<=ncodemax[k1];i1++){
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        j1++;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          scanf("%d", i);*/
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        for (i=-5; i<=nlstate+ndeath; i++)  
            for (jk=-5; jk<=nlstate+ndeath; jk++)  
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresprob,"# Age");              freq[i][jk][m]=0;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  
   fprintf(ficresprobcov,"# Age");      for (i=1; i<=nlstate; i++)  
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresprobcov,"# Age");          prop[i][m]=0;
         
         dateintsum=0;
   for(i=1; i<=nlstate;i++)        k2cpt=0;
     for(j=1; j<=(nlstate+ndeath);j++){        for (i=1; i<=imx; i++) {
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          bool=1;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          if  (cptcovn>0) {
       fprintf(ficresprobcor," p%1d-%1d ",i,j);            for (z1=1; z1<=cptcoveff; z1++) 
     }                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   fprintf(ficresprob,"\n");                bool=0;
   fprintf(ficresprobcov,"\n");          }
   fprintf(ficresprobcor,"\n");          if (bool==1){
   xp=vector(1,npar);            for(m=firstpass; m<=lastpass; m++){
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              k2=anint[m][i]+(mint[m][i]/12.);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   first=1;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {                if (m<lastpass) {
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     exit(0);                }
   }                
   else{                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     fprintf(ficgp,"\n# Routine varprob");                  dateintsum=dateintsum+k2;
   }                  k2cpt++;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {                }
     printf("Problem with html file: %s\n", optionfilehtm);                /*}*/
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);            }
     exit(0);          }
   }        }
   else{         
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     fprintf(fichtm,"\n");        pstamp(ficresp);
         if  (cptcovn>0) {
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");          fprintf(ficresp, "\n#********** Variable "); 
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");          fprintf(ficresp, "**********\n#");
         }
   }        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
          fprintf(ficresp, "\n");
   cov[1]=1;        
   tj=cptcoveff;        for(i=iagemin; i <= iagemax+3; i++){
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}          if(i==iagemax+3){
   j1=0;            fprintf(ficlog,"Total");
   for(t=1; t<=tj;t++){          }else{
     for(i1=1; i1<=ncodemax[t];i1++){            if(first==1){
       j1++;              first=0;
                    printf("See log file for details...\n");
       if  (cptcovn>0) {            }
         fprintf(ficresprob, "\n#********** Variable ");            fprintf(ficlog,"Age %d", i);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
         fprintf(ficresprob, "**********\n#");          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficresprobcov, "\n#********** Variable ");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              pp[jk] += freq[jk][m][i]; 
         fprintf(ficresprobcov, "**********\n#");          }
                  for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficgp, "\n#********** Variable ");            for(m=-1, pos=0; m <=0 ; m++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              pos += freq[jk][m][i];
         fprintf(ficgp, "**********\n#");            if(pp[jk]>=1.e-10){
                      if(first==1){
                        printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");              }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");            }else{
                      if(first==1)
         fprintf(ficresprobcor, "\n#********** Variable ");                    printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         fprintf(ficgp, "**********\n#");                }
       }          }
        
       for (age=bage; age<=fage; age ++){          for(jk=1; jk <=nlstate ; jk++){
         cov[2]=age;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         for (k=1; k<=cptcovn;k++) {              pp[jk] += freq[jk][m][i];
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          }       
         }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            pos += pp[jk];
         for (k=1; k<=cptcovprod;k++)            posprop += prop[jk][i];
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          }
                  for(jk=1; jk <=nlstate ; jk++){
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));            if(pos>=1.e-5){
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              if(first==1)
         gp=vector(1,(nlstate)*(nlstate+ndeath));                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         gm=vector(1,(nlstate)*(nlstate+ndeath));              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                }else{
         for(theta=1; theta <=npar; theta++){              if(first==1)
           for(i=1; i<=npar; i++)                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                      }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            if( i <= iagemax){
                        if(pos>=1.e-5){
           k=0;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           for(i=1; i<= (nlstate); i++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
             for(j=1; j<=(nlstate+ndeath);j++){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               k=k+1;              }
               gp[k]=pmmij[i][j];              else
             }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           }            }
                    }
           for(i=1; i<=npar; i++)          
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(jk=-1; jk <=nlstate+ndeath; jk++)
                for(m=-1; m <=nlstate+ndeath; m++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              if(freq[jk][m][i] !=0 ) {
           k=0;              if(first==1)
           for(i=1; i<=(nlstate); i++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             for(j=1; j<=(nlstate+ndeath);j++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               k=k+1;              }
               gm[k]=pmmij[i][j];          if(i <= iagemax)
             }            fprintf(ficresp,"\n");
           }          if(first==1)
                  printf("Others in log...\n");
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          fprintf(ficlog,"\n");
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          }
         }      }
     }
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    dateintmean=dateintsum/k2cpt; 
           for(theta=1; theta <=npar; theta++)   
             trgradg[j][theta]=gradg[theta][j];    fclose(ficresp);
            free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    free_vector(pp,1,nlstate);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
            /* End of Freq */
         pmij(pmmij,cov,ncovmodel,x,nlstate);  }
          
