Diff for /imach/src/imach.c between versions 1.35 and 1.142

version 1.35, 2002/03/26 17:08:39 version 1.142, 2014/01/26 03:57:36
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.142  2014/01/26 03:57:36  brouard
      Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.141  2014/01/26 02:42:01  brouard
   case of a health survey which is our main interest) -2- at least a    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.140  2011/09/02 10:37:54  brouard
   computed from the time spent in each health state according to a    Summary: times.h is ok with mingw32 now.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.139  2010/06/14 07:50:17  brouard
   simplest model is the multinomial logistic model where pij is the    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   probabibility to be observed in state j at the second wave    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.138  2010/04/30 18:19:40  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    *** empty log message ***
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.137  2010/04/29 18:11:38  brouard
   you to do it.  More covariates you add, slower the    (Module): Checking covariates for more complex models
   convergence.    than V1+V2. A lot of change to be done. Unstable.
   
   The advantage of this computer programme, compared to a simple    Revision 1.136  2010/04/26 20:30:53  brouard
   multinomial logistic model, is clear when the delay between waves is not    (Module): merging some libgsl code. Fixing computation
   identical for each individual. Also, if a individual missed an    of likelione (using inter/intrapolation if mle = 0) in order to
   intermediate interview, the information is lost, but taken into    get same likelihood as if mle=1.
   account using an interpolation or extrapolation.      Some cleaning of code and comments added.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.135  2009/10/29 15:33:14  brouard
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.134  2009/10/29 13:18:53  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.133  2009/07/06 10:21:25  brouard
   hPijx.    just nforces
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.132  2009/07/06 08:22:05  brouard
   of the life expectancies. It also computes the prevalence limits.    Many tings
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.131  2009/06/20 16:22:47  brouard
            Institut national d'études démographiques, Paris.    Some dimensions resccaled
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.130  2009/05/26 06:44:34  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Max Covariate is now set to 20 instead of 8. A
   software can be distributed freely for non commercial use. Latest version    lot of cleaning with variables initialized to 0. Trying to make
   can be accessed at http://euroreves.ined.fr/imach .    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   **********************************************************************/  
      Revision 1.129  2007/08/31 13:49:27  lievre
 #include <math.h>    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.128  2006/06/30 13:02:05  brouard
 #include <unistd.h>    (Module): Clarifications on computing e.j
   
 #define MAXLINE 256    Revision 1.127  2006/04/28 18:11:50  brouard
 #define GNUPLOTPROGRAM "wgnuplot"    (Module): Yes the sum of survivors was wrong since
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    imach-114 because nhstepm was no more computed in the age
 #define FILENAMELENGTH 80    loop. Now we define nhstepma in the age loop.
 /*#define DEBUG*/    (Module): In order to speed up (in case of numerous covariates) we
 #define windows    compute health expectancies (without variances) in a first step
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    and then all the health expectancies with variances or standard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    deviation (needs data from the Hessian matrices) which slows the
     computation.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    In the future we should be able to stop the program is only health
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    expectancies and graph are needed without standard deviations.
   
 #define NINTERVMAX 8    Revision 1.126  2006/04/28 17:23:28  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Yes the sum of survivors was wrong since
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    imach-114 because nhstepm was no more computed in the age
 #define NCOVMAX 8 /* Maximum number of covariates */    loop. Now we define nhstepma in the age loop.
 #define MAXN 20000    Version 0.98h
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.125  2006/04/04 15:20:31  lievre
 #define AGEBASE 40    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   
 int erreur; /* Error number */    Revision 1.124  2006/03/22 17:13:53  lievre
 int nvar;    Parameters are printed with %lf instead of %f (more numbers after the comma).
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    The log-likelihood is printed in the log file
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.123  2006/03/20 10:52:43  brouard
 int ndeath=1; /* Number of dead states */    * imach.c (Module): <title> changed, corresponds to .htm file
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    name. <head> headers where missing.
 int popbased=0;  
     * imach.c (Module): Weights can have a decimal point as for
 int *wav; /* Number of waves for this individuual 0 is possible */    English (a comma might work with a correct LC_NUMERIC environment,
 int maxwav; /* Maxim number of waves */    otherwise the weight is truncated).
 int jmin, jmax; /* min, max spacing between 2 waves */    Modification of warning when the covariates values are not 0 or
 int mle, weightopt;    1.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Version 0.98g
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.122  2006/03/20 09:45:41  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Weights can have a decimal point as for
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    English (a comma might work with a correct LC_NUMERIC environment,
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    otherwise the weight is truncated).
 FILE *ficgp,*ficresprob,*ficpop;    Modification of warning when the covariates values are not 0 or
 FILE *ficreseij;    1.
   char filerese[FILENAMELENGTH];    Version 0.98g
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.121  2006/03/16 17:45:01  lievre
  FILE  *ficresvpl;    * imach.c (Module): Comments concerning covariates added
   char fileresvpl[FILENAMELENGTH];  
     * imach.c (Module): refinements in the computation of lli if
 #define NR_END 1    status=-2 in order to have more reliable computation if stepm is
 #define FREE_ARG char*    not 1 month. Version 0.98f
 #define FTOL 1.0e-10  
     Revision 1.120  2006/03/16 15:10:38  lievre
 #define NRANSI    (Module): refinements in the computation of lli if
 #define ITMAX 200    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 #define TOL 2.0e-4  
     Revision 1.119  2006/03/15 17:42:26  brouard
 #define CGOLD 0.3819660    (Module): Bug if status = -2, the loglikelihood was
 #define ZEPS 1.0e-10    computed as likelihood omitting the logarithm. Version O.98e
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.118  2006/03/14 18:20:07  brouard
 #define GOLD 1.618034    (Module): varevsij Comments added explaining the second
 #define GLIMIT 100.0    table of variances if popbased=1 .
 #define TINY 1.0e-20    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 static double maxarg1,maxarg2;    (Module): Version 0.98d
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.117  2006/03/14 17:16:22  brouard
      (Module): varevsij Comments added explaining the second
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    table of variances if popbased=1 .
 #define rint(a) floor(a+0.5)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 static double sqrarg;    (Module): Version 0.98d
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 int imx;    varian-covariance of ej. is needed (Saito).
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.114  2006/02/26 12:57:58  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Some improvements in processing parameter
 double **pmmij, ***probs, ***mobaverage;    filename with strsep.
 double dateintmean=0;  
     Revision 1.113  2006/02/24 14:20:24  brouard
 double *weight;    (Module): Memory leaks checks with valgrind and:
 int **s; /* Status */    datafile was not closed, some imatrix were not freed and on matrix
 double *agedc, **covar, idx;    allocation too.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.112  2006/01/30 09:55:26  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.111  2006/01/25 20:38:18  brouard
 /**************** split *************************/    (Module): Lots of cleaning and bugs added (Gompertz)
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): Comments can be added in data file. Missing date values
 {    can be a simple dot '.'.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.109  2006/01/24 19:37:15  brouard
 #ifdef windows    (Module): Comments (lines starting with a #) are allowed in data.
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Revision 1.108  2006/01/19 18:05:42  lievre
    s = strrchr( path, '/' );            /* find last / */    Gnuplot problem appeared...
 #endif    To be fixed
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.107  2006/01/19 16:20:37  brouard
       extern char       *getwd( );    Test existence of gnuplot in imach path
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.106  2006/01/19 13:24:36  brouard
 #else    Some cleaning and links added in html output
       extern char       *getcwd( );  
     Revision 1.105  2006/01/05 20:23:19  lievre
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    *** empty log message ***
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.104  2005/09/30 16:11:43  lievre
       }    (Module): sump fixed, loop imx fixed, and simplifications.
       strcpy( name, path );             /* we've got it */    (Module): If the status is missing at the last wave but we know
    } else {                             /* strip direcotry from path */    that the person is alive, then we can code his/her status as -2
       s++;                              /* after this, the filename */    (instead of missing=-1 in earlier versions) and his/her
       l2 = strlen( s );                 /* length of filename */    contributions to the likelihood is 1 - Prob of dying from last
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    health status (= 1-p13= p11+p12 in the easiest case of somebody in
       strcpy( name, s );                /* save file name */    the healthy state at last known wave). Version is 0.98
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.103  2005/09/30 15:54:49  lievre
    }    (Module): sump fixed, loop imx fixed, and simplifications.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.102  2004/09/15 17:31:30  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Add the possibility to read data file including tab characters.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.101  2004/09/15 10:38:38  brouard
 #endif    Fix on curr_time
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.100  2004/07/12 18:29:06  brouard
    strcpy(ext,s);                       /* save extension */    Add version for Mac OS X. Just define UNIX in Makefile
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.99  2004/06/05 08:57:40  brouard
    strncpy( finame, name, l1-l2);    *** empty log message ***
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.98  2004/05/16 15:05:56  brouard
 }    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 /******************************************/    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 void replace(char *s, char*t)    cross-longitudinal survey is different from the mortality estimated
 {    from other sources like vital statistic data.
   int i;  
   int lg=20;    The same imach parameter file can be used but the option for mle should be -3.
   i=0;  
   lg=strlen(t);    Agnès, who wrote this part of the code, tried to keep most of the
   for(i=0; i<= lg; i++) {    former routines in order to include the new code within the former code.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    The output is very simple: only an estimate of the intercept and of
   }    the slope with 95% confident intervals.
 }  
     Current limitations:
 int nbocc(char *s, char occ)    A) Even if you enter covariates, i.e. with the
 {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   int i,j=0;    B) There is no computation of Life Expectancy nor Life Table.
   int lg=20;  
   i=0;    Revision 1.97  2004/02/20 13:25:42  lievre
   lg=strlen(s);    Version 0.96d. Population forecasting command line is (temporarily)
   for(i=0; i<= lg; i++) {    suppressed.
   if  (s[i] == occ ) j++;  
   }    Revision 1.96  2003/07/15 15:38:55  brouard
   return j;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 }    rewritten within the same printf. Workaround: many printfs.
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.95  2003/07/08 07:54:34  brouard
 {    * imach.c (Repository):
   int i,lg,j,p=0;    (Repository): Using imachwizard code to output a more meaningful covariance
   i=0;    matrix (cov(a12,c31) instead of numbers.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.94  2003/06/27 13:00:02  brouard
   }    Just cleaning
   
   lg=strlen(t);    Revision 1.93  2003/06/25 16:33:55  brouard
   for(j=0; j<p; j++) {    (Module): On windows (cygwin) function asctime_r doesn't
     (u[j] = t[j]);    exist so I changed back to asctime which exists.
   }    (Module): Version 0.96b
      u[p]='\0';  
     Revision 1.92  2003/06/25 16:30:45  brouard
    for(j=0; j<= lg; j++) {    (Module): On windows (cygwin) function asctime_r doesn't
     if (j>=(p+1))(v[j-p-1] = t[j]);    exist so I changed back to asctime which exists.
   }  
 }    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 /********************** nrerror ********************/    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 void nrerror(char error_text[])    is stamped in powell.  We created a new html file for the graphs
 {    concerning matrix of covariance. It has extension -cov.htm.
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.90  2003/06/24 12:34:15  brouard
   exit(1);    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
 /*********************** vector *******************/    of the covariance matrix to be input.
 double *vector(int nl, int nh)  
 {    Revision 1.89  2003/06/24 12:30:52  brouard
   double *v;    (Module): Some bugs corrected for windows. Also, when
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    mle=-1 a template is output in file "or"mypar.txt with the design
   if (!v) nrerror("allocation failure in vector");    of the covariance matrix to be input.
   return v-nl+NR_END;  
 }    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.87  2003/06/18 12:26:01  brouard
 {    Version 0.96
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 /************************ivector *******************************/    routine fileappend.
 int *ivector(long nl,long nh)  
 {    Revision 1.85  2003/06/17 13:12:43  brouard
   int *v;    * imach.c (Repository): Check when date of death was earlier that
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    current date of interview. It may happen when the death was just
   if (!v) nrerror("allocation failure in ivector");    prior to the death. In this case, dh was negative and likelihood
   return v-nl+NR_END;    was wrong (infinity). We still send an "Error" but patch by
 }    assuming that the date of death was just one stepm after the
     interview.
 /******************free ivector **************************/    (Repository): Because some people have very long ID (first column)
 void free_ivector(int *v, long nl, long nh)    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
   free((FREE_ARG)(v+nl-NR_END));    truncation)
 }    (Repository): No more line truncation errors.
   
 /******************* imatrix *******************************/    Revision 1.84  2003/06/13 21:44:43  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    * imach.c (Repository): Replace "freqsummary" at a correct
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    place. It differs from routine "prevalence" which may be called
 {    many times. Probs is memory consuming and must be used with
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    parcimony.
   int **m;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    
   /* allocate pointers to rows */    Revision 1.83  2003/06/10 13:39:11  lievre
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    *** empty log message ***
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.82  2003/06/05 15:57:20  brouard
   m -= nrl;    Add log in  imach.c and  fullversion number is now printed.
    
    */
   /* allocate rows and set pointers to them */  /*
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));     Interpolated Markov Chain
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Short summary of the programme:
   m[nrl] -= ncl;    
      This program computes Healthy Life Expectancies from
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
      first survey ("cross") where individuals from different ages are
   /* return pointer to array of pointers to rows */    interviewed on their health status or degree of disability (in the
   return m;    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /****************** free_imatrix *************************/    computed from the time spent in each health state according to a
 void free_imatrix(m,nrl,nrh,ncl,nch)    model. More health states you consider, more time is necessary to reach the
       int **m;    Maximum Likelihood of the parameters involved in the model.  The
       long nch,ncl,nrh,nrl;    simplest model is the multinomial logistic model where pij is the
      /* free an int matrix allocated by imatrix() */    probability to be observed in state j at the second wave
 {    conditional to be observed in state i at the first wave. Therefore
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   free((FREE_ARG) (m+nrl-NR_END));    'age' is age and 'sex' is a covariate. If you want to have a more
 }    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 /******************* matrix *******************************/    you to do it.  More covariates you add, slower the
 double **matrix(long nrl, long nrh, long ncl, long nch)    convergence.
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    The advantage of this computer programme, compared to a simple
   double **m;    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    intermediate interview, the information is lost, but taken into
   if (!m) nrerror("allocation failure 1 in matrix()");    account using an interpolation or extrapolation.  
   m += NR_END;  
   m -= nrl;    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    split into an exact number (nh*stepm) of unobserved intermediate
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    states. This elementary transition (by month, quarter,
   m[nrl] += NR_END;    semester or year) is modelled as a multinomial logistic.  The hPx
   m[nrl] -= ncl;    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    hPijx.
   return m;  
 }    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence. 
 /*************************free matrix ************************/    
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 {             Institut national d'études démographiques, Paris.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    This software have been partly granted by Euro-REVES, a concerted action
   free((FREE_ARG)(m+nrl-NR_END));    from the European Union.
 }    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 /******************* ma3x *******************************/    can be accessed at http://euroreves.ined.fr/imach .
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   double ***m;    
     **********************************************************************/
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /*
   if (!m) nrerror("allocation failure 1 in matrix()");    main
   m += NR_END;    read parameterfile
   m -= nrl;    read datafile
     concatwav
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    freqsummary
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (mle >= 1)
   m[nrl] += NR_END;      mlikeli
   m[nrl] -= ncl;    print results files
     if mle==1 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));        begin-prev-date,...
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    open gnuplot file
   m[nrl][ncl] += NR_END;    open html file
   m[nrl][ncl] -= nll;    period (stable) prevalence
   for (j=ncl+1; j<=nch; j++)     for age prevalim()
     m[nrl][j]=m[nrl][j-1]+nlay;    h Pij x
      variance of p varprob
   for (i=nrl+1; i<=nrh; i++) {    forecasting if prevfcast==1 prevforecast call prevalence()
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    health expectancies
     for (j=ncl+1; j<=nch; j++)    Variance-covariance of DFLE
       m[i][j]=m[i][j-1]+nlay;    prevalence()
   }     movingaverage()
   return m;    varevsij() 
 }    if popbased==1 varevsij(,popbased)
     total life expectancies
 /*************************free ma3x ************************/    Variance of period (stable) prevalence
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)   end
 {  */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  
 }   
   #include <math.h>
 /***************** f1dim *************************/  #include <stdio.h>
 extern int ncom;  #include <stdlib.h>
 extern double *pcom,*xicom;  #include <string.h>
 extern double (*nrfunc)(double []);  #include <unistd.h>
    
 double f1dim(double x)  #include <limits.h>
 {  #include <sys/types.h>
   int j;  #include <sys/stat.h>
   double f;  #include <errno.h>
   double *xt;  extern int errno;
    
   xt=vector(1,ncom);  #ifdef LINUX
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #include <time.h>
   f=(*nrfunc)(xt);  #include "timeval.h"
   free_vector(xt,1,ncom);  #else
   return f;  #include <sys/time.h>
 }  #endif
   
