Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.142

version 1.41.2.1, 2003/06/12 10:43:20 version 1.142, 2014/01/26 03:57:36
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.142  2014/01/26 03:57:36  brouard
      Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.141  2014/01/26 02:42:01  brouard
   case of a health survey which is our main interest) -2- at least a    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.140  2011/09/02 10:37:54  brouard
   computed from the time spent in each health state according to a    Summary: times.h is ok with mingw32 now.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.139  2010/06/14 07:50:17  brouard
   simplest model is the multinomial logistic model where pij is the    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   probability to be observed in state j at the second wave    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.138  2010/04/30 18:19:40  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    *** empty log message ***
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.137  2010/04/29 18:11:38  brouard
   you to do it.  More covariates you add, slower the    (Module): Checking covariates for more complex models
   convergence.    than V1+V2. A lot of change to be done. Unstable.
   
   The advantage of this computer programme, compared to a simple    Revision 1.136  2010/04/26 20:30:53  brouard
   multinomial logistic model, is clear when the delay between waves is not    (Module): merging some libgsl code. Fixing computation
   identical for each individual. Also, if a individual missed an    of likelione (using inter/intrapolation if mle = 0) in order to
   intermediate interview, the information is lost, but taken into    get same likelihood as if mle=1.
   account using an interpolation or extrapolation.      Some cleaning of code and comments added.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.135  2009/10/29 15:33:14  brouard
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.134  2009/10/29 13:18:53  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.133  2009/07/06 10:21:25  brouard
   hPijx.    just nforces
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.132  2009/07/06 08:22:05  brouard
   of the life expectancies. It also computes the prevalence limits.    Many tings
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.131  2009/06/20 16:22:47  brouard
            Institut national d'études démographiques, Paris.    Some dimensions resccaled
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.130  2009/05/26 06:44:34  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Max Covariate is now set to 20 instead of 8. A
   software can be distributed freely for non commercial use. Latest version    lot of cleaning with variables initialized to 0. Trying to make
   can be accessed at http://euroreves.ined.fr/imach .    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   **********************************************************************/  
      Revision 1.129  2007/08/31 13:49:27  lievre
 #include <math.h>    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.128  2006/06/30 13:02:05  brouard
 #include <unistd.h>    (Module): Clarifications on computing e.j
   
 #define MAXLINE 256    Revision 1.127  2006/04/28 18:11:50  brouard
 #define GNUPLOTPROGRAM "wgnuplot"    (Module): Yes the sum of survivors was wrong since
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    imach-114 because nhstepm was no more computed in the age
 #define FILENAMELENGTH 80    loop. Now we define nhstepma in the age loop.
 /*#define DEBUG*/    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
 /*#define windows*/    and then all the health expectancies with variances or standard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    deviation (needs data from the Hessian matrices) which slows the
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    computation.
     In the future we should be able to stop the program is only health
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    expectancies and graph are needed without standard deviations.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.126  2006/04/28 17:23:28  brouard
 #define NINTERVMAX 8    (Module): Yes the sum of survivors was wrong since
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    imach-114 because nhstepm was no more computed in the age
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    loop. Now we define nhstepma in the age loop.
 #define NCOVMAX 8 /* Maximum number of covariates */    Version 0.98h
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.125  2006/04/04 15:20:31  lievre
 #define AGESUP 130    Errors in calculation of health expectancies. Age was not initialized.
 #define AGEBASE 40    Forecasting file added.
   
     Revision 1.124  2006/03/22 17:13:53  lievre
 int erreur; /* Error number */    Parameters are printed with %lf instead of %f (more numbers after the comma).
 int nvar;    The log-likelihood is printed in the log file
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.123  2006/03/20 10:52:43  brouard
 int nlstate=2; /* Number of live states */    * imach.c (Module): <title> changed, corresponds to .htm file
 int ndeath=1; /* Number of dead states */    name. <head> headers where missing.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 int *wav; /* Number of waves for this individuual 0 is possible */    otherwise the weight is truncated).
 int maxwav; /* Maxim number of waves */    Modification of warning when the covariates values are not 0 or
 int jmin, jmax; /* min, max spacing between 2 waves */    1.
 int mle, weightopt;    Version 0.98g
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.122  2006/03/20 09:45:41  brouard
 double jmean; /* Mean space between 2 waves */    (Module): Weights can have a decimal point as for
 double **oldm, **newm, **savm; /* Working pointers to matrices */    English (a comma might work with a correct LC_NUMERIC environment,
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    otherwise the weight is truncated).
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Modification of warning when the covariates values are not 0 or
 FILE *ficgp,*ficresprob,*ficpop;    1.
 FILE *ficreseij;    Version 0.98g
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.121  2006/03/16 17:45:01  lievre
   char fileresv[FILENAMELENGTH];    * imach.c (Module): Comments concerning covariates added
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 #define NR_END 1    not 1 month. Version 0.98f
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 #define NRANSI    status=-2 in order to have more reliable computation if stepm is
 #define ITMAX 200    not 1 month. Version 0.98f
   
 #define TOL 2.0e-4    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
 #define CGOLD 0.3819660    computed as likelihood omitting the logarithm. Version O.98e
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 #define GOLD 1.618034    table of variances if popbased=1 .
 #define GLIMIT 100.0    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define TINY 1.0e-20    (Module): Function pstamp added
     (Module): Version 0.98d
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.117  2006/03/14 17:16:22  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): varevsij Comments added explaining the second
      table of variances if popbased=1 .
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define rint(a) floor(a+0.5)    (Module): Function pstamp added
     (Module): Version 0.98d
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.116  2006/03/06 10:29:27  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 int imx;  
 int stepm;    Revision 1.115  2006/02/27 12:17:45  brouard
 /* Stepm, step in month: minimum step interpolation*/    (Module): One freematrix added in mlikeli! 0.98c
   
 int estepm;    Revision 1.114  2006/02/26 12:57:58  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): Some improvements in processing parameter
     filename with strsep.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.113  2006/02/24 14:20:24  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Memory leaks checks with valgrind and:
 double **pmmij, ***probs, ***mobaverage;    datafile was not closed, some imatrix were not freed and on matrix
 double dateintmean=0;    allocation too.
   
 double *weight;    Revision 1.112  2006/01/30 09:55:26  brouard
 int **s; /* Status */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Module): Comments can be added in data file. Missing date values
 double ftolhess; /* Tolerance for computing hessian */    can be a simple dot '.'.
   
 /**************** split *************************/    Revision 1.110  2006/01/25 00:51:50  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): Lots of cleaning and bugs added (Gompertz)
 {  
    char *s;                             /* pointer */    Revision 1.109  2006/01/24 19:37:15  brouard
    int  l1, l2;                         /* length counters */    (Module): Comments (lines starting with a #) are allowed in data.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.108  2006/01/19 18:05:42  lievre
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Gnuplot problem appeared...
 #ifdef windows    To be fixed
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Revision 1.107  2006/01/19 16:20:37  brouard
    s = strrchr( path, '/' );            /* find last / */    Test existence of gnuplot in imach path
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.106  2006/01/19 13:24:36  brouard
 #if     defined(__bsd__)                /* get current working directory */    Some cleaning and links added in html output
       extern char       *getwd( );  
     Revision 1.105  2006/01/05 20:23:19  lievre
       if ( getwd( dirc ) == NULL ) {    *** empty log message ***
 #else  
       extern char       *getcwd( );    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): If the status is missing at the last wave but we know
 #endif    that the person is alive, then we can code his/her status as -2
          return( GLOCK_ERROR_GETCWD );    (instead of missing=-1 in earlier versions) and his/her
       }    contributions to the likelihood is 1 - Prob of dying from last
       strcpy( name, path );             /* we've got it */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
    } else {                             /* strip direcotry from path */    the healthy state at last known wave). Version is 0.98
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.103  2005/09/30 15:54:49  lievre
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): sump fixed, loop imx fixed, and simplifications.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.102  2004/09/15 17:31:30  brouard
       dirc[l1-l2] = 0;                  /* add zero */    Add the possibility to read data file including tab characters.
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.101  2004/09/15 10:38:38  brouard
 #ifdef windows    Fix on curr_time
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.100  2004/07/12 18:29:06  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Add version for Mac OS X. Just define UNIX in Makefile
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.99  2004/06/05 08:57:40  brouard
    s++;    *** empty log message ***
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.98  2004/05/16 15:05:56  brouard
    l2= strlen( s)+1;    New version 0.97 . First attempt to estimate force of mortality
    strncpy( finame, name, l1-l2);    directly from the data i.e. without the need of knowing the health
    finame[l1-l2]= 0;    state at each age, but using a Gompertz model: log u =a + b*age .
    return( 0 );                         /* we're done */    This is the basic analysis of mortality and should be done before any
 }    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 /******************************************/  
     The same imach parameter file can be used but the option for mle should be -3.
 void replace(char *s, char*t)  
 {    Agnès, who wrote this part of the code, tried to keep most of the
   int i;    former routines in order to include the new code within the former code.
   int lg=20;  
   i=0;    The output is very simple: only an estimate of the intercept and of
   lg=strlen(t);    the slope with 95% confident intervals.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Current limitations:
     if (t[i]== '\\') s[i]='/';    A) Even if you enter covariates, i.e. with the
   }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 }    B) There is no computation of Life Expectancy nor Life Table.
   
 int nbocc(char *s, char occ)    Revision 1.97  2004/02/20 13:25:42  lievre
 {    Version 0.96d. Population forecasting command line is (temporarily)
   int i,j=0;    suppressed.
   int lg=20;  
   i=0;    Revision 1.96  2003/07/15 15:38:55  brouard
   lg=strlen(s);    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   for(i=0; i<= lg; i++) {    rewritten within the same printf. Workaround: many printfs.
   if  (s[i] == occ ) j++;  
   }    Revision 1.95  2003/07/08 07:54:34  brouard
   return j;    * imach.c (Repository):
 }    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.94  2003/06/27 13:00:02  brouard
   int i,lg,j,p=0;    Just cleaning
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.93  2003/06/25 16:33:55  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): On windows (cygwin) function asctime_r doesn't
   }    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.92  2003/06/25 16:30:45  brouard
     (u[j] = t[j]);    (Module): On windows (cygwin) function asctime_r doesn't
   }    exist so I changed back to asctime which exists.
      u[p]='\0';  
     Revision 1.91  2003/06/25 15:30:29  brouard
    for(j=0; j<= lg; j++) {    * imach.c (Repository): Duplicated warning errors corrected.
     if (j>=(p+1))(v[j-p-1] = t[j]);    (Repository): Elapsed time after each iteration is now output. It
   }    helps to forecast when convergence will be reached. Elapsed time
 }    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 /********************** nrerror ********************/  
     Revision 1.90  2003/06/24 12:34:15  brouard
 void nrerror(char error_text[])    (Module): Some bugs corrected for windows. Also, when
 {    mle=-1 a template is output in file "or"mypar.txt with the design
   fprintf(stderr,"ERREUR ...\n");    of the covariance matrix to be input.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.89  2003/06/24 12:30:52  brouard
 }    (Module): Some bugs corrected for windows. Also, when
 /*********************** vector *******************/    mle=-1 a template is output in file "or"mypar.txt with the design
 double *vector(int nl, int nh)    of the covariance matrix to be input.
 {  
   double *v;    Revision 1.88  2003/06/23 17:54:56  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.87  2003/06/18 12:26:01  brouard
 }    Version 0.96
   
 /************************ free vector ******************/    Revision 1.86  2003/06/17 20:04:08  brouard
 void free_vector(double*v, int nl, int nh)    (Module): Change position of html and gnuplot routines and added
 {    routine fileappend.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 /************************ivector *******************************/    current date of interview. It may happen when the death was just
 int *ivector(long nl,long nh)    prior to the death. In this case, dh was negative and likelihood
 {    was wrong (infinity). We still send an "Error" but patch by
   int *v;    assuming that the date of death was just one stepm after the
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    interview.
   if (!v) nrerror("allocation failure in ivector");    (Repository): Because some people have very long ID (first column)
   return v-nl+NR_END;    we changed int to long in num[] and we added a new lvector for
 }    memory allocation. But we also truncated to 8 characters (left
     truncation)
 /******************free ivector **************************/    (Repository): No more line truncation errors.
 void free_ivector(int *v, long nl, long nh)  
 {    Revision 1.84  2003/06/13 21:44:43  brouard
   free((FREE_ARG)(v+nl-NR_END));    * imach.c (Repository): Replace "freqsummary" at a correct
 }    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 /******************* imatrix *******************************/    parcimony.
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.83  2003/06/10 13:39:11  lievre
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    *** empty log message ***
   int **m;  
      Revision 1.82  2003/06/05 15:57:20  brouard
   /* allocate pointers to rows */    Add log in  imach.c and  fullversion number is now printed.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  */
   m += NR_END;  /*
   m -= nrl;     Interpolated Markov Chain
    
      Short summary of the programme:
   /* allocate rows and set pointers to them */    
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    This program computes Healthy Life Expectancies from
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   m[nrl] += NR_END;    first survey ("cross") where individuals from different ages are
   m[nrl] -= ncl;    interviewed on their health status or degree of disability (in the
      case of a health survey which is our main interest) -2- at least a
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    second wave of interviews ("longitudinal") which measure each change
      (if any) in individual health status.  Health expectancies are
   /* return pointer to array of pointers to rows */    computed from the time spent in each health state according to a
   return m;    model. More health states you consider, more time is necessary to reach the
 }    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 /****************** free_imatrix *************************/    probability to be observed in state j at the second wave
 void free_imatrix(m,nrl,nrh,ncl,nch)    conditional to be observed in state i at the first wave. Therefore
       int **m;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       long nch,ncl,nrh,nrl;    'age' is age and 'sex' is a covariate. If you want to have a more
      /* free an int matrix allocated by imatrix() */    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    you to do it.  More covariates you add, slower the
   free((FREE_ARG) (m+nrl-NR_END));    convergence.
 }  
     The advantage of this computer programme, compared to a simple
 /******************* matrix *******************************/    multinomial logistic model, is clear when the delay between waves is not
 double **matrix(long nrl, long nrh, long ncl, long nch)    identical for each individual. Also, if a individual missed an
 {    intermediate interview, the information is lost, but taken into
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    account using an interpolation or extrapolation.  
   double **m;  
     hPijx is the probability to be observed in state i at age x+h
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    conditional to the observed state i at age x. The delay 'h' can be
   if (!m) nrerror("allocation failure 1 in matrix()");    split into an exact number (nh*stepm) of unobserved intermediate
   m += NR_END;    states. This elementary transition (by month, quarter,
   m -= nrl;    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    and the contribution of each individual to the likelihood is simply
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    hPijx.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence. 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    
   return m;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /*************************free matrix ************************/    from the European Union.
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    It is copyrighted identically to a GNU software product, ie programme and
 {    software can be distributed freely for non commercial use. Latest version
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    can be accessed at http://euroreves.ined.fr/imach .
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /******************* ma3x *******************************/    
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    **********************************************************************/
 {  /*
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    main
   double ***m;    read parameterfile
     read datafile
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    concatwav
   if (!m) nrerror("allocation failure 1 in matrix()");    freqsummary
   m += NR_END;    if (mle >= 1)
   m -= nrl;      mlikeli
     print results files
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if mle==1 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       computes hessian
   m[nrl] += NR_END;    read end of parameter file: agemin, agemax, bage, fage, estepm
   m[nrl] -= ncl;        begin-prev-date,...
     open gnuplot file
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    open html file
     period (stable) prevalence
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));     for age prevalim()
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    h Pij x
   m[nrl][ncl] += NR_END;    variance of p varprob
   m[nrl][ncl] -= nll;    forecasting if prevfcast==1 prevforecast call prevalence()
   for (j=ncl+1; j<=nch; j++)    health expectancies
     m[nrl][j]=m[nrl][j-1]+nlay;    Variance-covariance of DFLE
      prevalence()
   for (i=nrl+1; i<=nrh; i++) {     movingaverage()
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    varevsij() 
     for (j=ncl+1; j<=nch; j++)    if popbased==1 varevsij(,popbased)
       m[i][j]=m[i][j-1]+nlay;    total life expectancies
   }    Variance of period (stable) prevalence
   return m;   end
 }  */
   