         k=0;  /************ Prevalence ********************/
         for(i=1; i<=(nlstate); i++){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           for(j=1; j<=(nlstate+ndeath);j++){  {  
             k=k+1;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             mu[k][(int) age]=pmmij[i][j];       in each health status at the date of interview (if between dateprev1 and dateprev2).
           }       We still use firstpass and lastpass as another selection.
         }    */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)   
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    int i, m, jk, k1, i1, j1, bool, z1,j;
             varpij[i][j][(int)age] = doldm[i][j];    double ***freq; /* Frequencies */
     double *pp, **prop;
         /*printf("\n%d ",(int)age);    double pos,posprop; 
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double  y2; /* in fractional years */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    int iagemin, iagemax;
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
      }*/    iagemin= (int) agemin;
     iagemax= (int) agemax;
         fprintf(ficresprob,"\n%d ",(int)age);    /*pp=vector(1,nlstate);*/
         fprintf(ficresprobcov,"\n%d ",(int)age);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         fprintf(ficresprobcor,"\n%d ",(int)age);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    j=cptcoveff;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    for(k1=1; k1<=j;k1++){
         }      for(i1=1; i1<=ncodemax[k1];i1++){
         i=0;        j1++;
         for (k=1; k<=(nlstate);k++){        
           for (l=1; l<=(nlstate+ndeath);l++){        for (i=1; i<=nlstate; i++)  
             i=i++;          for(m=iagemin; m <= iagemax+3; m++)
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            prop[i][m]=0.0;
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);       
             for (j=1; j<=i;j++){        for (i=1; i<=imx; i++) { /* Each individual */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          bool=1;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          if  (cptcovn>0) {
             }            for (z1=1; z1<=cptcoveff; z1++) 
           }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         }/* end of loop for state */                bool=0;
       } /* end of loop for age */          } 
           if (bool==1) { 
       /* Confidence intervalle of pij  */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       /*              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       fprintf(ficgp,"\nset noparametric;unset label");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       */                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              }
       first1=1;            } /* end selection of waves */
       for (k1=1; k1<=(nlstate);k1++){          }
         for (l1=1; l1<=(nlstate+ndeath);l1++){        }
           if(l1==k1) continue;        for(i=iagemin; i <= iagemax+3; i++){  
           i=(k1-1)*(nlstate+ndeath)+l1;          
           for (k2=1; k2<=(nlstate);k2++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             for (l2=1; l2<=(nlstate+ndeath);l2++){            posprop += prop[jk][i]; 
               if(l2==k2) continue;          } 
               j=(k2-1)*(nlstate+ndeath)+l2;  
               if(j<=i) continue;          for(jk=1; jk <=nlstate ; jk++){     
               for (age=bage; age<=fage; age ++){            if( i <=  iagemax){ 
                 if ((int)age %5==0){              if(posprop>=1.e-5){ 
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;                probs[i][jk][j1]= prop[jk][i]/posprop;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              } else
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
                   mu1=mu[i][(int) age]/stepm*YEARM ;            } 
                   mu2=mu[j][(int) age]/stepm*YEARM;          }/* end jk */ 
                   /* Computing eigen value of matrix of covariance */        }/* end i */ 
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));      } /* end i1 */
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    } /* end k1 */
                   if(first1==1){    
                     first1=0;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);    /*free_vector(pp,1,nlstate);*/
                   }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);  }  /* End of prevalence */
                   /* Eigen vectors */  
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  /************* Waves Concatenation ***************/
                   v21=sqrt(1.-v11*v11);  
                   v12=-v21;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                   v22=v11;  {
                   /*printf(fignu*/    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */       Death is a valid wave (if date is known).
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                   if(first==1){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                     first=0;       and mw[mi+1][i]. dh depends on stepm.
                     fprintf(ficgp,"\nset parametric;set nolabel");       */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    int i, mi, m;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);       double sum=0., jmean=0.;*/
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);    int first;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    int j, k=0,jk, ju, jl;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    double sum=0.;
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    first=0;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    jmin=1e+5;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    jmax=-1;
                     */    jmean=0.;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    for(i=1; i<=imx; i++){
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      mi=0;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));      m=firstpass;
                   }else{      while(s[m][i] <= nlstate){
                     first=0;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          mw[++mi][i]=m;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);        if(m >=lastpass)
                     /*          break;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        else
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          m++;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      }/* end while */
                     */      if (s[m][i] > nlstate){
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        mi++;     /* Death is another wave */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        /* if(mi==0)  never been interviewed correctly before death */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));           /* Only death is a correct wave */
                   }/* if first */        mw[mi][i]=m;
                 } /* age mod 5 */      }
               } /* end loop age */  
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);      wav[i]=mi;
               first=1;      if(mi==0){
             } /*l12 */        nbwarn++;
           } /* k12 */        if(first==0){
         } /*l1 */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       }/* k1 */          first=1;
     } /* loop covariates */        }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        if(first==1){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      } /* end mi==0 */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    } /* End individuals */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }    for(i=1; i<=imx; i++){
   free_vector(xp,1,npar);      for(mi=1; mi<wav[i];mi++){
   fclose(ficresprob);        if (stepm <=0)
   fclose(ficresprobcov);          dh[mi][i]=1;
   fclose(ficresprobcor);        else{
   fclose(ficgp);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   fclose(fichtm);            if (agedc[i] < 2*AGESUP) {
 }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
 /******************* Printing html file ***********/                nberr++;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   int lastpass, int stepm, int weightopt, char model[],\                j=1; /* Temporary Dangerous patch */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   int popforecast, int estepm ,\                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   double jprev1, double mprev1,double anprev1, \                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   double jprev2, double mprev2,double anprev2){              }
   int jj1, k1, i1, cpt;              k=k+1;
   /*char optionfilehtm[FILENAMELENGTH];*/              if (j >= jmax){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {                jmax=j;
     printf("Problem with %s \n",optionfilehtm), exit(0);                ijmax=i;
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);              }
   }              if (j <= jmin){
                 jmin=j;
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n                ijmin=i;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n              }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n              sum=sum+j;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
  - Life expectancies by age and initial health status (estepm=%2d months):              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    <a href=\"e%s\">e%s</a> <br>\n</li>", \            }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          }
           else{
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            k=k+1;
             if (j >= jmax) {
  jj1=0;              jmax=j;
  for(k1=1; k1<=m;k1++){              ijmax=i;
    for(i1=1; i1<=ncodemax[k1];i1++){            }
      jj1++;            else if (j <= jmin){
      if (cptcovn > 0) {              jmin=j;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              ijmin=i;
        for (cpt=1; cpt<=cptcoveff;cpt++)            }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      }            if(j<0){
      /* Pij */              nberr++;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      /* Quasi-incidences */            }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>            sum=sum+j;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }
        /* Stable prevalence in each health state */          jk= j/stepm;
        for(cpt=1; cpt<nlstate;cpt++){          jl= j -jk*stepm;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          ju= j -(jk+1)*stepm;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
        }            if(jl==0){
      for(cpt=1; cpt<=nlstate;cpt++) {              dh[mi][i]=jk;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              bh[mi][i]=0;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }else{ /* We want a negative bias in order to only have interpolation ie
      }                    * to avoid the price of an extra matrix product in likelihood */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              dh[mi][i]=jk+1;
 health expectancies in states (1) and (2): e%s%d.png<br>              bh[mi][i]=ju;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            }
    } /* end i1 */          }else{
  }/* End k1 */            if(jl <= -ju){
  fprintf(fichtm,"</ul>");              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n                                   */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n            }
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            else{
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n              dh[mi][i]=jk+1;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n              bh[mi][i]=ju;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            }
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n            if(dh[mi][i]==0){
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
  if(popforecast==1) fprintf(fichtm,"\n              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          } /* end if mle */
         <br>",fileres,fileres,fileres,fileres);        }
  else      } /* end wave */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    }
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
  m=cptcoveff;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}   }
   
  jj1=0;  /*********** Tricode ****************************/
  for(k1=1; k1<=m;k1++){  void tricode(int *Tvar, int **nbcode, int imx)
    for(i1=1; i1<=ncodemax[k1];i1++){  {
      jj1++;    /* Uses cptcovn+2*cptcovprod as the number of covariates */
      if (cptcovn > 0) {    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    int modmaxcovj=0; /* Modality max of covariates j */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    cptcoveff=0; 
      }   
      for(cpt=1; cpt<=nlstate;cpt++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
 interval) in state (%d): v%s%d%d.png <br>  
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
      }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
    } /* end i1 */                                 modality of this covariate Vj*/ 
  }/* End k1 */        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
  fprintf(fichtm,"</ul>");                                        modality of the nth covariate of individual i. */
 fclose(fichtm);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > modmaxcovj) modmaxcovj=ij; 
 /******************* Gnuplot file **************/        /* getting the maximum value of the modality of the covariate
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
            female is 1, then modmaxcovj=1.*/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      }
   int ng;      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
     printf("Problem with file %s",optionfilegnuplot);        if( Ndum[i] != 0 )
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);          ncodemax[j]++; 
   }        /* Number of modalities of the j th covariate. In fact
            ncodemax[j]=2 (dichotom. variables only) but it could be more for
 #ifdef windows           historical reasons */
     fprintf(ficgp,"cd \"%s\" \n",pathc);      } /* Ndum[-1] number of undefined modalities */
 #endif  
 m=pow(2,cptcoveff);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
        ij=1; 
  /* 1eme*/      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
   for (cpt=1; cpt<= nlstate ; cpt ++) {        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
    for (k1=1; k1<= m ; k1 ++) {          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
 #ifdef windows                                       k is a modality. If we have model=V1+V1*sex 
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            ij++;
 #endif          }
 #ifdef unix          if (ij > ncodemax[j]) break; 
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        }  /* end of loop on */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      } /* end of loop on modality */ 
 #endif    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
 for (i=1; i<= nlstate ; i ++) {    for (k=0; k< maxncov; k++) Ndum[k]=0;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
 }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
     for (i=1; i<= nlstate ; i ++) {     Ndum[ij]++;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }   ij=1;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      for (i=1; i<= nlstate ; i ++) {     if((Ndum[i]!=0) && (i<=ncovcol)){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       Tvaraff[ij]=i; /*For printing */
   else fprintf(ficgp," \%%*lf (\%%*lf)");       ij++;
 }       }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));   }
 #ifdef unix   ij--;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");   cptcoveff=ij; /*Number of simple covariates*/
 #endif  }
    }  
   }  /*********** Health Expectancies ****************/
   /*2 eme*/  
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    /* Health expectancies, no variances */
        int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     for (i=1; i<= nlstate+1 ; i ++) {    int nhstepma, nstepma; /* Decreasing with age */
       k=2*i;    double age, agelim, hf;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    double ***p3mat;
       for (j=1; j<= nlstate+1 ; j ++) {    double eip;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    pstamp(ficreseij);
 }      fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    fprintf(ficreseij,"# Age");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    for(i=1; i<=nlstate;i++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      for(j=1; j<=nlstate;j++){
       for (j=1; j<= nlstate+1 ; j ++) {        fprintf(ficreseij," e%1d%1d ",i,j);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      }
         else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficreseij," e%1d. ",i);
 }      }
       fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficreseij,"\n");
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    if(estepm < stepm){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      printf ("Problem %d lower than %d\n",estepm, stepm);
 }      }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    else  hstepm=estepm;   
       else fprintf(ficgp,"\" t\"\" w l 0,");    /* We compute the life expectancy from trapezoids spaced every estepm months
     }     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
       * we are calculating an estimate of the Life Expectancy assuming a linear 
   /*3eme*/     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   for (k1=1; k1<= m ; k1 ++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     for (cpt=1; cpt<= nlstate ; cpt ++) {     * to compare the new estimate of Life expectancy with the same linear 
       k=2+nlstate*(2*cpt-2);     * hypothesis. A more precise result, taking into account a more precise
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     * curvature will be obtained if estepm is as small as stepm. */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /* For example we decided to compute the life expectancy with the smallest unit */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       nhstepm is the number of hstepm from age to agelim 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       nstepm is the number of stepm from age to agelin. 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       Look at hpijx to understand the reason of that which relies in memory size
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 */       survival function given by stepm (the optimization length). Unfortunately it
       for (i=1; i< nlstate ; i ++) {       means that if the survival funtion is printed only each two years of age and if
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
       }    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
      agelim=AGESUP;
   /* CV preval stat */    /* If stepm=6 months */
     for (k1=1; k1<= m ; k1 ++) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     for (cpt=1; cpt<nlstate ; cpt ++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       k=3;      
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  /* nhstepm age range expressed in number of stepm */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for (i=1; i< nlstate ; i ++)    /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficgp,"+$%d",k+i+1);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        
       l=3+(nlstate+ndeath)*cpt;    for (age=bage; age<=fage; age ++){ 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       for (i=1; i< nlstate ; i ++) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         l=3+(nlstate+ndeath)*cpt;      /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficgp,"+$%d",l+i+1);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        /* If stepm=6 months */
     }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   }           in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        
   /* proba elementaires */      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
    for(i=1,jk=1; i <=nlstate; i++){      
     for(k=1; k <=(nlstate+ndeath); k++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       if (k != i) {      
         for(j=1; j <=ncovmodel; j++){      printf("%d|",(int)age);fflush(stdout);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           jk++;      
           fprintf(ficgp,"\n");      /* Computing expectancies */
         }      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++)
     }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
    }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          }
        if (ng==2)  
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      fprintf(ficreseij,"%3.0f",age );
        else      for(i=1; i<=nlstate;i++){
          fprintf(ficgp,"\nset title \"Probability\"\n");        eip=0;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        for(j=1; j<=nlstate;j++){
        i=1;          eip +=eij[i][j][(int)age];
        for(k2=1; k2<=nlstate; k2++) {          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
          k3=i;        }
          for(k=1; k<=(nlstate+ndeath); k++) {        fprintf(ficreseij,"%9.4f", eip );
            if (k != k2){      }
              if(ng==2)      fprintf(ficreseij,"\n");
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      
              else    }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              ij=1;    printf("\n");
              for(j=3; j <=ncovmodel; j++) {    fprintf(ficlog,"\n");
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  }
                  ij++;  
                }  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
                else  
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  {
              }    /* Covariances of health expectancies eij and of total life expectancies according
              fprintf(ficgp,")/(1");     to initial status i, ei. .
                  */
              for(k1=1; k1 <=nlstate; k1++){      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    int nhstepma, nstepma; /* Decreasing with age */
                ij=1;    double age, agelim, hf;
                for(j=3; j <=ncovmodel; j++){    double ***p3matp, ***p3matm, ***varhe;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double **dnewm,**doldm;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double *xp, *xm;
                    ij++;    double **gp, **gm;
                  }    double ***gradg, ***trgradg;
                  else    int theta;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
                }    double eip, vip;
                fprintf(ficgp,")");  
              }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    xp=vector(1,npar);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    xm=vector(1,npar);
              i=i+ncovmodel;    dnewm=matrix(1,nlstate*nlstate,1,npar);
            }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
          } /* end k */    
        } /* end k2 */    pstamp(ficresstdeij);
      } /* end jk */    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
    } /* end ng */    fprintf(ficresstdeij,"# Age");
    fclose(ficgp);    for(i=1; i<=nlstate;i++){
 }  /* end gnuplot */      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
 /*************** Moving average **************/    }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    fprintf(ficresstdeij,"\n");
   