 /*****************brent *************************/  #ifdef GSL
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #include <gsl/gsl_errno.h>
 {  #include <gsl/gsl_multimin.h>
   int iter;  #endif
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /* #include <libintl.h> */
   double ftemp;  /* #define _(String) gettext (String) */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
    
   a=(ax < cx ? ax : cx);  #define GNUPLOTPROGRAM "gnuplot"
   b=(ax > cx ? ax : cx);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   x=w=v=bx;  #define FILENAMELENGTH 132
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     xm=0.5*(a+b);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
     printf(".");fflush(stdout);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define NINTERVMAX 8
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #endif  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define NCOVMAX 20 /* Maximum number of covariates */
       *xmin=x;  #define MAXN 20000
       return fx;  #define YEARM 12. /* Number of months per year */
     }  #define AGESUP 130
     ftemp=fu;  #define AGEBASE 40
     if (fabs(e) > tol1) {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
       r=(x-w)*(fx-fv);  #ifdef UNIX
       q=(x-v)*(fx-fw);  #define DIRSEPARATOR '/'
       p=(x-v)*q-(x-w)*r;  #define CHARSEPARATOR "/"
       q=2.0*(q-r);  #define ODIRSEPARATOR '\\'
       if (q > 0.0) p = -p;  #else
       q=fabs(q);  #define DIRSEPARATOR '\\'
       etemp=e;  #define CHARSEPARATOR "\\"
       e=d;  #define ODIRSEPARATOR '/'
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #endif
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  /* $Id$ */
         d=p/q;  /* $State$ */
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  char version[]="Imach version 0.98nR, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
           d=SIGN(tol1,xm-x);  char fullversion[]="$Revision$ $Date$"; 
       }  char strstart[80];
     } else {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     }  int nvar=0, nforce=0; /* Number of variables, number of forces */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
     fu=(*f)(u);  int npar=NPARMAX;
     if (fu <= fx) {  int nlstate=2; /* Number of live states */
       if (u >= x) a=x; else b=x;  int ndeath=1; /* Number of dead states */
       SHFT(v,w,x,u)  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
         SHFT(fv,fw,fx,fu)  int popbased=0;
         } else {  
           if (u < x) a=u; else b=u;  int *wav; /* Number of waves for this individuual 0 is possible */
           if (fu <= fw || w == x) {  int maxwav=0; /* Maxim number of waves */
             v=w;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
             w=u;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
             fv=fw;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
             fw=fu;                     to the likelihood and the sum of weights (done by funcone)*/
           } else if (fu <= fv || v == x || v == w) {  int mle=1, weightopt=0;
             v=u;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
             fv=fu;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
           }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
         }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   }  double jmean=1; /* Mean space between 2 waves */
   nrerror("Too many iterations in brent");  double **oldm, **newm, **savm; /* Working pointers to matrices */
   *xmin=x;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   return fx;  /*FILE *fic ; */ /* Used in readdata only */
 }  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 /****************** mnbrak ***********************/  int globpr=0; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  long ipmx=0; /* Number of contributions */
             double (*func)(double))  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   double ulim,u,r,q, dum;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   double fu;  FILE *ficresilk;
    FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   *fa=(*func)(*ax);  FILE *ficresprobmorprev;
   *fb=(*func)(*bx);  FILE *fichtm, *fichtmcov; /* Html File */
   if (*fb > *fa) {  FILE *ficreseij;
     SHFT(dum,*ax,*bx,dum)  char filerese[FILENAMELENGTH];
       SHFT(dum,*fb,*fa,dum)  FILE *ficresstdeij;
       }  char fileresstde[FILENAMELENGTH];
   *cx=(*bx)+GOLD*(*bx-*ax);  FILE *ficrescveij;
   *fc=(*func)(*cx);  char filerescve[FILENAMELENGTH];
   while (*fb > *fc) {  FILE  *ficresvij;
     r=(*bx-*ax)*(*fb-*fc);  char fileresv[FILENAMELENGTH];
     q=(*bx-*cx)*(*fb-*fa);  FILE  *ficresvpl;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  char fileresvpl[FILENAMELENGTH];
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  char title[MAXLINE];
     ulim=(*bx)+GLIMIT*(*cx-*bx);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     if ((*bx-u)*(u-*cx) > 0.0) {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       fu=(*func)(u);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {  char command[FILENAMELENGTH];
       fu=(*func)(u);  int  outcmd=0;
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  char filelog[FILENAMELENGTH]; /* Log file */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  char filerest[FILENAMELENGTH];
       u=ulim;  char fileregp[FILENAMELENGTH];
       fu=(*func)(u);  char popfile[FILENAMELENGTH];
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       fu=(*func)(u);  
     }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     SHFT(*ax,*bx,*cx,u)  struct timezone tzp;
       SHFT(*fa,*fb,*fc,fu)  extern int gettimeofday();
       }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 }  long time_value;
   extern long time();
 /*************** linmin ************************/  char strcurr[80], strfor[80];
   
 int ncom;  char *endptr;
 double *pcom,*xicom;  long lval;
 double (*nrfunc)(double []);  double dval;
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #define NR_END 1
 {  #define FREE_ARG char*
   double brent(double ax, double bx, double cx,  #define FTOL 1.0e-10
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  #define NRANSI 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #define ITMAX 200 
               double *fc, double (*func)(double));  
   int j;  #define TOL 2.0e-4 
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  #define CGOLD 0.3819660 
    #define ZEPS 1.0e-10 
   ncom=n;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   pcom=vector(1,n);  
   xicom=vector(1,n);  #define GOLD 1.618034 
   nrfunc=func;  #define GLIMIT 100.0 
   for (j=1;j<=n;j++) {  #define TINY 1.0e-20 
     pcom[j]=p[j];  
     xicom[j]=xi[j];  static double maxarg1,maxarg2;
   }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   ax=0.0;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   xx=1.0;    
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define rint(a) floor(a+0.5)
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  static double sqrarg;
 #endif  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for (j=1;j<=n;j++) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     xi[j] *= xmin;  int agegomp= AGEGOMP;
     p[j] += xi[j];  
   }  int imx; 
   free_vector(xicom,1,n);  int stepm=1;
   free_vector(pcom,1,n);  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /*************** powell ************************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  int m,nb;
 {  long *num;
   void linmin(double p[], double xi[], int n, double *fret,  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
               double (*func)(double []));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   int i,ibig,j;  double **pmmij, ***probs;
   double del,t,*pt,*ptt,*xit;  double *ageexmed,*agecens;
   double fp,fptt;  double dateintmean=0;
   double *xits;  
   pt=vector(1,n);  double *weight;
   ptt=vector(1,n);  int **s; /* Status */
   xit=vector(1,n);  double *agedc;
   xits=vector(1,n);  double  **covar; /**< covar[i,j], value of jth covariate for individual i,
   *fret=(*func)(p);                    * covar=matrix(0,NCOVMAX,1,n); 
   for (j=1;j<=n;j++) pt[j]=p[j];                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   for (*iter=1;;++(*iter)) {  double  idx; 
     fp=(*fret);  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     ibig=0;  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     del=0.0;  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  double *lsurv, *lpop, *tpop;
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     printf("\n");  double ftolhess; /* Tolerance for computing hessian */
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /**************** split *************************/
       fptt=(*fret);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 #ifdef DEBUG  {
       printf("fret=%lf \n",*fret);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 #endif       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       printf("%d",i);fflush(stdout);    */ 
       linmin(p,xit,n,fret,func);    char  *ss;                            /* pointer */
       if (fabs(fptt-(*fret)) > del) {    int   l1, l2;                         /* length counters */
         del=fabs(fptt-(*fret));  
         ibig=i;    l1 = strlen(path );                   /* length of path */
       }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 #ifdef DEBUG    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       printf("%d %.12e",i,(*fret));    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       for (j=1;j<=n;j++) {      strcpy( name, path );               /* we got the fullname name because no directory */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf(" x(%d)=%.12e",j,xit[j]);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       }      /* get current working directory */
       for(j=1;j<=n;j++)      /*    extern  char* getcwd ( char *buf , int len);*/
         printf(" p=%.12e",p[j]);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       printf("\n");        return( GLOCK_ERROR_GETCWD );
 #endif      }
     }      /* got dirc from getcwd*/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      printf(" DIRC = %s \n",dirc);
 #ifdef DEBUG    } else {                              /* strip direcotry from path */
       int k[2],l;      ss++;                               /* after this, the filename */
       k[0]=1;      l2 = strlen( ss );                  /* length of filename */
       k[1]=-1;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       printf("Max: %.12e",(*func)(p));      strcpy( name, ss );         /* save file name */
       for (j=1;j<=n;j++)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         printf(" %.12e",p[j]);      dirc[l1-l2] = 0;                    /* add zero */
       printf("\n");      printf(" DIRC2 = %s \n",dirc);
       for(l=0;l<=1;l++) {    }
         for (j=1;j<=n;j++) {    /* We add a separator at the end of dirc if not exists */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    l1 = strlen( dirc );                  /* length of directory */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    if( dirc[l1-1] != DIRSEPARATOR ){
         }      dirc[l1] =  DIRSEPARATOR;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      dirc[l1+1] = 0; 
       }      printf(" DIRC3 = %s \n",dirc);
 #endif    }
     ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
       free_vector(xit,1,n);      ss++;
       free_vector(xits,1,n);      strcpy(ext,ss);                     /* save extension */
       free_vector(ptt,1,n);      l1= strlen( name);
       free_vector(pt,1,n);      l2= strlen(ss)+1;
       return;      strncpy( finame, name, l1-l2);
     }      finame[l1-l2]= 0;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];    return( 0 );                          /* we're done */
       xit[j]=p[j]-pt[j];  }
       pt[j]=p[j];  
     }  
     fptt=(*func)(ptt);  /******************************************/
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  void replace_back_to_slash(char *s, char*t)
       if (t < 0.0) {  {
         linmin(p,xit,n,fret,func);    int i;
         for (j=1;j<=n;j++) {    int lg=0;
           xi[j][ibig]=xi[j][n];    i=0;
           xi[j][n]=xit[j];    lg=strlen(t);
         }    for(i=0; i<= lg; i++) {
 #ifdef DEBUG      (s[i] = t[i]);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      if (t[i]== '\\') s[i]='/';
         for(j=1;j<=n;j++)    }
           printf(" %.12e",xit[j]);  }
         printf("\n");  
 #endif  char *trimbb(char *out, char *in)
       }  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     }    char *s;
   }    s=out;
 }    while (*in != '\0'){
       while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
 /**** Prevalence limit ****************/        in++;
       }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      *out++ = *in++;
 {    }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    *out='\0';
      matrix by transitions matrix until convergence is reached */    return s;
   }
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  char *cutv(char *blocc, char *alocc, char *in, char occ)
   double **matprod2();  {
   double **out, cov[NCOVMAX], **pmij();    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   double **newm;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   double agefin, delaymax=50 ; /* Max number of years to converge */       gives blocc="abcdef2ghi" and alocc="j".
        If occ is not found blocc is null and alocc is equal to in. Returns alocc
   for (ii=1;ii<=nlstate+ndeath;ii++)    */
     for (j=1;j<=nlstate+ndeath;j++){    char *s, *t;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    t=in;s=in;
     }    while (*in != '\0'){
       while( *in == occ){
    cov[1]=1.;        *blocc++ = *in++;
          s=in;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      *blocc++ = *in++;
     newm=savm;    }
     /* Covariates have to be included here again */    if (s == t) /* occ not found */
      cov[2]=agefin;      *(blocc-(in-s))='\0';
      else
       for (k=1; k<=cptcovn;k++) {      *(blocc-(in-s)-1)='\0';
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    in=s;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    while ( *in != '\0'){
       }      *alocc++ = *in++;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    *alocc='\0';
     return s;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  }
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  int nbocc(char *s, char occ)
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  {
     int i,j=0;
     savm=oldm;    int lg=20;
     oldm=newm;    i=0;
     maxmax=0.;    lg=strlen(s);
     for(j=1;j<=nlstate;j++){    for(i=0; i<= lg; i++) {
       min=1.;    if  (s[i] == occ ) j++;
       max=0.;    }
       for(i=1; i<=nlstate; i++) {    return j;
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  /* void cutv(char *u,char *v, char*t, char occ) */
         max=FMAX(max,prlim[i][j]);  /* { */
         min=FMIN(min,prlim[i][j]);  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
       }  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       maxmin=max-min;  /*      gives u="abcdef2ghi" and v="j" *\/ */
       maxmax=FMAX(maxmax,maxmin);  /*   int i,lg,j,p=0; */
     }  /*   i=0; */
     if(maxmax < ftolpl){  /*   lg=strlen(t); */
       return prlim;  /*   for(j=0; j<=lg-1; j++) { */
     }  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   }  /*   } */
 }  
   /*   for(j=0; j<p; j++) { */
 /*************** transition probabilities ***************/  /*     (u[j] = t[j]); */
   /*   } */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /*      u[p]='\0'; */
 {  
   double s1, s2;  /*    for(j=0; j<= lg; j++) { */
   /*double t34;*/  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   int i,j,j1, nc, ii, jj;  /*   } */
   /* } */
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  /********************** nrerror ********************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  void nrerror(char error_text[])
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    fprintf(stderr,"ERREUR ...\n");
       }    fprintf(stderr,"%s\n",error_text);
       ps[i][j]=s2;    exit(EXIT_FAILURE);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  }
     }  /*********************** vector *******************/
     for(j=i+1; j<=nlstate+ndeath;j++){  double *vector(int nl, int nh)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double *v;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       }    if (!v) nrerror("allocation failure in vector");
       ps[i][j]=s2;    return v-nl+NR_END;
     }  }
   }  
     /*ps[3][2]=1;*/  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   for(i=1; i<= nlstate; i++){  {
      s1=0;    free((FREE_ARG)(v+nl-NR_END));
     for(j=1; j<i; j++)  }
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  /************************ivector *******************************/
       s1+=exp(ps[i][j]);  int *ivector(long nl,long nh)
     ps[i][i]=1./(s1+1.);  {
     for(j=1; j<i; j++)    int *v;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     for(j=i+1; j<=nlstate+ndeath; j++)    if (!v) nrerror("allocation failure in ivector");
       ps[i][j]= exp(ps[i][j])*ps[i][i];    return v-nl+NR_END;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  }
   } /* end i */  
   /******************free ivector **************************/
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  void free_ivector(int *v, long nl, long nh)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
       ps[ii][jj]=0;    free((FREE_ARG)(v+nl-NR_END));
       ps[ii][ii]=1;  }
     }  
   }  /************************lvector *******************************/
   long *lvector(long nl,long nh)
   {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    long *v;
     for(jj=1; jj<= nlstate+ndeath; jj++){    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
      printf("%lf ",ps[ii][jj]);    if (!v) nrerror("allocation failure in ivector");
    }    return v-nl+NR_END;
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /******************free lvector **************************/
 /*  void free_lvector(long *v, long nl, long nh)
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  {
   goto end;*/    free((FREE_ARG)(v+nl-NR_END));
     return ps;  }
 }  
   /******************* imatrix *******************************/
 /**************** Product of 2 matrices ******************/  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  { 
 {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    int **m; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    
   /* in, b, out are matrice of pointers which should have been initialized    /* allocate pointers to rows */ 
      before: only the contents of out is modified. The function returns    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      a pointer to pointers identical to out */    if (!m) nrerror("allocation failure 1 in matrix()"); 
   long i, j, k;    m += NR_END; 
   for(i=nrl; i<= nrh; i++)    m -= nrl; 
     for(k=ncolol; k<=ncoloh; k++)    
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    
         out[i][k] +=in[i][j]*b[j][k];    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   return out;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 }    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
     
 /************* Higher Matrix Product ***************/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    /* return pointer to array of pointers to rows */ 
 {    return m; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  } 
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /****************** free_imatrix *************************/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  void free_imatrix(m,nrl,nrh,ncl,nch)
      (typically every 2 years instead of every month which is too big).        int **m;
      Model is determined by parameters x and covariates have to be        long nch,ncl,nrh,nrl; 
      included manually here.       /* free an int matrix allocated by imatrix() */ 
   { 
      */    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
   int i, j, d, h, k;  } 
   double **out, cov[NCOVMAX];  
   double **newm;  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   /* Hstepm could be zero and should return the unit matrix */  {
   for (i=1;i<=nlstate+ndeath;i++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     for (j=1;j<=nlstate+ndeath;j++){    double **m;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m += NR_END;
   for(h=1; h <=nhstepm; h++){    m -= nrl;
     for(d=1; d <=hstepm; d++){  
       newm=savm;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       /* Covariates have to be included here again */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       cov[1]=1.;    m[nrl] += NR_END;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    m[nrl] -= ncl;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return m;
       for (k=1; k<=cptcovprod;k++)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];     */
   }
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /*************************free matrix ************************/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       savm=oldm;    free((FREE_ARG)(m+nrl-NR_END));
       oldm=newm;  }
     }  
     for(i=1; i<=nlstate+ndeath; i++)  /******************* ma3x *******************************/
       for(j=1;j<=nlstate+ndeath;j++) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         po[i][j][h]=newm[i][j];  {
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
          */    double ***m;
       }  
   } /* end h */    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   return po;    if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
   