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {   
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #include <math.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <stdio.h>
   free((FREE_ARG)(m+nrl-NR_END));  #include <stdlib.h>
 }  #include <string.h>
   #include <unistd.h>
 /***************** f1dim *************************/  
 extern int ncom;  #include <limits.h>
 extern double *pcom,*xicom;  #include <sys/types.h>
 extern double (*nrfunc)(double []);  #include <sys/stat.h>
    #include <errno.h>
 double f1dim(double x)  extern int errno;
 {  
   int j;  #ifdef LINUX
   double f;  #include <time.h>
   double *xt;  #include "timeval.h"
    #else
   xt=vector(1,ncom);  #include <sys/time.h>
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #endif
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  #ifdef GSL
   return f;  #include <gsl/gsl_errno.h>
 }  #include <gsl/gsl_multimin.h>
   #endif
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  /* #include <libintl.h> */
 {  /* #define _(String) gettext (String) */
   int iter;  
   double a,b,d,etemp;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   double fu,fv,fw,fx;  
   double ftemp;  #define GNUPLOTPROGRAM "gnuplot"
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   double e=0.0;  #define FILENAMELENGTH 132
    
   a=(ax < cx ? ax : cx);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   b=(ax > cx ? ax : cx);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   for (iter=1;iter<=ITMAX;iter++) {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define NINTERVMAX 8
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
     printf(".");fflush(stdout);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #ifdef DEBUG  #define NCOVMAX 20 /* Maximum number of covariates */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define MAXN 20000
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define YEARM 12. /* Number of months per year */
 #endif  #define AGESUP 130
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define AGEBASE 40
       *xmin=x;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
       return fx;  #ifdef UNIX
     }  #define DIRSEPARATOR '/'
     ftemp=fu;  #define CHARSEPARATOR "/"
     if (fabs(e) > tol1) {  #define ODIRSEPARATOR '\\'
       r=(x-w)*(fx-fv);  #else
       q=(x-v)*(fx-fw);  #define DIRSEPARATOR '\\'
       p=(x-v)*q-(x-w)*r;  #define CHARSEPARATOR "\\"
       q=2.0*(q-r);  #define ODIRSEPARATOR '/'
       if (q > 0.0) p = -p;  #endif
       q=fabs(q);  
       etemp=e;  /* $Id$ */
       e=d;  /* $State$ */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char version[]="Imach version 0.98nR, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
       else {  char fullversion[]="$Revision$ $Date$"; 
         d=p/q;  char strstart[80];
         u=x+d;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
         if (u-a < tol2 || b-u < tol2)  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
           d=SIGN(tol1,xm-x);  int nvar=0, nforce=0; /* Number of variables, number of forces */
       }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
     } else {  int npar=NPARMAX;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  int nlstate=2; /* Number of live states */
     }  int ndeath=1; /* Number of dead states */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     fu=(*f)(u);  int popbased=0;
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  int *wav; /* Number of waves for this individuual 0 is possible */
       SHFT(v,w,x,u)  int maxwav=0; /* Maxim number of waves */
         SHFT(fv,fw,fx,fu)  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
         } else {  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
           if (u < x) a=u; else b=u;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
           if (fu <= fw || w == x) {                     to the likelihood and the sum of weights (done by funcone)*/
             v=w;  int mle=1, weightopt=0;
             w=u;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
             fv=fw;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
             fw=fu;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
           } else if (fu <= fv || v == x || v == w) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
             v=u;  double jmean=1; /* Mean space between 2 waves */
             fv=fu;  double **oldm, **newm, **savm; /* Working pointers to matrices */
           }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
         }  /*FILE *fic ; */ /* Used in readdata only */
   }  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   nrerror("Too many iterations in brent");  FILE *ficlog, *ficrespow;
   *xmin=x;  int globpr=0; /* Global variable for printing or not */
   return fx;  double fretone; /* Only one call to likelihood */
 }  long ipmx=0; /* Number of contributions */
   double sw; /* Sum of weights */
 /****************** mnbrak ***********************/  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  FILE *ficresilk;
             double (*func)(double))  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   double ulim,u,r,q, dum;  FILE *fichtm, *fichtmcov; /* Html File */
   double fu;  FILE *ficreseij;
    char filerese[FILENAMELENGTH];
   *fa=(*func)(*ax);  FILE *ficresstdeij;
   *fb=(*func)(*bx);  char fileresstde[FILENAMELENGTH];
   if (*fb > *fa) {  FILE *ficrescveij;
     SHFT(dum,*ax,*bx,dum)  char filerescve[FILENAMELENGTH];
       SHFT(dum,*fb,*fa,dum)  FILE  *ficresvij;
       }  char fileresv[FILENAMELENGTH];
   *cx=(*bx)+GOLD*(*bx-*ax);  FILE  *ficresvpl;
   *fc=(*func)(*cx);  char fileresvpl[FILENAMELENGTH];
   while (*fb > *fc) {  char title[MAXLINE];
     r=(*bx-*ax)*(*fb-*fc);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     q=(*bx-*cx)*(*fb-*fa);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  char command[FILENAMELENGTH];
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int  outcmd=0;
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  char filelog[FILENAMELENGTH]; /* Log file */
       if (fu < *fc) {  char filerest[FILENAMELENGTH];
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  char fileregp[FILENAMELENGTH];
           SHFT(*fb,*fc,fu,(*func)(u))  char popfile[FILENAMELENGTH];
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       u=ulim;  
       fu=(*func)(u);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     } else {  struct timezone tzp;
       u=(*cx)+GOLD*(*cx-*bx);  extern int gettimeofday();
       fu=(*func)(u);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     }  long time_value;
     SHFT(*ax,*bx,*cx,u)  extern long time();
       SHFT(*fa,*fb,*fc,fu)  char strcurr[80], strfor[80];
       }  
 }  char *endptr;
   long lval;
 /*************** linmin ************************/  double dval;
   
 int ncom;  #define NR_END 1
 double *pcom,*xicom;  #define FREE_ARG char*
 double (*nrfunc)(double []);  #define FTOL 1.0e-10
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #define NRANSI 
 {  #define ITMAX 200 
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  #define TOL 2.0e-4 
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #define CGOLD 0.3819660 
               double *fc, double (*func)(double));  #define ZEPS 1.0e-10 
   int j;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  #define GOLD 1.618034 
    #define GLIMIT 100.0 
   ncom=n;  #define TINY 1.0e-20 
   pcom=vector(1,n);  
   xicom=vector(1,n);  static double maxarg1,maxarg2;
   nrfunc=func;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for (j=1;j<=n;j++) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     pcom[j]=p[j];    
     xicom[j]=xi[j];  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   }  #define rint(a) floor(a+0.5)
   ax=0.0;  
   xx=1.0;  static double sqrarg;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 #ifdef DEBUG  int agegomp= AGEGOMP;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  int imx; 
   for (j=1;j<=n;j++) {  int stepm=1;
     xi[j] *= xmin;  /* Stepm, step in month: minimum step interpolation*/
     p[j] += xi[j];  
   }  int estepm;
   free_vector(xicom,1,n);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   free_vector(pcom,1,n);  
 }  int m,nb;
   long *num;
 /*************** powell ************************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
             double (*func)(double []))  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   void linmin(double p[], double xi[], int n, double *fret,  double dateintmean=0;
               double (*func)(double []));  
   int i,ibig,j;  double *weight;
   double del,t,*pt,*ptt,*xit;  int **s; /* Status */
   double fp,fptt;  double *agedc;
   double *xits;  double  **covar; /**< covar[i,j], value of jth covariate for individual i,
   pt=vector(1,n);                    * covar=matrix(0,NCOVMAX,1,n); 
   ptt=vector(1,n);                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   xit=vector(1,n);  double  idx; 
   xits=vector(1,n);  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   *fret=(*func)(p);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   for (j=1;j<=n;j++) pt[j]=p[j];  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for (*iter=1;;++(*iter)) {  double *lsurv, *lpop, *tpop;
     fp=(*fret);  
     ibig=0;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     del=0.0;  double ftolhess; /* Tolerance for computing hessian */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  /**************** split *************************/
       printf(" %d %.12f",i, p[i]);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     printf("\n");  {
     for (i=1;i<=n;i++) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       fptt=(*fret);    */ 
 #ifdef DEBUG    char  *ss;                            /* pointer */
       printf("fret=%lf \n",*fret);    int   l1, l2;                         /* length counters */
 #endif  
       printf("%d",i);fflush(stdout);    l1 = strlen(path );                   /* length of path */
       linmin(p,xit,n,fret,func);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       if (fabs(fptt-(*fret)) > del) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         del=fabs(fptt-(*fret));    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         ibig=i;      strcpy( name, path );               /* we got the fullname name because no directory */
       }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 #ifdef DEBUG        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       printf("%d %.12e",i,(*fret));      /* get current working directory */
       for (j=1;j<=n;j++) {      /*    extern  char* getcwd ( char *buf , int len);*/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         printf(" x(%d)=%.12e",j,xit[j]);        return( GLOCK_ERROR_GETCWD );
       }      }
       for(j=1;j<=n;j++)      /* got dirc from getcwd*/
         printf(" p=%.12e",p[j]);      printf(" DIRC = %s \n",dirc);
       printf("\n");    } else {                              /* strip direcotry from path */
 #endif      ss++;                               /* after this, the filename */
     }      l2 = strlen( ss );                  /* length of filename */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 #ifdef DEBUG      strcpy( name, ss );         /* save file name */
       int k[2],l;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       k[0]=1;      dirc[l1-l2] = 0;                    /* add zero */
       k[1]=-1;      printf(" DIRC2 = %s \n",dirc);
       printf("Max: %.12e",(*func)(p));    }
       for (j=1;j<=n;j++)    /* We add a separator at the end of dirc if not exists */
         printf(" %.12e",p[j]);    l1 = strlen( dirc );                  /* length of directory */
       printf("\n");    if( dirc[l1-1] != DIRSEPARATOR ){
       for(l=0;l<=1;l++) {      dirc[l1] =  DIRSEPARATOR;
         for (j=1;j<=n;j++) {      dirc[l1+1] = 0; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      printf(" DIRC3 = %s \n",dirc);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    }
         }    ss = strrchr( name, '.' );            /* find last / */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    if (ss >0){
       }      ss++;
 #endif      strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
       l2= strlen(ss)+1;
       free_vector(xit,1,n);      strncpy( finame, name, l1-l2);
       free_vector(xits,1,n);      finame[l1-l2]= 0;
       free_vector(ptt,1,n);    }
       free_vector(pt,1,n);  
       return;    return( 0 );                          /* we're done */
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /******************************************/
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  void replace_back_to_slash(char *s, char*t)
     }  {
     fptt=(*func)(ptt);    int i;
     if (fptt < fp) {    int lg=0;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    i=0;
       if (t < 0.0) {    lg=strlen(t);
         linmin(p,xit,n,fret,func);    for(i=0; i<= lg; i++) {
         for (j=1;j<=n;j++) {      (s[i] = t[i]);
           xi[j][ibig]=xi[j][n];      if (t[i]== '\\') s[i]='/';
           xi[j][n]=xit[j];    }
         }  }
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  char *trimbb(char *out, char *in)
         for(j=1;j<=n;j++)  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
           printf(" %.12e",xit[j]);    char *s;
         printf("\n");    s=out;
 #endif    while (*in != '\0'){
       }      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     }        in++;
   }      }
 }      *out++ = *in++;
     }
 /**** Prevalence limit ****************/    *out='\0';
     return s;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  char *cutv(char *blocc, char *alocc, char *in, char occ)
      matrix by transitions matrix until convergence is reached */  {
     /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   int i, ii,j,k;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   double min, max, maxmin, maxmax,sumnew=0.;       gives blocc="abcdef2ghi" and alocc="j".
   double **matprod2();       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   double **out, cov[NCOVMAX], **pmij();    */
   double **newm;    char *s, *t;
   double agefin, delaymax=50 ; /* Max number of years to converge */    t=in;s=in;
     while (*in != '\0'){
   for (ii=1;ii<=nlstate+ndeath;ii++)      while( *in == occ){
     for (j=1;j<=nlstate+ndeath;j++){        *blocc++ = *in++;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        s=in;
     }      }
       *blocc++ = *in++;
    cov[1]=1.;    }
      if (s == t) /* occ not found */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      *(blocc-(in-s))='\0';
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    else
     newm=savm;      *(blocc-(in-s)-1)='\0';
     /* Covariates have to be included here again */    in=s;
      cov[2]=agefin;    while ( *in != '\0'){
        *alocc++ = *in++;
       for (k=1; k<=cptcovn;k++) {    }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    *alocc='\0';
       }    return s;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int nbocc(char *s, char occ)
   {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    int i,j=0;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    int lg=20;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    i=0;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    lg=strlen(s);
     for(i=0; i<= lg; i++) {
     savm=oldm;    if  (s[i] == occ ) j++;
     oldm=newm;    }
     maxmax=0.;    return j;
     for(j=1;j<=nlstate;j++){  }
       min=1.;  
       max=0.;  /* void cutv(char *u,char *v, char*t, char occ) */
       for(i=1; i<=nlstate; i++) {  /* { */
         sumnew=0;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
         prlim[i][j]= newm[i][j]/(1-sumnew);  /*      gives u="abcdef2ghi" and v="j" *\/ */
         max=FMAX(max,prlim[i][j]);  /*   int i,lg,j,p=0; */
         min=FMIN(min,prlim[i][j]);  /*   i=0; */
       }  /*   lg=strlen(t); */
       maxmin=max-min;  /*   for(j=0; j<=lg-1; j++) { */
       maxmax=FMAX(maxmax,maxmin);  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
     }  /*   } */
     if(maxmax < ftolpl){  
       return prlim;  /*   for(j=0; j<p; j++) { */
     }  /*     (u[j] = t[j]); */
   }  /*   } */
 }  /*      u[p]='\0'; */
   
 /*************** transition probabilities ***************/  /*    for(j=0; j<= lg; j++) { */
   /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /*   } */
 {  /* } */
   double s1, s2;  
   /*double t34;*/  /********************** nrerror ********************/
   int i,j,j1, nc, ii, jj;  
   void nrerror(char error_text[])
     for(i=1; i<= nlstate; i++){  {
     for(j=1; j<i;j++){    fprintf(stderr,"ERREUR ...\n");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    fprintf(stderr,"%s\n",error_text);
         /*s2 += param[i][j][nc]*cov[nc];*/    exit(EXIT_FAILURE);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /*********************** vector *******************/
       }  double *vector(int nl, int nh)
       ps[i][j]=s2;  {
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double *v;
     }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     for(j=i+1; j<=nlstate+ndeath;j++){    if (!v) nrerror("allocation failure in vector");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return v-nl+NR_END;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  /************************ free vector ******************/
       ps[i][j]=s2;  void free_vector(double*v, int nl, int nh)
     }  {
   }    free((FREE_ARG)(v+nl-NR_END));
     /*ps[3][2]=1;*/  }
   
   for(i=1; i<= nlstate; i++){  /************************ivector *******************************/
      s1=0;  int *ivector(long nl,long nh)
     for(j=1; j<i; j++)  {
       s1+=exp(ps[i][j]);    int *v;
     for(j=i+1; j<=nlstate+ndeath; j++)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       s1+=exp(ps[i][j]);    if (!v) nrerror("allocation failure in ivector");
     ps[i][i]=1./(s1+1.);    return v-nl+NR_END;
     for(j=1; j<i; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)  /******************free ivector **************************/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  void free_ivector(int *v, long nl, long nh)
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  {
   } /* end i */    free((FREE_ARG)(v+nl-NR_END));
   }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /************************lvector *******************************/
       ps[ii][jj]=0;  long *lvector(long nl,long nh)
       ps[ii][ii]=1;  {
     }    long *v;
   }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /******************free lvector **************************/
    }  void free_lvector(long *v, long nl, long nh)
     printf("\n ");  {
     }    free((FREE_ARG)(v+nl-NR_END));
     printf("\n ");printf("%lf ",cov[2]);*/  }
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /******************* imatrix *******************************/
   goto end;*/  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     return ps;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 }  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 /**************** Product of 2 matrices ******************/    int **m; 
     
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    /* allocate pointers to rows */ 
 {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    if (!m) nrerror("allocation failure 1 in matrix()"); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    m += NR_END; 
   /* in, b, out are matrice of pointers which should have been initialized    m -= nrl; 
      before: only the contents of out is modified. The function returns    
      a pointer to pointers identical to out */    
   long i, j, k;    /* allocate rows and set pointers to them */ 
   for(i=nrl; i<= nrh; i++)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     for(k=ncolol; k<=ncoloh; k++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    m[nrl] += NR_END; 
         out[i][k] +=in[i][j]*b[j][k];    m[nrl] -= ncl; 
     
   return out;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 }    
     /* return pointer to array of pointers to rows */ 
     return m; 
 /************* Higher Matrix Product ***************/  } 
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /****************** free_imatrix *************************/
 {  void free_imatrix(m,nrl,nrh,ncl,nch)
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        int **m;
      duration (i.e. until        long nch,ncl,nrh,nrl; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.       /* free an int matrix allocated by imatrix() */ 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  { 
      (typically every 2 years instead of every month which is too big).    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      Model is determined by parameters x and covariates have to be    free((FREE_ARG) (m+nrl-NR_END)); 
      included manually here.  } 
   
      */  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   int i, j, d, h, k;  {
   double **out, cov[NCOVMAX];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double **newm;    double **m;
   