   int i, cpt, cptcod;    pstamp(ficrescveij);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       for (i=1; i<=nlstate;i++)    fprintf(ficrescveij,"# Age");
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    for(i=1; i<=nlstate;i++)
           mobaverage[(int)agedeb][i][cptcod]=0.;      for(j=1; j<=nlstate;j++){
            cptj= (j-1)*nlstate+i;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        for(i2=1; i2<=nlstate;i2++)
       for (i=1; i<=nlstate;i++){          for(j2=1; j2<=nlstate;j2++){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            cptj2= (j2-1)*nlstate+i2;
           for (cpt=0;cpt<=4;cpt++){            if(cptj2 <= cptj)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }          }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      }
         }    fprintf(ficrescveij,"\n");
       }    
     }    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
 }    }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
 /************** Forecasting ******************/     * This is mainly to measure the difference between two models: for example
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){     * if stepm=24 months pijx are given only every 2 years and by summing them
       * we are calculating an estimate of the Life Expectancy assuming a linear 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;     * progression in between and thus overestimating or underestimating according
   int *popage;     * to the curvature of the survival function. If, for the same date, we 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   double *popeffectif,*popcount;     * to compare the new estimate of Life expectancy with the same linear 
   double ***p3mat;     * hypothesis. A more precise result, taking into account a more precise
   char fileresf[FILENAMELENGTH];     * curvature will be obtained if estepm is as small as stepm. */
   
  agelim=AGESUP;    /* For example we decided to compute the life expectancy with the smallest unit */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like estepm months */
   strcpy(fileresf,"f");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   strcat(fileresf,fileres);       survival function given by stepm (the optimization length). Unfortunately it
   if((ficresf=fopen(fileresf,"w"))==NULL) {       means that if the survival funtion is printed only each two years of age and if
     printf("Problem with forecast resultfile: %s\n", fileresf);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);       results. So we changed our mind and took the option of the best precision.
   }    */
   printf("Computing forecasting: result on file '%s' \n", fileresf);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  
     /* If stepm=6 months */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
   if (mobilav==1) {    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     movingaverage(agedeb, fage, ageminpar, mobaverage);    /* if (stepm >= YEARM) hstepm=1;*/
   }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
   stepsize=(int) (stepm+YEARM-1)/YEARM;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (stepm<=12) stepsize=1;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   agelim=AGESUP;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   hstepm=1;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);    for (age=bage; age<=fage; age ++){ 
   anprojmean=yp;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   yp2=modf((yp1*12),&yp);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   mprojmean=yp;      /* if (stepm >= YEARM) hstepm=1;*/
   yp1=modf((yp2*30.5),&yp);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;      /* If stepm=6 months */
   if(mprojmean==0) jprojmean=1;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   for(cptcov=1;cptcov<=i2;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      /* Computing  Variances of health expectancies */
       k=k+1;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       fprintf(ficresf,"\n#******");         decrease memory allocation */
       for(j=1;j<=cptcoveff;j++) {      for(theta=1; theta <=npar; theta++){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(i=1; i<=npar; i++){ 
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficresf,"******\n");          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficresf,"# StartingAge FinalAge");        }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
              hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
          
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        for(j=1; j<= nlstate; j++){
         fprintf(ficresf,"\n");          for(i=1; i<=nlstate; i++){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);              for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            }
           nhstepm = nhstepm/hstepm;          }
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       
           oldm=oldms;savm=savms;        for(ij=1; ij<= nlstate*nlstate; ij++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(h=0; h<=nhstepm-1; h++){
                    gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           for (h=0; h<=nhstepm; h++){          }
             if (h==(int) (calagedate+YEARM*cpt)) {      }/* End theta */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      
             }      
             for(j=1; j<=nlstate+ndeath;j++) {      for(h=0; h<=nhstepm-1; h++)
               kk1=0.;kk2=0;        for(j=1; j<=nlstate*nlstate;j++)
               for(i=1; i<=nlstate;i++) {                        for(theta=1; theta <=npar; theta++)
                 if (mobilav==1)            trgradg[h][j][theta]=gradg[h][theta][j];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       for(ij=1;ij<=nlstate*nlstate;ij++)
                 }        for(ji=1;ji<=nlstate*nlstate;ji++)
                          varhe[ij][ji][(int)age] =0.;
               }  
               if (h==(int)(calagedate+12*cpt)){       printf("%d|",(int)age);fflush(stdout);
                 fprintf(ficresf," %.3f", kk1);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                               for(h=0;h<=nhstepm-1;h++){
               }        for(k=0;k<=nhstepm-1;k++){
             }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(ij=1;ij<=nlstate*nlstate;ij++)
         }            for(ji=1;ji<=nlstate*nlstate;ji++)
       }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     }        }
   }      }
          
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   fclose(ficresf);      for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++)
 /************** Forecasting ******************/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
              
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          }
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;      fprintf(ficresstdeij,"%3.0f",age );
   char filerespop[FILENAMELENGTH];      for(i=1; i<=nlstate;i++){
         eip=0.;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        vip=0.;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<=nlstate;j++){
   agelim=AGESUP;          eip += eij[i][j][(int)age];
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
              vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
          }
          fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   strcpy(filerespop,"pop");      }
   strcat(filerespop,fileres);      fprintf(ficresstdeij,"\n");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);      fprintf(ficrescveij,"%3.0f",age );
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);          cptj= (j-1)*nlstate+i;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
   if (mobilav==1) {                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
     movingaverage(agedeb, fage, ageminpar, mobaverage);        }
   }      fprintf(ficrescveij,"\n");
      