 /*************** log-likelihood *************/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 double func( double *x)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 {    m[nrl] += NR_END;
   int i, ii, j, k, mi, d, kk;    m[nrl] -= ncl;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   long ipmx;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   /*extern weight */    m[nrl][ncl] += NR_END;
   /* We are differentiating ll according to initial status */    m[nrl][ncl] -= nll;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    for (j=ncl+1; j<=nch; j++) 
   /*for(i=1;i<imx;i++)      m[nrl][j]=m[nrl][j-1]+nlay;
     printf(" %d\n",s[4][i]);    
   */    for (i=nrl+1; i<=nrh; i++) {
   cov[1]=1.;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        m[i][j]=m[i][j-1]+nlay;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    return m; 
     for(mi=1; mi<= wav[i]-1; mi++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for (ii=1;ii<=nlstate+ndeath;ii++)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    */
       for(d=0; d<dh[mi][i]; d++){  }
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*************************free ma3x ************************/
         for (kk=1; kk<=cptcovage;kk++) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  {
         }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
            free((FREE_ARG)(m[nrl]+ncl-NR_END));
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    free((FREE_ARG)(m+nrl-NR_END));
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  }
         savm=oldm;  
         oldm=newm;  /*************** function subdirf ***********/
          char *subdirf(char fileres[])
          {
       } /* end mult */    /* Caution optionfilefiname is hidden */
          strcpy(tmpout,optionfilefiname);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    strcat(tmpout,"/"); /* Add to the right */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    strcat(tmpout,fileres);
       ipmx +=1;    return tmpout;
       sw += weight[i];  }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  /*************** function subdirf2 ***********/
   } /* end of individual */  char *subdirf2(char fileres[], char *preop)
   {
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    /* Caution optionfilefiname is hidden */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    strcpy(tmpout,optionfilefiname);
   return -l;    strcat(tmpout,"/");
 }    strcat(tmpout,preop);
     strcat(tmpout,fileres);
     return tmpout;
 /*********** Maximum Likelihood Estimation ***************/  }
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /*************** function subdirf3 ***********/
 {  char *subdirf3(char fileres[], char *preop, char *preop2)
   int i,j, iter;  {
   double **xi,*delti;    
   double fret;    /* Caution optionfilefiname is hidden */
   xi=matrix(1,npar,1,npar);    strcpy(tmpout,optionfilefiname);
   for (i=1;i<=npar;i++)    strcat(tmpout,"/");
     for (j=1;j<=npar;j++)    strcat(tmpout,preop);
       xi[i][j]=(i==j ? 1.0 : 0.0);    strcat(tmpout,preop2);
   printf("Powell\n");    strcat(tmpout,fileres);
   powell(p,xi,npar,ftol,&iter,&fret,func);    return tmpout;
   }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  /***************** f1dim *************************/
   extern int ncom; 
 }  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 /**** Computes Hessian and covariance matrix ***/   
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  double f1dim(double x) 
 {  { 
   double  **a,**y,*x,pd;    int j; 
   double **hess;    double f;
   int i, j,jk;    double *xt; 
   int *indx;   
     xt=vector(1,ncom); 
   double hessii(double p[], double delta, int theta, double delti[]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double hessij(double p[], double delti[], int i, int j);    f=(*nrfunc)(xt); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    free_vector(xt,1,ncom); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    return f; 
   } 
   hess=matrix(1,npar,1,npar);  
   /*****************brent *************************/
   printf("\nCalculation of the hessian matrix. Wait...\n");  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   for (i=1;i<=npar;i++){  { 
     printf("%d",i);fflush(stdout);    int iter; 
     hess[i][i]=hessii(p,ftolhess,i,delti);    double a,b,d,etemp;
     /*printf(" %f ",p[i]);*/    double fu,fv,fw,fx;
     /*printf(" %lf ",hess[i][i]);*/    double ftemp;
   }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
      double e=0.0; 
   for (i=1;i<=npar;i++) {   
     for (j=1;j<=npar;j++)  {    a=(ax < cx ? ax : cx); 
       if (j>i) {    b=(ax > cx ? ax : cx); 
         printf(".%d%d",i,j);fflush(stdout);    x=w=v=bx; 
         hess[i][j]=hessij(p,delti,i,j);    fw=fv=fx=(*f)(x); 
         hess[j][i]=hess[i][j];        for (iter=1;iter<=ITMAX;iter++) { 
         /*printf(" %lf ",hess[i][j]);*/      xm=0.5*(a+b); 
       }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   }      printf(".");fflush(stdout);
   printf("\n");      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   a=matrix(1,npar,1,npar);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   y=matrix(1,npar,1,npar);  #endif
   x=vector(1,npar);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   indx=ivector(1,npar);        *xmin=x; 
   for (i=1;i<=npar;i++)        return fx; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      } 
   ludcmp(a,npar,indx,&pd);      ftemp=fu;
       if (fabs(e) > tol1) { 
   for (j=1;j<=npar;j++) {        r=(x-w)*(fx-fv); 
     for (i=1;i<=npar;i++) x[i]=0;        q=(x-v)*(fx-fw); 
     x[j]=1;        p=(x-v)*q-(x-w)*r; 
     lubksb(a,npar,indx,x);        q=2.0*(q-r); 
     for (i=1;i<=npar;i++){        if (q > 0.0) p = -p; 
       matcov[i][j]=x[i];        q=fabs(q); 
     }        etemp=e; 
   }        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   printf("\n#Hessian matrix#\n");          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (i=1;i<=npar;i++) {        else { 
     for (j=1;j<=npar;j++) {          d=p/q; 
       printf("%.3e ",hess[i][j]);          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
     printf("\n");            d=SIGN(tol1,xm-x); 
   }        } 
       } else { 
   /* Recompute Inverse */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (i=1;i<=npar;i++)      } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   ludcmp(a,npar,indx,&pd);      fu=(*f)(u); 
       if (fu <= fx) { 
   /*  printf("\n#Hessian matrix recomputed#\n");        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
   for (j=1;j<=npar;j++) {          SHFT(fv,fw,fx,fu) 
     for (i=1;i<=npar;i++) x[i]=0;          } else { 
     x[j]=1;            if (u < x) a=u; else b=u; 
     lubksb(a,npar,indx,x);            if (fu <= fw || w == x) { 
     for (i=1;i<=npar;i++){              v=w; 
       y[i][j]=x[i];              w=u; 
       printf("%.3e ",y[i][j]);              fv=fw; 
     }              fw=fu; 
     printf("\n");            } else if (fu <= fv || v == x || v == w) { 
   }              v=u; 
   */              fv=fu; 
             } 
   free_matrix(a,1,npar,1,npar);          } 
   free_matrix(y,1,npar,1,npar);    } 
   free_vector(x,1,npar);    nrerror("Too many iterations in brent"); 
   free_ivector(indx,1,npar);    *xmin=x; 
   free_matrix(hess,1,npar,1,npar);    return fx; 
   } 
   
 }  /****************** mnbrak ***********************/
   
 /*************** hessian matrix ****************/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 double hessii( double x[], double delta, int theta, double delti[])              double (*func)(double)) 
 {  { 
   int i;    double ulim,u,r,q, dum;
   int l=1, lmax=20;    double fu; 
   double k1,k2;   
   double p2[NPARMAX+1];    *fa=(*func)(*ax); 
   double res;    *fb=(*func)(*bx); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    if (*fb > *fa) { 
   double fx;      SHFT(dum,*ax,*bx,dum) 
   int k=0,kmax=10;        SHFT(dum,*fb,*fa,dum) 
   double l1;        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
   fx=func(x);    *fc=(*func)(*cx); 
   for (i=1;i<=npar;i++) p2[i]=x[i];    while (*fb > *fc) { 
   for(l=0 ; l <=lmax; l++){      r=(*bx-*ax)*(*fb-*fc); 
     l1=pow(10,l);      q=(*bx-*cx)*(*fb-*fa); 
     delts=delt;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for(k=1 ; k <kmax; k=k+1){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       delt = delta*(l1*k);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       p2[theta]=x[theta] +delt;      if ((*bx-u)*(u-*cx) > 0.0) { 
       k1=func(p2)-fx;        fu=(*func)(u); 
       p2[theta]=x[theta]-delt;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       k2=func(p2)-fx;        fu=(*func)(u); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        if (fu < *fc) { 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                  SHFT(*fb,*fc,fu,(*func)(u)) 
 #ifdef DEBUG            } 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 #endif        u=ulim; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        fu=(*func)(u); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      } else { 
         k=kmax;        u=(*cx)+GOLD*(*cx-*bx); 
       }        fu=(*func)(u); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      } 
         k=kmax; l=lmax*10.;      SHFT(*ax,*bx,*cx,u) 
       }        SHFT(*fa,*fb,*fc,fu) 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        } 
         delts=delt;  } 
       }  
     }  /*************** linmin ************************/
   }  
   delti[theta]=delts;  int ncom; 
   return res;  double *pcom,*xicom;
    double (*nrfunc)(double []); 
 }   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 double hessij( double x[], double delti[], int thetai,int thetaj)  { 
 {    double brent(double ax, double bx, double cx, 
   int i;                 double (*f)(double), double tol, double *xmin); 
   int l=1, l1, lmax=20;    double f1dim(double x); 
   double k1,k2,k3,k4,res,fx;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double p2[NPARMAX+1];                double *fc, double (*func)(double)); 
   int k;    int j; 
     double xx,xmin,bx,ax; 
   fx=func(x);    double fx,fb,fa;
   for (k=1; k<=2; k++) {   
     for (i=1;i<=npar;i++) p2[i]=x[i];    ncom=n; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    pcom=vector(1,n); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    xicom=vector(1,n); 
     k1=func(p2)-fx;    nrfunc=func; 
      for (j=1;j<=n;j++) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;      pcom[j]=p[j]; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      xicom[j]=xi[j]; 
     k2=func(p2)-fx;    } 
      ax=0.0; 
     p2[thetai]=x[thetai]-delti[thetai]/k;    xx=1.0; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     k3=func(p2)-fx;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
    #ifdef DEBUG
     p2[thetai]=x[thetai]-delti[thetai]/k;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     k4=func(p2)-fx;  #endif
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    for (j=1;j<=n;j++) { 
 #ifdef DEBUG      xi[j] *= xmin; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      p[j] += xi[j]; 
 #endif    } 
   }    free_vector(xicom,1,n); 
   return res;    free_vector(pcom,1,n); 
 }  } 
   
 /************** Inverse of matrix **************/  char *asc_diff_time(long time_sec, char ascdiff[])
 void ludcmp(double **a, int n, int *indx, double *d)  {
 {    long sec_left, days, hours, minutes;
   int i,imax,j,k;    days = (time_sec) / (60*60*24);
   double big,dum,sum,temp;    sec_left = (time_sec) % (60*60*24);
   double *vv;    hours = (sec_left) / (60*60) ;
      sec_left = (sec_left) %(60*60);
   vv=vector(1,n);    minutes = (sec_left) /60;
   *d=1.0;    sec_left = (sec_left) % (60);
   for (i=1;i<=n;i++) {    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     big=0.0;    return ascdiff;
     for (j=1;j<=n;j++)  }
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /*************** powell ************************/
     vv[i]=1.0/big;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   }              double (*func)(double [])) 
   for (j=1;j<=n;j++) {  { 
     for (i=1;i<j;i++) {    void linmin(double p[], double xi[], int n, double *fret, 
       sum=a[i][j];                double (*func)(double [])); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    int i,ibig,j; 
       a[i][j]=sum;    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
     big=0.0;    double *xits;
     for (i=j;i<=n;i++) {    int niterf, itmp;
       sum=a[i][j];  
       for (k=1;k<j;k++)    pt=vector(1,n); 
         sum -= a[i][k]*a[k][j];    ptt=vector(1,n); 
       a[i][j]=sum;    xit=vector(1,n); 
       if ( (dum=vv[i]*fabs(sum)) >= big) {    xits=vector(1,n); 
         big=dum;    *fret=(*func)(p); 
         imax=i;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       }    for (*iter=1;;++(*iter)) { 
     }      fp=(*fret); 
     if (j != imax) {      ibig=0; 
       for (k=1;k<=n;k++) {      del=0.0; 
         dum=a[imax][k];      last_time=curr_time;
         a[imax][k]=a[j][k];      (void) gettimeofday(&curr_time,&tzp);
         a[j][k]=dum;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       *d = -(*d);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       vv[imax]=vv[j];     for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
     indx[j]=imax;        fprintf(ficlog," %d %.12lf",i, p[i]);
     if (a[j][j] == 0.0) a[j][j]=TINY;        fprintf(ficrespow," %.12lf", p[i]);
     if (j != n) {      }
       dum=1.0/(a[j][j]);      printf("\n");
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      fprintf(ficlog,"\n");
     }      fprintf(ficrespow,"\n");fflush(ficrespow);
   }      if(*iter <=3){
   free_vector(vv,1,n);  /* Doesn't work */        tm = *localtime(&curr_time.tv_sec);
 ;        strcpy(strcurr,asctime(&tm));
 }  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
 void lubksb(double **a, int n, int *indx, double b[])        itmp = strlen(strcurr);
 {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   int i,ii=0,ip,j;          strcurr[itmp-1]='\0';
   double sum;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=n;i++) {        for(niterf=10;niterf<=30;niterf+=10){
     ip=indx[i];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     sum=b[ip];          tmf = *localtime(&forecast_time.tv_sec);
     b[ip]=b[i];  /*      asctime_r(&tmf,strfor); */
     if (ii)          strcpy(strfor,asctime(&tmf));
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          itmp = strlen(strfor);
     else if (sum) ii=i;          if(strfor[itmp-1]=='\n')
     b[i]=sum;          strfor[itmp-1]='\0';
   }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=n;i>=1;i--) {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     sum=b[i];        }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      }
     b[i]=sum/a[i][i];      for (i=1;i<=n;i++) { 
   }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 }        fptt=(*fret); 
   #ifdef DEBUG
 /************ Frequencies ********************/        printf("fret=%lf \n",*fret);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        fprintf(ficlog,"fret=%lf \n",*fret);
 {  /* Some frequencies */  #endif
          printf("%d",i);fflush(stdout);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        fprintf(ficlog,"%d",i);fflush(ficlog);
   double ***freq; /* Frequencies */        linmin(p,xit,n,fret,func); 
   double *pp;        if (fabs(fptt-(*fret)) > del) { 
   double pos, k2, dateintsum=0,k2cpt=0;          del=fabs(fptt-(*fret)); 
   FILE *ficresp;          ibig=i; 
   char fileresp[FILENAMELENGTH];        } 
    #ifdef DEBUG
   pp=vector(1,nlstate);        printf("%d %.12e",i,(*fret));
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficlog,"%d %.12e",i,(*fret));
   strcpy(fileresp,"p");        for (j=1;j<=n;j++) {
   strcat(fileresp,fileres);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   if((ficresp=fopen(fileresp,"w"))==NULL) {          printf(" x(%d)=%.12e",j,xit[j]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     exit(0);        }
   }        for(j=1;j<=n;j++) {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          printf(" p=%.12e",p[j]);
   j1=0;          fprintf(ficlog," p=%.12e",p[j]);
          }
   j=cptcoveff;        printf("\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        fprintf(ficlog,"\n");
    #endif
   for(k1=1; k1<=j;k1++){      } 
     for(i1=1; i1<=ncodemax[k1];i1++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       j1++;  #ifdef DEBUG
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        int k[2],l;
         scanf("%d", i);*/        k[0]=1;
       for (i=-1; i<=nlstate+ndeath; i++)          k[1]=-1;
         for (jk=-1; jk<=nlstate+ndeath; jk++)          printf("Max: %.12e",(*func)(p));
           for(m=agemin; m <= agemax+3; m++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
             freq[i][jk][m]=0;        for (j=1;j<=n;j++) {
                printf(" %.12e",p[j]);
       dateintsum=0;          fprintf(ficlog," %.12e",p[j]);
       k2cpt=0;        }
       for (i=1; i<=imx; i++) {        printf("\n");
         bool=1;        fprintf(ficlog,"\n");
         if  (cptcovn>0) {        for(l=0;l<=1;l++) {
           for (z1=1; z1<=cptcoveff; z1++)          for (j=1;j<=n;j++) {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
               bool=0;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         if (bool==1) {          }
           for(m=firstpass; m<=lastpass; m++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             k2=anint[m][i]+(mint[m][i]/12.);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        }
               if(agev[m][i]==0) agev[m][i]=agemax+1;  #endif
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        free_vector(xit,1,n); 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        free_vector(xits,1,n); 
               }        free_vector(ptt,1,n); 
                      free_vector(pt,1,n); 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        return; 
                 dateintsum=dateintsum+k2;      } 
                 k2cpt++;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
               }      for (j=1;j<=n;j++) { 
             }        ptt[j]=2.0*p[j]-pt[j]; 
           }        xit[j]=p[j]-pt[j]; 
         }        pt[j]=p[j]; 
       }      } 
              fptt=(*func)(ptt); 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       if  (cptcovn>0) {        if (t < 0.0) { 
         fprintf(ficresp, "\n#********** Variable ");          linmin(p,xit,n,fret,func); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for (j=1;j<=n;j++) { 
         fprintf(ficresp, "**********\n#");            xi[j][ibig]=xi[j][n]; 
       }            xi[j][n]=xit[j]; 
       for(i=1; i<=nlstate;i++)          }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  #ifdef DEBUG
       fprintf(ficresp, "\n");          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for(i=(int)agemin; i <= (int)agemax+3; i++){          for(j=1;j<=n;j++){
         if(i==(int)agemax+3)            printf(" %.12e",xit[j]);
           printf("Total");            fprintf(ficlog," %.12e",xit[j]);
         else          }
           printf("Age %d", i);          printf("\n");
         for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog,"\n");
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  #endif
             pp[jk] += freq[jk][m][i];        }
         }      } 
         for(jk=1; jk <=nlstate ; jk++){    } 
           for(m=-1, pos=0; m <=0 ; m++)  } 
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10)  /**** Prevalence limit (stable or period prevalence)  ****************/
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           else  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  {
         }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    int i, ii,j,k;
             pp[jk] += freq[jk][m][i];    double min, max, maxmin, maxmax,sumnew=0.;
         }    double **matprod2();
     double **out, cov[NCOVMAX+1], **pmij();
         for(jk=1,pos=0; jk <=nlstate ; jk++)    double **newm;
           pos += pp[jk];    double agefin, delaymax=50 ; /* Max number of years to converge */
         for(jk=1; jk <=nlstate ; jk++){  
           if(pos>=1.e-5)    for (ii=1;ii<=nlstate+ndeath;ii++)
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      for (j=1;j<=nlstate+ndeath;j++){
           else        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      }
           if( i <= (int) agemax){  
             if(pos>=1.e-5){     cov[1]=1.;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);   
               probs[i][jk][j1]= pp[jk]/pos;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
             }      newm=savm;
             else      /* Covariates have to be included here again */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      cov[2]=agefin;
           }      
         }      for (k=1; k<=cptcovn;k++) {
                cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for(jk=-1; jk <=nlstate+ndeath; jk++)        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
           for(m=-1; m <=nlstate+ndeath; m++)      }
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         if(i <= (int) agemax)      for (k=1; k<=cptcovprod;k++)
           fprintf(ficresp,"\n");        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         printf("\n");      
       }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   dateintmean=dateintsum/k2cpt;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
        