   /* Hstepm could be zero and should return the unit matrix */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (i=1;i<=nlstate+ndeath;i++)    if (!m) nrerror("allocation failure 1 in matrix()");
     for (j=1;j<=nlstate+ndeath;j++){    m += NR_END;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    m -= nrl;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for(h=1; h <=nhstepm; h++){    m[nrl] += NR_END;
     for(d=1; d <=hstepm; d++){    m[nrl] -= ncl;
       newm=savm;  
       /* Covariates have to be included here again */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       cov[1]=1.;    return m;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];     */
       for (k=1; k<=cptcovage;k++)  }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /*************************free matrix ************************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    free((FREE_ARG)(m+nrl-NR_END));
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /******************* ma3x *******************************/
       savm=oldm;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       oldm=newm;  {
     }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for(i=1; i<=nlstate+ndeath; i++)    double ***m;
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    if (!m) nrerror("allocation failure 1 in matrix()");
          */    m += NR_END;
       }    m -= nrl;
   } /* end h */  
   return po;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
     m[nrl] -= ncl;
 /*************** log-likelihood *************/  
 double func( double *x)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {  
   int i, ii, j, k, mi, d, kk;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double **out;    m[nrl][ncl] += NR_END;
   double sw; /* Sum of weights */    m[nrl][ncl] -= nll;
   double lli; /* Individual log likelihood */    for (j=ncl+1; j<=nch; j++) 
   long ipmx;      m[nrl][j]=m[nrl][j-1]+nlay;
   /*extern weight */    
   /* We are differentiating ll according to initial status */    for (i=nrl+1; i<=nrh; i++) {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   /*for(i=1;i<imx;i++)      for (j=ncl+1; j<=nch; j++) 
     printf(" %d\n",s[4][i]);        m[i][j]=m[i][j-1]+nlay;
   */    }
   cov[1]=1.;    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   for(k=1; k<=nlstate; k++) ll[k]=0.;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  }
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  /*************************free ma3x ************************/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for(d=0; d<dh[mi][i]; d++){  {
         newm=savm;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         for (kk=1; kk<=cptcovage;kk++) {    free((FREE_ARG)(m+nrl-NR_END));
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  }
         }  
          /*************** function subdirf ***********/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  char *subdirf(char fileres[])
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  {
         savm=oldm;    /* Caution optionfilefiname is hidden */
         oldm=newm;    strcpy(tmpout,optionfilefiname);
            strcat(tmpout,"/"); /* Add to the right */
            strcat(tmpout,fileres);
       } /* end mult */    return tmpout;
        }
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /*************** function subdirf2 ***********/
       ipmx +=1;  char *subdirf2(char fileres[], char *preop)
       sw += weight[i];  {
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    
     } /* end of wave */    /* Caution optionfilefiname is hidden */
   } /* end of individual */    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    strcat(tmpout,preop);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    strcat(tmpout,fileres);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    return tmpout;
   return -l;  }
 }  
   /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
 /*********** Maximum Likelihood Estimation ***************/  {
     
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   int i,j, iter;    strcat(tmpout,"/");
   double **xi,*delti;    strcat(tmpout,preop);
   double fret;    strcat(tmpout,preop2);
   xi=matrix(1,npar,1,npar);    strcat(tmpout,fileres);
   for (i=1;i<=npar;i++)    return tmpout;
     for (j=1;j<=npar;j++)  }
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  /***************** f1dim *************************/
   powell(p,xi,npar,ftol,&iter,&fret,func);  extern int ncom; 
   extern double *pcom,*xicom;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  extern double (*nrfunc)(double []); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));   
   double f1dim(double x) 
 }  { 
     int j; 
 /**** Computes Hessian and covariance matrix ***/    double f;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    double *xt; 
 {   
   double  **a,**y,*x,pd;    xt=vector(1,ncom); 
   double **hess;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   int i, j,jk;    f=(*nrfunc)(xt); 
   int *indx;    free_vector(xt,1,ncom); 
     return f; 
   double hessii(double p[], double delta, int theta, double delti[]);  } 
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*****************brent *************************/
   void ludcmp(double **a, int npar, int *indx, double *d) ;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
   hess=matrix(1,npar,1,npar);    int iter; 
     double a,b,d,etemp;
   printf("\nCalculation of the hessian matrix. Wait...\n");    double fu,fv,fw,fx;
   for (i=1;i<=npar;i++){    double ftemp;
     printf("%d",i);fflush(stdout);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     hess[i][i]=hessii(p,ftolhess,i,delti);    double e=0.0; 
     /*printf(" %f ",p[i]);*/   
     /*printf(" %lf ",hess[i][i]);*/    a=(ax < cx ? ax : cx); 
   }    b=(ax > cx ? ax : cx); 
      x=w=v=bx; 
   for (i=1;i<=npar;i++) {    fw=fv=fx=(*f)(x); 
     for (j=1;j<=npar;j++)  {    for (iter=1;iter<=ITMAX;iter++) { 
       if (j>i) {      xm=0.5*(a+b); 
         printf(".%d%d",i,j);fflush(stdout);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         hess[i][j]=hessij(p,delti,i,j);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         hess[j][i]=hess[i][j];          printf(".");fflush(stdout);
         /*printf(" %lf ",hess[i][j]);*/      fprintf(ficlog,".");fflush(ficlog);
       }  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   printf("\n");      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
          *xmin=x; 
   a=matrix(1,npar,1,npar);        return fx; 
   y=matrix(1,npar,1,npar);      } 
   x=vector(1,npar);      ftemp=fu;
   indx=ivector(1,npar);      if (fabs(e) > tol1) { 
   for (i=1;i<=npar;i++)        r=(x-w)*(fx-fv); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        q=(x-v)*(fx-fw); 
   ludcmp(a,npar,indx,&pd);        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
   for (j=1;j<=npar;j++) {        if (q > 0.0) p = -p; 
     for (i=1;i<=npar;i++) x[i]=0;        q=fabs(q); 
     x[j]=1;        etemp=e; 
     lubksb(a,npar,indx,x);        e=d; 
     for (i=1;i<=npar;i++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       matcov[i][j]=x[i];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }        else { 
   }          d=p/q; 
           u=x+d; 
   printf("\n#Hessian matrix#\n");          if (u-a < tol2 || b-u < tol2) 
   for (i=1;i<=npar;i++) {            d=SIGN(tol1,xm-x); 
     for (j=1;j<=npar;j++) {        } 
       printf("%.3e ",hess[i][j]);      } else { 
     }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     printf("\n");      } 
   }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
   /* Recompute Inverse */      if (fu <= fx) { 
   for (i=1;i<=npar;i++)        if (u >= x) a=x; else b=x; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        SHFT(v,w,x,u) 
   ludcmp(a,npar,indx,&pd);          SHFT(fv,fw,fx,fu) 
           } else { 
   /*  printf("\n#Hessian matrix recomputed#\n");            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
   for (j=1;j<=npar;j++) {              v=w; 
     for (i=1;i<=npar;i++) x[i]=0;              w=u; 
     x[j]=1;              fv=fw; 
     lubksb(a,npar,indx,x);              fw=fu; 
     for (i=1;i<=npar;i++){            } else if (fu <= fv || v == x || v == w) { 
       y[i][j]=x[i];              v=u; 
       printf("%.3e ",y[i][j]);              fv=fu; 
     }            } 
     printf("\n");          } 
   }    } 
   */    nrerror("Too many iterations in brent"); 
     *xmin=x; 
   free_matrix(a,1,npar,1,npar);    return fx; 
   free_matrix(y,1,npar,1,npar);  } 
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  /****************** mnbrak ***********************/
   free_matrix(hess,1,npar,1,npar);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
 }  { 
     double ulim,u,r,q, dum;
 /*************** hessian matrix ****************/    double fu; 
 double hessii( double x[], double delta, int theta, double delti[])   
 {    *fa=(*func)(*ax); 
   int i;    *fb=(*func)(*bx); 
   int l=1, lmax=20;    if (*fb > *fa) { 
   double k1,k2;      SHFT(dum,*ax,*bx,dum) 
   double p2[NPARMAX+1];        SHFT(dum,*fb,*fa,dum) 
   double res;        } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    *cx=(*bx)+GOLD*(*bx-*ax); 
   double fx;    *fc=(*func)(*cx); 
   int k=0,kmax=10;    while (*fb > *fc) { 
   double l1;      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
   fx=func(x);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   for (i=1;i<=npar;i++) p2[i]=x[i];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   for(l=0 ; l <=lmax; l++){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     l1=pow(10,l);      if ((*bx-u)*(u-*cx) > 0.0) { 
     delts=delt;        fu=(*func)(u); 
     for(k=1 ; k <kmax; k=k+1){      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       delt = delta*(l1*k);        fu=(*func)(u); 
       p2[theta]=x[theta] +delt;        if (fu < *fc) { 
       k1=func(p2)-fx;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       p2[theta]=x[theta]-delt;            SHFT(*fb,*fc,fu,(*func)(u)) 
       k2=func(p2)-fx;            } 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        u=ulim; 
              fu=(*func)(u); 
 #ifdef DEBUG      } else { 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        u=(*cx)+GOLD*(*cx-*bx); 
 #endif        fu=(*func)(u); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      } 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      SHFT(*ax,*bx,*cx,u) 
         k=kmax;        SHFT(*fa,*fb,*fc,fu) 
       }        } 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  } 
         k=kmax; l=lmax*10.;  
       }  /*************** linmin ************************/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;  int ncom; 
       }  double *pcom,*xicom;
     }  double (*nrfunc)(double []); 
   }   
   delti[theta]=delts;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   return res;  { 
      double brent(double ax, double bx, double cx, 
 }                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
 double hessij( double x[], double delti[], int thetai,int thetaj)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 {                double *fc, double (*func)(double)); 
   int i;    int j; 
   int l=1, l1, lmax=20;    double xx,xmin,bx,ax; 
   double k1,k2,k3,k4,res,fx;    double fx,fb,fa;
   double p2[NPARMAX+1];   
   int k;    ncom=n; 
     pcom=vector(1,n); 
   fx=func(x);    xicom=vector(1,n); 
   for (k=1; k<=2; k++) {    nrfunc=func; 
     for (i=1;i<=npar;i++) p2[i]=x[i];    for (j=1;j<=n;j++) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;      pcom[j]=p[j]; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      xicom[j]=xi[j]; 
     k1=func(p2)-fx;    } 
      ax=0.0; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    xx=1.0; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     k2=func(p2)-fx;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
    #ifdef DEBUG
     p2[thetai]=x[thetai]-delti[thetai]/k;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     k3=func(p2)-fx;  #endif
      for (j=1;j<=n;j++) { 
     p2[thetai]=x[thetai]-delti[thetai]/k;      xi[j] *= xmin; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      p[j] += xi[j]; 
     k4=func(p2)-fx;    } 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    free_vector(xicom,1,n); 
 #ifdef DEBUG    free_vector(pcom,1,n); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  } 
 #endif  
   }  char *asc_diff_time(long time_sec, char ascdiff[])
   return res;  {
 }    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
 /************** Inverse of matrix **************/    sec_left = (time_sec) % (60*60*24);
 void ludcmp(double **a, int n, int *indx, double *d)    hours = (sec_left) / (60*60) ;
 {    sec_left = (sec_left) %(60*60);
   int i,imax,j,k;    minutes = (sec_left) /60;
   double big,dum,sum,temp;    sec_left = (sec_left) % (60);
   double *vv;    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
      return ascdiff;
   vv=vector(1,n);  }
   *d=1.0;  
   for (i=1;i<=n;i++) {  /*************** powell ************************/
     big=0.0;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (j=1;j<=n;j++)              double (*func)(double [])) 
       if ((temp=fabs(a[i][j])) > big) big=temp;  { 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    void linmin(double p[], double xi[], int n, double *fret, 
     vv[i]=1.0/big;                double (*func)(double [])); 
   }    int i,ibig,j; 
   for (j=1;j<=n;j++) {    double del,t,*pt,*ptt,*xit;
     for (i=1;i<j;i++) {    double fp,fptt;
       sum=a[i][j];    double *xits;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    int niterf, itmp;
       a[i][j]=sum;  
     }    pt=vector(1,n); 
     big=0.0;    ptt=vector(1,n); 
     for (i=j;i<=n;i++) {    xit=vector(1,n); 
       sum=a[i][j];    xits=vector(1,n); 
       for (k=1;k<j;k++)    *fret=(*func)(p); 
         sum -= a[i][k]*a[k][j];    for (j=1;j<=n;j++) pt[j]=p[j]; 
       a[i][j]=sum;    for (*iter=1;;++(*iter)) { 
       if ( (dum=vv[i]*fabs(sum)) >= big) {      fp=(*fret); 
         big=dum;      ibig=0; 
         imax=i;      del=0.0; 
       }      last_time=curr_time;
     }      (void) gettimeofday(&curr_time,&tzp);
     if (j != imax) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       for (k=1;k<=n;k++) {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
         dum=a[imax][k];  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         a[imax][k]=a[j][k];     for (i=1;i<=n;i++) {
         a[j][k]=dum;        printf(" %d %.12f",i, p[i]);
       }        fprintf(ficlog," %d %.12lf",i, p[i]);
       *d = -(*d);        fprintf(ficrespow," %.12lf", p[i]);
       vv[imax]=vv[j];      }
     }      printf("\n");
     indx[j]=imax;      fprintf(ficlog,"\n");
     if (a[j][j] == 0.0) a[j][j]=TINY;      fprintf(ficrespow,"\n");fflush(ficrespow);
     if (j != n) {      if(*iter <=3){
       dum=1.0/(a[j][j]);        tm = *localtime(&curr_time.tv_sec);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        strcpy(strcurr,asctime(&tm));
     }  /*       asctime_r(&tm,strcurr); */
   }        forecast_time=curr_time; 
   free_vector(vv,1,n);  /* Doesn't work */        itmp = strlen(strcurr);
 ;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 }          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 void lubksb(double **a, int n, int *indx, double b[])        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 {        for(niterf=10;niterf<=30;niterf+=10){
   int i,ii=0,ip,j;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   double sum;          tmf = *localtime(&forecast_time.tv_sec);
    /*      asctime_r(&tmf,strfor); */
   for (i=1;i<=n;i++) {          strcpy(strfor,asctime(&tmf));
     ip=indx[i];          itmp = strlen(strfor);
     sum=b[ip];          if(strfor[itmp-1]=='\n')
     b[ip]=b[i];          strfor[itmp-1]='\0';
     if (ii)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     else if (sum) ii=i;        }
     b[i]=sum;      }
   }      for (i=1;i<=n;i++) { 
   for (i=n;i>=1;i--) {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     sum=b[i];        fptt=(*fret); 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  #ifdef DEBUG
     b[i]=sum/a[i][i];        printf("fret=%lf \n",*fret);
   }        fprintf(ficlog,"fret=%lf \n",*fret);
 }  #endif
         printf("%d",i);fflush(stdout);
 /************ Frequencies ********************/        fprintf(ficlog,"%d",i);fflush(ficlog);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        linmin(p,xit,n,fret,func); 
 {  /* Some frequencies */        if (fabs(fptt-(*fret)) > del) { 
            del=fabs(fptt-(*fret)); 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          ibig=i; 
   double ***freq; /* Frequencies */        } 
   double *pp;  #ifdef DEBUG
   double pos, k2, dateintsum=0,k2cpt=0;        printf("%d %.12e",i,(*fret));
   FILE *ficresp;        fprintf(ficlog,"%d %.12e",i,(*fret));
   char fileresp[FILENAMELENGTH];        for (j=1;j<=n;j++) {
            xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   pp=vector(1,nlstate);          printf(" x(%d)=%.12e",j,xit[j]);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   strcpy(fileresp,"p");        }
   strcat(fileresp,fileres);        for(j=1;j<=n;j++) {
   if((ficresp=fopen(fileresp,"w"))==NULL) {          printf(" p=%.12e",p[j]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);          fprintf(ficlog," p=%.12e",p[j]);
     exit(0);        }
   }        printf("\n");
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        fprintf(ficlog,"\n");
   j1=0;  #endif
        } 
   j=cptcoveff;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  #ifdef DEBUG
          int k[2],l;
   for(k1=1; k1<=j;k1++){        k[0]=1;
     for(i1=1; i1<=ncodemax[k1];i1++){        k[1]=-1;
       j1++;        printf("Max: %.12e",(*func)(p));
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        fprintf(ficlog,"Max: %.12e",(*func)(p));
         scanf("%d", i);*/        for (j=1;j<=n;j++) {
       for (i=-1; i<=nlstate+ndeath; i++)            printf(" %.12e",p[j]);
         for (jk=-1; jk<=nlstate+ndeath; jk++)            fprintf(ficlog," %.12e",p[j]);
           for(m=agemin; m <= agemax+3; m++)        }
             freq[i][jk][m]=0;        printf("\n");
              fprintf(ficlog,"\n");
       dateintsum=0;        for(l=0;l<=1;l++) {
       k2cpt=0;          for (j=1;j<=n;j++) {
       for (i=1; i<=imx; i++) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         bool=1;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         if  (cptcovn>0) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           for (z1=1; z1<=cptcoveff; z1++)          }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
               bool=0;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }        }
         if (bool==1) {  #endif
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        free_vector(xit,1,n); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        free_vector(xits,1,n); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        free_vector(ptt,1,n); 
               if (m<lastpass) {        free_vector(pt,1,n); 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        return; 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      } 
               }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
                    for (j=1;j<=n;j++) { 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        ptt[j]=2.0*p[j]-pt[j]; 
                 dateintsum=dateintsum+k2;        xit[j]=p[j]-pt[j]; 
                 k2cpt++;        pt[j]=p[j]; 
               }      } 
             }      fptt=(*func)(ptt); 
           }      if (fptt < fp) { 
         }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       }        if (t < 0.0) { 
                  linmin(p,xit,n,fret,func); 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
       if  (cptcovn>0) {            xi[j][n]=xit[j]; 
         fprintf(ficresp, "\n#********** Variable ");          }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  #ifdef DEBUG
         fprintf(ficresp, "**********\n#");          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for(i=1; i<=nlstate;i++)          for(j=1;j<=n;j++){
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            printf(" %.12e",xit[j]);
       fprintf(ficresp, "\n");            fprintf(ficlog," %.12e",xit[j]);
                }
       for(i=(int)agemin; i <= (int)agemax+3; i++){          printf("\n");
         if(i==(int)agemax+3)          fprintf(ficlog,"\n");
           printf("Total");  #endif
         else        }
           printf("Age %d", i);      } 
         for(jk=1; jk <=nlstate ; jk++){    } 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  } 
             pp[jk] += freq[jk][m][i];  
         }  /**** Prevalence limit (stable or period prevalence)  ****************/
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
             pos += freq[jk][m][i];  {
           if(pp[jk]>=1.e-10)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);       matrix by transitions matrix until convergence is reached */
           else  
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    int i, ii,j,k;
         }    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
         for(jk=1; jk <=nlstate ; jk++){    double **out, cov[NCOVMAX+1], **pmij();
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double **newm;
             pp[jk] += freq[jk][m][i];    double agefin, delaymax=50 ; /* Max number of years to converge */
         }  
     for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1,pos=0; jk <=nlstate ; jk++)      for (j=1;j<=nlstate+ndeath;j++){
           pos += pp[jk];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){      }
           if(pos>=1.e-5)  
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);     cov[1]=1.;
           else   
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           if( i <= (int) agemax){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
             if(pos>=1.e-5){      newm=savm;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      /* Covariates have to be included here again */
               probs[i][jk][j1]= pp[jk]/pos;      cov[2]=agefin;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      
             }      for (k=1; k<=cptcovn;k++) {
             else        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
           }      }
         }      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              for (k=1; k<=cptcovprod;k++)
         for(jk=-1; jk <=nlstate+ndeath; jk++)        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for(m=-1; m <=nlstate+ndeath; m++)      
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         if(i <= (int) agemax)      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           fprintf(ficresp,"\n");      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         printf("\n");      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       }      
     }      savm=oldm;
   }      oldm=newm;
   dateintmean=dateintsum/k2cpt;      maxmax=0.;
        for(j=1;j<=nlstate;j++){
   fclose(ficresp);        min=1.;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        max=0.;
   free_vector(pp,1,nlstate);        for(i=1; i<=nlstate; i++) {
            sumnew=0;
   /* End of Freq */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 }          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
 /************ Prevalence ********************/          min=FMIN(min,prlim[i][j]);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        }
 {  /* Some frequencies */        maxmin=max-min;
          maxmax=FMAX(maxmax,maxmin);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      }
   double ***freq; /* Frequencies */      if(maxmax < ftolpl){
   double *pp;        return prlim;
   double pos, k2;      }
     }
   pp=vector(1,nlstate);  }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
    /*************** transition probabilities ***************/ 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
    {
   j=cptcoveff;    /* According to parameters values stored in x and the covariate's values stored in cov,
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       computes the probability to be observed in state j being in state i by appying the
         model to the ncovmodel covariates (including constant and age).
  for(k1=1; k1<=j;k1++){       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
     for(i1=1; i1<=ncodemax[k1];i1++){       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
       j1++;       ncth covariate in the global vector x is given by the formula:
         j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
       for (i=-1; i<=nlstate+ndeath; i++)         j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         for (jk=-1; jk<=nlstate+ndeath; jk++)         Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
           for(m=agemin; m <= agemax+3; m++)       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
             freq[i][jk][m]=0;       Outputs ps[i][j] the probability to be observed in j being in j according to
             the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
       for (i=1; i<=imx; i++) {    */
         bool=1;    double s1, lnpijopii;
         if  (cptcovn>0) {    /*double t34;*/
           for (z1=1; z1<=cptcoveff; z1++)    int i,j,j1, nc, ii, jj;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;      for(i=1; i<= nlstate; i++){
         }        for(j=1; j<i;j++){
         if (bool==1) {          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           for(m=firstpass; m<=lastpass; m++){            /*lnpijopii += param[i][j][nc]*cov[nc];*/
             k2=anint[m][i]+(mint[m][i]/12.);            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          }
               if(agev[m][i]==1) agev[m][i]=agemax+2;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
               if (m<lastpass)  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        }
               else        for(j=i+1; j<=nlstate+ndeath;j++){
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
             }            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
           }  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         }          }
       }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         for(i=(int)agemin; i <= (int)agemax+3; i++){        }
           for(jk=1; jk <=nlstate ; jk++){      }
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      
               pp[jk] += freq[jk][m][i];      for(i=1; i<= nlstate; i++){
           }        s1=0;
           for(jk=1; jk <=nlstate ; jk++){        for(j=1; j<i; j++){
             for(m=-1, pos=0; m <=0 ; m++)          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             pos += freq[jk][m][i];          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }        }
                for(j=i+1; j<=nlstate+ndeath; j++){
          for(jk=1; jk <=nlstate ; jk++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
              pp[jk] += freq[jk][m][i];        }
          }        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                  ps[i][i]=1./(s1+1.);
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        /* Computing other pijs */
         for(j=1; j<i; j++)
          for(jk=1; jk <=nlstate ; jk++){                    ps[i][j]= exp(ps[i][j])*ps[i][i];
            if( i <= (int) agemax){        for(j=i+1; j<=nlstate+ndeath; j++)
              if(pos>=1.e-5){          ps[i][j]= exp(ps[i][j])*ps[i][i];
                probs[i][jk][j1]= pp[jk]/pos;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
              }      } /* end i */
            }      
          }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                  for(jj=1; jj<= nlstate+ndeath; jj++){
         }          ps[ii][jj]=0;
     }          ps[ii][ii]=1;
   }        }
       }
        