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   if (stepm<=12) stepsize=1;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   agelim=AGESUP;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   hstepm=1;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   hstepm=hstepm/stepm;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
   if (popforecast==1) {    fprintf(ficlog,"\n");
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);    free_vector(xm,1,npar);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    free_vector(xp,1,npar);
     }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     popage=ivector(0,AGESUP);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     popeffectif=vector(0,AGESUP);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     popcount=vector(0,AGESUP);  }
      
     i=1;    /************ Variance ******************/
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
      {
     imx=i;    /* Variance of health expectancies */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   }    /* double **newm;*/
     double **dnewm,**doldm;
   for(cptcov=1;cptcov<=i2;cptcov++){    double **dnewmp,**doldmp;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int i, j, nhstepm, hstepm, h, nstepm ;
       k=k+1;    int k, cptcode;
       fprintf(ficrespop,"\n#******");    double *xp;
       for(j=1;j<=cptcoveff;j++) {    double **gp, **gm;  /* for var eij */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***gradg, ***trgradg; /*for var eij */
       }    double **gradgp, **trgradgp; /* for var p point j */
       fprintf(ficrespop,"******\n");    double *gpp, *gmp; /* for var p point j */
       fprintf(ficrespop,"# Age");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    double ***p3mat;
       if (popforecast==1)  fprintf(ficrespop," [Population]");    double age,agelim, hf;
          double ***mobaverage;
       for (cpt=0; cpt<=0;cpt++) {    int theta;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      char digit[4];
            char digitp[25];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    char fileresprobmorprev[FILENAMELENGTH];
           nhstepm = nhstepm/hstepm;  
              if(popbased==1){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if(mobilav!=0)
           oldm=oldms;savm=savms;        strcpy(digitp,"-populbased-mobilav-");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        else strcpy(digitp,"-populbased-nomobil-");
            }
           for (h=0; h<=nhstepm; h++){    else 
             if (h==(int) (calagedate+YEARM*cpt)) {      strcpy(digitp,"-stablbased-");
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    if (mobilav!=0) {
             for(j=1; j<=nlstate+ndeath;j++) {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               kk1=0.;kk2=0;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
               for(i=1; i<=nlstate;i++) {                      fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                 if (mobilav==1)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      }
                 else {    }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }    strcpy(fileresprobmorprev,"prmorprev"); 
               }    sprintf(digit,"%-d",ij);
               if (h==(int)(calagedate+12*cpt)){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                   /*fprintf(ficrespop," %.3f", kk1);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    strcat(fileresprobmorprev,fileres);
               }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
             for(i=1; i<=nlstate;i++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
               kk1=0.;    }
                 for(j=1; j<=nlstate;j++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   
                 }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    pstamp(ficresprobmorprev);
             }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      fprintf(ficresprobmorprev," p.%-d SE",j);
           }      for(i=1; i<=nlstate;i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         }    }  
       }    fprintf(ficresprobmorprev,"\n");
      fprintf(ficgp,"\n# Routine varevsij");
   /******/    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    /*   } */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    pstamp(ficresvij);
           nhstepm = nhstepm/hstepm;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
              if(popbased==1)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
           oldm=oldms;savm=savms;    else
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
           for (h=0; h<=nhstepm; h++){    fprintf(ficresvij,"# Age");
             if (h==(int) (calagedate+YEARM*cpt)) {    for(i=1; i<=nlstate;i++)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for(j=1; j<=nlstate;j++)
             }        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficresvij,"\n");
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  xp=vector(1,npar);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        dnewm=matrix(1,nlstate,1,npar);
               }    doldm=matrix(1,nlstate,1,nlstate);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         }    gpp=vector(nlstate+1,nlstate+ndeath);
       }    gmp=vector(nlstate+1,nlstate+ndeath);
    }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   }    
      if(estepm < stepm){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   if (popforecast==1) {    else  hstepm=estepm;   
     free_ivector(popage,0,AGESUP);    /* For example we decided to compute the life expectancy with the smallest unit */
     free_vector(popeffectif,0,AGESUP);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     free_vector(popcount,0,AGESUP);       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       Look at function hpijx to understand why (it is linked to memory size questions) */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fclose(ficrespop);       survival function given by stepm (the optimization length). Unfortunately it
 }       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 /***********************************************/       results. So we changed our mind and took the option of the best precision.
 /**************** Main Program *****************/    */
 /***********************************************/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
 int main(int argc, char *argv[])    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double agedeb, agefin,hf;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   double fret;  
   double **xi,tmp,delta;  
       for(theta=1; theta <=npar; theta++){
   double dum; /* Dummy variable */        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   double ***p3mat;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int *indx;        }
   char line[MAXLINE], linepar[MAXLINE];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */        if (popbased==1) {
   int c,  h , cpt,l;          if(mobilav ==0){
   int ju,jl, mi;            for(i=1; i<=nlstate;i++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              prlim[i][i]=probs[(int)age][i][ij];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          }else{ /* mobilav */ 
   int mobilav=0,popforecast=0;            for(i=1; i<=nlstate;i++)
   int hstepm, nhstepm;              prlim[i][i]=mobaverage[(int)age][i][ij];
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          }
         }
   double bage, fage, age, agelim, agebase;    
   double ftolpl=FTOL;        for(j=1; j<= nlstate; j++){
   double **prlim;          for(h=0; h<=nhstepm; h++){
   double *severity;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   double ***param; /* Matrix of parameters */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   double  *p;          }
   double **matcov; /* Matrix of covariance */        }
   double ***delti3; /* Scale */        /* This for computing probability of death (h=1 means
   double *delti; /* Scale */           computed over hstepm matrices product = hstepm*stepm months) 
   double ***eij, ***vareij;           as a weighted average of prlim.
   double **varpl; /* Variances of prevalence limits by age */        */
   double *epj, vepp;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double kk1, kk2;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
         /* end probability of death */
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   char z[1]="c", occ;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 #include <sys/time.h>        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 #include <time.h>   
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        if (popbased==1) {
            if(mobilav ==0){
   /* long total_usecs;            for(i=1; i<=nlstate;i++)
   struct timeval start_time, end_time;              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            for(i=1; i<=nlstate;i++)
   getcwd(pathcd, size);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   printf("\n%s",version);        }
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     scanf("%s",pathtot);          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   else{              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     strcpy(pathtot,argv[1]);          }
   }        }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        /* This for computing probability of death (h=1 means
   /*cygwin_split_path(pathtot,path,optionfile);           computed over hstepm matrices product = hstepm*stepm months) 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/           as a weighted average of prlim.
   /* cutv(path,optionfile,pathtot,'\\');*/        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   chdir(path);        }    
   replace(pathc,path);        /* end probability of death */
   
 /*-------- arguments in the command line --------*/        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
   /* Log file */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   strcat(filelog, optionfilefiname);          }
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     printf("Problem with logfile %s\n",filelog);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     goto end;        }
   }  
   fprintf(ficlog,"Log filename:%s\n",filelog);      } /* End theta */
   fprintf(ficlog,"\n%s",version);  
   fprintf(ficlog,"\nEnter the parameter file name: ");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   fflush(ficlog);      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
   /* */          for(theta=1; theta <=npar; theta++)
   strcpy(fileres,"r");            trgradg[h][j][theta]=gradg[h][theta][j];
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   /*---------arguments file --------*/          trgradgp[j][theta]=gradgp[theta][j];
     
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);      for(i=1;i<=nlstate;i++)
     goto end;        for(j=1;j<=nlstate;j++)
   }          vareij[i][j][(int)age] =0.;
   