   fclose(ficresp);      savm=oldm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      oldm=newm;
   free_vector(pp,1,nlstate);      maxmax=0.;
        for(j=1;j<=nlstate;j++){
   /* End of Freq */        min=1.;
 }        max=0.;
         for(i=1; i<=nlstate; i++) {
 /************ Prevalence ********************/          sumnew=0;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 {  /* Some frequencies */          prlim[i][j]= newm[i][j]/(1-sumnew);
            max=FMAX(max,prlim[i][j]);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          min=FMIN(min,prlim[i][j]);
   double ***freq; /* Frequencies */        }
   double *pp;        maxmin=max-min;
   double pos, k2;        maxmax=FMAX(maxmax,maxmin);
       }
   pp=vector(1,nlstate);      if(maxmax < ftolpl){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        return prlim;
        }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    }
   j1=0;  }
    
   j=cptcoveff;  /*************** transition probabilities ***************/ 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
  for(k1=1; k1<=j;k1++){  {
     for(i1=1; i1<=ncodemax[k1];i1++){    /* According to parameters values stored in x and the covariate's values stored in cov,
       j1++;       computes the probability to be observed in state j being in state i by appying the
         model to the ncovmodel covariates (including constant and age).
       for (i=-1; i<=nlstate+ndeath; i++)         lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         for (jk=-1; jk<=nlstate+ndeath; jk++)         and, according on how parameters are entered, the position of the coefficient xij(nc) of the
           for(m=agemin; m <= agemax+3; m++)       ncth covariate in the global vector x is given by the formula:
             freq[i][jk][m]=0;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
             j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
       for (i=1; i<=imx; i++) {       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
         bool=1;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         if  (cptcovn>0) {       Outputs ps[i][j] the probability to be observed in j being in j according to
           for (z1=1; z1<=cptcoveff; z1++)       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    */
               bool=0;    double s1, lnpijopii;
         }    /*double t34;*/
         if (bool==1) {    int i,j,j1, nc, ii, jj;
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);      for(i=1; i<= nlstate; i++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for(j=1; j<i;j++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             }          }
           }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       }        }
         for(i=(int)agemin; i <= (int)agemax+3; i++){        for(j=i+1; j<=nlstate+ndeath;j++){
           for(jk=1; jk <=nlstate ; jk++){          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
               pp[jk] += freq[jk][m][i];            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
           }  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           for(jk=1; jk <=nlstate ; jk++){          }
             for(m=-1, pos=0; m <=0 ; m++)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             pos += freq[jk][m][i];        }
         }      }
              
          for(jk=1; jk <=nlstate ; jk++){      for(i=1; i<= nlstate; i++){
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        s1=0;
              pp[jk] += freq[jk][m][i];        for(j=1; j<i; j++){
          }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                    /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        }
         for(j=i+1; j<=nlstate+ndeath; j++){
          for(jk=1; jk <=nlstate ; jk++){                    s1+=exp(ps[i][j]); /* In fact sums pij/pii */
            if( i <= (int) agemax){          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
              if(pos>=1.e-5){        }
                probs[i][jk][j1]= pp[jk]/pos;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
              }        ps[i][i]=1./(s1+1.);
            }        /* Computing other pijs */
          }        for(j=1; j<i; j++)
                    ps[i][j]= exp(ps[i][j])*ps[i][i];
         }        for(j=i+1; j<=nlstate+ndeath; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
        } /* end i */
        
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   free_vector(pp,1,nlstate);        for(jj=1; jj<= nlstate+ndeath; jj++){
            ps[ii][jj]=0;
 }  /* End of Freq */          ps[ii][ii]=1;
         }
 /************* Waves Concatenation ***************/      }
       
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
      Death is a valid wave (if date is known).  /*         printf("ddd %lf ",ps[ii][jj]); */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  /*       } */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  /*       printf("\n "); */
      and mw[mi+1][i]. dh depends on stepm.  /*        } */
      */  /*        printf("\n ");printf("%lf ",cov[2]); */
          /*
   int i, mi, m;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        goto end;*/
      double sum=0., jmean=0.;*/      return ps;
   }
   int j, k=0,jk, ju, jl;  
   double sum=0.;  /**************** Product of 2 matrices ******************/
   jmin=1e+5;  
   jmax=-1;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   jmean=0.;  {
   for(i=1; i<=imx; i++){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     mi=0;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     m=firstpass;    /* in, b, out are matrice of pointers which should have been initialized 
     while(s[m][i] <= nlstate){       before: only the contents of out is modified. The function returns
       if(s[m][i]>=1)       a pointer to pointers identical to out */
         mw[++mi][i]=m;    long i, j, k;
       if(m >=lastpass)    for(i=nrl; i<= nrh; i++)
         break;      for(k=ncolol; k<=ncoloh; k++)
       else        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         m++;          out[i][k] +=in[i][j]*b[j][k];
     }/* end while */  
     if (s[m][i] > nlstate){    return out;
       mi++;     /* Death is another wave */  }
       /* if(mi==0)  never been interviewed correctly before death */  
          /* Only death is a correct wave */  
       mw[mi][i]=m;  /************* Higher Matrix Product ***************/
     }  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     wav[i]=mi;  {
     if(mi==0)    /* Computes the transition matrix starting at age 'age' over 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);       'nhstepm*hstepm*stepm' months (i.e. until
   }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
   for(i=1; i<=imx; i++){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for(mi=1; mi<wav[i];mi++){       (typically every 2 years instead of every month which is too big 
       if (stepm <=0)       for the memory).
         dh[mi][i]=1;       Model is determined by parameters x and covariates have to be 
       else{       included manually here. 
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {       */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */    int i, j, d, h, k;
           k=k+1;    double **out, cov[NCOVMAX+1];
           if (j >= jmax) jmax=j;    double **newm;
           if (j <= jmin) jmin=j;  
           sum=sum+j;    /* Hstepm could be zero and should return the unit matrix */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    for (i=1;i<=nlstate+ndeath;i++)
           }      for (j=1;j<=nlstate+ndeath;j++){
         }        oldm[i][j]=(i==j ? 1.0 : 0.0);
         else{        po[i][j][0]=(i==j ? 1.0 : 0.0);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      }
           k=k+1;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           if (j >= jmax) jmax=j;    for(h=1; h <=nhstepm; h++){
           else if (j <= jmin)jmin=j;      for(d=1; d <=hstepm; d++){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        newm=savm;
           sum=sum+j;        /* Covariates have to be included here again */
         }        cov[1]=1.;
         jk= j/stepm;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         jl= j -jk*stepm;        for (k=1; k<=cptcovn;k++) 
         ju= j -(jk+1)*stepm;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         if(jl <= -ju)        for (k=1; k<=cptcovage;k++)
           dh[mi][i]=jk;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         else        for (k=1; k<=cptcovprod;k++)
           dh[mi][i]=jk+1;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         if(dh[mi][i]==0)  
           dh[mi][i]=1; /* At least one step */  
       }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   jmean=sum/k;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        savm=oldm;
  }        oldm=newm;
 /*********** Tricode ****************************/      }
 void tricode(int *Tvar, int **nbcode, int imx)      for(i=1; i<=nlstate+ndeath; i++)
 {        for(j=1;j<=nlstate+ndeath;j++) {
   int Ndum[20],ij=1, k, j, i;          po[i][j][h]=newm[i][j];
   int cptcode=0;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   cptcoveff=0;        }
        /*printf("h=%d ",h);*/
   for (k=0; k<19; k++) Ndum[k]=0;    } /* end h */
   for (k=1; k<=7; k++) ncodemax[k]=0;  /*     printf("\n H=%d \n",h); */
     return po;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  }
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;  /*************** log-likelihood *************/
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  double func( double *x)
       if (ij > cptcode) cptcode=ij;  {
     }    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     for (i=0; i<=cptcode; i++) {    double **out;
       if(Ndum[i]!=0) ncodemax[j]++;    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
     ij=1;    int s1, s2;
     double bbh, survp;
     long ipmx;
     for (i=1; i<=ncodemax[j]; i++) {    /*extern weight */
       for (k=0; k<=19; k++) {    /* We are differentiating ll according to initial status */
         if (Ndum[k] != 0) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           nbcode[Tvar[j]][ij]=k;    /*for(i=1;i<imx;i++) 
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/      printf(" %d\n",s[4][i]);
           ij++;    */
         }    cov[1]=1.;
         if (ij > ncodemax[j]) break;  
       }      for(k=1; k<=nlstate; k++) ll[k]=0.;
     }  
   }      if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  for (k=0; k<19; k++) Ndum[k]=0;        /* Computes the values of the ncovmodel covariates of the model
            depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
  for (i=1; i<=ncovmodel-2; i++) {           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       ij=Tvar[i];           to be observed in j being in i according to the model.
       Ndum[ij]++;         */
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
  ij=1;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
  for (i=1; i<=10; i++) {           has been calculated etc */
    if((Ndum[i]!=0) && (i<=ncovcol)){        for(mi=1; mi<= wav[i]-1; mi++){
      Tvaraff[ij]=i;          for (ii=1;ii<=nlstate+ndeath;ii++)
      ij++;            for (j=1;j<=nlstate+ndeath;j++){
    }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
     cptcoveff=ij-1;          for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /*********** Health Expectancies ****************/            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            }
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* Health expectancies */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, j, nhstepm, hstepm, h, nstepm, k;            savm=oldm;
   double age, agelim, hf;            oldm=newm;
   double ***p3mat;          } /* end mult */
          