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
    /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 }  /* End of Freq */  /*         printf("ddd %lf ",ps[ii][jj]); */
   /*       } */
 /************* Waves Concatenation ***************/  /*       printf("\n "); */
   /*        } */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  /*        printf("\n ");printf("%lf ",cov[2]); */
 {         /*
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for(i=1; i<= npar; i++) printf("%f ",x[i]);
      Death is a valid wave (if date is known).        goto end;*/
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      return ps;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  }
      and mw[mi+1][i]. dh depends on stepm.  
      */  /**************** Product of 2 matrices ******************/
   
   int i, mi, m;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  {
      double sum=0., jmean=0.;*/    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   int j, k=0,jk, ju, jl;    /* in, b, out are matrice of pointers which should have been initialized 
   double sum=0.;       before: only the contents of out is modified. The function returns
   jmin=1e+5;       a pointer to pointers identical to out */
   jmax=-1;    long i, j, k;
   jmean=0.;    for(i=nrl; i<= nrh; i++)
   for(i=1; i<=imx; i++){      for(k=ncolol; k<=ncoloh; k++)
     mi=0;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     m=firstpass;          out[i][k] +=in[i][j]*b[j][k];
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)    return out;
         mw[++mi][i]=m;  }
       if(m >=lastpass)  
         break;  
       else  /************* Higher Matrix Product ***************/
         m++;  
     }/* end while */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     if (s[m][i] > nlstate){  {
       mi++;     /* Death is another wave */    /* Computes the transition matrix starting at age 'age' over 
       /* if(mi==0)  never been interviewed correctly before death */       'nhstepm*hstepm*stepm' months (i.e. until
          /* Only death is a correct wave */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       mw[mi][i]=m;       nhstepm*hstepm matrices. 
     }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
     wav[i]=mi;       for the memory).
     if(mi==0)       Model is determined by parameters x and covariates have to be 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);       included manually here. 
   }  
        */
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){    int i, j, d, h, k;
       if (stepm <=0)    double **out, cov[NCOVMAX+1];
         dh[mi][i]=1;    double **newm;
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {    /* Hstepm could be zero and should return the unit matrix */
           if (agedc[i] < 2*AGESUP) {    for (i=1;i<=nlstate+ndeath;i++)
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      for (j=1;j<=nlstate+ndeath;j++){
           if(j==0) j=1;  /* Survives at least one month after exam */        oldm[i][j]=(i==j ? 1.0 : 0.0);
           k=k+1;        po[i][j][0]=(i==j ? 1.0 : 0.0);
           if (j >= jmax) jmax=j;      }
           if (j <= jmin) jmin=j;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           sum=sum+j;    for(h=1; h <=nhstepm; h++){
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      for(d=1; d <=hstepm; d++){
           }        newm=savm;
         }        /* Covariates have to be included here again */
         else{        cov[1]=1.;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           k=k+1;        for (k=1; k<=cptcovn;k++) 
           if (j >= jmax) jmax=j;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           else if (j <= jmin)jmin=j;        for (k=1; k<=cptcovage;k++)
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           sum=sum+j;        for (k=1; k<=cptcovprod;k++)
         }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         jk= j/stepm;  
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         if(jl <= -ju)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           dh[mi][i]=jk;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         else                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           dh[mi][i]=jk+1;        savm=oldm;
         if(dh[mi][i]==0)        oldm=newm;
           dh[mi][i]=1; /* At least one step */      }
       }      for(i=1; i<=nlstate+ndeath; i++)
     }        for(j=1;j<=nlstate+ndeath;j++) {
   }          po[i][j][h]=newm[i][j];
   jmean=sum/k;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        }
  }      /*printf("h=%d ",h);*/
 /*********** Tricode ****************************/    } /* end h */
 void tricode(int *Tvar, int **nbcode, int imx)  /*     printf("\n H=%d \n",h); */
 {    return po;
   int Ndum[20],ij=1, k, j, i;  }
   int cptcode=0;  
   cptcoveff=0;  
    /*************** log-likelihood *************/
   for (k=0; k<19; k++) Ndum[k]=0;  double func( double *x)
   for (k=1; k<=7; k++) ncodemax[k]=0;  {
     int i, ii, j, k, mi, d, kk;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     for (i=1; i<=imx; i++) {    double **out;
       ij=(int)(covar[Tvar[j]][i]);    double sw; /* Sum of weights */
       Ndum[ij]++;    double lli; /* Individual log likelihood */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    int s1, s2;
       if (ij > cptcode) cptcode=ij;    double bbh, survp;
     }    long ipmx;
     /*extern weight */
     for (i=0; i<=cptcode; i++) {    /* We are differentiating ll according to initial status */
       if(Ndum[i]!=0) ncodemax[j]++;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     }    /*for(i=1;i<imx;i++) 
     ij=1;      printf(" %d\n",s[4][i]);
     */
     cov[1]=1.;
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;    if(mle==1){
                for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           ij++;        /* Computes the values of the ncovmodel covariates of the model
         }           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
         if (ij > ncodemax[j]) break;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       }             to be observed in j being in i according to the model.
     }         */
   }          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
  for (k=0; k<19; k++) Ndum[k]=0;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            has been calculated etc */
  for (i=1; i<=ncovmodel-2; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
       ij=Tvar[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
       Ndum[ij]++;            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
  ij=1;            }
  for (i=1; i<=10; i++) {          for(d=0; d<dh[mi][i]; d++){
    if((Ndum[i]!=0) && (i<=ncovcol)){            newm=savm;
      Tvaraff[ij]=i;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      ij++;            for (kk=1; kk<=cptcovage;kk++) {
    }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
  }            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     cptcoveff=ij-1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
             oldm=newm;
 /*********** Health Expectancies ****************/          } /* end mult */
         
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
 {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   /* Health expectancies */           * (in months) between two waves is not a multiple of stepm, we rounded to 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double age, agelim, hf;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double ***p3mat,***varhe;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   double **dnewm,**doldm;           * probability in order to take into account the bias as a fraction of the way
   double *xp;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   double **gp, **gm;           * -stepm/2 to stepm/2 .
   double ***gradg, ***trgradg;           * For stepm=1 the results are the same as for previous versions of Imach.
   int theta;           * For stepm > 1 the results are less biased than in previous versions. 
            */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          s1=s[mw[mi][i]][i];
   xp=vector(1,npar);          s2=s[mw[mi+1][i]][i];
   dnewm=matrix(1,nlstate*2,1,npar);          bbh=(double)bh[mi][i]/(double)stepm; 
   doldm=matrix(1,nlstate*2,1,nlstate*2);          /* bias bh is positive if real duration
             * is higher than the multiple of stepm and negative otherwise.
   fprintf(ficreseij,"# Health expectancies\n");           */
   fprintf(ficreseij,"# Age");          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for(i=1; i<=nlstate;i++)          if( s2 > nlstate){ 
     for(j=1; j<=nlstate;j++)            /* i.e. if s2 is a death state and if the date of death is known 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);               then the contribution to the likelihood is the probability to 
   fprintf(ficreseij,"\n");               die between last step unit time and current  step unit time, 
                which is also equal to probability to die before dh 
   if(estepm < stepm){               minus probability to die before dh-stepm . 
     printf ("Problem %d lower than %d\n",estepm, stepm);               In version up to 0.92 likelihood was computed
   }          as if date of death was unknown. Death was treated as any other
   else  hstepm=estepm;            health state: the date of the interview describes the actual state
   /* We compute the life expectancy from trapezoids spaced every estepm months          and not the date of a change in health state. The former idea was
    * This is mainly to measure the difference between two models: for example          to consider that at each interview the state was recorded
    * if stepm=24 months pijx are given only every 2 years and by summing them          (healthy, disable or death) and IMaCh was corrected; but when we
    * we are calculating an estimate of the Life Expectancy assuming a linear          introduced the exact date of death then we should have modified
    * progression inbetween and thus overestimating or underestimating according          the contribution of an exact death to the likelihood. This new
    * to the curvature of the survival function. If, for the same date, we          contribution is smaller and very dependent of the step unit
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          stepm. It is no more the probability to die between last interview
    * to compare the new estimate of Life expectancy with the same linear          and month of death but the probability to survive from last
    * hypothesis. A more precise result, taking into account a more precise          interview up to one month before death multiplied by the
    * curvature will be obtained if estepm is as small as stepm. */          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
   /* For example we decided to compute the life expectancy with the smallest unit */          mortality artificially. The bad side is that we add another loop
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          which slows down the processing. The difference can be up to 10%
      nhstepm is the number of hstepm from age to agelim          lower mortality.
      nstepm is the number of stepm from age to agelin.            */
      Look at hpijx to understand the reason of that which relies in memory size            lli=log(out[s1][s2] - savm[s1][s2]);
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it          } else if  (s2==-2) {
      means that if the survival funtion is printed only each two years of age and if            for (j=1,survp=0. ; j<=nlstate; j++) 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      results. So we changed our mind and took the option of the best precision.            /*survp += out[s1][j]; */
   */            lli= log(survp);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          }
           
   agelim=AGESUP;          else if  (s2==-4) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (j=3,survp=0. ; j<=nlstate; j++)  
     /* nhstepm age range expressed in number of stepm */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            lli= log(survp); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          } 
     /* if (stepm >= YEARM) hstepm=1;*/  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          else if  (s2==-5) { 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (j=1,survp=0. ; j<=2; j++)  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     gp=matrix(0,nhstepm,1,nlstate*2);            lli= log(survp); 
     gm=matrix(0,nhstepm,1,nlstate*2);          } 
           
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          else{
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
            } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     /* Computing Variances of health expectancies */          ipmx +=1;
           sw += weight[i];
      for(theta=1; theta <=npar; theta++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1; i<=npar; i++){        } /* end of wave */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } /* end of individual */
       }    }  else if(mle==2){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       cptj=0;        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<= nlstate; j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(i=1; i<=nlstate; i++){            for (j=1;j<=nlstate+ndeath;j++){
           cptj=cptj+1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            }
           }          for(d=0; d<=dh[mi][i]; d++){
         }            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1; i<=npar; i++)            }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                  savm=oldm;
       cptj=0;            oldm=newm;
       for(j=1; j<= nlstate; j++){          } /* end mult */
         for(i=1;i<=nlstate;i++){        
           cptj=cptj+1;          s1=s[mw[mi][i]][i];
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          s2=s[mw[mi+1][i]][i];
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          bbh=(double)bh[mi][i]/(double)stepm; 
           }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         }          ipmx +=1;
       }          sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            } /* end of wave */
       } /* end of individual */
       for(j=1; j<= nlstate*2; j++)    }  else if(mle==3){  /* exponential inter-extrapolation */
         for(h=0; h<=nhstepm-1; h++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
      }            for (j=1;j<=nlstate+ndeath;j++){
                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /* End theta */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
      for(h=0; h<=nhstepm-1; h++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(j=1; j<=nlstate*2;j++)            for (kk=1; kk<=cptcovage;kk++) {
         for(theta=1; theta <=npar; theta++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         trgradg[h][j][theta]=gradg[h][theta][j];            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      for(i=1;i<=nlstate*2;i++)            savm=oldm;
       for(j=1;j<=nlstate*2;j++)            oldm=newm;
         varhe[i][j][(int)age] =0.;          } /* end mult */
         