   strcpy(filereso,"o");      for(h=0;h<=nhstepm;h++){
   strcat(filereso,fileres);        for(k=0;k<=nhstepm;k++){
   if((ficparo=fopen(filereso,"w"))==NULL) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     printf("Problem with Output resultfile: %s\n", filereso);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);          for(i=1;i<=nlstate;i++)
     goto end;            for(j=1;j<=nlstate;j++)
   }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   /* Reads comments: lines beginning with '#' */      }
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);      /* pptj */
     fgets(line, MAXLINE, ficpar);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     puts(line);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     fputs(line,ficparo);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   ungetc(c,ficpar);          varppt[j][i]=doldmp[j][i];
       /* end ppptj */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      /*  x centered again */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);      if (popbased==1) {
     fgets(line, MAXLINE, ficpar);        if(mobilav ==0){
     puts(line);          for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);            prlim[i][i]=probs[(int)age][i][ij];
   }        }else{ /* mobilav */ 
   ungetc(c,ficpar);          for(i=1; i<=nlstate;i++)
              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   covar=matrix(0,NCOVMAX,1,n);      }
   cptcovn=0;               
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   ncovmodel=2+cptcovn;         as a weighted average of prlim.
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   /* Read guess parameters */        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   /* Reads comments: lines beginning with '#' */          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   while((c=getc(ficpar))=='#' && c!= EOF){      }    
     ungetc(c,ficpar);      /* end probability of death */
     fgets(line, MAXLINE, ficpar);  
     puts(line);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     fputs(line,ficparo);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   ungetc(c,ficpar);        for(i=1; i<=nlstate;i++){
            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
     for(i=1; i <=nlstate; i++)      } 
     for(j=1; j <=nlstate+ndeath-1; j++){      fprintf(ficresprobmorprev,"\n");
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);      fprintf(ficresvij,"%.0f ",age );
       if(mle==1)      for(i=1; i<=nlstate;i++)
         printf("%1d%1d",i,j);        for(j=1; j<=nlstate;j++){
       fprintf(ficlog,"%1d%1d",i,j);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar," %lf",&param[i][j][k]);      fprintf(ficresvij,"\n");
         if(mle==1){      free_matrix(gp,0,nhstepm,1,nlstate);
           printf(" %lf",param[i][j][k]);      free_matrix(gm,0,nhstepm,1,nlstate);
           fprintf(ficlog," %lf",param[i][j][k]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         else      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficlog," %lf",param[i][j][k]);    } /* End age */
         fprintf(ficparo," %lf",param[i][j][k]);    free_vector(gpp,nlstate+1,nlstate+ndeath);
       }    free_vector(gmp,nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"\n");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       if(mle==1)    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         printf("\n");    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
       fprintf(ficlog,"\n");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       fprintf(ficparo,"\n");    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   p=param[1][1];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   /* Reads comments: lines beginning with '#' */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     ungetc(c,ficpar);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     fgets(line, MAXLINE, ficpar);  */
     puts(line);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fputs(line,ficparo);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   }  
   ungetc(c,ficpar);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    free_matrix(dnewm,1,nlstate,1,npar);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   for(i=1; i <=nlstate; i++){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("%1d%1d",i,j);    fclose(ficresprobmorprev);
       fprintf(ficparo,"%1d%1d",i1,j1);    fflush(ficgp);
       for(k=1; k<=ncovmodel;k++){    fflush(fichtm); 
         fscanf(ficpar,"%le",&delti3[i][j][k]);  }  /* end varevsij */
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);  /************ Variance of prevlim ******************/
       }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       fscanf(ficpar,"\n");  {
       printf("\n");    /* Variance of prevalence limit */
       fprintf(ficparo,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     }    double **newm;
   }    double **dnewm,**doldm;
   delti=delti3[1][1];    int i, j, nhstepm, hstepm;
      int k, cptcode;
   /* Reads comments: lines beginning with '#' */    double *xp;
   while((c=getc(ficpar))=='#' && c!= EOF){    double *gp, *gm;
     ungetc(c,ficpar);    double **gradg, **trgradg;
     fgets(line, MAXLINE, ficpar);    double age,agelim;
     puts(line);    int theta;
     fputs(line,ficparo);    
   }    pstamp(ficresvpl);
   ungetc(c,ficpar);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
      fprintf(ficresvpl,"# Age");
   matcov=matrix(1,npar,1,npar);    for(i=1; i<=nlstate;i++)
   for(i=1; i <=npar; i++){        fprintf(ficresvpl," %1d-%1d",i,i);
     fscanf(ficpar,"%s",&str);    fprintf(ficresvpl,"\n");
     if(mle==1)  
       printf("%s",str);    xp=vector(1,npar);
     fprintf(ficlog,"%s",str);    dnewm=matrix(1,nlstate,1,npar);
     fprintf(ficparo,"%s",str);    doldm=matrix(1,nlstate,1,nlstate);
     for(j=1; j <=i; j++){    
       fscanf(ficpar," %le",&matcov[i][j]);    hstepm=1*YEARM; /* Every year of age */
       if(mle==1){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         printf(" %.5le",matcov[i][j]);    agelim = AGESUP;
         fprintf(ficlog," %.5le",matcov[i][j]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       else      if (stepm >= YEARM) hstepm=1;
         fprintf(ficlog," %.5le",matcov[i][j]);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       fprintf(ficparo," %.5le",matcov[i][j]);      gradg=matrix(1,npar,1,nlstate);
     }      gp=vector(1,nlstate);
     fscanf(ficpar,"\n");      gm=vector(1,nlstate);
     if(mle==1)  
       printf("\n");      for(theta=1; theta <=npar; theta++){
     fprintf(ficlog,"\n");        for(i=1; i<=npar; i++){ /* Computes gradient */
     fprintf(ficparo,"\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
   for(i=1; i <=npar; i++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for(j=i+1;j<=npar;j++)        for(i=1;i<=nlstate;i++)
       matcov[i][j]=matcov[j][i];          gp[i] = prlim[i][i];
          
   if(mle==1)        for(i=1; i<=npar; i++) /* Computes gradient */
     printf("\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   fprintf(ficlog,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */        for(i=1;i<=nlstate;i++)
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
      strcat(rfileres,".");    /* */      } /* End theta */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {      trgradg =matrix(1,nlstate,1,npar);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;      for(j=1; j<=nlstate;j++)
     }        for(theta=1; theta <=npar; theta++)
     fprintf(ficres,"#%s\n",version);          trgradg[j][theta]=gradg[theta][j];
      