   fprintf(ficreseij,"# Health expectancies\n");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   fprintf(ficreseij,"# Age");          /* But now since version 0.9 we anticipate for bias at large stepm.
   for(i=1; i<=nlstate;i++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(j=1; j<=nlstate;j++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
       fprintf(ficreseij," %1d-%1d",i,j);           * the nearest (and in case of equal distance, to the lowest) interval but now
   fprintf(ficreseij,"\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   k=1;             /* For example stepm=6 months */           * probability in order to take into account the bias as a fraction of the way
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */           * -stepm/2 to stepm/2 .
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.           * For stepm=1 the results are the same as for previous versions of Imach.
      nhstepm is the number of hstepm from age to agelim           * For stepm > 1 the results are less biased than in previous versions. 
      nstepm is the number of stepm from age to agelin.           */
      Look at hpijx to understand the reason of that which relies in memory size          s1=s[mw[mi][i]][i];
      and note for a fixed period like k years */          s2=s[mw[mi+1][i]][i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          bbh=(double)bh[mi][i]/(double)stepm; 
      survival function given by stepm (the optimization length). Unfortunately it          /* bias bh is positive if real duration
      means that if the survival funtion is printed only each two years of age and if           * is higher than the multiple of stepm and negative otherwise.
      you sum them up and add 1 year (area under the trapezoids) you won't get the same           */
      results. So we changed our mind and took the option of the best precision.          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   */          if( s2 > nlstate){ 
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
   agelim=AGESUP;               die between last step unit time and current  step unit time, 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */               which is also equal to probability to die before dh 
     /* nhstepm age range expressed in number of stepm */               minus probability to die before dh-stepm . 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);               In version up to 0.92 likelihood was computed
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          as if date of death was unknown. Death was treated as any other
     /* if (stepm >= YEARM) hstepm=1;*/          health state: the date of the interview describes the actual state
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          and not the date of a change in health state. The former idea was
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          to consider that at each interview the state was recorded
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          (healthy, disable or death) and IMaCh was corrected; but when we
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          introduced the exact date of death then we should have modified
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            the contribution of an exact death to the likelihood. This new
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          contribution is smaller and very dependent of the step unit
     for(i=1; i<=nlstate;i++)          stepm. It is no more the probability to die between last interview
       for(j=1; j<=nlstate;j++)          and month of death but the probability to survive from last
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          interview up to one month before death multiplied by the
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          probability to die within a month. Thanks to Chris
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          Jackson for correcting this bug.  Former versions increased
         }          mortality artificially. The bad side is that we add another loop
     fprintf(ficreseij,"%3.0f",age );          which slows down the processing. The difference can be up to 10%
     for(i=1; i<=nlstate;i++)          lower mortality.
       for(j=1; j<=nlstate;j++){            */
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);            lli=log(out[s1][s2] - savm[s1][s2]);
       }  
     fprintf(ficreseij,"\n");  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } else if  (s2==-2) {
   }            for (j=1,survp=0. ; j<=nlstate; j++) 
 }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             /*survp += out[s1][j]; */
 /************ Variance ******************/            lli= log(survp);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          }
 {          
   /* Variance of health expectancies */          else if  (s2==-4) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            for (j=3,survp=0. ; j<=nlstate; j++)  
   double **newm;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double **dnewm,**doldm;            lli= log(survp); 
   int i, j, nhstepm, hstepm, h, nstepm, kk;          } 
   int k, cptcode;  
   double *xp;          else if  (s2==-5) { 
   double **gp, **gm;            for (j=1,survp=0. ; j<=2; j++)  
   double ***gradg, ***trgradg;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double ***p3mat;            lli= log(survp); 
   double age,agelim, hf;          } 
   int theta;          
           else{
    fprintf(ficresvij,"# Covariances of life expectancies\n");            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   fprintf(ficresvij,"# Age");            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   for(i=1; i<=nlstate;i++)          } 
     for(j=1; j<=nlstate;j++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          /*if(lli ==000.0)*/
   fprintf(ficresvij,"\n");          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
   xp=vector(1,npar);          sw += weight[i];
   dnewm=matrix(1,nlstate,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   doldm=matrix(1,nlstate,1,nlstate);        } /* end of wave */
        } /* end of individual */
   kk=1;             /* For example stepm=6 months */    }  else if(mle==2){
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        for(mi=1; mi<= wav[i]-1; mi++){
      nhstepm is the number of hstepm from age to agelim          for (ii=1;ii<=nlstate+ndeath;ii++)
      nstepm is the number of stepm from age to agelin.            for (j=1;j<=nlstate+ndeath;j++){
      Look at hpijx to understand the reason of that which relies in memory size              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      and note for a fixed period like k years */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            }
      survival function given by stepm (the optimization length). Unfortunately it          for(d=0; d<=dh[mi][i]; d++){
      means that if the survival funtion is printed only each two years of age and if            newm=savm;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      results. So we changed our mind and took the option of the best precision.            for (kk=1; kk<=cptcovage;kk++) {
   */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */            }
   agelim = AGESUP;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            savm=oldm;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            oldm=newm;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } /* end mult */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        
     gp=matrix(0,nhstepm,1,nlstate);          s1=s[mw[mi][i]][i];
     gm=matrix(0,nhstepm,1,nlstate);          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
     for(theta=1; theta <=npar; theta++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(i=1; i<=npar; i++){ /* Computes gradient */          ipmx +=1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          } /* end of wave */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
       if (popbased==1) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           prlim[i][i]=probs[(int)age][i][ij];        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<= nlstate; j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(h=0; h<=nhstepm; h++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                for (kk=1; kk<=cptcovage;kk++) {
       for(i=1; i<=npar; i++) /* Computes gradient */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
       if (popbased==1) {            oldm=newm;
         for(i=1; i<=nlstate;i++)          } /* end mult */
           prlim[i][i]=probs[(int)age][i][ij];        
       }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
       for(j=1; j<= nlstate; j++){          bbh=(double)bh[mi][i]/(double)stepm; 
         for(h=0; h<=nhstepm; h++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          ipmx +=1;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
       } /* end of individual */
       for(j=1; j<= nlstate; j++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         for(h=0; h<=nhstepm; h++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
     } /* End theta */          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(h=0; h<=nhstepm; h++)            }
       for(j=1; j<=nlstate;j++)          for(d=0; d<dh[mi][i]; d++){
         for(theta=1; theta <=npar; theta++)            newm=savm;
           trgradg[h][j][theta]=gradg[h][theta][j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i=1;i<=nlstate;i++)            }
       for(j=1;j<=nlstate;j++)          
         vareij[i][j][(int)age] =0.;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(h=0;h<=nhstepm;h++){            savm=oldm;
       for(k=0;k<=nhstepm;k++){            oldm=newm;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          } /* end mult */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        
         for(i=1;i<=nlstate;i++)          s1=s[mw[mi][i]][i];
           for(j=1;j<=nlstate;j++)          s2=s[mw[mi+1][i]][i];
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          if( s2 > nlstate){ 
       }            lli=log(out[s1][s2] - savm[s1][s2]);
     }          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     fprintf(ficresvij,"%.0f ",age );          }
     for(i=1; i<=nlstate;i++)          ipmx +=1;
       for(j=1; j<=nlstate;j++){          sw += weight[i];
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     fprintf(ficresvij,"\n");        } /* end of wave */
     free_matrix(gp,0,nhstepm,1,nlstate);      } /* end of individual */
     free_matrix(gm,0,nhstepm,1,nlstate);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(mi=1; mi<= wav[i]-1; mi++){
   } /* End age */          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   free_vector(xp,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(doldm,1,nlstate,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(dnewm,1,nlstate,1,nlstate);            }
           for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /************ Variance of prevlim ******************/            for (kk=1; kk<=cptcovage;kk++) {
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   /* Variance of prevalence limit */          
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **newm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **dnewm,**doldm;            savm=oldm;
   int i, j, nhstepm, hstepm;            oldm=newm;
   int k, cptcode;          } /* end mult */
   double *xp;        
   double *gp, *gm;          s1=s[mw[mi][i]][i];
   double **gradg, **trgradg;          s2=s[mw[mi+1][i]][i];
   double age,agelim;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int theta;          ipmx +=1;
              sw += weight[i];
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresvpl,"# Age");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   for(i=1; i<=nlstate;i++)        } /* end of wave */
       fprintf(ficresvpl," %1d-%1d",i,i);      } /* end of individual */
   fprintf(ficresvpl,"\n");    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   xp=vector(1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   dnewm=matrix(1,nlstate,1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   doldm=matrix(1,nlstate,1,nlstate);    return -l;
    }
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  /*************** log-likelihood *************/
   agelim = AGESUP;  double funcone( double *x)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* Same as likeli but slower because of a lot of printf and if */
     if (stepm >= YEARM) hstepm=1;    int i, ii, j, k, mi, d, kk;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     gradg=matrix(1,npar,1,nlstate);    double **out;
     gp=vector(1,nlstate);    double lli; /* Individual log likelihood */
     gm=vector(1,nlstate);    double llt;
     int s1, s2;
     for(theta=1; theta <=npar; theta++){    double bbh, survp;
       for(i=1; i<=npar; i++){ /* Computes gradient */    /*extern weight */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /* We are differentiating ll according to initial status */
       }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /*for(i=1;i<imx;i++) 
       for(i=1;i<=nlstate;i++)      printf(" %d\n",s[4][i]);
         gp[i] = prlim[i][i];    */
        cov[1]=1.;
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         gm[i] = prlim[i][i];      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
       for(i=1;i<=nlstate;i++)        for (ii=1;ii<=nlstate+ndeath;ii++)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          for (j=1;j<=nlstate+ndeath;j++){
     } /* End theta */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
     trgradg =matrix(1,nlstate,1,npar);          }
         for(d=0; d<dh[mi][i]; d++){
     for(j=1; j<=nlstate;j++)          newm=savm;
       for(theta=1; theta <=npar; theta++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         trgradg[j][theta]=gradg[theta][j];          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i=1;i<=nlstate;i++)          }
       varpl[i][(int)age] =0.;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          savm=oldm;
     for(i=1;i<=nlstate;i++)          oldm=newm;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        } /* end mult */
         
     fprintf(ficresvpl,"%.0f ",age );        s1=s[mw[mi][i]][i];
     for(i=1; i<=nlstate;i++)        s2=s[mw[mi+1][i]][i];
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        bbh=(double)bh[mi][i]/(double)stepm; 
     fprintf(ficresvpl,"\n");        /* bias is positive if real duration
     free_vector(gp,1,nlstate);         * is higher than the multiple of stepm and negative otherwise.
     free_vector(gm,1,nlstate);         */
     free_matrix(gradg,1,npar,1,nlstate);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     free_matrix(trgradg,1,nlstate,1,npar);          lli=log(out[s1][s2] - savm[s1][s2]);
   } /* End age */        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
   free_vector(xp,1,npar);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   free_matrix(doldm,1,nlstate,1,npar);          lli= log(survp);
   free_matrix(dnewm,1,nlstate,1,nlstate);        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 }        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 /************ Variance of one-step probabilities  ******************/        } else if(mle==3){  /* exponential inter-extrapolation */
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   int i, j;          lli=log(out[s1][s2]); /* Original formula */
   int k=0, cptcode;        } else{  /* mle=0 back to 1 */
   double **dnewm,**doldm;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double *xp;          /*lli=log(out[s1][s2]); */ /* Original formula */
   double *gp, *gm;        } /* End of if */
   double **gradg, **trgradg;        ipmx +=1;
   double age,agelim, cov[NCOVMAX];        sw += weight[i];
   int theta;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   char fileresprob[FILENAMELENGTH];        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
   strcpy(fileresprob,"prob");          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   strcat(fileresprob,fileres);   %11.6f %11.6f %11.6f ", \
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     printf("Problem with resultfile: %s\n", fileresprob);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);            llt +=ll[k]*gipmx/gsw;
              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
   xp=vector(1,npar);          fprintf(ficresilk," %10.6f\n", -llt);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      } /* end of wave */
      } /* end of individual */
   cov[1]=1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for (age=bage; age<=fage; age ++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     cov[2]=age;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     gradg=matrix(1,npar,1,9);    if(globpr==0){ /* First time we count the contributions and weights */
     trgradg=matrix(1,9,1,npar);      gipmx=ipmx;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      gsw=sw;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    }
        return -l;
     for(theta=1; theta <=npar; theta++){  }
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
        /*************** function likelione ***********/
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      {
       k=0;    /* This routine should help understanding what is done with 
       for(i=1; i<= (nlstate+ndeath); i++){       the selection of individuals/waves and
         for(j=1; j<=(nlstate+ndeath);j++){       to check the exact contribution to the likelihood.
            k=k+1;       Plotting could be done.
           gp[k]=pmmij[i][j];     */
         }    int k;
       }  
     if(*globpri !=0){ /* Just counts and sums, no printings */
       for(i=1; i<=npar; i++)      strcpy(fileresilk,"ilk"); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      strcat(fileresilk,fileres);
          if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       k=0;      }
       for(i=1; i<=(nlstate+ndeath); i++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         for(j=1; j<=(nlstate+ndeath);j++){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           k=k+1;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
           gm[k]=pmmij[i][j];      for(k=1; k<=nlstate; k++) 
         }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
          }
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      *fretone=(*funcone)(p);
     }    if(*globpri !=0){
       fclose(ficresilk);
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       for(theta=1; theta <=npar; theta++)      fflush(fichtm); 
       trgradg[j][theta]=gradg[theta][j];    } 
      return;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);  }
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
   
      pmij(pmmij,cov,ncovmodel,x,nlstate);  /*********** Maximum Likelihood Estimation ***************/
   
      k=0;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      for(i=1; i<=(nlstate+ndeath); i++){  {
        for(j=1; j<=(nlstate+ndeath);j++){    int i,j, iter;
          k=k+1;    double **xi;
          gm[k]=pmmij[i][j];    double fret;
         }    double fretone; /* Only one call to likelihood */
      }    /*  char filerespow[FILENAMELENGTH];*/
          xi=matrix(1,npar,1,npar);
      /*printf("\n%d ",(int)age);    for (i=1;i<=npar;i++)
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      for (j=1;j<=npar;j++)
                xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    strcpy(filerespow,"pow"); 
      }*/    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
   fprintf(ficresprob,"\n%d ",(int)age);      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    }
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    for (i=1;i<=nlstate;i++)
   }      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficrespow,"\n");
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    powell(p,xi,npar,ftol,&iter,&fret,func);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
 }    free_matrix(xi,1,npar,1,npar);
  free_vector(xp,1,npar);    fclose(ficrespow);
 fclose(ficresprob);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
 /******************* Printing html file ***********/  }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
  int lastpass, int stepm, int weightopt, char model[],\  /**** Computes Hessian and covariance matrix ***/
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  {
  char version[], int popforecast ){    double  **a,**y,*x,pd;
   int jj1, k1, i1, cpt;    double **hess;
   FILE *fichtm;    int i, j,jk;
   /*char optionfilehtm[FILENAMELENGTH];*/    int *indx;
   
   strcpy(optionfilehtm,optionfile);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   strcat(optionfilehtm,".htm");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    void lubksb(double **a, int npar, int *indx, double b[]) ;
     printf("Problem with %s \n",optionfilehtm), exit(0);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   }    double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    printf("\nCalculation of the hessian matrix. Wait...\n");
 \n    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 Total number of observations=%d <br>\n    for (i=1;i<=npar;i++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      printf("%d",i);fflush(stdout);
 <hr  size=\"2\" color=\"#EC5E5E\">      fprintf(ficlog,"%d",i);fflush(ficlog);
  <ul><li>Outputs files<br>\n     
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      /*  printf(" %f ",p[i]);
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    }
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    
     for (i=1;i<=npar;i++) {
  fprintf(fichtm,"\n      for (j=1;j<=npar;j++)  {
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n        if (j>i) { 
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n          printf(".%d%d",i,j);fflush(stdout);
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
  if(popforecast==1) fprintf(fichtm,"\n          hess[j][i]=hess[i][j];    
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          /*printf(" %lf ",hess[i][j]);*/
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        }
         <br>",fileres,fileres,fileres,fileres);      }
  else    }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    printf("\n");
 fprintf(fichtm," <li>Graphs</li><p>");    fprintf(ficlog,"\n");
   
  m=cptcoveff;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
  jj1=0;    a=matrix(1,npar,1,npar);
  for(k1=1; k1<=m;k1++){    y=matrix(1,npar,1,npar);
    for(i1=1; i1<=ncodemax[k1];i1++){    x=vector(1,npar);
        jj1++;    indx=ivector(1,npar);
        if (cptcovn > 0) {    for (i=1;i<=npar;i++)
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
          for (cpt=1; cpt<=cptcoveff;cpt++)    ludcmp(a,npar,indx,&pd);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    for (j=1;j<=npar;j++) {
        }      for (i=1;i<=npar;i++) x[i]=0;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      x[j]=1;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          lubksb(a,npar,indx,x);
        for(cpt=1; cpt<nlstate;cpt++){      for (i=1;i<=npar;i++){ 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        matcov[i][j]=x[i];
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      }
        }    }
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    printf("\n#Hessian matrix#\n");
 interval) in state (%d): v%s%d%d.gif <br>    fprintf(ficlog,"\n#Hessian matrix#\n");
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (i=1;i<=npar;i++) { 
      }      for (j=1;j<=npar;j++) { 
      for(cpt=1; cpt<=nlstate;cpt++) {        printf("%.3e ",hess[i][j]);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        fprintf(ficlog,"%.3e ",hess[i][j]);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      }
      }      printf("\n");
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      fprintf(ficlog,"\n");
 health expectancies in states (1) and (2): e%s%d.gif<br>    }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
 fprintf(fichtm,"\n</body>");    /* Recompute Inverse */
    }    for (i=1;i<=npar;i++)
    }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 fclose(fichtm);    ludcmp(a,npar,indx,&pd);
 }  
     /*  printf("\n#Hessian matrix recomputed#\n");
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      x[j]=1;
       lubksb(a,npar,indx,x);
   strcpy(optionfilegnuplot,optionfilefiname);      for (i=1;i<=npar;i++){ 
   strcat(optionfilegnuplot,".gp.txt");        y[i][j]=x[i];
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        printf("%.3e ",y[i][j]);
     printf("Problem with file %s",optionfilegnuplot);        fprintf(ficlog,"%.3e ",y[i][j]);
   }      }
       printf("\n");
 #ifdef windows      fprintf(ficlog,"\n");
     fprintf(ficgp,"cd \"%s\" \n",pathc);    }
 #endif    */
 m=pow(2,cptcoveff);  
      free_matrix(a,1,npar,1,npar);
  /* 1eme*/    free_matrix(y,1,npar,1,npar);
   for (cpt=1; cpt<= nlstate ; cpt ++) {    free_vector(x,1,npar);
    for (k1=1; k1<= m ; k1 ++) {    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
 #ifdef windows  
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif  }
 #ifdef unix  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  /*************** hessian matrix ****************/
 #endif  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
 for (i=1; i<= nlstate ; i ++) {    int i;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int l=1, lmax=20;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double k1,k2;
 }    double p2[MAXPARM+1]; /* identical to x */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    double res;
     for (i=1; i<= nlstate ; i ++) {    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double fx;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int k=0,kmax=10;
 }    double l1;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {    fx=func(x);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (i=1;i<=npar;i++) p2[i]=x[i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(l=0 ; l <=lmax; l++){
 }        l1=pow(10,l);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      delts=delt;
 #ifdef unix      for(k=1 ; k <kmax; k=k+1){
 fprintf(ficgp,"\nset ter gif small size 400,300");        delt = delta*(l1*k);
 #endif        p2[theta]=x[theta] +delt;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        k1=func(p2)-fx;
    }        p2[theta]=x[theta]-delt;
   }        k2=func(p2)-fx;
   /*2 eme*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   for (k1=1; k1<= m ; k1 ++) {        
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);  #ifdef DEBUGHESS
            printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for (i=1; i<= nlstate+1 ; i ++) {        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       k=2*i;  #endif
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for (j=1; j<= nlstate+1 ; j ++) {        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          k=kmax;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          k=kmax; l=lmax*10.;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for (j=1; j<= nlstate+1 ; j ++) {          delts=delt;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
         else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }      }
       fprintf(ficgp,"\" t\"\" w l 0,");    delti[theta]=delts;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    return res; 
       for (j=1; j<= nlstate+1 ; j ++) {    
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  {
       else fprintf(ficgp,"\" t\"\" w l 0,");    int i;
     }    int l=1, l1, lmax=20;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    double k1,k2,k3,k4,res,fx;
   }    double p2[MAXPARM+1];
      int k;
   /*3eme*/  
     fx=func(x);
   for (k1=1; k1<= m ; k1 ++) {    for (k=1; k<=2; k++) {
     for (cpt=1; cpt<= nlstate ; cpt ++) {      for (i=1;i<=npar;i++) p2[i]=x[i];
       k=2+nlstate*(cpt-1);      p2[thetai]=x[thetai]+delti[thetai]/k;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for (i=1; i< nlstate ; i ++) {      k1=func(p2)-fx;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    
       }      p2[thetai]=x[thetai]+delti[thetai]/k;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     }      k2=func(p2)-fx;
     }    
        p2[thetai]=x[thetai]-delti[thetai]/k;
   /* CV preval stat */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for (k1=1; k1<= m ; k1 ++) {      k3=func(p2)-fx;
     for (cpt=1; cpt<nlstate ; cpt ++) {    
       k=3;      p2[thetai]=x[thetai]-delti[thetai]/k;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
       for (i=1; i< nlstate ; i ++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         fprintf(ficgp,"+$%d",k+i+1);  #ifdef DEBUG
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
            fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       l=3+(nlstate+ndeath)*cpt;  #endif
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    }
       for (i=1; i< nlstate ; i ++) {    return res;
         l=3+(nlstate+ndeath)*cpt;  }
         fprintf(ficgp,"+$%d",l+i+1);  
       }  /************** Inverse of matrix **************/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    void ludcmp(double **a, int n, int *indx, double *d) 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  { 
     }    int i,imax,j,k; 
   }      double big,dum,sum,temp; 
      double *vv; 
   /* proba elementaires */   
    for(i=1,jk=1; i <=nlstate; i++){    vv=vector(1,n); 
     for(k=1; k <=(nlstate+ndeath); k++){    *d=1.0; 
       if (k != i) {    for (i=1;i<=n;i++) { 
         for(j=1; j <=ncovmodel; j++){      big=0.0; 
              for (j=1;j<=n;j++) 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        if ((temp=fabs(a[i][j])) > big) big=temp; 
           jk++;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           fprintf(ficgp,"\n");      vv[i]=1.0/big; 
         }    } 
       }    for (j=1;j<=n;j++) { 
     }      for (i=1;i<j;i++) { 
     }        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     for(jk=1; jk <=m; jk++) {        a[i][j]=sum; 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      } 
    i=1;      big=0.0; 
    for(k2=1; k2<=nlstate; k2++) {      for (i=j;i<=n;i++) { 
      k3=i;        sum=a[i][j]; 
      for(k=1; k<=(nlstate+ndeath); k++) {        for (k=1;k<j;k++) 
        if (k != k2){          sum -= a[i][k]*a[k][j]; 
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        a[i][j]=sum; 
 ij=1;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         for(j=3; j <=ncovmodel; j++) {          big=dum; 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          imax=i; 
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        } 
             ij++;      } 
           }      if (j != imax) { 
           else        for (k=1;k<=n;k++) { 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          dum=a[imax][k]; 
         }          a[imax][k]=a[j][k]; 
           fprintf(ficgp,")/(1");          a[j][k]=dum; 
                } 
         for(k1=1; k1 <=nlstate; k1++){          *d = -(*d); 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        vv[imax]=vv[j]; 
 ij=1;      } 
           for(j=3; j <=ncovmodel; j++){      indx[j]=imax; 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      if (a[j][j] == 0.0) a[j][j]=TINY; 
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      if (j != n) { 
             ij++;        dum=1.0/(a[j][j]); 
           }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
           else      } 
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    } 
           }    free_vector(vv,1,n);  /* Doesn't work */
           fprintf(ficgp,")");  ;
         }  } 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  void lubksb(double **a, int n, int *indx, double b[]) 
         i=i+ncovmodel;  { 
        }    int i,ii=0,ip,j; 
      }    double sum; 
    }   
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    for (i=1;i<=n;i++) { 
    }      ip=indx[i]; 
          sum=b[ip]; 
   fclose(ficgp);      b[ip]=b[i]; 
 }  /* end gnuplot */      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
 /*************** Moving average **************/      b[i]=sum; 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    } 
     for (i=n;i>=1;i--) { 
   int i, cpt, cptcod;      sum=b[i]; 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for (i=1; i<=nlstate;i++)      b[i]=sum/a[i][i]; 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    } 
           mobaverage[(int)agedeb][i][cptcod]=0.;  } 
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  void pstamp(FILE *fichier)
       for (i=1; i<=nlstate;i++){  {
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           for (cpt=0;cpt<=4;cpt++){  }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }  /************ Frequencies ********************/
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         }  {  /* Some frequencies */
       }    
     }    int i, m, jk, k1,i1, j1, bool, z1,j;
        int first;
 }    double ***freq; /* Frequencies */
     double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
 /************** Forecasting ******************/    char fileresp[FILENAMELENGTH];
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    
      pp=vector(1,nlstate);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   int *popage;    strcpy(fileresp,"p");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    strcat(fileresp,fileres);
   double *popeffectif,*popcount;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   double ***p3mat;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   char fileresf[FILENAMELENGTH];      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
  agelim=AGESUP;    }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    
      j=cptcoveff;
      if (cptcovn<1) {j=1;ncodemax[1]=1;}
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);    first=1;
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);    for(k1=1; k1<=j;k1++){
   }      for(i1=1; i1<=ncodemax[k1];i1++){
   printf("Computing forecasting: result on file '%s' \n", fileresf);        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
   if (mobilav==1) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(m=iagemin; m <= iagemax+3; m++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);              freq[i][jk][m]=0;
   }  
       for (i=1; i<=nlstate; i++)  
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(m=iagemin; m <= iagemax+3; m++)
   if (stepm<=12) stepsize=1;          prop[i][m]=0;
          