     for(h=0;h<=nhstepm-1;h++){          s1=s[mw[mi][i]][i];
       for(k=0;k<=nhstepm-1;k++){          s2=s[mw[mi+1][i]][i];
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          bbh=(double)bh[mi][i]/(double)stepm; 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(i=1;i<=nlstate*2;i++)          ipmx +=1;
           for(j=1;j<=nlstate*2;j++)          sw += weight[i];
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     }      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /* Computing expectancies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<=nlstate;j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            for (j=1;j<=nlstate+ndeath;j++){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                        savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            }
           for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficreseij,"%3.0f",age );            for (kk=1; kk<=cptcovage;kk++) {
     cptj=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){          
         cptj++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     fprintf(ficreseij,"\n");            oldm=newm;
              } /* end mult */
     free_matrix(gm,0,nhstepm,1,nlstate*2);        
     free_matrix(gp,0,nhstepm,1,nlstate*2);          s1=s[mw[mi][i]][i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          s2=s[mw[mi+1][i]][i];
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          if( s2 > nlstate){ 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli=log(out[s1][s2] - savm[s1][s2]);
   }          }else{
   free_vector(xp,1,npar);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   free_matrix(dnewm,1,nlstate*2,1,npar);          }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          ipmx +=1;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 /************ Variance ******************/        } /* end of wave */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      } /* end of individual */
 {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   /* Variance of health expectancies */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **newm;        for(mi=1; mi<= wav[i]-1; mi++){
   double **dnewm,**doldm;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, j, nhstepm, hstepm, h, nstepm ;            for (j=1;j<=nlstate+ndeath;j++){
   int k, cptcode;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *xp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **gp, **gm;            }
   double ***gradg, ***trgradg;          for(d=0; d<dh[mi][i]; d++){
   double ***p3mat;            newm=savm;
   double age,agelim, hf;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int theta;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    fprintf(ficresvij,"# Covariances of life expectancies\n");            }
   fprintf(ficresvij,"# Age");          
   for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(j=1; j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            savm=oldm;
   fprintf(ficresvij,"\n");            oldm=newm;
           } /* end mult */
   xp=vector(1,npar);        
   dnewm=matrix(1,nlstate,1,npar);          s1=s[mw[mi][i]][i];
   doldm=matrix(1,nlstate,1,nlstate);          s2=s[mw[mi+1][i]][i];
            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   if(estepm < stepm){          ipmx +=1;
     printf ("Problem %d lower than %d\n",estepm, stepm);          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   else  hstepm=estepm;            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   /* For example we decided to compute the life expectancy with the smallest unit */        } /* end of wave */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      } /* end of individual */
      nhstepm is the number of hstepm from age to agelim    } /* End of if */
      nstepm is the number of stepm from age to agelin.    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      Look at hpijx to understand the reason of that which relies in memory size    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      and note for a fixed period like k years */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    return -l;
      survival function given by stepm (the optimization length). Unfortunately it  }
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  /*************** log-likelihood *************/
      results. So we changed our mind and took the option of the best precision.  double funcone( double *x)
   */  {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    /* Same as likeli but slower because of a lot of printf and if */
   agelim = AGESUP;    int i, ii, j, k, mi, d, kk;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double **out;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double lli; /* Individual log likelihood */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double llt;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    int s1, s2;
     gp=matrix(0,nhstepm,1,nlstate);    double bbh, survp;
     gm=matrix(0,nhstepm,1,nlstate);    /*extern weight */
     /* We are differentiating ll according to initial status */
     for(theta=1; theta <=npar; theta++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(i=1; i<=npar; i++){ /* Computes gradient */    /*for(i=1;i<imx;i++) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf(" %d\n",s[4][i]);
       }    */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      cov[1]=1.;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           prlim[i][i]=probs[(int)age][i][ij];      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }      for(mi=1; mi<= wav[i]-1; mi++){
          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<= nlstate; j++){          for (j=1;j<=nlstate+ndeath;j++){
         for(h=0; h<=nhstepm; h++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          }
         }        for(d=0; d<dh[mi][i]; d++){
       }          newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(i=1; i<=npar; i++) /* Computes gradient */          for (kk=1; kk<=cptcovage;kk++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (popbased==1) {          savm=oldm;
         for(i=1; i<=nlstate;i++)          oldm=newm;
           prlim[i][i]=probs[(int)age][i][ij];        } /* end mult */
       }        
         s1=s[mw[mi][i]][i];
       for(j=1; j<= nlstate; j++){        s2=s[mw[mi+1][i]][i];
         for(h=0; h<=nhstepm; h++){        bbh=(double)bh[mi][i]/(double)stepm; 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        /* bias is positive if real duration
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];         * is higher than the multiple of stepm and negative otherwise.
         }         */
       }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
       for(j=1; j<= nlstate; j++)        } else if  (s2==-2) {
         for(h=0; h<=nhstepm; h++){          for (j=1,survp=0. ; j<=nlstate; j++) 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }          lli= log(survp);
     } /* End theta */        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(h=0; h<=nhstepm; h++)        } else if(mle==3){  /* exponential inter-extrapolation */
       for(j=1; j<=nlstate;j++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(theta=1; theta <=npar; theta++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           trgradg[h][j][theta]=gradg[h][theta][j];          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* mle=0 back to 1 */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for(i=1;i<=nlstate;i++)          /*lli=log(out[s1][s2]); */ /* Original formula */
       for(j=1;j<=nlstate;j++)        } /* End of if */
         vareij[i][j][(int)age] =0.;        ipmx +=1;
         sw += weight[i];
     for(h=0;h<=nhstepm;h++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(k=0;k<=nhstepm;k++){        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        if(globpr){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         for(i=1;i<=nlstate;i++)   %11.6f %11.6f %11.6f ", \
           for(j=1;j<=nlstate;j++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     }            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     fprintf(ficresvij,"%.0f ",age );          }
     for(i=1; i<=nlstate;i++)          fprintf(ficresilk," %10.6f\n", -llt);
       for(j=1; j<=nlstate;j++){        }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      } /* end of wave */
       }    } /* end of individual */
     fprintf(ficresvij,"\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     free_matrix(gp,0,nhstepm,1,nlstate);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     free_matrix(gm,0,nhstepm,1,nlstate);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    if(globpr==0){ /* First time we count the contributions and weights */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      gipmx=ipmx;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gsw=sw;
   } /* End age */    }
      return -l;
   free_vector(xp,1,npar);  }
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  
   /*************** function likelione ***********/
 }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
 /************ Variance of prevlim ******************/    /* This routine should help understanding what is done with 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)       the selection of individuals/waves and
 {       to check the exact contribution to the likelihood.
   /* Variance of prevalence limit */       Plotting could be done.
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/     */
   double **newm;    int k;
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;    if(*globpri !=0){ /* Just counts and sums, no printings */
   int k, cptcode;      strcpy(fileresilk,"ilk"); 
   double *xp;      strcat(fileresilk,fileres);
   double *gp, *gm;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double **gradg, **trgradg;        printf("Problem with resultfile: %s\n", fileresilk);
   double age,agelim;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   int theta;      }
          fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   fprintf(ficresvpl,"# Age");      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   for(i=1; i<=nlstate;i++)      for(k=1; k<=nlstate; k++) 
       fprintf(ficresvpl," %1d-%1d",i,i);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   fprintf(ficresvpl,"\n");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    *fretone=(*funcone)(p);
   doldm=matrix(1,nlstate,1,nlstate);    if(*globpri !=0){
        fclose(ficresilk);
   hstepm=1*YEARM; /* Every year of age */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      fflush(fichtm); 
   agelim = AGESUP;    } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    return;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  }
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);  /*********** Maximum Likelihood Estimation ***************/
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
     for(theta=1; theta <=npar; theta++){    int i,j, iter;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double **xi;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double fret;
       }    double fretone; /* Only one call to likelihood */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /*  char filerespow[FILENAMELENGTH];*/
       for(i=1;i<=nlstate;i++)    xi=matrix(1,npar,1,npar);
         gp[i] = prlim[i][i];    for (i=1;i<=npar;i++)
          for (j=1;j<=npar;j++)
       for(i=1; i<=npar; i++) /* Computes gradient */        xi[i][j]=(i==j ? 1.0 : 0.0);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    strcpy(filerespow,"pow"); 
       for(i=1;i<=nlstate;i++)    strcat(filerespow,fileres);
         gm[i] = prlim[i][i];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       for(i=1;i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    }
     } /* End theta */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
     trgradg =matrix(1,nlstate,1,npar);      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for(j=1; j<=nlstate;j++)    fprintf(ficrespow,"\n");
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];    powell(p,xi,npar,ftol,&iter,&fret,func);
   
     for(i=1;i<=nlstate;i++)    free_matrix(xi,1,npar,1,npar);
       varpl[i][(int)age] =0.;    fclose(ficrespow);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(i=1;i<=nlstate;i++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
   }
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  /**** Computes Hessian and covariance matrix ***/
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     fprintf(ficresvpl,"\n");  {
     free_vector(gp,1,nlstate);    double  **a,**y,*x,pd;
     free_vector(gm,1,nlstate);    double **hess;
     free_matrix(gradg,1,npar,1,nlstate);    int i, j,jk;
     free_matrix(trgradg,1,nlstate,1,npar);    int *indx;
   } /* End age */  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   free_vector(xp,1,npar);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   free_matrix(doldm,1,nlstate,1,npar);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   free_matrix(dnewm,1,nlstate,1,nlstate);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
 }    hess=matrix(1,npar,1,npar);
   
 /************ Variance of one-step probabilities  ******************/    printf("\nCalculation of the hessian matrix. Wait...\n");
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 {    for (i=1;i<=npar;i++){
   int i, j, i1, k1, j1, z1;      printf("%d",i);fflush(stdout);
   int k=0, cptcode;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double **dnewm,**doldm;     
   double *xp;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double *gp, *gm;      
   double **gradg, **trgradg;      /*  printf(" %f ",p[i]);
   double age,agelim, cov[NCOVMAX];          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   int theta;    }
   char fileresprob[FILENAMELENGTH];    
     for (i=1;i<=npar;i++) {
   strcpy(fileresprob,"prob");      for (j=1;j<=npar;j++)  {
   strcat(fileresprob,fileres);        if (j>i) { 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          printf(".%d%d",i,j);fflush(stdout);
     printf("Problem with resultfile: %s\n", fileresprob);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   }          hess[i][j]=hessij(p,delti,i,j,func,npar);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          
            hess[j][i]=hess[i][j];    
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");          /*printf(" %lf ",hess[i][j]);*/
   fprintf(ficresprob,"# Age");        }
   for(i=1; i<=nlstate;i++)      }
     for(j=1; j<=(nlstate+ndeath);j++)    }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    printf("\n");
     fprintf(ficlog,"\n");
   
   fprintf(ficresprob,"\n");    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
   xp=vector(1,npar);    a=matrix(1,npar,1,npar);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    y=matrix(1,npar,1,npar);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    x=vector(1,npar);
      indx=ivector(1,npar);
   cov[1]=1;    for (i=1;i<=npar;i++)
   j=cptcoveff;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    ludcmp(a,npar,indx,&pd);
   j1=0;  
   for(k1=1; k1<=1;k1++){    for (j=1;j<=npar;j++) {
     for(i1=1; i1<=ncodemax[k1];i1++){      for (i=1;i<=npar;i++) x[i]=0;
     j1++;      x[j]=1;
       lubksb(a,npar,indx,x);
     if  (cptcovn>0) {      for (i=1;i<=npar;i++){ 
       fprintf(ficresprob, "\n#********** Variable ");        matcov[i][j]=x[i];
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      }
       fprintf(ficresprob, "**********\n#");    }
     }  
        printf("\n#Hessian matrix#\n");
       for (age=bage; age<=fage; age ++){    fprintf(ficlog,"\n#Hessian matrix#\n");
         cov[2]=age;    for (i=1;i<=npar;i++) { 
         for (k=1; k<=cptcovn;k++) {      for (j=1;j<=npar;j++) { 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        printf("%.3e ",hess[i][j]);
                  fprintf(ficlog,"%.3e ",hess[i][j]);
         }      }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      printf("\n");
         for (k=1; k<=cptcovprod;k++)      fprintf(ficlog,"\n");
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    }
          
         gradg=matrix(1,npar,1,9);    /* Recompute Inverse */
         trgradg=matrix(1,9,1,npar);    for (i=1;i<=npar;i++)
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    ludcmp(a,npar,indx,&pd);
      
         for(theta=1; theta <=npar; theta++){    /*  printf("\n#Hessian matrix recomputed#\n");
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (j=1;j<=npar;j++) {
                for (i=1;i<=npar;i++) x[i]=0;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      x[j]=1;
                lubksb(a,npar,indx,x);
           k=0;      for (i=1;i<=npar;i++){ 
           for(i=1; i<= (nlstate+ndeath); i++){        y[i][j]=x[i];
             for(j=1; j<=(nlstate+ndeath);j++){        printf("%.3e ",y[i][j]);
               k=k+1;        fprintf(ficlog,"%.3e ",y[i][j]);
               gp[k]=pmmij[i][j];      }
             }      printf("\n");
           }      fprintf(ficlog,"\n");
              }
           for(i=1; i<=npar; i++)    */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
        free_matrix(a,1,npar,1,npar);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    free_matrix(y,1,npar,1,npar);
           k=0;    free_vector(x,1,npar);
           for(i=1; i<=(nlstate+ndeath); i++){    free_ivector(indx,1,npar);
             for(j=1; j<=(nlstate+ndeath);j++){    free_matrix(hess,1,npar,1,npar);
               k=k+1;  
               gm[k]=pmmij[i][j];  
             }  }
           }  
        /*************** hessian matrix ****************/
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    {
         }    int i;
     int l=1, lmax=20;
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    double k1,k2;
           for(theta=1; theta <=npar; theta++)    double p2[MAXPARM+1]; /* identical to x */
             trgradg[j][theta]=gradg[theta][j];    double res;
            double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    double fx;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    int k=0,kmax=10;
            double l1;
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
            fx=func(x);
         k=0;    for (i=1;i<=npar;i++) p2[i]=x[i];
         for(i=1; i<=(nlstate+ndeath); i++){    for(l=0 ; l <=lmax; l++){
           for(j=1; j<=(nlstate+ndeath);j++){      l1=pow(10,l);
             k=k+1;      delts=delt;
             gm[k]=pmmij[i][j];      for(k=1 ; k <kmax; k=k+1){
           }        delt = delta*(l1*k);
         }        p2[theta]=x[theta] +delt;
              k1=func(p2)-fx;
      /*printf("\n%d ",(int)age);        p2[theta]=x[theta]-delt;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        k2=func(p2)-fx;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        /*res= (k1-2.0*fx+k2)/delt/delt; */
      }*/        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
         fprintf(ficresprob,"\n%d ",(int)age);  #ifdef DEBUGHESS
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));  #endif
          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     }          k=kmax;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          k=kmax; l=lmax*10.;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }
   }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   free_vector(xp,1,npar);          delts=delt;
   fclose(ficresprob);        }
        }
 }    }
     delti[theta]=delts;
 /******************* Printing html file ***********/    return res; 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    
  int lastpass, int stepm, int weightopt, char model[],\  }
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
  char version[], int popforecast, int estepm ){  {
   int jj1, k1, i1, cpt;    int i;
   FILE *fichtm;    int l=1, l1, lmax=20;
   /*char optionfilehtm[FILENAMELENGTH];*/    double k1,k2,k3,k4,res,fx;
     double p2[MAXPARM+1];
   strcpy(optionfilehtm,optionfile);    int k;
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    fx=func(x);
     printf("Problem with %s \n",optionfilehtm), exit(0);    for (k=1; k<=2; k++) {
   }      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      k1=func(p2)-fx;
 \n    
 Total number of observations=%d <br>\n      p2[thetai]=x[thetai]+delti[thetai]/k;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 <hr  size=\"2\" color=\"#EC5E5E\">      k2=func(p2)-fx;
  <ul><li>Outputs files<br>\n    
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      p2[thetai]=x[thetai]-delti[thetai]/k;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      k3=func(p2)-fx;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      p2[thetai]=x[thetai]-delti[thetai]/k;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
  fprintf(fichtm,"\n      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n  #ifdef DEBUG
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  #endif
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    }
     return res;
  if(popforecast==1) fprintf(fichtm,"\n  }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  /************** Inverse of matrix **************/
         <br>",fileres,fileres,fileres,fileres);  void ludcmp(double **a, int n, int *indx, double *d) 
  else  { 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    int i,imax,j,k; 
 fprintf(fichtm," <li>Graphs</li><p>");    double big,dum,sum,temp; 
     double *vv; 
  m=cptcoveff;   
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    vv=vector(1,n); 
     *d=1.0; 
  jj1=0;    for (i=1;i<=n;i++) { 
  for(k1=1; k1<=m;k1++){      big=0.0; 
    for(i1=1; i1<=ncodemax[k1];i1++){      for (j=1;j<=n;j++) 
        jj1++;        if ((temp=fabs(a[i][j])) > big) big=temp; 
        if (cptcovn > 0) {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      vv[i]=1.0/big; 
          for (cpt=1; cpt<=cptcoveff;cpt++)    } 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    for (j=1;j<=n;j++) { 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      for (i=1;i<j;i++) { 
        }        sum=a[i][j]; 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            a[i][j]=sum; 
        for(cpt=1; cpt<nlstate;cpt++){      } 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      big=0.0; 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (i=j;i<=n;i++) { 
        }        sum=a[i][j]; 
     for(cpt=1; cpt<=nlstate;cpt++) {        for (k=1;k<j;k++) 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          sum -= a[i][k]*a[k][j]; 
 interval) in state (%d): v%s%d%d.gif <br>        a[i][j]=sum; 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          if ( (dum=vv[i]*fabs(sum)) >= big) { 
      }          big=dum; 
      for(cpt=1; cpt<=nlstate;cpt++) {          imax=i; 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        } 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      } 
      }      if (j != imax) { 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        for (k=1;k<=n;k++) { 
 health expectancies in states (1) and (2): e%s%d.gif<br>          dum=a[imax][k]; 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          a[imax][k]=a[j][k]; 
 fprintf(fichtm,"\n</body>");          a[j][k]=dum; 
    }        } 
    }        *d = -(*d); 
 fclose(fichtm);        vv[imax]=vv[j]; 
 }      } 
       indx[j]=imax; 
 /******************* Gnuplot file **************/      if (a[j][j] == 0.0) a[j][j]=TINY; 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      if (j != n) { 
         dum=1.0/(a[j][j]); 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
   strcpy(optionfilegnuplot,optionfilefiname);    } 
   strcat(optionfilegnuplot,".gp.txt");    free_vector(vv,1,n);  /* Doesn't work */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  ;
     printf("Problem with file %s",optionfilegnuplot);  } 
   }  
   void lubksb(double **a, int n, int *indx, double b[]) 
 #ifdef windows  { 
     fprintf(ficgp,"cd \"%s\" \n",pathc);    int i,ii=0,ip,j; 
 #endif    double sum; 
 m=pow(2,cptcoveff);   
      for (i=1;i<=n;i++) { 
  /* 1eme*/      ip=indx[i]; 
   for (cpt=1; cpt<= nlstate ; cpt ++) {      sum=b[ip]; 
    for (k1=1; k1<= m ; k1 ++) {      b[ip]=b[i]; 
       if (ii) 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
 for (i=1; i<= nlstate ; i ++) {      b[i]=sum; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (i=n;i>=1;i--) { 
 }      sum=b[i]; 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     for (i=1; i<= nlstate ; i ++) {      b[i]=sum/a[i][i]; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");  } 
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  void pstamp(FILE *fichier)
      for (i=1; i<= nlstate ; i ++) {  {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  {  /* Some frequencies */
    }    
   }    int i, m, jk, k1,i1, j1, bool, z1,j;
   /*2 eme*/    int first;
     double ***freq; /* Frequencies */
   for (k1=1; k1<= m ; k1 ++) {    double *pp, **prop;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        char fileresp[FILENAMELENGTH];
     for (i=1; i<= nlstate+1 ; i ++) {    
       k=2*i;    pp=vector(1,nlstate);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    prop=matrix(1,nlstate,iagemin,iagemax+3);
       for (j=1; j<= nlstate+1 ; j ++) {    strcpy(fileresp,"p");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    strcat(fileresp,fileres);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if((ficresp=fopen(fileresp,"w"))==NULL) {
 }        printf("Problem with prevalence resultfile: %s\n", fileresp);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      exit(0);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    j1=0;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      j=cptcoveff;
       fprintf(ficgp,"\" t\"\" w l 0,");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    first=1;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(k1=1; k1<=j;k1++){
 }        for(i1=1; i1<=ncodemax[k1];i1++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        j1++;
       else fprintf(ficgp,"\" t\"\" w l 0,");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     }          scanf("%d", i);*/
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        for (i=-5; i<=nlstate+ndeath; i++)  
   }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
              for(m=iagemin; m <= iagemax+3; m++)
   /*3eme*/              freq[i][jk][m]=0;
   