     /*-------- data file ----------*/      for(i=1;i<=nlstate;i++)
     if((fic=fopen(datafile,"r"))==NULL)    {        varpl[i][(int)age] =0.;
       printf("Problem with datafile: %s\n", datafile);goto end;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     }      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     n= lastobs;  
     severity = vector(1,maxwav);      fprintf(ficresvpl,"%.0f ",age );
     outcome=imatrix(1,maxwav+1,1,n);      for(i=1; i<=nlstate;i++)
     num=ivector(1,n);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     moisnais=vector(1,n);      fprintf(ficresvpl,"\n");
     annais=vector(1,n);      free_vector(gp,1,nlstate);
     moisdc=vector(1,n);      free_vector(gm,1,nlstate);
     andc=vector(1,n);      free_matrix(gradg,1,npar,1,nlstate);
     agedc=vector(1,n);      free_matrix(trgradg,1,nlstate,1,npar);
     cod=ivector(1,n);    } /* End age */
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    free_vector(xp,1,npar);
     mint=matrix(1,maxwav,1,n);    free_matrix(doldm,1,nlstate,1,npar);
     anint=matrix(1,maxwav,1,n);    free_matrix(dnewm,1,nlstate,1,nlstate);
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);      }
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     i=1;  {
     while (fgets(line, MAXLINE, fic) != NULL)    {    int i, j=0,  i1, k1, l1, t, tj;
       if ((i >= firstobs) && (i <=lastobs)) {    int k2, l2, j1,  z1;
            int k=0,l, cptcode;
         for (j=maxwav;j>=1;j--){    int first=1, first1;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           strcpy(line,stra);    double **dnewm,**doldm;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double *xp;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double *gp, *gm;
         }    double **gradg, **trgradg;
            double **mu;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    double age,agelim, cov[NCOVMAX];
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    char fileresprob[FILENAMELENGTH];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncovcol;j>=1;j--){    double ***varpij;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    strcpy(fileresprob,"prob"); 
         num[i]=atol(stra);    strcat(fileresprob,fileres);
            if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      printf("Problem with resultfile: %s\n", fileresprob);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
         i=i+1;    strcpy(fileresprobcov,"probcov"); 
       }    strcat(fileresprobcov,fileres);
     }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     /* printf("ii=%d", ij);      printf("Problem with resultfile: %s\n", fileresprobcov);
        scanf("%d",i);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   imx=i-1; /* Number of individuals */    }
     strcpy(fileresprobcor,"probcor"); 
   /* for (i=1; i<=imx; i++){    strcat(fileresprobcor,fileres);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      printf("Problem with resultfile: %s\n", fileresprobcor);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }*/    }
    /*  for (i=1; i<=imx; i++){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      if (s[4][i]==9)  s[4][i]=-1;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   /* Calculation of the number of parameter from char model*/    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    pstamp(ficresprob);
   Tprod=ivector(1,15);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   Tvaraff=ivector(1,15);    fprintf(ficresprob,"# Age");
   Tvard=imatrix(1,15,1,2);    pstamp(ficresprobcov);
   Tage=ivector(1,15);          fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
        fprintf(ficresprobcov,"# Age");
   if (strlen(model) >1){    pstamp(ficresprobcor);
     j=0, j1=0, k1=1, k2=1;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     j=nbocc(model,'+');    fprintf(ficresprobcor,"# Age");
     j1=nbocc(model,'*');  
     cptcovn=j+1;  
     cptcovprod=j1;    for(i=1; i<=nlstate;i++)
          for(j=1; j<=(nlstate+ndeath);j++){
     strcpy(modelsav,model);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       printf("Error. Non available option model=%s ",model);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       fprintf(ficlog,"Error. Non available option model=%s ",model);      }  
       goto end;   /* fprintf(ficresprob,"\n");
     }    fprintf(ficresprobcov,"\n");
        fprintf(ficresprobcor,"\n");
     for(i=(j+1); i>=1;i--){   */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    xp=vector(1,npar);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       /*scanf("%d",i);*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       if (strchr(strb,'*')) {  /* Model includes a product */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    first=1;
         if (strcmp(strc,"age")==0) { /* Vn*age */    fprintf(ficgp,"\n# Routine varprob");
           cptcovprod--;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           cutv(strb,stre,strd,'V');    fprintf(fichtm,"\n");
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  
           cptcovage++;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
             Tage[cptcovage]=i;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
             /*printf("stre=%s ", stre);*/    file %s<br>\n",optionfilehtmcov);
         }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         else if (strcmp(strd,"age")==0) { /* or age*Vn */  and drawn. It helps understanding how is the covariance between two incidences.\
           cptcovprod--;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           cutv(strb,stre,strc,'V');    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           Tvar[i]=atoi(stre);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
           cptcovage++;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
           Tage[cptcovage]=i;  standard deviations wide on each axis. <br>\
         }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         else {  /* Age is not in the model */   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    cov[1]=1;
           Tprod[k1]=i;    tj=cptcoveff;
           Tvard[k1][1]=atoi(strc); /* m*/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           Tvard[k1][2]=atoi(stre); /* n */    j1=0;
           Tvar[cptcovn+k2]=Tvard[k1][1];    for(t=1; t<=tj;t++){
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      for(i1=1; i1<=ncodemax[t];i1++){ 
           for (k=1; k<=lastobs;k++)        j1++;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        if  (cptcovn>0) {
           k1++;          fprintf(ficresprob, "\n#********** Variable "); 
           k2=k2+2;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficresprob, "**********\n#\n");
       }          fprintf(ficresprobcov, "\n#********** Variable "); 
       else { /* no more sum */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          fprintf(ficresprobcov, "**********\n#\n");
        /*  scanf("%d",i);*/          
       cutv(strd,strc,strb,'V');          fprintf(ficgp, "\n#********** Variable "); 
       Tvar[i]=atoi(strc);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficgp, "**********\n#\n");
       strcpy(modelsav,stra);            
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          
         scanf("%d",i);*/          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     } /* end of loop + */          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   } /* end model */          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          fprintf(ficresprobcor, "\n#********** Variable ");    
   printf("cptcovprod=%d ", cptcovprod);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);          fprintf(ficresprobcor, "**********\n#");    
   scanf("%d ",i);*/        }
     fclose(fic);        
         for (age=bage; age<=fage; age ++){ 
     /*  if(mle==1){*/          cov[2]=age;
     if (weightopt != 1) { /* Maximisation without weights*/          for (k=1; k<=cptcovn;k++) {
       for(i=1;i<=n;i++) weight[i]=1.0;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     }          }
     /*-calculation of age at interview from date of interview and age at death -*/          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     agev=matrix(1,maxwav,1,imx);          for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (i=1; i<=imx; i++) {          
       for(m=2; (m<= maxwav); m++) {          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
          anint[m][i]=9999;          gp=vector(1,(nlstate)*(nlstate+ndeath));
          s[m][i]=-1;          gm=vector(1,(nlstate)*(nlstate+ndeath));
        }      
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          for(theta=1; theta <=npar; theta++){
       }            for(i=1; i<=npar; i++)
     }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
     for (i=1; i<=imx; i++)  {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            
       for(m=1; (m<= maxwav); m++){            k=0;
         if(s[m][i] >0){            for(i=1; i<= (nlstate); i++){
           if (s[m][i] >= nlstate+1) {              for(j=1; j<=(nlstate+ndeath);j++){
             if(agedc[i]>0)                k=k+1;
               if(moisdc[i]!=99 && andc[i]!=9999)                gp[k]=pmmij[i][j];
                 agev[m][i]=agedc[i];              }
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            }
            else {            
               if (andc[i]!=9999){            for(i=1; i<=npar; i++)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);      
               agev[m][i]=-1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
               }            k=0;
             }            for(i=1; i<=(nlstate); i++){
           }              for(j=1; j<=(nlstate+ndeath);j++){
           else if(s[m][i] !=9){ /* Should no more exist */                k=k+1;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                gm[k]=pmmij[i][j];
             if(mint[m][i]==99 || anint[m][i]==9999)              }
               agev[m][i]=1;            }
             else if(agev[m][i] <agemin){       
               agemin=agev[m][i];            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
             }          }
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            for(theta=1; theta <=npar; theta++)
             }              trgradg[j][theta]=gradg[theta][j];
             /*agev[m][i]=anint[m][i]-annais[i];*/          
             /*   agev[m][i] = age[i]+2*m;*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           else { /* =9 */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
             agev[m][i]=1;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
             s[m][i]=-1;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         }  
         else /*= 0 Unknown */          pmij(pmmij,cov,ncovmodel,x,nlstate);
           agev[m][i]=1;          
       }          k=0;
              for(i=1; i<=(nlstate); i++){
     }            for(j=1; j<=(nlstate+ndeath);j++){
     for (i=1; i<=imx; i++)  {              k=k+1;
       for(m=1; (m<= maxwav); m++){              mu[k][(int) age]=pmmij[i][j];
         if (s[m][i] > (nlstate+ndeath)) {            }
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);            }
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);            for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           goto end;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         }              varpij[i][j][(int)age] = doldm[i][j];
       }  
     }          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);          fprintf(ficresprob,"\n%d ",(int)age);
     free_vector(moisnais,1,n);          fprintf(ficresprobcov,"\n%d ",(int)age);
     free_vector(annais,1,n);          fprintf(ficresprobcor,"\n%d ",(int)age);
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     free_vector(moisdc,1,n);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     free_vector(andc,1,n);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     wav=ivector(1,imx);          }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          i=0;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          for (k=1; k<=(nlstate);k++){
                for (l=1; l<=(nlstate+ndeath);l++){ 
     /* Concatenates waves */              i=i++;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
       Tcode=ivector(1,100);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       ncodemax[1]=1;              }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            }
                }/* end of loop for state */
    codtab=imatrix(1,100,1,10);        } /* end of loop for age */
    h=0;  
    m=pow(2,cptcoveff);        /* Confidence intervalle of pij  */
          /*
    for(k=1;k<=cptcoveff; k++){          fprintf(ficgp,"\nunset parametric;unset label");
      for(i=1; i <=(m/pow(2,k));i++){          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
        for(j=1; j <= ncodemax[k]; j++){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
            h++;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
          }        */
        }  
      }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
    }        first1=1;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        for (k2=1; k2<=(nlstate);k2++){
       codtab[1][2]=1;codtab[2][2]=2; */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
    /* for(i=1; i <=m ;i++){            if(l2==k2) continue;
       for(k=1; k <=cptcovn; k++){            j=(k2-1)*(nlstate+ndeath)+l2;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            for (k1=1; k1<=(nlstate);k1++){
       }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       printf("\n");                if(l1==k1) continue;
       }                i=(k1-1)*(nlstate+ndeath)+l1;
       scanf("%d",i);*/                if(i<=j) continue;
                    for (age=bage; age<=fage; age ++){ 
    /* Calculates basic frequencies. Computes observed prevalence at single age                  if ((int)age %5==0){
        and prints on file fileres'p'. */                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                        cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                        mu1=mu[i][(int) age]/stepm*YEARM ;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    mu2=mu[j][(int) age]/stepm*YEARM;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    c12=cv12/sqrt(v1*v2);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /* Computing eigen value of matrix of covariance */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                          if ((lc2 <0) || (lc1 <0) ){
     /* For Powell, parameters are in a vector p[] starting at p[1]                      printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                      fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                      lc1=fabs(lc1);
                       lc2=fabs(lc2);
     if(mle==1){                    }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }                    /* Eigen vectors */
                        v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     /*--------- results files --------------*/                    /*v21=sqrt(1.-v11*v11); *//* error */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                    v21=(lc1-v1)/cv12*v11;
                      v12=-v21;
                     v22=v11;
    jk=1;                    tnalp=v21/v11;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    if(first1==1){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                      first1=0;
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
    for(i=1,jk=1; i <=nlstate; i++){                    }
      for(k=1; k <=(nlstate+ndeath); k++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
        if (k != i)                    /*printf(fignu*/
          {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
            printf("%d%d ",i,k);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
            fprintf(ficlog,"%d%d ",i,k);                    if(first==1){
            fprintf(ficres,"%1d%1d ",i,k);                      first=0;
            for(j=1; j <=ncovmodel; j++){                      fprintf(ficgp,"\nset parametric;unset label");
              printf("%f ",p[jk]);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
              fprintf(ficlog,"%f ",p[jk]);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
              fprintf(ficres,"%f ",p[jk]);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
              jk++;   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
            }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
            printf("\n");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
            fprintf(ficlog,"\n");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
            fprintf(ficres,"\n");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
          }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
      }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
    if(mle==1){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
      /* Computing hessian and covariance matrix */                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
      ftolhess=ftol; /* Usually correct */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
      hesscov(matcov, p, npar, delti, ftolhess, func);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
    }                    }else{
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                      first=0;
    printf("# Scales (for hessian or gradient estimation)\n");                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
    for(i=1,jk=1; i <=nlstate; i++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
      for(j=1; j <=nlstate+ndeath; j++){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
        if (j!=i) {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
          fprintf(ficres,"%1d%1d",i,j);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
          printf("%1d%1d",i,j);                    }/* if first */
          fprintf(ficlog,"%1d%1d",i,j);                  } /* age mod 5 */
          for(k=1; k<=ncovmodel;k++){                } /* end loop age */
            printf(" %.5e",delti[jk]);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
            fprintf(ficlog," %.5e",delti[jk]);                first=1;
            fprintf(ficres," %.5e",delti[jk]);              } /*l12 */
            jk++;            } /* k12 */
          }          } /*l1 */
          printf("\n");        }/* k1 */
          fprintf(ficlog,"\n");      } /* loop covariates */
          fprintf(ficres,"\n");    }
        }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
    }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
        free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
    k=1;    free_vector(xp,1,npar);
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fclose(ficresprob);
    if(mle==1)    fclose(ficresprobcov);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fclose(ficresprobcor);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fflush(ficgp);
    for(i=1;i<=npar;i++){    fflush(fichtmcov);
      /*  if (k>nlstate) k=1;  }
          i1=(i-1)/(ncovmodel*nlstate)+1;  
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
          printf("%s%d%d",alph[k],i1,tab[i]);*/  /******************* Printing html file ***********/
      fprintf(ficres,"%3d",i);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
      if(mle==1)                    int lastpass, int stepm, int weightopt, char model[],\
        printf("%3d",i);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
      fprintf(ficlog,"%3d",i);                    int popforecast, int estepm ,\
      for(j=1; j<=i;j++){                    double jprev1, double mprev1,double anprev1, \
        fprintf(ficres," %.5e",matcov[i][j]);                    double jprev2, double mprev2,double anprev2){
        if(mle==1)    int jj1, k1, i1, cpt;
          printf(" %.5e",matcov[i][j]);  
        fprintf(ficlog," %.5e",matcov[i][j]);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
      fprintf(ficres,"\n");  </ul>");
      if(mle==1)     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
        printf("\n");   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
      fprintf(ficlog,"\n");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      k++;     fprintf(fichtm,"\
    }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                 stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
    while((c=getc(ficpar))=='#' && c!= EOF){     fprintf(fichtm,"\
      ungetc(c,ficpar);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
      fgets(line, MAXLINE, ficpar);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      puts(line);     fprintf(fichtm,"\
      fputs(line,ficparo);   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
    }     <a href=\"%s\">%s</a> <br>\n",
    ungetc(c,ficpar);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
    estepm=0;     fprintf(fichtm,"\
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   - Population projections by age and states: \
    if (estepm==0 || estepm < stepm) estepm=stepm;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
    if (fage <= 2) {  
      bage = ageminpar;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      fage = agemaxpar;  
    }   m=cptcoveff;
       if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   jj1=0;
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   for(k1=1; k1<=m;k1++){
         for(i1=1; i1<=ncodemax[k1];i1++){
    while((c=getc(ficpar))=='#' && c!= EOF){       jj1++;
      ungetc(c,ficpar);       if (cptcovn > 0) {
      fgets(line, MAXLINE, ficpar);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
      puts(line);         for (cpt=1; cpt<=cptcoveff;cpt++) 
      fputs(line,ficparo);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    ungetc(c,ficpar);       }
         /* Pij */
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       /* Quasi-incidences */
           fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    while((c=getc(ficpar))=='#' && c!= EOF){   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
      ungetc(c,ficpar);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
      fgets(line, MAXLINE, ficpar);         /* Period (stable) prevalence in each health state */
      puts(line);         for(cpt=1; cpt<nlstate;cpt++){
      fputs(line,ficparo);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
    }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
    ungetc(c,ficpar);         }
         for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       }
      } /* end i1 */
   fscanf(ficpar,"pop_based=%d\n",&popbased);   }/* End k1 */
   fprintf(ficparo,"pop_based=%d\n",popbased);     fprintf(fichtm,"</ul>");
   fprintf(ficres,"pop_based=%d\n",popbased);    
    