   agelim=AGESUP;        dateintsum=0;
          k2cpt=0;
   hstepm=1;        for (i=1; i<=imx; i++) {
   hstepm=hstepm/stepm;          bool=1;
   yp1=modf(dateintmean,&yp);          if  (cptcovn>0) {
   anprojmean=yp;            for (z1=1; z1<=cptcoveff; z1++) 
   yp2=modf((yp1*12),&yp);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   mprojmean=yp;                bool=0;
   yp1=modf((yp2*30.5),&yp);          }
   jprojmean=yp;          if (bool==1){
   if(jprojmean==0) jprojmean=1;            for(m=firstpass; m<=lastpass; m++){
   if(mprojmean==0) jprojmean=1;              k2=anint[m][i]+(mint[m][i]/12.);
                /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
   for(cptcov=1;cptcov<=i2;cptcov++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                if (m<lastpass) {
       k=k+1;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficresf,"\n#******");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for(j=1;j<=cptcoveff;j++) {                }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                
       }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       fprintf(ficresf,"******\n");                  dateintsum=dateintsum+k2;
       fprintf(ficresf,"# StartingAge FinalAge");                  k2cpt++;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);                }
                      /*}*/
                  }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          }
         fprintf(ficresf,"\n");        }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);           
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        pstamp(ficresp);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        if  (cptcovn>0) {
           nhstepm = nhstepm/hstepm;          fprintf(ficresp, "\n#********** Variable "); 
                    for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresp, "**********\n#");
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(i=1; i<=nlstate;i++) 
                  fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           for (h=0; h<=nhstepm; h++){        fprintf(ficresp, "\n");
             if (h==(int) (calagedate+YEARM*cpt)) {        
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        for(i=iagemin; i <= iagemax+3; i++){
             }          if(i==iagemax+3){
             for(j=1; j<=nlstate+ndeath;j++) {            fprintf(ficlog,"Total");
               kk1=0.;kk2=0;          }else{
               for(i=1; i<=nlstate;i++) {                          if(first==1){
                 if (mobilav==1)              first=0;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              printf("See log file for details...\n");
                 else {            }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            fprintf(ficlog,"Age %d", i);
                 }          }
                          for(jk=1; jk <=nlstate ; jk++){
               }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               if (h==(int)(calagedate+12*cpt)){              pp[jk] += freq[jk][m][i]; 
                 fprintf(ficresf," %.3f", kk1);          }
                                  for(jk=1; jk <=nlstate ; jk++){
               }            for(m=-1, pos=0; m <=0 ; m++)
             }              pos += freq[jk][m][i];
           }            if(pp[jk]>=1.e-10){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if(first==1){
         }                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }              }
     }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   }            }else{
                      if(first==1)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   fclose(ficresf);            }
 }          }
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          for(jk=1; jk <=nlstate ; jk++){
              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              pp[jk] += freq[jk][m][i];
   int *popage;          }       
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double *popeffectif,*popcount;            pos += pp[jk];
   double ***p3mat,***tabpop,***tabpopprev;            posprop += prop[jk][i];
   char filerespop[FILENAMELENGTH];          }
           for(jk=1; jk <=nlstate ; jk++){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if(pos>=1.e-5){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              if(first==1)
   agelim=AGESUP;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
              }else{
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              if(first==1)
                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   strcpy(filerespop,"pop");            }
   strcat(filerespop,fileres);            if( i <= iagemax){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {              if(pos>=1.e-5){
     printf("Problem with forecast resultfile: %s\n", filerespop);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   }                /*probs[i][jk][j1]= pp[jk]/pos;*/
   printf("Computing forecasting: result on file '%s' \n", filerespop);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   if (mobilav==1) {            }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
     movingaverage(agedeb, fage, ageminpar, mobaverage);          
   }          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;              if(freq[jk][m][i] !=0 ) {
   if (stepm<=12) stepsize=1;              if(first==1)
                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   agelim=AGESUP;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                }
   hstepm=1;          if(i <= iagemax)
   hstepm=hstepm/stepm;            fprintf(ficresp,"\n");
            if(first==1)
   if (popforecast==1) {            printf("Others in log...\n");
     if((ficpop=fopen(popfile,"r"))==NULL) {          fprintf(ficlog,"\n");
       printf("Problem with population file : %s\n",popfile);exit(0);        }
     }      }
     popage=ivector(0,AGESUP);    }
     popeffectif=vector(0,AGESUP);    dateintmean=dateintsum/k2cpt; 
     popcount=vector(0,AGESUP);   
        fclose(ficresp);
     i=1;      free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    free_vector(pp,1,nlstate);
        free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     imx=i;    /* End of Freq */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  }
   }  
   /************ Prevalence ********************/
   for(cptcov=1;cptcov<=i2;cptcov++){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  {  
       k=k+1;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       fprintf(ficrespop,"\n#******");       in each health status at the date of interview (if between dateprev1 and dateprev2).
       for(j=1;j<=cptcoveff;j++) {       We still use firstpass and lastpass as another selection.
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    */
       }   
       fprintf(ficrespop,"******\n");    int i, m, jk, k1, i1, j1, bool, z1,j;
       fprintf(ficrespop,"# Age");    double ***freq; /* Frequencies */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    double *pp, **prop;
       if (popforecast==1)  fprintf(ficrespop," [Population]");    double pos,posprop; 
          double  y2; /* in fractional years */
       for (cpt=0; cpt<=0;cpt++) {    int iagemin, iagemax;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
            iagemin= (int) agemin;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    iagemax= (int) agemax;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /*pp=vector(1,nlstate);*/
           nhstepm = nhstepm/hstepm;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
              /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    j1=0;
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      j=cptcoveff;
            if (cptcovn<1) {j=1;ncodemax[1]=1;}
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {    for(k1=1; k1<=j;k1++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for(i1=1; i1<=ncodemax[k1];i1++){
             }        j1++;
             for(j=1; j<=nlstate+ndeath;j++) {        
               kk1=0.;kk2=0;        for (i=1; i<=nlstate; i++)  
               for(i=1; i<=nlstate;i++) {                        for(m=iagemin; m <= iagemax+3; m++)
                 if (mobilav==1)            prop[i][m]=0.0;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       
                 else {        for (i=1; i<=imx; i++) { /* Each individual */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          bool=1;
                 }          if  (cptcovn>0) {
               }            for (z1=1; z1<=cptcoveff; z1++) 
               if (h==(int)(calagedate+12*cpt)){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                bool=0;
                   /*fprintf(ficrespop," %.3f", kk1);          } 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          if (bool==1) { 
               }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
             for(i=1; i<=nlstate;i++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
               kk1=0.;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 for(j=1; j<=nlstate;j++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)                } 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              }
           }            } /* end selection of waves */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
         }        }
       }        for(i=iagemin; i <= iagemax+3; i++){  
            
   /******/          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          } 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for(jk=1; jk <=nlstate ; jk++){     
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            if( i <=  iagemax){ 
           nhstepm = nhstepm/hstepm;              if(posprop>=1.e-5){ 
                          probs[i][jk][j1]= prop[jk][i]/posprop;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              } else
           oldm=oldms;savm=savms;                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              } 
           for (h=0; h<=nhstepm; h++){          }/* end jk */ 
             if (h==(int) (calagedate+YEARM*cpt)) {        }/* end i */ 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      } /* end i1 */
             }    } /* end k1 */
             for(j=1; j<=nlstate+ndeath;j++) {    
               kk1=0.;kk2=0;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
               for(i=1; i<=nlstate;i++) {                  /*free_vector(pp,1,nlstate);*/
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        free_matrix(prop,1,nlstate, iagemin,iagemax+3);
               }  }  /* End of prevalence */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  
             }  /************* Waves Concatenation ***************/
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         }  {
       }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
    }       Death is a valid wave (if date is known).
   }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       and mw[mi+1][i]. dh depends on stepm.
        */
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);    int i, mi, m;
     free_vector(popeffectif,0,AGESUP);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     free_vector(popcount,0,AGESUP);       double sum=0., jmean=0.;*/
   }    int first;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int j, k=0,jk, ju, jl;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double sum=0.;
   fclose(ficrespop);    first=0;
 }    jmin=1e+5;
     jmax=-1;
 /***********************************************/    jmean=0.;
 /**************** Main Program *****************/    for(i=1; i<=imx; i++){
 /***********************************************/      mi=0;
       m=firstpass;
 int main(int argc, char *argv[])      while(s[m][i] <= nlstate){
 {        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        if(m >=lastpass)
   double agedeb, agefin,hf;          break;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        else
           m++;
   double fret;      }/* end while */
   double **xi,tmp,delta;      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
   double dum; /* Dummy variable */        /* if(mi==0)  never been interviewed correctly before death */
   double ***p3mat;           /* Only death is a correct wave */
   int *indx;        mw[mi][i]=m;
   char line[MAXLINE], linepar[MAXLINE];      }
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      wav[i]=mi;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      if(mi==0){
          nbwarn++;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   char filerest[FILENAMELENGTH];          first=1;
   char fileregp[FILENAMELENGTH];        }
   char popfile[FILENAMELENGTH];        if(first==1){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   int firstobs=1, lastobs=10;        }
   int sdeb, sfin; /* Status at beginning and end */      } /* end mi==0 */
   int c,  h , cpt,l;    } /* End individuals */
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    for(i=1; i<=imx; i++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      for(mi=1; mi<wav[i];mi++){
   int mobilav=0,popforecast=0;        if (stepm <=0)
   int hstepm, nhstepm;          dh[mi][i]=1;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   double bage, fage, age, agelim, agebase;            if (agedc[i] < 2*AGESUP) {
   double ftolpl=FTOL;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   double **prlim;              if(j==0) j=1;  /* Survives at least one month after exam */
   double *severity;              else if(j<0){
   double ***param; /* Matrix of parameters */                nberr++;
   double  *p;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double **matcov; /* Matrix of covariance */                j=1; /* Temporary Dangerous patch */
   double ***delti3; /* Scale */                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   double *delti; /* Scale */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double ***eij, ***vareij;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   double **varpl; /* Variances of prevalence limits by age */              }
   double *epj, vepp;              k=k+1;
   double kk1, kk2;              if (j >= jmax){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;                jmax=j;
                  ijmax=i;
               }
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";              if (j <= jmin){
   char *alph[]={"a","a","b","c","d","e"}, str[4];                jmin=j;
                 ijmin=i;
               }
   char z[1]="c", occ;              sum=sum+j;
 #include <sys/time.h>              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 #include <time.h>              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            }
            }
   /* long total_usecs;          else{
   struct timeval start_time, end_time;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);            k=k+1;
             if (j >= jmax) {
   printf("\n%s",version);              jmax=j;
   if(argc <=1){              ijmax=i;
     printf("\nEnter the parameter file name: ");            }
     scanf("%s",pathtot);            else if (j <= jmin){
   }              jmin=j;
   else{              ijmin=i;
     strcpy(pathtot,argv[1]);            }
   }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   /*cygwin_split_path(pathtot,path,optionfile);            if(j<0){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/              nberr++;
   /* cutv(path,optionfile,pathtot,'\\');*/              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            sum=sum+j;
   chdir(path);          }
   replace(pathc,path);          jk= j/stepm;
           jl= j -jk*stepm;
 /*-------- arguments in the command line --------*/          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   strcpy(fileres,"r");            if(jl==0){
   strcat(fileres, optionfilefiname);              dh[mi][i]=jk;
   strcat(fileres,".txt");    /* Other files have txt extension */              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
   /*---------arguments file --------*/                    * to avoid the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {              bh[mi][i]=ju;
     printf("Problem with optionfile %s\n",optionfile);            }
     goto end;          }else{
   }            if(jl <= -ju){
               dh[mi][i]=jk;
   strcpy(filereso,"o");              bh[mi][i]=jl;       /* bias is positive if real duration
   strcat(filereso,fileres);                                   * is higher than the multiple of stepm and negative otherwise.
   if((ficparo=fopen(filereso,"w"))==NULL) {                                   */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;            }
   }            else{
               dh[mi][i]=jk+1;
   /* Reads comments: lines beginning with '#' */              bh[mi][i]=ju;
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);            if(dh[mi][i]==0){
     fgets(line, MAXLINE, ficpar);              dh[mi][i]=1; /* At least one step */
     puts(line);              bh[mi][i]=ju; /* At least one step */
     fputs(line,ficparo);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   }            }
   ungetc(c,ficpar);          } /* end if mle */
         }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      } /* end wave */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    jmean=sum/k;
 while((c=getc(ficpar))=='#' && c!= EOF){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     ungetc(c,ficpar);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     fgets(line, MAXLINE, ficpar);   }
     puts(line);  
     fputs(line,ficparo);  /*********** Tricode ****************************/
   }  void tricode(int *Tvar, int **nbcode, int imx)
   ungetc(c,ficpar);  {
      /* Uses cptcovn+2*cptcovprod as the number of covariates */
        /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    int modmaxcovj=0; /* Modality max of covariates j */
     cptcoveff=0; 
   ncovmodel=2+cptcovn;   
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    for (k=0; k<maxncov; k++) Ndum[k]=0;
      for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
   while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
     ungetc(c,ficpar);                                 modality of this covariate Vj*/ 
     fgets(line, MAXLINE, ficpar);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
     puts(line);                                        modality of the nth covariate of individual i. */
     fputs(line,ficparo);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   ungetc(c,ficpar);        if (ij > modmaxcovj) modmaxcovj=ij; 
          /* getting the maximum value of the modality of the covariate
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     for(i=1; i <=nlstate; i++)           female is 1, then modmaxcovj=1.*/
     for(j=1; j <=nlstate+ndeath-1; j++){      }
       fscanf(ficpar,"%1d%1d",&i1,&j1);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
       fprintf(ficparo,"%1d%1d",i1,j1);      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
       printf("%1d%1d",i,j);        if( Ndum[i] != 0 )
       for(k=1; k<=ncovmodel;k++){          ncodemax[j]++; 
         fscanf(ficpar," %lf",&param[i][j][k]);        /* Number of modalities of the j th covariate. In fact
         printf(" %lf",param[i][j][k]);           ncodemax[j]=2 (dichotom. variables only) but it could be more for
         fprintf(ficparo," %lf",param[i][j][k]);           historical reasons */
       }      } /* Ndum[-1] number of undefined modalities */
       fscanf(ficpar,"\n");  
       printf("\n");      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       fprintf(ficparo,"\n");      ij=1; 
     }      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
          for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   p=param[1][1];                                       k is a modality. If we have model=V1+V1*sex 
                                         then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   /* Reads comments: lines beginning with '#' */            ij++;
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          if (ij > ncodemax[j]) break; 
     fgets(line, MAXLINE, ficpar);        }  /* end of loop on */
     puts(line);      } /* end of loop on modality */ 
     fputs(line,ficparo);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   }    
   ungetc(c,ficpar);    for (k=0; k< maxncov; k++) Ndum[k]=0;
     