   for (k1=1; k1<= m ; k1 ++) {      for (i=1; i<=nlstate; i++)  
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for(m=iagemin; m <= iagemax+3; m++)
       k=2+nlstate*(2*cpt-2);          prop[i][m]=0;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        dateintsum=0;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        k2cpt=0;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for (i=1; i<=imx; i++) {
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          bool=1;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          if  (cptcovn>0) {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 */                bool=0;
       for (i=1; i< nlstate ; i ++) {          }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
       }              k2=anint[m][i]+(mint[m][i]/12.);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   /* CV preval stat */                if (m<lastpass) {
     for (k1=1; k1<= m ; k1 ++) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     for (cpt=1; cpt<nlstate ; cpt ++) {                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       k=3;                }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       for (i=1; i< nlstate ; i ++)                  dateintsum=dateintsum+k2;
         fprintf(ficgp,"+$%d",k+i+1);                  k2cpt++;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                }
                      /*}*/
       l=3+(nlstate+ndeath)*cpt;            }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          }
       for (i=1; i< nlstate ; i ++) {        }
         l=3+(nlstate+ndeath)*cpt;         
         fprintf(ficgp,"+$%d",l+i+1);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       }        pstamp(ficresp);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          if  (cptcovn>0) {
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          fprintf(ficresp, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }            fprintf(ficresp, "**********\n#");
          }
   /* proba elementaires */        for(i=1; i<=nlstate;i++) 
    for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     for(k=1; k <=(nlstate+ndeath); k++){        fprintf(ficresp, "\n");
       if (k != i) {        
         for(j=1; j <=ncovmodel; j++){        for(i=iagemin; i <= iagemax+3; i++){
                  if(i==iagemax+3){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            fprintf(ficlog,"Total");
           jk++;          }else{
           fprintf(ficgp,"\n");            if(first==1){
         }              first=0;
       }              printf("See log file for details...\n");
     }            }
     }            fprintf(ficlog,"Age %d", i);
           }
     for(jk=1; jk <=m; jk++) {          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
    i=1;              pp[jk] += freq[jk][m][i]; 
    for(k2=1; k2<=nlstate; k2++) {          }
      k3=i;          for(jk=1; jk <=nlstate ; jk++){
      for(k=1; k<=(nlstate+ndeath); k++) {            for(m=-1, pos=0; m <=0 ; m++)
        if (k != k2){              pos += freq[jk][m][i];
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            if(pp[jk]>=1.e-10){
 ij=1;              if(first==1){
         for(j=3; j <=ncovmodel; j++) {                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             ij++;            }else{
           }              if(first==1)
           else                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }            }
           fprintf(ficgp,")/(1");          }
          
         for(k1=1; k1 <=nlstate; k1++){            for(jk=1; jk <=nlstate ; jk++){
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 ij=1;              pp[jk] += freq[jk][m][i];
           for(j=3; j <=ncovmodel; j++){          }       
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            pos += pp[jk];
             ij++;            posprop += prop[jk][i];
           }          }
           else          for(jk=1; jk <=nlstate ; jk++){
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            if(pos>=1.e-5){
           }              if(first==1)
           fprintf(ficgp,")");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            }else{
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              if(first==1)
         i=i+ncovmodel;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
        }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
      }            }
    }            if( i <= iagemax){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              if(pos>=1.e-5){
    }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                    /*probs[i][jk][j1]= pp[jk]/pos;*/
   fclose(ficgp);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 }  /* end gnuplot */              }
               else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 /*************** Moving average **************/            }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          }
           
   int i, cpt, cptcod;          for(jk=-1; jk <=nlstate+ndeath; jk++)
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            for(m=-1; m <=nlstate+ndeath; m++)
       for (i=1; i<=nlstate;i++)              if(freq[jk][m][i] !=0 ) {
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              if(first==1)
           mobaverage[(int)agedeb][i][cptcod]=0.;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                    fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){              }
       for (i=1; i<=nlstate;i++){          if(i <= iagemax)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            fprintf(ficresp,"\n");
           for (cpt=0;cpt<=4;cpt++){          if(first==1)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            printf("Others in log...\n");
           }          fprintf(ficlog,"\n");
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        }
         }      }
       }    }
     }    dateintmean=dateintsum/k2cpt; 
       
 }    fclose(ficresp);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
 /************** Forecasting ******************/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    /* End of Freq */
    }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;  /************ Prevalence ********************/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   double *popeffectif,*popcount;  {  
   double ***p3mat;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   char fileresf[FILENAMELENGTH];       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
  agelim=AGESUP;    */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;   
     int i, m, jk, k1, i1, j1, bool, z1,j;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double ***freq; /* Frequencies */
      double *pp, **prop;
      double pos,posprop; 
   strcpy(fileresf,"f");    double  y2; /* in fractional years */
   strcat(fileresf,fileres);    int iagemin, iagemax;
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
   if (mobilav==1) {    
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    j=cptcoveff;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   }    
     for(k1=1; k1<=j;k1++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(i1=1; i1<=ncodemax[k1];i1++){
   if (stepm<=12) stepsize=1;        j1++;
          
   agelim=AGESUP;        for (i=1; i<=nlstate; i++)  
            for(m=iagemin; m <= iagemax+3; m++)
   hstepm=1;            prop[i][m]=0.0;
   hstepm=hstepm/stepm;       
   yp1=modf(dateintmean,&yp);        for (i=1; i<=imx; i++) { /* Each individual */
   anprojmean=yp;          bool=1;
   yp2=modf((yp1*12),&yp);          if  (cptcovn>0) {
   mprojmean=yp;            for (z1=1; z1<=cptcoveff; z1++) 
   yp1=modf((yp2*30.5),&yp);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   jprojmean=yp;                bool=0;
   if(jprojmean==0) jprojmean=1;          } 
   if(mprojmean==0) jprojmean=1;          if (bool==1) { 
              for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   for(cptcov=1;cptcov<=i2;cptcov++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       k=k+1;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       fprintf(ficresf,"\n#******");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       for(j=1;j<=cptcoveff;j++) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       }                  prop[s[m][i]][iagemax+3] += weight[i]; 
       fprintf(ficresf,"******\n");                } 
       fprintf(ficresf,"# StartingAge FinalAge");              }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            } /* end selection of waves */
                }
              }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        for(i=iagemin; i <= iagemax+3; i++){  
         fprintf(ficresf,"\n");          
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          } 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;          for(jk=1; jk <=nlstate ; jk++){     
                      if( i <=  iagemax){ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if(posprop>=1.e-5){ 
           oldm=oldms;savm=savms;                probs[i][jk][j1]= prop[jk][i]/posprop;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                } else
                        printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
           for (h=0; h<=nhstepm; h++){            } 
             if (h==(int) (calagedate+YEARM*cpt)) {          }/* end jk */ 
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        }/* end i */ 
             }      } /* end i1 */
             for(j=1; j<=nlstate+ndeath;j++) {    } /* end k1 */
               kk1=0.;kk2=0;    
               for(i=1; i<=nlstate;i++) {                  /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                 if (mobilav==1)    /*free_vector(pp,1,nlstate);*/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                 else {  }  /* End of prevalence */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }  /************* Waves Concatenation ***************/
                  
               }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
               if (h==(int)(calagedate+12*cpt)){  {
                 fprintf(ficresf," %.3f", kk1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                               Death is a valid wave (if date is known).
               }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           }       and mw[mi+1][i]. dh depends on stepm.
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       */
         }  
       }    int i, mi, m;
     }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   }       double sum=0., jmean=0.;*/
            int first;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int j, k=0,jk, ju, jl;
     double sum=0.;
   fclose(ficresf);    first=0;
 }    jmin=1e+5;
 /************** Forecasting ******************/    jmax=-1;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    jmean=0.;
      for(i=1; i<=imx; i++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      mi=0;
   int *popage;      m=firstpass;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      while(s[m][i] <= nlstate){
   double *popeffectif,*popcount;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   double ***p3mat,***tabpop,***tabpopprev;          mw[++mi][i]=m;
   char filerespop[FILENAMELENGTH];        if(m >=lastpass)
           break;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        else
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          m++;
   agelim=AGESUP;      }/* end while */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      if (s[m][i] > nlstate){
          mi++;     /* Death is another wave */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
          mw[mi][i]=m;
   strcpy(filerespop,"pop");      }
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      wav[i]=mi;
     printf("Problem with forecast resultfile: %s\n", filerespop);      if(mi==0){
   }        nbwarn++;
   printf("Computing forecasting: result on file '%s' \n", filerespop);        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          first=1;
         }
   if (mobilav==1) {        if(first==1){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     movingaverage(agedeb, fage, ageminpar, mobaverage);        }
   }      } /* end mi==0 */
     } /* End individuals */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    for(i=1; i<=imx; i++){
        for(mi=1; mi<wav[i];mi++){
   agelim=AGESUP;        if (stepm <=0)
            dh[mi][i]=1;
   hstepm=1;        else{
   hstepm=hstepm/stepm;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
              if (agedc[i] < 2*AGESUP) {
   if (popforecast==1) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     if((ficpop=fopen(popfile,"r"))==NULL) {              if(j==0) j=1;  /* Survives at least one month after exam */
       printf("Problem with population file : %s\n",popfile);exit(0);              else if(j<0){
     }                nberr++;
     popage=ivector(0,AGESUP);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     popeffectif=vector(0,AGESUP);                j=1; /* Temporary Dangerous patch */
     popcount=vector(0,AGESUP);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                    fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     i=1;                  fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              }
                  k=k+1;
     imx=i;              if (j >= jmax){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                jmax=j;
   }                ijmax=i;
               }
   for(cptcov=1;cptcov<=i2;cptcov++){              if (j <= jmin){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                jmin=j;
       k=k+1;                ijmin=i;
       fprintf(ficrespop,"\n#******");              }
       for(j=1;j<=cptcoveff;j++) {              sum=sum+j;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficrespop,"******\n");            }
       fprintf(ficrespop,"# Age");          }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          else{
       if (popforecast==1)  fprintf(ficrespop," [Population]");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
        /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              k=k+1;
                    if (j >= jmax) {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              jmax=j;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              ijmax=i;
           nhstepm = nhstepm/hstepm;            }
                      else if (j <= jmin){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              jmin=j;
           oldm=oldms;savm=savms;              ijmin=i;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              }
                    /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           for (h=0; h<=nhstepm; h++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if (h==(int) (calagedate+YEARM*cpt)) {            if(j<0){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              nberr++;
             }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             for(j=1; j<=nlstate+ndeath;j++) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               kk1=0.;kk2=0;            }
               for(i=1; i<=nlstate;i++) {                          sum=sum+j;
                 if (mobilav==1)          }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          jk= j/stepm;
                 else {          jl= j -jk*stepm;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          ju= j -(jk+1)*stepm;
                 }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
               }            if(jl==0){
               if (h==(int)(calagedate+12*cpt)){              dh[mi][i]=jk;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              bh[mi][i]=0;
                   /*fprintf(ficrespop," %.3f", kk1);            }else{ /* We want a negative bias in order to only have interpolation ie
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                    * to avoid the price of an extra matrix product in likelihood */
               }              dh[mi][i]=jk+1;
             }              bh[mi][i]=ju;
             for(i=1; i<=nlstate;i++){            }
               kk1=0.;          }else{
                 for(j=1; j<=nlstate;j++){            if(jl <= -ju){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              dh[mi][i]=jk;
                 }              bh[mi][i]=jl;       /* bias is positive if real duration
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                                   * is higher than the multiple of stepm and negative otherwise.
             }                                   */
             }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            else{
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              dh[mi][i]=jk+1;
           }              bh[mi][i]=ju;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
         }            if(dh[mi][i]==0){
       }              dh[mi][i]=1; /* At least one step */
                bh[mi][i]=ju; /* At least one step */
   /******/              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          } /* end if mle */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      } /* end wave */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;    jmean=sum/k;
              printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
           oldm=oldms;savm=savms;   }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){  /*********** Tricode ****************************/
             if (h==(int) (calagedate+YEARM*cpt)) {  void tricode(int *Tvar, int **nbcode, int imx)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  {
             }    /* Uses cptcovn+2*cptcovprod as the number of covariates */
             for(j=1; j<=nlstate+ndeath;j++) {    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        int modmaxcovj=0; /* Modality max of covariates j */
               }    cptcoveff=0; 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);   
             }    for (k=0; k<maxncov; k++) Ndum[k]=0;
           }    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
       }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
    }                                 modality of this covariate Vj*/ 
   }        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                          modality of the nth covariate of individual i. */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   if (popforecast==1) {        if (ij > modmaxcovj) modmaxcovj=ij; 
     free_ivector(popage,0,AGESUP);        /* getting the maximum value of the modality of the covariate
     free_vector(popeffectif,0,AGESUP);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     free_vector(popcount,0,AGESUP);           female is 1, then modmaxcovj=1.*/
   }      }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
   fclose(ficrespop);        if( Ndum[i] != 0 )
 }          ncodemax[j]++; 
         /* Number of modalities of the j th covariate. In fact
 /***********************************************/           ncodemax[j]=2 (dichotom. variables only) but it could be more for
 /**************** Main Program *****************/           historical reasons */
 /***********************************************/      } /* Ndum[-1] number of undefined modalities */
   
 int main(int argc, char *argv[])      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 {      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
   double agedeb, agefin,hf;          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
   double fret;                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   double **xi,tmp,delta;            ij++;
           }
   double dum; /* Dummy variable */          if (ij > ncodemax[j]) break; 
   double ***p3mat;        }  /* end of loop on */
   int *indx;      } /* end of loop on modality */ 
   char line[MAXLINE], linepar[MAXLINE];    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   char title[MAXLINE];    
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    for (k=0; k< maxncov; k++) Ndum[k]=0;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    
      for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
   char filerest[FILENAMELENGTH];     Ndum[ij]++;
   char fileregp[FILENAMELENGTH];   }
   char popfile[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];   ij=1;
   int firstobs=1, lastobs=10;   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   int sdeb, sfin; /* Status at beginning and end */     if((Ndum[i]!=0) && (i<=ncovcol)){
   int c,  h , cpt,l;       Tvaraff[ij]=i; /*For printing */
   int ju,jl, mi;       ij++;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;     }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;   }
   int mobilav=0,popforecast=0;   ij--;
   int hstepm, nhstepm;   cptcoveff=ij; /*Number of simple covariates*/
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  }
   