   while((c=getc(ficpar))=='#' && c!= EOF){   fprintf(fichtm,"\
     ungetc(c,ficpar);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     fgets(line, MAXLINE, ficpar);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     puts(line);  
     fputs(line,ficparo);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   ungetc(c,ficpar);   fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 while((c=getc(ficpar))=='#' && c!= EOF){   fprintf(fichtm,"\
     ungetc(c,ficpar);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     fgets(line, MAXLINE, ficpar);     <a href=\"%s\">%s</a> <br>\n</li>",
     puts(line);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     fputs(line,ficparo);   fprintf(fichtm,"\
   }   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   ungetc(c,ficpar);     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);   fprintf(fichtm,"\
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 /*------------ gnuplot -------------*/   fprintf(fichtm,"\
   strcpy(optionfilegnuplot,optionfilefiname);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   strcat(optionfilegnuplot,".gp");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   fclose(ficgp);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  /*      <br>",fileres,fileres,fileres,fileres); */
 /*--------- index.htm --------*/  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   strcpy(optionfilehtm,optionfile);   fflush(fichtm);
   strcat(optionfilehtm,".htm");   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);   m=cptcoveff;
   }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n   jj1=0;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n   for(k1=1; k1<=m;k1++){
 \n     for(i1=1; i1<=ncodemax[k1];i1++){
 Total number of observations=%d <br>\n       jj1++;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n       if (cptcovn > 0) {
 <hr  size=\"2\" color=\"#EC5E5E\">         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  <ul><li><h4>Parameter files</h4>\n         for (cpt=1; cpt<=cptcoveff;cpt++) 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);       }
   fclose(fichtm);       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 /*------------ free_vector  -------------*/       }
  chdir(path);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
  free_ivector(wav,1,imx);  true period expectancies (those weighted with period prevalences are also\
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);   drawn in addition to the population based expectancies computed using\
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     observed and cahotic prevalences: %s%d.png<br>\
  free_ivector(num,1,n);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
  free_vector(agedc,1,n);     } /* end i1 */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/   }/* End k1 */
  fclose(ficparo);   fprintf(fichtm,"</ul>");
  fclose(ficres);   fflush(fichtm);
   }
   