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   for(i=1; i <=nlstate; i++){     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
     for(j=1; j <=nlstate+ndeath-1; j++){     Ndum[ij]++;
       fscanf(ficpar,"%1d%1d",&i1,&j1);   }
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);   ij=1;
       for(k=1; k<=ncovmodel;k++){   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
         fscanf(ficpar,"%le",&delti3[i][j][k]);     if((Ndum[i]!=0) && (i<=ncovcol)){
         printf(" %le",delti3[i][j][k]);       Tvaraff[ij]=i; /*For printing */
         fprintf(ficparo," %le",delti3[i][j][k]);       ij++;
       }     }
       fscanf(ficpar,"\n");   }
       printf("\n");   ij--;
       fprintf(ficparo,"\n");   cptcoveff=ij; /*Number of simple covariates*/
     }  }
   }  
   delti=delti3[1][1];  /*********** Health Expectancies ****************/
    
   /* Reads comments: lines beginning with '#' */  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    /* Health expectancies, no variances */
     puts(line);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     fputs(line,ficparo);    int nhstepma, nstepma; /* Decreasing with age */
   }    double age, agelim, hf;
   ungetc(c,ficpar);    double ***p3mat;
      double eip;
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){    pstamp(ficreseij);
     fscanf(ficpar,"%s",&str);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     printf("%s",str);    fprintf(ficreseij,"# Age");
     fprintf(ficparo,"%s",str);    for(i=1; i<=nlstate;i++){
     for(j=1; j <=i; j++){      for(j=1; j<=nlstate;j++){
       fscanf(ficpar," %le",&matcov[i][j]);        fprintf(ficreseij," e%1d%1d ",i,j);
       printf(" %.5le",matcov[i][j]);      }
       fprintf(ficparo," %.5le",matcov[i][j]);      fprintf(ficreseij," e%1d. ",i);
     }    }
     fscanf(ficpar,"\n");    fprintf(ficreseij,"\n");
     printf("\n");  
     fprintf(ficparo,"\n");    
   }    if(estepm < stepm){
   for(i=1; i <=npar; i++)      printf ("Problem %d lower than %d\n",estepm, stepm);
     for(j=i+1;j<=npar;j++)    }
       matcov[i][j]=matcov[j][i];    else  hstepm=estepm;   
        /* We compute the life expectancy from trapezoids spaced every estepm months
   printf("\n");     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
     /*-------- Rewriting paramater file ----------*/     * progression in between and thus overestimating or underestimating according
      strcpy(rfileres,"r");    /* "Rparameterfile */     * to the curvature of the survival function. If, for the same date, we 
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      strcat(rfileres,".");    /* */     * to compare the new estimate of Life expectancy with the same linear 
      strcat(rfileres,optionfilext);    /* Other files have txt extension */     * hypothesis. A more precise result, taking into account a more precise
     if((ficres =fopen(rfileres,"w"))==NULL) {     * curvature will be obtained if estepm is as small as stepm. */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
     }    /* For example we decided to compute the life expectancy with the smallest unit */
     fprintf(ficres,"#%s\n",version);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm is the number of hstepm from age to agelim 
     /*-------- data file ----------*/       nstepm is the number of stepm from age to agelin. 
     if((fic=fopen(datafile,"r"))==NULL)    {       Look at hpijx to understand the reason of that which relies in memory size
       printf("Problem with datafile: %s\n", datafile);goto end;       and note for a fixed period like estepm months */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
     n= lastobs;       means that if the survival funtion is printed only each two years of age and if
     severity = vector(1,maxwav);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     outcome=imatrix(1,maxwav+1,1,n);       results. So we changed our mind and took the option of the best precision.
     num=ivector(1,n);    */
     moisnais=vector(1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     annais=vector(1,n);  
     moisdc=vector(1,n);    agelim=AGESUP;
     andc=vector(1,n);    /* If stepm=6 months */
     agedc=vector(1,n);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     cod=ivector(1,n);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     weight=vector(1,n);      
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  /* nhstepm age range expressed in number of stepm */
     mint=matrix(1,maxwav,1,n);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     anint=matrix(1,maxwav,1,n);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     s=imatrix(1,maxwav+1,1,n);    /* if (stepm >= YEARM) hstepm=1;*/
     adl=imatrix(1,maxwav+1,1,n);        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     tab=ivector(1,NCOVMAX);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     ncodemax=ivector(1,8);  
     for (age=bage; age<=fage; age ++){ 
     i=1;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     while (fgets(line, MAXLINE, fic) != NULL)    {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       if ((i >= firstobs) && (i <=lastobs)) {      /* if (stepm >= YEARM) hstepm=1;*/
              nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      /* If stepm=6 months */
           strcpy(line,stra);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      
         }      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
              
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      
       printf("%d|",(int)age);fflush(stdout);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      
       /* Computing expectancies */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      for(i=1; i<=nlstate;i++)
         for (j=ncovcol;j>=1;j--){        for(j=1; j<=nlstate;j++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         num[i]=atol(stra);            
                    /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          }
   
         i=i+1;      fprintf(ficreseij,"%3.0f",age );
       }      for(i=1; i<=nlstate;i++){
     }        eip=0;
     /* printf("ii=%d", ij);        for(j=1; j<=nlstate;j++){
        scanf("%d",i);*/          eip +=eij[i][j][(int)age];
   imx=i-1; /* Number of individuals */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
   /* for (i=1; i<=imx; i++){        fprintf(ficreseij,"%9.4f", eip );
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      fprintf(ficreseij,"\n");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      
     }*/    }
      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* for (i=1; i<=imx; i++){    printf("\n");
      if (s[4][i]==9)  s[4][i]=-1;    fprintf(ficlog,"\n");
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}    
   */  }
    
   /* Calculation of the number of parameter from char model*/  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);  {
   Tvaraff=ivector(1,15);    /* Covariances of health expectancies eij and of total life expectancies according
   Tvard=imatrix(1,15,1,2);     to initial status i, ei. .
   Tage=ivector(1,15);          */
        int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   if (strlen(model) >1){    int nhstepma, nstepma; /* Decreasing with age */
     j=0, j1=0, k1=1, k2=1;    double age, agelim, hf;
     j=nbocc(model,'+');    double ***p3matp, ***p3matm, ***varhe;
     j1=nbocc(model,'*');    double **dnewm,**doldm;
     cptcovn=j+1;    double *xp, *xm;
     cptcovprod=j1;    double **gp, **gm;
        double ***gradg, ***trgradg;
     strcpy(modelsav,model);    int theta;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);    double eip, vip;
       goto end;  
     }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
        xp=vector(1,npar);
     for(i=(j+1); i>=1;i--){    xm=vector(1,npar);
       cutv(stra,strb,modelsav,'+');    dnewm=matrix(1,nlstate*nlstate,1,npar);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    
       /*scanf("%d",i);*/    pstamp(ficresstdeij);
       if (strchr(strb,'*')) {    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         cutv(strd,strc,strb,'*');    fprintf(ficresstdeij,"# Age");
         if (strcmp(strc,"age")==0) {    for(i=1; i<=nlstate;i++){
           cptcovprod--;      for(j=1; j<=nlstate;j++)
           cutv(strb,stre,strd,'V');        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
           Tvar[i]=atoi(stre);      fprintf(ficresstdeij," e%1d. ",i);
           cptcovage++;    }
             Tage[cptcovage]=i;    fprintf(ficresstdeij,"\n");
             /*printf("stre=%s ", stre);*/  
         }    pstamp(ficrescveij);
         else if (strcmp(strd,"age")==0) {    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           cptcovprod--;    fprintf(ficrescveij,"# Age");
           cutv(strb,stre,strc,'V');    for(i=1; i<=nlstate;i++)
           Tvar[i]=atoi(stre);      for(j=1; j<=nlstate;j++){
           cptcovage++;        cptj= (j-1)*nlstate+i;
           Tage[cptcovage]=i;        for(i2=1; i2<=nlstate;i2++)
         }          for(j2=1; j2<=nlstate;j2++){
         else {            cptj2= (j2-1)*nlstate+i2;
           cutv(strb,stre,strc,'V');            if(cptj2 <= cptj)
           Tvar[i]=ncovcol+k1;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           cutv(strb,strc,strd,'V');          }
           Tprod[k1]=i;      }
           Tvard[k1][1]=atoi(strc);    fprintf(ficrescveij,"\n");
           Tvard[k1][2]=atoi(stre);    
           Tvar[cptcovn+k2]=Tvard[k1][1];    if(estepm < stepm){
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      printf ("Problem %d lower than %d\n",estepm, stepm);
           for (k=1; k<=lastobs;k++)    }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    else  hstepm=estepm;   
           k1++;    /* We compute the life expectancy from trapezoids spaced every estepm months
           k2=k2+2;     * This is mainly to measure the difference between two models: for example
         }     * if stepm=24 months pijx are given only every 2 years and by summing them
       }     * we are calculating an estimate of the Life Expectancy assuming a linear 
       else {     * progression in between and thus overestimating or underestimating according
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/     * to the curvature of the survival function. If, for the same date, we 
        /*  scanf("%d",i);*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       cutv(strd,strc,strb,'V');     * to compare the new estimate of Life expectancy with the same linear 
       Tvar[i]=atoi(strc);     * hypothesis. A more precise result, taking into account a more precise
       }     * curvature will be obtained if estepm is as small as stepm. */
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    /* For example we decided to compute the life expectancy with the smallest unit */
         scanf("%d",i);*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     }       nhstepm is the number of hstepm from age to agelim 
 }       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);       and note for a fixed period like estepm months */
   printf("cptcovprod=%d ", cptcovprod);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   scanf("%d ",i);*/       survival function given by stepm (the optimization length). Unfortunately it
     fclose(fic);       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     /*  if(mle==1){*/       results. So we changed our mind and took the option of the best precision.
     if (weightopt != 1) { /* Maximisation without weights*/    */
       for(i=1;i<=n;i++) weight[i]=1.0;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }  
     /*-calculation of age at interview from date of interview and age at death -*/    /* If stepm=6 months */
     agev=matrix(1,maxwav,1,imx);    /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     for (i=1; i<=imx; i++) {    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       for(m=2; (m<= maxwav); m++) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    /* if (stepm >= YEARM) hstepm=1;*/
          anint[m][i]=9999;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          s[m][i]=-1;    
        }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     for (i=1; i<=imx; i++)  {    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){    for (age=bage; age<=fage; age ++){ 
         if(s[m][i] >0){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           if (s[m][i] >= nlstate+1) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             if(agedc[i]>0)      /* if (stepm >= YEARM) hstepm=1;*/
               if(moisdc[i]!=99 && andc[i]!=9999)      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                 agev[m][i]=agedc[i];  
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      /* If stepm=6 months */
            else {      /* Computed by stepm unit matrices, product of hstepma matrices, stored
               if (andc[i]!=9999){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      
               agev[m][i]=-1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               }  
             }      /* Computing  Variances of health expectancies */
           }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           else if(s[m][i] !=9){ /* Should no more exist */         decrease memory allocation */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      for(theta=1; theta <=npar; theta++){
             if(mint[m][i]==99 || anint[m][i]==9999)        for(i=1; i<=npar; i++){ 
               agev[m][i]=1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             else if(agev[m][i] <agemin){          xm[i] = x[i] - (i==theta ?delti[theta]:0);
               agemin=agev[m][i];        }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
             }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
             else if(agev[m][i] >agemax){    
               agemax=agev[m][i];        for(j=1; j<= nlstate; j++){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          for(i=1; i<=nlstate; i++){
             }            for(h=0; h<=nhstepm-1; h++){
             /*agev[m][i]=anint[m][i]-annais[i];*/              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
             /*   agev[m][i] = age[i]+2*m;*/              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           }            }
           else { /* =9 */          }
             agev[m][i]=1;        }
             s[m][i]=-1;       
           }        for(ij=1; ij<= nlstate*nlstate; ij++)
         }          for(h=0; h<=nhstepm-1; h++){
         else /*= 0 Unknown */            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           agev[m][i]=1;          }
       }      }/* End theta */
          
     }      
     for (i=1; i<=imx; i++)  {      for(h=0; h<=nhstepm-1; h++)
       for(m=1; (m<= maxwav); m++){        for(j=1; j<=nlstate*nlstate;j++)
         if (s[m][i] > (nlstate+ndeath)) {          for(theta=1; theta <=npar; theta++)
           printf("Error: Wrong value in nlstate or ndeath\n");              trgradg[h][j][theta]=gradg[h][theta][j];
           goto end;      
         }  
       }       for(ij=1;ij<=nlstate*nlstate;ij++)
     }        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
        printf("%d|",(int)age);fflush(stdout);
     free_vector(severity,1,maxwav);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     free_imatrix(outcome,1,maxwav+1,1,n);       for(h=0;h<=nhstepm-1;h++){
     free_vector(moisnais,1,n);        for(k=0;k<=nhstepm-1;k++){
     free_vector(annais,1,n);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     /* free_matrix(mint,1,maxwav,1,n);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
        free_matrix(anint,1,maxwav,1,n);*/          for(ij=1;ij<=nlstate*nlstate;ij++)
     free_vector(moisdc,1,n);            for(ji=1;ji<=nlstate*nlstate;ji++)
     free_vector(andc,1,n);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
          }
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      /* Computing expectancies */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
          for(i=1; i<=nlstate;i++)
     /* Concatenates waves */        for(j=1; j<=nlstate;j++)
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
       Tcode=ivector(1,100);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;          }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
            fprintf(ficresstdeij,"%3.0f",age );
    codtab=imatrix(1,100,1,10);      for(i=1; i<=nlstate;i++){
    h=0;        eip=0.;
    m=pow(2,cptcoveff);        vip=0.;
          for(j=1; j<=nlstate;j++){
    for(k=1;k<=cptcoveff; k++){          eip += eij[i][j][(int)age];
      for(i=1; i <=(m/pow(2,k));i++){          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
        for(j=1; j <= ncodemax[k]; j++){            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
            h++;        }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      }
          }      fprintf(ficresstdeij,"\n");
        }  
      }      fprintf(ficrescveij,"%3.0f",age );
    }      for(i=1; i<=nlstate;i++)
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        for(j=1; j<=nlstate;j++){
       codtab[1][2]=1;codtab[2][2]=2; */          cptj= (j-1)*nlstate+i;
    /* for(i=1; i <=m ;i++){          for(i2=1; i2<=nlstate;i2++)
       for(k=1; k <=cptcovn; k++){            for(j2=1; j2<=nlstate;j2++){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);              cptj2= (j2-1)*nlstate+i2;
       }              if(cptj2 <= cptj)
       printf("\n");                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       }            }
       scanf("%d",i);*/        }
          fprintf(ficrescveij,"\n");
    /* Calculates basic frequencies. Computes observed prevalence at single age     
        and prints on file fileres'p'. */    }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
        free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("\n");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficlog,"\n");
        