   double bage, fage, age, agelim, agebase;  /*********** Health Expectancies ****************/
   double ftolpl=FTOL;  
   double **prlim;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   double *severity;  
   double ***param; /* Matrix of parameters */  {
   double  *p;    /* Health expectancies, no variances */
   double **matcov; /* Matrix of covariance */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   double ***delti3; /* Scale */    int nhstepma, nstepma; /* Decreasing with age */
   double *delti; /* Scale */    double age, agelim, hf;
   double ***eij, ***vareij;    double ***p3mat;
   double **varpl; /* Variances of prevalence limits by age */    double eip;
   double *epj, vepp;  
   double kk1, kk2;    pstamp(ficreseij);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
      fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";      for(j=1; j<=nlstate;j++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];        fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
   char z[1]="c", occ;    }
 #include <sys/time.h>    fprintf(ficreseij,"\n");
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    
      if(estepm < stepm){
   /* long total_usecs;      printf ("Problem %d lower than %d\n",estepm, stepm);
   struct timeval start_time, end_time;    }
      else  hstepm=estepm;   
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    /* We compute the life expectancy from trapezoids spaced every estepm months
   getcwd(pathcd, size);     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
   printf("\n%s",version);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   if(argc <=1){     * progression in between and thus overestimating or underestimating according
     printf("\nEnter the parameter file name: ");     * to the curvature of the survival function. If, for the same date, we 
     scanf("%s",pathtot);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   }     * to compare the new estimate of Life expectancy with the same linear 
   else{     * hypothesis. A more precise result, taking into account a more precise
     strcpy(pathtot,argv[1]);     * curvature will be obtained if estepm is as small as stepm. */
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    /* For example we decided to compute the life expectancy with the smallest unit */
   /*cygwin_split_path(pathtot,path,optionfile);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/       nhstepm is the number of hstepm from age to agelim 
   /* cutv(path,optionfile,pathtot,'\\');*/       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);       and note for a fixed period like estepm months */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   chdir(path);       survival function given by stepm (the optimization length). Unfortunately it
   replace(pathc,path);       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 /*-------- arguments in the command line --------*/       results. So we changed our mind and took the option of the best precision.
     */
   strcpy(fileres,"r");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */    agelim=AGESUP;
     /* If stepm=6 months */
   /*---------arguments file --------*/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      
     printf("Problem with optionfile %s\n",optionfile);  /* nhstepm age range expressed in number of stepm */
     goto end;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   strcpy(filereso,"o");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcat(filereso,fileres);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    for (age=bage; age<=fage; age ++){ 
   }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   /* Reads comments: lines beginning with '#' */      /* if (stepm >= YEARM) hstepm=1;*/
   while((c=getc(ficpar))=='#' && c!= EOF){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      /* If stepm=6 months */
     puts(line);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     fputs(line,ficparo);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   }      
   ungetc(c,ficpar);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      printf("%d|",(int)age);fflush(stdout);
 while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);      /* Computing expectancies */
     puts(line);      for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);        for(j=1; j<=nlstate;j++)
   }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   ungetc(c,ficpar);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              
                /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;          }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
       fprintf(ficreseij,"%3.0f",age );
   ncovmodel=2+cptcovn;      for(i=1; i<=nlstate;i++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        eip=0;
          for(j=1; j<=nlstate;j++){
   /* Read guess parameters */          eip +=eij[i][j][(int)age];
   /* Reads comments: lines beginning with '#' */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        fprintf(ficreseij,"%9.4f", eip );
     fgets(line, MAXLINE, ficpar);      }
     puts(line);      fprintf(ficreseij,"\n");
     fputs(line,ficparo);      
   }    }
   ungetc(c,ficpar);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficlog,"\n");
     for(i=1; i <=nlstate; i++)    
     for(j=1; j <=nlstate+ndeath-1; j++){  }
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
       printf("%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){  {
         fscanf(ficpar," %lf",&param[i][j][k]);    /* Covariances of health expectancies eij and of total life expectancies according
         printf(" %lf",param[i][j][k]);     to initial status i, ei. .
         fprintf(ficparo," %lf",param[i][j][k]);    */
       }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       fscanf(ficpar,"\n");    int nhstepma, nstepma; /* Decreasing with age */
       printf("\n");    double age, agelim, hf;
       fprintf(ficparo,"\n");    double ***p3matp, ***p3matm, ***varhe;
     }    double **dnewm,**doldm;
      double *xp, *xm;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    double **gp, **gm;
     double ***gradg, ***trgradg;
   p=param[1][1];    int theta;
    
   /* Reads comments: lines beginning with '#' */    double eip, vip;
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     fgets(line, MAXLINE, ficpar);    xp=vector(1,npar);
     puts(line);    xm=vector(1,npar);
     fputs(line,ficparo);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   ungetc(c,ficpar);    
     pstamp(ficresstdeij);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    fprintf(ficresstdeij,"# Age");
   for(i=1; i <=nlstate; i++){    for(i=1; i<=nlstate;i++){
     for(j=1; j <=nlstate+ndeath-1; j++){      for(j=1; j<=nlstate;j++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       printf("%1d%1d",i,j);      fprintf(ficresstdeij," e%1d. ",i);
       fprintf(ficparo,"%1d%1d",i1,j1);    }
       for(k=1; k<=ncovmodel;k++){    fprintf(ficresstdeij,"\n");
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);    pstamp(ficrescveij);
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       }    fprintf(ficrescveij,"# Age");
       fscanf(ficpar,"\n");    for(i=1; i<=nlstate;i++)
       printf("\n");      for(j=1; j<=nlstate;j++){
       fprintf(ficparo,"\n");        cptj= (j-1)*nlstate+i;
     }        for(i2=1; i2<=nlstate;i2++)
   }          for(j2=1; j2<=nlstate;j2++){
   delti=delti3[1][1];            cptj2= (j2-1)*nlstate+i2;
              if(cptj2 <= cptj)
   /* Reads comments: lines beginning with '#' */              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);    fprintf(ficrescveij,"\n");
     puts(line);    
     fputs(line,ficparo);    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
   ungetc(c,ficpar);    }
      else  hstepm=estepm;   
   matcov=matrix(1,npar,1,npar);    /* We compute the life expectancy from trapezoids spaced every estepm months
   for(i=1; i <=npar; i++){     * This is mainly to measure the difference between two models: for example
     fscanf(ficpar,"%s",&str);     * if stepm=24 months pijx are given only every 2 years and by summing them
     printf("%s",str);     * we are calculating an estimate of the Life Expectancy assuming a linear 
     fprintf(ficparo,"%s",str);     * progression in between and thus overestimating or underestimating according
     for(j=1; j <=i; j++){     * to the curvature of the survival function. If, for the same date, we 
       fscanf(ficpar," %le",&matcov[i][j]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       printf(" %.5le",matcov[i][j]);     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficparo," %.5le",matcov[i][j]);     * hypothesis. A more precise result, taking into account a more precise
     }     * curvature will be obtained if estepm is as small as stepm. */
     fscanf(ficpar,"\n");  
     printf("\n");    /* For example we decided to compute the life expectancy with the smallest unit */
     fprintf(ficparo,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
   for(i=1; i <=npar; i++)       nstepm is the number of stepm from age to agelin. 
     for(j=i+1;j<=npar;j++)       Look at hpijx to understand the reason of that which relies in memory size
       matcov[i][j]=matcov[j][i];       and note for a fixed period like estepm months */
        /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   printf("\n");       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     /*-------- Rewriting paramater file ----------*/       results. So we changed our mind and took the option of the best precision.
      strcpy(rfileres,"r");    /* "Rparameterfile */    */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    /* If stepm=6 months */
     if((ficres =fopen(rfileres,"w"))==NULL) {    /* nhstepm age range expressed in number of stepm */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    agelim=AGESUP;
     }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     fprintf(ficres,"#%s\n",version);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
     /*-------- data file ----------*/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     if((fic=fopen(datafile,"r"))==NULL)    {    
       printf("Problem with datafile: %s\n", datafile);goto end;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     n= lastobs;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     severity = vector(1,maxwav);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     outcome=imatrix(1,maxwav+1,1,n);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     num=ivector(1,n);  
     moisnais=vector(1,n);    for (age=bage; age<=fage; age ++){ 
     annais=vector(1,n);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     moisdc=vector(1,n);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     andc=vector(1,n);      /* if (stepm >= YEARM) hstepm=1;*/
     agedc=vector(1,n);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     cod=ivector(1,n);  
     weight=vector(1,n);      /* If stepm=6 months */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     mint=matrix(1,maxwav,1,n);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     anint=matrix(1,maxwav,1,n);      
     s=imatrix(1,maxwav+1,1,n);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);      /* Computing  Variances of health expectancies */
     ncodemax=ivector(1,8);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
     i=1;      for(theta=1; theta <=npar; theta++){
     while (fgets(line, MAXLINE, fic) != NULL)    {        for(i=1; i<=npar; i++){ 
       if ((i >= firstobs) && (i <=lastobs)) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                  xm[i] = x[i] - (i==theta ?delti[theta]:0);
         for (j=maxwav;j>=1;j--){        }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
           strcpy(line,stra);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<= nlstate; j++){
         }          for(i=1; i<=nlstate; i++){
                    for(h=0; h<=nhstepm-1; h++){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        }
        
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        for(ij=1; ij<= nlstate*nlstate; ij++)
         for (j=ncovcol;j>=1;j--){          for(h=0; h<=nhstepm-1; h++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
         }          }
         num[i]=atol(stra);      }/* End theta */
              
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
         i=i+1;          for(theta=1; theta <=npar; theta++)
       }            trgradg[h][j][theta]=gradg[h][theta][j];
     }      
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/       for(ij=1;ij<=nlstate*nlstate;ij++)
   imx=i-1; /* Number of individuals */        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;       printf("%d|",(int)age);fflush(stdout);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;       for(h=0;h<=nhstepm-1;h++){
     }*/        for(k=0;k<=nhstepm-1;k++){
    /*  for (i=1; i<=imx; i++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
      if (s[4][i]==9)  s[4][i]=-1;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          for(ij=1;ij<=nlstate*nlstate;ij++)
              for(ji=1;ji<=nlstate*nlstate;ji++)
                varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   /* Calculation of the number of parameter from char model*/        }
   Tvar=ivector(1,15);      }
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);      /* Computing expectancies */
   Tvard=imatrix(1,15,1,2);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   Tage=ivector(1,15);            for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++)
   if (strlen(model) >1){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     j=0, j1=0, k1=1, k2=1;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     j=nbocc(model,'+');            
     j1=nbocc(model,'*');            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     cptcovn=j+1;  
     cptcovprod=j1;          }
      
     strcpy(modelsav,model);      fprintf(ficresstdeij,"%3.0f",age );
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      for(i=1; i<=nlstate;i++){
       printf("Error. Non available option model=%s ",model);        eip=0.;
       goto end;        vip=0.;
     }        for(j=1; j<=nlstate;j++){
              eip += eij[i][j][(int)age];
     for(i=(j+1); i>=1;i--){          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       cutv(stra,strb,modelsav,'+');            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        }
       /*scanf("%d",i);*/        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       if (strchr(strb,'*')) {      }
         cutv(strd,strc,strb,'*');      fprintf(ficresstdeij,"\n");
         if (strcmp(strc,"age")==0) {  
           cptcovprod--;      fprintf(ficrescveij,"%3.0f",age );
           cutv(strb,stre,strd,'V');      for(i=1; i<=nlstate;i++)
           Tvar[i]=atoi(stre);        for(j=1; j<=nlstate;j++){
           cptcovage++;          cptj= (j-1)*nlstate+i;
             Tage[cptcovage]=i;          for(i2=1; i2<=nlstate;i2++)
             /*printf("stre=%s ", stre);*/            for(j2=1; j2<=nlstate;j2++){
         }              cptj2= (j2-1)*nlstate+i2;
         else if (strcmp(strd,"age")==0) {              if(cptj2 <= cptj)
           cptcovprod--;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
           cutv(strb,stre,strc,'V');            }
           Tvar[i]=atoi(stre);        }
           cptcovage++;      fprintf(ficrescveij,"\n");
           Tage[cptcovage]=i;     
         }    }
         else {    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           cutv(strb,stre,strc,'V');    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           Tvar[i]=ncovcol+k1;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           cutv(strb,strc,strd,'V');    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           Tprod[k1]=i;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tvard[k1][1]=atoi(strc);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tvard[k1][2]=atoi(stre);    printf("\n");
           Tvar[cptcovn+k2]=Tvard[k1][1];    fprintf(ficlog,"\n");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)    free_vector(xm,1,npar);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    free_vector(xp,1,npar);
           k1++;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           k2=k2+2;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       }  }
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  /************ Variance ******************/
        /*  scanf("%d",i);*/  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       cutv(strd,strc,strb,'V');  {
       Tvar[i]=atoi(strc);    /* Variance of health expectancies */
       }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       strcpy(modelsav,stra);      /* double **newm;*/
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    double **dnewm,**doldm;
         scanf("%d",i);*/    double **dnewmp,**doldmp;
     }    int i, j, nhstepm, hstepm, h, nstepm ;
 }    int k, cptcode;
      double *xp;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    double **gp, **gm;  /* for var eij */
   printf("cptcovprod=%d ", cptcovprod);    double ***gradg, ***trgradg; /*for var eij */
   scanf("%d ",i);*/    double **gradgp, **trgradgp; /* for var p point j */
     fclose(fic);    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     /*  if(mle==1){*/    double ***p3mat;
     if (weightopt != 1) { /* Maximisation without weights*/    double age,agelim, hf;
       for(i=1;i<=n;i++) weight[i]=1.0;    double ***mobaverage;
     }    int theta;
     /*-calculation of age at interview from date of interview and age at death -*/    char digit[4];
     agev=matrix(1,maxwav,1,imx);    char digitp[25];
   
     for (i=1; i<=imx; i++) {    char fileresprobmorprev[FILENAMELENGTH];
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    if(popbased==1){
          anint[m][i]=9999;      if(mobilav!=0)
          s[m][i]=-1;        strcpy(digitp,"-populbased-mobilav-");
        }      else strcpy(digitp,"-populbased-nomobil-");
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    }
       }    else 
     }      strcpy(digitp,"-stablbased-");
   