   /*--------------- Prevalence limit --------------*/  /******************* Gnuplot file **************/
    void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);    char dirfileres[132],optfileres[132];
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    int ng=0;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   }  /*     printf("Problem with file %s",optionfilegnuplot); */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);  /*   } */
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");    /*#ifdef windows */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   fprintf(ficrespl,"\n");      /*#endif */
      m=pow(2,cptcoveff);
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(dirfileres,optionfilefiname);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(optfileres,"vpl");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   /* 1eme*/
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (cpt=1; cpt<= nlstate ; cpt ++) {
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     for (k1=1; k1<= m ; k1 ++) {
   k=0;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   agebase=ageminpar;       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   agelim=agemaxpar;       fprintf(ficgp,"set xlabel \"Age\" \n\
   ftolpl=1.e-10;  set ylabel \"Probability\" \n\
   i1=cptcoveff;  set ter png small\n\
   if (cptcovn < 1){i1=1;}  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       for (i=1; i<= nlstate ; i ++) {
         k=k+1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/         else        fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficrespl,"\n#******");       }
         printf("\n#******");       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         fprintf(ficlog,"\n#******");       for (i=1; i<= nlstate ; i ++) {
         for(j=1;j<=cptcoveff;j++) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       } 
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         }       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficrespl,"******\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         printf("******\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficlog,"******\n");       }  
               fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
         for (age=agebase; age<=agelim; age++){     }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
           fprintf(ficrespl,"%.0f",age );    /*2 eme*/
           for(i=1; i<=nlstate;i++)    
           fprintf(ficrespl," %.5f", prlim[i][i]);    for (k1=1; k1<= m ; k1 ++) { 
           fprintf(ficrespl,"\n");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       }      
     }      for (i=1; i<= nlstate+1 ; i ++) {
   fclose(ficrespl);        k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   /*------------- h Pij x at various ages ------------*/        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        }   
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   printf("Computing pij: result on file '%s' \n", filerespij);        for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }   
   /*if (stepm<=24) stepsize=2;*/        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   agelim=AGESUP;        for (j=1; j<= nlstate+1 ; j ++) {
   hstepm=stepsize*YEARM; /* Every year of age */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
   /* hstepm=1;   aff par mois*/        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
   k=0;      }
   for(cptcov=1;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;    /*3eme*/
         fprintf(ficrespij,"\n#****** ");    
         for(j=1;j<=cptcoveff;j++)    for (k1=1; k1<= m ; k1 ++) { 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (cpt=1; cpt<= nlstate ; cpt ++) {
         fprintf(ficrespij,"******\n");        /*       k=2+nlstate*(2*cpt-2); */
                k=2+(nlstate+1)*(cpt-1);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficgp,"set ter png small\n\
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           oldm=oldms;savm=savms;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficrespij,"# Age");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           for(i=1; i<=nlstate;i++)          
             for(j=1; j<=nlstate+ndeath;j++)        */
               fprintf(ficrespij," %1d-%1d",i,j);        for (i=1; i< nlstate ; i ++) {
           fprintf(ficrespij,"\n");          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
            for (h=0; h<=nhstepm; h++){          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          
             for(i=1; i<=nlstate;i++)        } 
               for(j=1; j<=nlstate+ndeath;j++)        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      }
             fprintf(ficrespij,"\n");    }
              }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* CV preval stable (period) */
           fprintf(ficrespij,"\n");    for (k1=1; k1<= m ; k1 ++) { 
         }      for (cpt=1; cpt<=nlstate ; cpt ++) {
     }        k=3;
   }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   fclose(ficrespij);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
   /*---------- Forecasting ------------------*/          fprintf(ficgp,"+$%d",k+i+1);
   if((stepm == 1) && (strcmp(model,".")==0)){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        l=3+(nlstate+ndeath)*cpt;
   }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   else{        for (i=1; i< nlstate ; i ++) {
     erreur=108;          l=3+(nlstate+ndeath)*cpt;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          fprintf(ficgp,"+$%d",l+i+1);
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        }
   }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
        } 
     }  
   /*---------- Health expectancies and variances ------------*/    
     /* proba elementaires */
   strcpy(filerest,"t");    for(i=1,jk=1; i <=nlstate; i++){
   strcat(filerest,fileres);      for(k=1; k <=(nlstate+ndeath); k++){
   if((ficrest=fopen(filerest,"w"))==NULL) {        if (k != i) {
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          for(j=1; j <=ncovmodel; j++){
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   }            jk++; 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            fprintf(ficgp,"\n");
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);          }
         }
       }
   strcpy(filerese,"e");     }
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       for(jk=1; jk <=m; jk++) {
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   }         if (ng==2)
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);         else
            fprintf(ficgp,"\nset title \"Probability\"\n");
   strcpy(fileresv,"v");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   strcat(fileresv,fileres);         i=1;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {         for(k2=1; k2<=nlstate; k2++) {
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);           k3=i;
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);           for(k=1; k<=(nlstate+ndeath); k++) {
   }             if (k != k2){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);               if(ng==2)
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   calagedate=-1;               else
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
   k=0;               for(j=3; j <=ncovmodel; j++) {
   for(cptcov=1;cptcov<=i1;cptcov++){                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       k=k+1;                   ij++;
       fprintf(ficrest,"\n#****** ");                 }
       for(j=1;j<=cptcoveff;j++)                 else
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       fprintf(ficrest,"******\n");               }
                fprintf(ficgp,")/(1");
       fprintf(ficreseij,"\n#****** ");               
       for(j=1;j<=cptcoveff;j++)               for(k1=1; k1 <=nlstate; k1++){   
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       fprintf(ficreseij,"******\n");                 ij=1;
                  for(j=3; j <=ncovmodel; j++){
       fprintf(ficresvij,"\n#****** ");                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       for(j=1;j<=cptcoveff;j++)                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                     ij++;
       fprintf(ficresvij,"******\n");                   }
                    else
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       oldm=oldms;savm=savms;                 }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                   fprintf(ficgp,")");
                 }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       oldm=oldms;savm=savms;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);               i=i+ncovmodel;
       if(popbased==1){             }
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);           } /* end k */
        }         } /* end k2 */
        } /* end jk */
       } /* end ng */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     fflush(ficgp); 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  }  /* end gnuplot */
       fprintf(ficrest,"\n");  
   
       epj=vector(1,nlstate+1);  /*************** Moving average **************/
       for(age=bage; age <=fage ;age++){  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {    int i, cpt, cptcod;
           for(i=1; i<=nlstate;i++)    int modcovmax =1;
             prlim[i][i]=probs[(int)age][i][k];    int mobilavrange, mob;
         }    double age;
          
         fprintf(ficrest," %4.0f",age);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                             a covariate has 2 modalities */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
           }      if(mobilav==1) mobilavrange=5; /* default */
           epj[nlstate+1] +=epj[j];      else mobilavrange=mobilav;
         }      for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
         for(i=1, vepp=0.;i <=nlstate;i++)          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           for(j=1;j <=nlstate;j++)            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
             vepp += vareij[i][j][(int)age];      /* We keep the original values on the extreme ages bage, fage and for 
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         for(j=1;j <=nlstate;j++){         we use a 5 terms etc. until the borders are no more concerned. 
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      */ 
         }      for (mob=3;mob <=mobilavrange;mob=mob+2){
         fprintf(ficrest,"\n");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       }          for (i=1; i<=nlstate;i++){
     }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 free_matrix(mint,1,maxwav,1,n);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     free_vector(weight,1,n);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   fclose(ficreseij);                }
   fclose(ficresvij);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   fclose(ficrest);            }
   fclose(ficpar);          }
   free_vector(epj,1,nlstate+1);        }/* end age */
        }/* end mob */
   /*------- Variance limit prevalence------*/      }else return -1;
     return 0;
   strcpy(fileresvpl,"vpl");  }/* End movingaverage */
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  /************** Forecasting ******************/
     exit(0);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   }    /* proj1, year, month, day of starting projection 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);       agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
   k=0;       anproj2 year of en of projection (same day and month as proj1).
   for(cptcov=1;cptcov<=i1;cptcov++){    */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       k=k+1;    int *popage;
       fprintf(ficresvpl,"\n#****** ");    double agec; /* generic age */
       for(j=1;j<=cptcoveff;j++)    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double *popeffectif,*popcount;
       fprintf(ficresvpl,"******\n");    double ***p3mat;
          double ***mobaverage;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    char fileresf[FILENAMELENGTH];
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    agelim=AGESUP;
     }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
  }   
     strcpy(fileresf,"f"); 
   fclose(ficresvpl);    strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
   /*---------- End : free ----------------*/      printf("Problem with forecast resultfile: %s\n", fileresf);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
      }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    printf("Computing forecasting: result on file '%s' \n", fileresf);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
    
      if (cptcoveff==0) ncodemax[cptcoveff]=1;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    if (mobilav!=0) {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   free_matrix(matcov,1,npar,1,npar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   free_vector(delti,1,npar);      }
   free_matrix(agev,1,maxwav,1,imx);    }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
   fprintf(fichtm,"\n</body>");    if (stepm<=12) stepsize=1;
   fclose(fichtm);    if(estepm < stepm){
   fclose(ficgp);      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
     else  hstepm=estepm;   
   if(erreur >0){  
     printf("End of Imach with error or warning %d\n",erreur);    hstepm=hstepm/stepm; 
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   }else{                                 fractional in yp1 */
    printf("End of Imach\n");    anprojmean=yp;
    fprintf(ficlog,"End of Imach\n");    yp2=modf((yp1*12),&yp);
   }    mprojmean=yp;
   printf("See log file on %s\n",filelog);    yp1=modf((yp2*30.5),&yp);
   fclose(ficlog);    jprojmean=yp;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    if(jprojmean==0) jprojmean=1;
      if(mprojmean==0) jprojmean=1;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/    i1=cptcoveff;
   /*------ End -----------*/    if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
  end:    
 #ifdef windows    fprintf(ficresf,"#****** Routine prevforecast **\n");
   /* chdir(pathcd);*/  
 #endif  /*            if (h==(int)(YEARM*yearp)){ */
  /*system("wgnuplot graph.plt");*/    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
  /*system("../gp37mgw/wgnuplot graph.plt");*/      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
  /*system("cd ../gp37mgw");*/        k=k+1;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        fprintf(ficresf,"\n#******");
  strcpy(plotcmd,GNUPLOTPROGRAM);        for(j=1;j<=cptcoveff;j++) {
  strcat(plotcmd," ");          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  strcat(plotcmd,optionfilegnuplot);        }
  system(plotcmd);        fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 #ifdef windows        for(j=1; j<=nlstate+ndeath;j++){ 
   while (z[0] != 'q') {          for(i=1; i<=nlstate;i++)              
     /* chdir(path); */            fprintf(ficresf," p%d%d",i,j);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          fprintf(ficresf," p.%d",j);
     scanf("%s",z);        }
     if (z[0] == 'c') system("./imach");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     else if (z[0] == 'e') system(optionfilehtm);          fprintf(ficresf,"\n");
     else if (z[0] == 'g') system(plotcmd);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     else if (z[0] == 'q') exit(0);  
   }          for (agec=fage; agec>=(ageminpar-1); agec--){ 
 #endif            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 }            nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8); /* hard coded ? */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); 
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* For V3*V2 Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) {
               h=1;
               codtab[h][k]=j;
               codtab[h][Tvar[k]]=j;
             }
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.140


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>