     /* For Powell, parameters are in a vector p[] starting at p[1]    free_vector(xm,1,npar);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    free_vector(xp,1,npar);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     if(mle==1){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  }
     }  
      /************ Variance ******************/
     /*--------- results files --------------*/  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  {
      /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
    jk=1;    /* double **newm;*/
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double **dnewm,**doldm;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double **dnewmp,**doldmp;
    for(i=1,jk=1; i <=nlstate; i++){    int i, j, nhstepm, hstepm, h, nstepm ;
      for(k=1; k <=(nlstate+ndeath); k++){    int k, cptcode;
        if (k != i)    double *xp;
          {    double **gp, **gm;  /* for var eij */
            printf("%d%d ",i,k);    double ***gradg, ***trgradg; /*for var eij */
            fprintf(ficres,"%1d%1d ",i,k);    double **gradgp, **trgradgp; /* for var p point j */
            for(j=1; j <=ncovmodel; j++){    double *gpp, *gmp; /* for var p point j */
              printf("%f ",p[jk]);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
              fprintf(ficres,"%f ",p[jk]);    double ***p3mat;
              jk++;    double age,agelim, hf;
            }    double ***mobaverage;
            printf("\n");    int theta;
            fprintf(ficres,"\n");    char digit[4];
          }    char digitp[25];
      }  
    }    char fileresprobmorprev[FILENAMELENGTH];
  if(mle==1){  
     /* Computing hessian and covariance matrix */    if(popbased==1){
     ftolhess=ftol; /* Usually correct */      if(mobilav!=0)
     hesscov(matcov, p, npar, delti, ftolhess, func);        strcpy(digitp,"-populbased-mobilav-");
  }      else strcpy(digitp,"-populbased-nomobil-");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    }
     printf("# Scales (for hessian or gradient estimation)\n");    else 
      for(i=1,jk=1; i <=nlstate; i++){      strcpy(digitp,"-stablbased-");
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {    if (mobilav!=0) {
           fprintf(ficres,"%1d%1d",i,j);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           printf("%1d%1d",i,j);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           for(k=1; k<=ncovmodel;k++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             printf(" %.5e",delti[jk]);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             fprintf(ficres," %.5e",delti[jk]);      }
             jk++;    }
           }  
           printf("\n");    strcpy(fileresprobmorprev,"prmorprev"); 
           fprintf(ficres,"\n");    sprintf(digit,"%-d",ij);
         }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
      }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
        strcat(fileresprobmorprev,fileres);
     k=1;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     for(i=1;i<=npar;i++){    }
       /*  if (k>nlstate) k=1;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       i1=(i-1)/(ncovmodel*nlstate)+1;   
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    pstamp(ficresprobmorprev);
       fprintf(ficres,"%3d",i);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       printf("%3d",i);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       for(j=1; j<=i;j++){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficres," %.5e",matcov[i][j]);      fprintf(ficresprobmorprev," p.%-d SE",j);
         printf(" %.5e",matcov[i][j]);      for(i=1; i<=nlstate;i++)
       }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       fprintf(ficres,"\n");    }  
       printf("\n");    fprintf(ficresprobmorprev,"\n");
       k++;    fprintf(ficgp,"\n# Routine varevsij");
     }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
        fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       ungetc(c,ficpar);  /*   } */
       fgets(line, MAXLINE, ficpar);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       puts(line);    pstamp(ficresvij);
       fputs(line,ficparo);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     }    if(popbased==1)
     ungetc(c,ficpar);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
      else
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
        fprintf(ficresvij,"# Age");
     if (fage <= 2) {    for(i=1; i<=nlstate;i++)
       bage = ageminpar;      for(j=1; j<=nlstate;j++)
       fage = agemaxpar;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     }    fprintf(ficresvij,"\n");
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    xp=vector(1,npar);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);    dnewm=matrix(1,nlstate,1,npar);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);    doldm=matrix(1,nlstate,1,nlstate);
      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     while((c=getc(ficpar))=='#' && c!= EOF){    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     puts(line);    gpp=vector(nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    gmp=vector(nlstate+1,nlstate+ndeath);
   }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   ungetc(c,ficpar);    
      if(estepm < stepm){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    else  hstepm=estepm;   
          /* For example we decided to compute the life expectancy with the smallest unit */
   while((c=getc(ficpar))=='#' && c!= EOF){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     ungetc(c,ficpar);       nhstepm is the number of hstepm from age to agelim 
     fgets(line, MAXLINE, ficpar);       nstepm is the number of stepm from age to agelin. 
     puts(line);       Look at function hpijx to understand why (it is linked to memory size questions) */
     fputs(line,ficparo);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   ungetc(c,ficpar);       means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
   fscanf(ficpar,"pop_based=%d\n",&popbased);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fprintf(ficparo,"pop_based=%d\n",popbased);        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   fprintf(ficres,"pop_based=%d\n",popbased);        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   while((c=getc(ficpar))=='#' && c!= EOF){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     ungetc(c,ficpar);      gp=matrix(0,nhstepm,1,nlstate);
     fgets(line, MAXLINE, ficpar);      gm=matrix(0,nhstepm,1,nlstate);
     puts(line);  
     fputs(line,ficparo);  
   }      for(theta=1; theta <=npar; theta++){
   ungetc(c,ficpar);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
 while((c=getc(ficpar))=='#' && c!= EOF){          if(mobilav ==0){
     ungetc(c,ficpar);            for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);              prlim[i][i]=probs[(int)age][i][ij];
     puts(line);          }else{ /* mobilav */ 
     fputs(line,ficparo);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=mobaverage[(int)age][i][ij];
   ungetc(c,ficpar);          }
         }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        for(j=1; j<= nlstate; j++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
 /*------------ gnuplot -------------*/        }
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
 /*------------ free_vector  -------------*/           as a weighted average of prlim.
  chdir(path);        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
  free_ivector(wav,1,imx);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          }    
  free_ivector(num,1,n);        /* end probability of death */
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
  fclose(ficparo);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  fclose(ficres);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /*--------- index.htm --------*/   
         if (popbased==1) {
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   /*--------------- Prevalence limit --------------*/          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   strcpy(filerespl,"pl");              prlim[i][i]=mobaverage[(int)age][i][ij];
   strcat(filerespl,fileres);          }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          for(h=0; h<=nhstepm; h++){
   fprintf(ficrespl,"#Prevalence limit\n");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   fprintf(ficrespl,"#Age ");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          }
   fprintf(ficrespl,"\n");        }
          /* This for computing probability of death (h=1 means
   prlim=matrix(1,nlstate,1,nlstate);           computed over hstepm matrices product = hstepm*stepm months) 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           as a weighted average of prlim.
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   k=0;        }    
   agebase=ageminpar;        /* end probability of death */
   agelim=agemaxpar;  
   ftolpl=1.e-10;        for(j=1; j<= nlstate; j++) /* vareij */
   i1=cptcoveff;          for(h=0; h<=nhstepm; h++){
   if (cptcovn < 1){i1=1;}            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         k=k+1;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        }
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)      } /* End theta */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
          
         for (age=agebase; age<=agelim; age++){      for(h=0; h<=nhstepm; h++) /* veij */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for(j=1; j<=nlstate;j++)
           fprintf(ficrespl,"%.0f",age );          for(theta=1; theta <=npar; theta++)
           for(i=1; i<=nlstate;i++)            trgradg[h][j][theta]=gradg[h][theta][j];
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         }        for(theta=1; theta <=npar; theta++)
       }          trgradgp[j][theta]=gradgp[theta][j];
     }    
   fclose(ficrespl);  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /*------------- h Pij x at various ages ------------*/      for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          vareij[i][j][(int)age] =0.;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      for(h=0;h<=nhstepm;h++){
   }        for(k=0;k<=nhstepm;k++){
   printf("Computing pij: result on file '%s' \n", filerespij);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for(i=1;i<=nlstate;i++)
   /*if (stepm<=24) stepsize=2;*/            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   agelim=AGESUP;        }
   hstepm=stepsize*YEARM; /* Every year of age */      }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    
        /* pptj */
   k=0;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   for(cptcov=1;cptcov<=i1;cptcov++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       k=k+1;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         fprintf(ficrespij,"\n#****** ");          varppt[j][i]=doldmp[j][i];
         for(j=1;j<=cptcoveff;j++)      /* end ppptj */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*  x centered again */
         fprintf(ficrespij,"******\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
              prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      if (popbased==1) {
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        if(mobilav ==0){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1; i<=nlstate;i++)
           oldm=oldms;savm=savms;            prlim[i][i]=probs[(int)age][i][ij];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }else{ /* mobilav */ 
           fprintf(ficrespij,"# Age");          for(i=1; i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)            prlim[i][i]=mobaverage[(int)age][i][ij];
             for(j=1; j<=nlstate+ndeath;j++)        }
               fprintf(ficrespij," %1d-%1d",i,j);      }
           fprintf(ficrespij,"\n");               
           for (h=0; h<=nhstepm; h++){      /* This for computing probability of death (h=1 means
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             for(i=1; i<=nlstate;i++)         as a weighted average of prlim.
               for(j=1; j<=nlstate+ndeath;j++)      */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
             fprintf(ficrespij,"\n");        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }    
           fprintf(ficrespij,"\n");      /* end probability of death */
         }  
     }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   fclose(ficrespij);        }
       } 
       fprintf(ficresprobmorprev,"\n");
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){      fprintf(ficresvij,"%.0f ",age );
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      for(i=1; i<=nlstate;i++)
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        for(j=1; j<=nlstate;j++){
     free_matrix(mint,1,maxwav,1,n);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        }
     free_vector(weight,1,n);}      fprintf(ficresvij,"\n");
   else{      free_matrix(gp,0,nhstepm,1,nlstate);
     erreur=108;      free_matrix(gm,0,nhstepm,1,nlstate);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
   /*---------- Health expectancies and variances ------------*/    free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
   strcpy(filerest,"t");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   strcat(filerest,fileres);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   if((ficrest=fopen(filerest,"w"))==NULL) {    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   }    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   strcpy(filerese,"e");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 2 ",subdirf(fileresprobmorprev));
   strcat(filerese,fileres);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 3 ",subdirf(fileresprobmorprev));
   if((ficreseij=fopen(filerese,"w"))==NULL) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 3 ",subdirf(fileresprobmorprev));
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
  strcpy(fileresv,"v");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   strcat(fileresv,fileres);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,nlstate);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   k=0;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       k=k+1;    fclose(ficresprobmorprev);
       fprintf(ficrest,"\n#****** ");    fflush(ficgp);
       for(j=1;j<=cptcoveff;j++)    fflush(fichtm); 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }  /* end varevsij */
       fprintf(ficrest,"******\n");  
   /************ Variance of prevlim ******************/
       fprintf(ficreseij,"\n#****** ");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       for(j=1;j<=cptcoveff;j++)  {
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* Variance of prevalence limit */
       fprintf(ficreseij,"******\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
       fprintf(ficresvij,"\n#****** ");    double **dnewm,**doldm;
       for(j=1;j<=cptcoveff;j++)    int i, j, nhstepm, hstepm;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int k, cptcode;
       fprintf(ficresvij,"******\n");    double *xp;
     double *gp, *gm;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double **gradg, **trgradg;
       oldm=oldms;savm=savms;    double age,agelim;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      int theta;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    
       oldm=oldms;savm=savms;    pstamp(ficresvpl);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
        fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %1d-%1d",i,i);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficresvpl,"\n");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
       epj=vector(1,nlstate+1);    doldm=matrix(1,nlstate,1,nlstate);
       for(age=bage; age <=fage ;age++){    
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    hstepm=1*YEARM; /* Every year of age */
         if (popbased==1) {    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           for(i=1; i<=nlstate;i++)    agelim = AGESUP;
             prlim[i][i]=probs[(int)age][i][k];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
              if (stepm >= YEARM) hstepm=1;
         fprintf(ficrest," %4.0f",age);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      gradg=matrix(1,npar,1,nlstate);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      gp=vector(1,nlstate);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      gm=vector(1,nlstate);
           }  
           epj[nlstate+1] +=epj[j];      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ /* Computes gradient */
         for(i=1, vepp=0.;i <=nlstate;i++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for(j=1;j <=nlstate;j++)        }
             vepp += vareij[i][j][(int)age];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));        for(i=1;i<=nlstate;i++)
         for(j=1;j <=nlstate;j++){          gp[i] = prlim[i][i];
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));      
         }        for(i=1; i<=npar; i++) /* Computes gradient */
         fprintf(ficrest,"\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }        for(i=1;i<=nlstate;i++)
   }          gm[i] = prlim[i][i];
   
   fclose(ficreseij);        for(i=1;i<=nlstate;i++)
   fclose(ficresvij);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   fclose(ficrest);      } /* End theta */
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);      trgradg =matrix(1,nlstate,1,npar);
    
   /*------- Variance limit prevalence------*/        for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
   strcpy(fileresvpl,"vpl");          trgradg[j][theta]=gradg[theta][j];
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      for(i=1;i<=nlstate;i++)
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        varpl[i][(int)age] =0.;
     exit(0);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficresvpl,"%.0f ",age );
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i=1; i<=nlstate;i++)
       k=k+1;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n#****** ");      fprintf(ficresvpl,"\n");
       for(j=1;j<=cptcoveff;j++)      free_vector(gp,1,nlstate);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_vector(gm,1,nlstate);
       fprintf(ficresvpl,"******\n");      free_matrix(gradg,1,npar,1,nlstate);
            free_matrix(trgradg,1,nlstate,1,npar);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    } /* End age */
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    free_vector(xp,1,npar);
     }    free_matrix(doldm,1,nlstate,1,npar);
  }    free_matrix(dnewm,1,nlstate,1,nlstate);
   
   fclose(ficresvpl);  }
   
   /*---------- End : free ----------------*/  /************ Variance of one-step probabilities  ******************/
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
    {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int i, j=0,  i1, k1, l1, t, tj;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int k2, l2, j1,  z1;
      int k=0,l, cptcode;
      int first=1, first1;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    double **dnewm,**doldm;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    double *xp;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    double *gp, *gm;
      double **gradg, **trgradg;
   free_matrix(matcov,1,npar,1,npar);    double **mu;
   free_vector(delti,1,npar);    double age,agelim, cov[NCOVMAX];
   free_matrix(agev,1,maxwav,1,imx);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    int theta;
     char fileresprob[FILENAMELENGTH];
   if(erreur >0)    char fileresprobcov[FILENAMELENGTH];
     printf("End of Imach with error or warning %d\n",erreur);    char fileresprobcor[FILENAMELENGTH];
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    double ***varpij;
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    strcpy(fileresprob,"prob"); 
   /*printf("Total time was %d uSec.\n", total_usecs);*/    strcat(fileresprob,fileres);
   /*------ End -----------*/    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
  end:    }
 #ifdef windows    strcpy(fileresprobcov,"probcov"); 
   /* chdir(pathcd);*/    strcat(fileresprobcov,fileres);
 #endif    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
  /*system("wgnuplot graph.plt");*/      printf("Problem with resultfile: %s\n", fileresprobcov);
  /*system("../gp37mgw/wgnuplot graph.plt");*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
  /*system("cd ../gp37mgw");*/    }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    strcpy(fileresprobcor,"probcor"); 
  strcpy(plotcmd,GNUPLOTPROGRAM);    strcat(fileresprobcor,fileres);
  strcat(plotcmd," ");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
  strcat(plotcmd,optionfilegnuplot);      printf("Problem with resultfile: %s\n", fileresprobcor);
  system(plotcmd);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
 #ifdef windows    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   while (z[0] != 'q') {    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     /* chdir(path); */    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     scanf("%s",z);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     if (z[0] == 'c') system("./imach");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     else if (z[0] == 'e') system(optionfilehtm);    pstamp(ficresprob);
     else if (z[0] == 'g') system(plotcmd);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     else if (z[0] == 'q') exit(0);    fprintf(ficresprob,"# Age");
   }    pstamp(ficresprobcov);
 #endif    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 }    fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
                       lc2=fabs(lc2);
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 1,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 2,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 2,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 3",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 1,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 1");
         else fprintf(ficgp,"\" t\"\" w l lt 1,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8); /* hard coded ? */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             codtab[h][k]=j;
             codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.35  
changed lines
  Added in v.1.142


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>