     for (i=1; i<=imx; i++)  {    if (mobilav!=0) {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(m=1; (m<= maxwav); m++){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         if(s[m][i] >0){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           if (s[m][i] >= nlstate+1) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             if(agedc[i]>0)      }
               if(moisdc[i]!=99 && andc[i]!=9999)    }
                 agev[m][i]=agedc[i];  
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    strcpy(fileresprobmorprev,"prmorprev"); 
            else {    sprintf(digit,"%-d",ij);
               if (andc[i]!=9999){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
               agev[m][i]=-1;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
               }    strcat(fileresprobmorprev,fileres);
             }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           else if(s[m][i] !=9){ /* Should no more exist */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    }
             if(mint[m][i]==99 || anint[m][i]==9999)    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               agev[m][i]=1;   
             else if(agev[m][i] <agemin){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               agemin=agev[m][i];    pstamp(ficresprobmorprev);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
             }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             else if(agev[m][i] >agemax){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               agemax=agev[m][i];      fprintf(ficresprobmorprev," p.%-d SE",j);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      for(i=1; i<=nlstate;i++)
             }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
             /*agev[m][i]=anint[m][i]-annais[i];*/    }  
             /*   agev[m][i] = age[i]+2*m;*/    fprintf(ficresprobmorprev,"\n");
           }    fprintf(ficgp,"\n# Routine varevsij");
           else { /* =9 */    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
             agev[m][i]=1;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
             s[m][i]=-1;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           }  /*   } */
         }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         else /*= 0 Unknown */    pstamp(ficresvij);
           agev[m][i]=1;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       }    if(popbased==1)
          fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     }    else
     for (i=1; i<=imx; i++)  {      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       for(m=1; (m<= maxwav); m++){    fprintf(ficresvij,"# Age");
         if (s[m][i] > (nlstate+ndeath)) {    for(i=1; i<=nlstate;i++)
           printf("Error: Wrong value in nlstate or ndeath\n");        for(j=1; j<=nlstate;j++)
           goto end;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         }    fprintf(ficresvij,"\n");
       }  
     }    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     free_vector(severity,1,maxwav);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     free_vector(annais,1,n);    gpp=vector(nlstate+1,nlstate+ndeath);
     /* free_matrix(mint,1,maxwav,1,n);    gmp=vector(nlstate+1,nlstate+ndeath);
        free_matrix(anint,1,maxwav,1,n);*/    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     free_vector(moisdc,1,n);    
     free_vector(andc,1,n);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
        }
     wav=ivector(1,imx);    else  hstepm=estepm;   
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    /* For example we decided to compute the life expectancy with the smallest unit */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm is the number of hstepm from age to agelim 
     /* Concatenates waves */       nstepm is the number of stepm from age to agelin. 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);       Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
       Tcode=ivector(1,100);       means that if the survival funtion is printed every two years of age and if
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       ncodemax[1]=1;       results. So we changed our mind and took the option of the best precision.
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    */
          hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    codtab=imatrix(1,100,1,10);    agelim = AGESUP;
    h=0;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    m=pow(2,cptcoveff);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    for(k=1;k<=cptcoveff; k++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      for(i=1; i <=(m/pow(2,k));i++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        for(j=1; j <= ncodemax[k]; j++){      gp=matrix(0,nhstepm,1,nlstate);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      gm=matrix(0,nhstepm,1,nlstate);
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      for(theta=1; theta <=npar; theta++){
          }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
        }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      }        }
    }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){        if (popbased==1) {
       for(k=1; k <=cptcovn; k++){          if(mobilav ==0){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            for(i=1; i<=nlstate;i++)
       }              prlim[i][i]=probs[(int)age][i][ij];
       printf("\n");          }else{ /* mobilav */ 
       }            for(i=1; i<=nlstate;i++)
       scanf("%d",i);*/              prlim[i][i]=mobaverage[(int)age][i][ij];
              }
    /* Calculates basic frequencies. Computes observed prevalence at single age        }
        and prints on file fileres'p'. */    
         for(j=1; j<= nlstate; j++){
              for(h=0; h<=nhstepm; h++){
                for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /* This for computing probability of death (h=1 means
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */           computed over hstepm matrices product = hstepm*stepm months) 
                 as a weighted average of prlim.
     /* For Powell, parameters are in a vector p[] starting at p[1]        */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
     if(mle==1){        }    
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        /* end probability of death */
     }  
            for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     /*--------- results files --------------*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
    jk=1;        if (popbased==1) {
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          if(mobilav ==0){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            for(i=1; i<=nlstate;i++)
    for(i=1,jk=1; i <=nlstate; i++){              prlim[i][i]=probs[(int)age][i][ij];
      for(k=1; k <=(nlstate+ndeath); k++){          }else{ /* mobilav */ 
        if (k != i)            for(i=1; i<=nlstate;i++)
          {              prlim[i][i]=mobaverage[(int)age][i][ij];
            printf("%d%d ",i,k);          }
            fprintf(ficres,"%1d%1d ",i,k);        }
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
              fprintf(ficres,"%f ",p[jk]);          for(h=0; h<=nhstepm; h++){
              jk++;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
            }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            printf("\n");          }
            fprintf(ficres,"\n");        }
          }        /* This for computing probability of death (h=1 means
      }           computed over hstepm matrices product = hstepm*stepm months) 
    }           as a weighted average of prlim.
  if(mle==1){        */
     /* Computing hessian and covariance matrix */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     ftolhess=ftol; /* Usually correct */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     hesscov(matcov, p, npar, delti, ftolhess, func);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
  }        }    
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        /* end probability of death */
     printf("# Scales (for hessian or gradient estimation)\n");  
      for(i=1,jk=1; i <=nlstate; i++){        for(j=1; j<= nlstate; j++) /* vareij */
       for(j=1; j <=nlstate+ndeath; j++){          for(h=0; h<=nhstepm; h++){
         if (j!=i) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           fprintf(ficres,"%1d%1d",i,j);          }
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             printf(" %.5e",delti[jk]);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             fprintf(ficres," %.5e",delti[jk]);        }
             jk++;  
           }      } /* End theta */
           printf("\n");  
           fprintf(ficres,"\n");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         }  
       }      for(h=0; h<=nhstepm; h++) /* veij */
      }        for(j=1; j<=nlstate;j++)
              for(theta=1; theta <=npar; theta++)
     k=1;            trgradg[h][j][theta]=gradg[h][theta][j];
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     for(i=1;i<=npar;i++){        for(theta=1; theta <=npar; theta++)
       /*  if (k>nlstate) k=1;          trgradgp[j][theta]=gradgp[theta][j];
       i1=(i-1)/(ncovmodel*nlstate)+1;    
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficres,"%3d",i);      for(i=1;i<=nlstate;i++)
       printf("%3d",i);        for(j=1;j<=nlstate;j++)
       for(j=1; j<=i;j++){          vareij[i][j][(int)age] =0.;
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);      for(h=0;h<=nhstepm;h++){
       }        for(k=0;k<=nhstepm;k++){
       fprintf(ficres,"\n");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       printf("\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       k++;          for(i=1;i<=nlstate;i++)
     }            for(j=1;j<=nlstate;j++)
                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);      }
       fgets(line, MAXLINE, ficpar);    
       puts(line);      /* pptj */
       fputs(line,ficparo);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     ungetc(c,ficpar);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     estepm=0;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          varppt[j][i]=doldmp[j][i];
     if (estepm==0 || estepm < stepm) estepm=stepm;      /* end ppptj */
     if (fage <= 2) {      /*  x centered again */
       bage = ageminpar;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       fage = agemaxpar;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     }   
          if (popbased==1) {
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        if(mobilav ==0){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for(i=1; i<=nlstate;i++)
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
     while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);            prlim[i][i]=mobaverage[(int)age][i][ij];
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      }
     fputs(line,ficparo);               
   }      /* This for computing probability of death (h=1 means
   ungetc(c,ficpar);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
                gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   while((c=getc(ficpar))=='#' && c!= EOF){      }    
     ungetc(c,ficpar);      /* end probability of death */
     fgets(line, MAXLINE, ficpar);  
     puts(line);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     fputs(line,ficparo);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   ungetc(c,ficpar);        for(i=1; i<=nlstate;i++){
            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      } 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      fprintf(ficresprobmorprev,"\n");
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);      fprintf(ficresvij,"%.0f ",age );
   fprintf(ficparo,"pop_based=%d\n",popbased);        for(i=1; i<=nlstate;i++)
   fprintf(ficres,"pop_based=%d\n",popbased);          for(j=1; j<=nlstate;j++){
            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      fprintf(ficresvij,"\n");
     fgets(line, MAXLINE, ficpar);      free_matrix(gp,0,nhstepm,1,nlstate);
     puts(line);      free_matrix(gm,0,nhstepm,1,nlstate);
     fputs(line,ficparo);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   ungetc(c,ficpar);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    free_vector(gpp,nlstate+1,nlstate+ndeath);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    free_vector(gmp,nlstate+1,nlstate+ndeath);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
 while((c=getc(ficpar))=='#' && c!= EOF){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     ungetc(c,ficpar);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fgets(line, MAXLINE, ficpar);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     puts(line);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fputs(line,ficparo);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 2 ",subdirf(fileresprobmorprev));
   ungetc(c,ficpar);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 3 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 3 ",subdirf(fileresprobmorprev));
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 /*------------ gnuplot -------------*/  
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,nlstate);
 /*------------ free_vector  -------------*/    free_matrix(dnewm,1,nlstate,1,npar);
  chdir(path);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
  free_ivector(wav,1,imx);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      fclose(ficresprobmorprev);
  free_ivector(num,1,n);    fflush(ficgp);
  free_vector(agedc,1,n);    fflush(fichtm); 
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  }  /* end varevsij */
  fclose(ficparo);  
  fclose(ficres);  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 /*--------- index.htm --------*/  {
     /* Variance of prevalence limit */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
      double **dnewm,**doldm;
   /*--------------- Prevalence limit --------------*/    int i, j, nhstepm, hstepm;
      int k, cptcode;
   strcpy(filerespl,"pl");    double *xp;
   strcat(filerespl,fileres);    double *gp, *gm;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    double **gradg, **trgradg;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    double age,agelim;
   }    int theta;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    
   fprintf(ficrespl,"#Prevalence limit\n");    pstamp(ficresvpl);
   fprintf(ficrespl,"#Age ");    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    fprintf(ficresvpl,"# Age");
   fprintf(ficrespl,"\n");    for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %1d-%1d",i,i);
   prlim=matrix(1,nlstate,1,nlstate);    fprintf(ficresvpl,"\n");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    xp=vector(1,npar);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    dnewm=matrix(1,nlstate,1,npar);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    doldm=matrix(1,nlstate,1,nlstate);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    
   k=0;    hstepm=1*YEARM; /* Every year of age */
   agebase=ageminpar;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   agelim=agemaxpar;    agelim = AGESUP;
   ftolpl=1.e-10;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   i1=cptcoveff;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   if (cptcovn < 1){i1=1;}      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   for(cptcov=1;cptcov<=i1;cptcov++){      gradg=matrix(1,npar,1,nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      gp=vector(1,nlstate);
         k=k+1;      gm=vector(1,nlstate);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");      for(theta=1; theta <=npar; theta++){
         for(j=1;j<=cptcoveff;j++)        for(i=1; i<=npar; i++){ /* Computes gradient */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficrespl,"******\n");        }
                prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for (age=agebase; age<=agelim; age++){        for(i=1;i<=nlstate;i++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          gp[i] = prlim[i][i];
           fprintf(ficrespl,"%.0f",age );      
           for(i=1; i<=nlstate;i++)        for(i=1; i<=npar; i++) /* Computes gradient */
           fprintf(ficrespl," %.5f", prlim[i][i]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           fprintf(ficrespl,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }        for(i=1;i<=nlstate;i++)
       }          gm[i] = prlim[i][i];
     }  
   fclose(ficrespl);        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   /*------------- h Pij x at various ages ------------*/      } /* End theta */
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      trgradg =matrix(1,nlstate,1,npar);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      for(j=1; j<=nlstate;j++)
   }        for(theta=1; theta <=npar; theta++)
   printf("Computing pij: result on file '%s' \n", filerespij);          trgradg[j][theta]=gradg[theta][j];
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(i=1;i<=nlstate;i++)
   /*if (stepm<=24) stepsize=2;*/        varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   agelim=AGESUP;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   hstepm=stepsize*YEARM; /* Every year of age */      for(i=1;i<=nlstate;i++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    
   k=0;      fprintf(ficresvpl,"%.0f ",age );
   for(cptcov=1;cptcov<=i1;cptcov++){      for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       k=k+1;      fprintf(ficresvpl,"\n");
         fprintf(ficrespij,"\n#****** ");      free_vector(gp,1,nlstate);
         for(j=1;j<=cptcoveff;j++)      free_vector(gm,1,nlstate);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_matrix(gradg,1,npar,1,nlstate);
         fprintf(ficrespij,"******\n");      free_matrix(trgradg,1,nlstate,1,npar);
            } /* End age */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_vector(xp,1,npar);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(doldm,1,nlstate,1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(dnewm,1,nlstate,1,nlstate);
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    }
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)  /************ Variance of one-step probabilities  ******************/
             for(j=1; j<=nlstate+ndeath;j++)  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
               fprintf(ficrespij," %1d-%1d",i,j);  {
           fprintf(ficrespij,"\n");    int i, j=0,  i1, k1, l1, t, tj;
            for (h=0; h<=nhstepm; h++){    int k2, l2, j1,  z1;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    int k=0,l, cptcode;
             for(i=1; i<=nlstate;i++)    int first=1, first1;
               for(j=1; j<=nlstate+ndeath;j++)    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    double **dnewm,**doldm;
             fprintf(ficrespij,"\n");    double *xp;
              }    double *gp, *gm;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **gradg, **trgradg;
           fprintf(ficrespij,"\n");    double **mu;
         }    double age,agelim, cov[NCOVMAX];
     }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   }    int theta;
     char fileresprob[FILENAMELENGTH];
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   fclose(ficrespij);  
     double ***varpij;
   
   /*---------- Forecasting ------------------*/    strcpy(fileresprob,"prob"); 
   if((stepm == 1) && (strcmp(model,".")==0)){    strcat(fileresprob,fileres);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      printf("Problem with resultfile: %s\n", fileresprob);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   else{    }
     erreur=108;    strcpy(fileresprobcov,"probcov"); 
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    strcat(fileresprobcov,fileres);
   }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   /*---------- Health expectancies and variances ------------*/    }
     strcpy(fileresprobcor,"probcor"); 
   strcpy(filerest,"t");    strcat(fileresprobcor,fileres);
   strcat(filerest,fileres);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   if((ficrest=fopen(filerest,"w"))==NULL) {      printf("Problem with resultfile: %s\n", fileresprobcor);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   }    }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   strcpy(filerese,"e");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   strcat(filerese,fileres);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    pstamp(ficresprob);
   }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
  strcpy(fileresv,"v");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   strcat(fileresv,fileres);    fprintf(ficresprobcov,"# Age");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    pstamp(ficresprobcor);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   }    fprintf(ficresprobcor,"# Age");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   calagedate=-1;  
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
   k=0;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       k=k+1;      }  
       fprintf(ficrest,"\n#****** ");   /* fprintf(ficresprob,"\n");
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresprobcov,"\n");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobcor,"\n");
       fprintf(ficrest,"******\n");   */
     xp=vector(1,npar);
       fprintf(ficreseij,"\n#****** ");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       for(j=1;j<=cptcoveff;j++)    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       fprintf(ficreseij,"******\n");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
       fprintf(ficresvij,"\n#****** ");    fprintf(ficgp,"\n# Routine varprob");
       for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtm,"\n");
       fprintf(ficresvij,"******\n");  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       oldm=oldms;savm=savms;    file %s<br>\n",optionfilehtmcov);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    and drawn. It helps understanding how is the covariance between two incidences.\
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       oldm=oldms;savm=savms;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
      would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
     Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       fprintf(ficrest,"\n");  
     cov[1]=1;
       epj=vector(1,nlstate+1);    tj=cptcoveff;
       for(age=bage; age <=fage ;age++){    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    j1=0;
         if (popbased==1) {    for(t=1; t<=tj;t++){
           for(i=1; i<=nlstate;i++)      for(i1=1; i1<=ncodemax[t];i1++){ 
             prlim[i][i]=probs[(int)age][i][k];        j1++;
         }        if  (cptcovn>0) {
                  fprintf(ficresprob, "\n#********** Variable "); 
         fprintf(ficrest," %4.0f",age);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          fprintf(ficresprob, "**********\n#\n");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          fprintf(ficresprobcov, "\n#********** Variable "); 
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          fprintf(ficresprobcov, "**********\n#\n");
           }          
           epj[nlstate+1] +=epj[j];          fprintf(ficgp, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
         for(i=1, vepp=0.;i <=nlstate;i++)          
           for(j=1;j <=nlstate;j++)          
             vepp += vareij[i][j][(int)age];          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for(j=1;j <=nlstate;j++){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          
         }          fprintf(ficresprobcor, "\n#********** Variable ");    
         fprintf(ficrest,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresprobcor, "**********\n#");    
     }        }
   }        
 free_matrix(mint,1,maxwav,1,n);        for (age=bage; age<=fage; age ++){ 
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          cov[2]=age;
     free_vector(weight,1,n);          for (k=1; k<=cptcovn;k++) {
   fclose(ficreseij);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   fclose(ficresvij);          }
   fclose(ficrest);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   fclose(ficpar);          for (k=1; k<=cptcovprod;k++)
   free_vector(epj,1,nlstate+1);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            
   /*------- Variance limit prevalence------*/            gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   strcpy(fileresvpl,"vpl");          gp=vector(1,(nlstate)*(nlstate+ndeath));
   strcat(fileresvpl,fileres);          gm=vector(1,(nlstate)*(nlstate+ndeath));
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          for(theta=1; theta <=npar; theta++){
     exit(0);            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   k=0;            
   for(cptcov=1;cptcov<=i1;cptcov++){            k=0;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(i=1; i<= (nlstate); i++){
       k=k+1;              for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficresvpl,"\n#****** ");                k=k+1;
       for(j=1;j<=cptcoveff;j++)                gp[k]=pmmij[i][j];
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              }
       fprintf(ficresvpl,"******\n");            }
                  
       varpl=matrix(1,nlstate,(int) bage, (int) fage);            for(i=1; i<=npar; i++)
       oldm=oldms;savm=savms;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      
     }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
  }            k=0;
             for(i=1; i<=(nlstate); i++){
   fclose(ficresvpl);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   /*---------- End : free ----------------*/                gm[k]=pmmij[i][j];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);              }
              }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
            }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            for(theta=1; theta <=npar; theta++)
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);              trgradg[j][theta]=gradg[theta][j];
            
   free_matrix(matcov,1,npar,1,npar);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   free_vector(delti,1,npar);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   free_matrix(agev,1,maxwav,1,imx);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   if(erreur >0)          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     printf("End of Imach with error or warning %d\n",erreur);  
   else   printf("End of Imach\n");          pmij(pmmij,cov,ncovmodel,x,nlstate);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          
            k=0;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          for(i=1; i<=(nlstate); i++){
   /*printf("Total time was %d uSec.\n", total_usecs);*/            for(j=1; j<=(nlstate+ndeath);j++){
   /*------ End -----------*/              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
  end:          }
   /* chdir(pathcd);*/          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
  /*system("wgnuplot graph.plt");*/            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
  /*system("../gp37mgw/wgnuplot graph.plt");*/              varpij[i][j][(int)age] = doldm[i][j];
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          /*printf("\n%d ",(int)age);
  strcpy(plotcmd,GNUPLOTPROGRAM);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  strcat(plotcmd," ");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  strcat(plotcmd,optionfilegnuplot);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  system(plotcmd);            }*/
   
  /*#ifdef windows*/          fprintf(ficresprob,"\n%d ",(int)age);
   while (z[0] != 'q') {          fprintf(ficresprobcov,"\n%d ",(int)age);
     /* chdir(path); */          fprintf(ficresprobcor,"\n%d ",(int)age);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     if (z[0] == 'c') system("./imach");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     else if (z[0] == 'e') system(optionfilehtm);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     else if (z[0] == 'g') system(plotcmd);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     else if (z[0] == 'q') exit(0);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   }          }
   /*#endif */          i=0;
 }          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
                       lc2=fabs(lc2);
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 1,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 2,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 2,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 3",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 1,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 1");
         else fprintf(ficgp,"\" t\"\" w l lt 1,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8); /* hard coded ? */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             codtab[h][k]=j;
             codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.142


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>