Diff for /imach/src/imach.c between versions 1.33 and 1.144

version 1.33, 2002/03/12 22:13:38 version 1.144, 2014/02/10 22:17:31
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.144  2014/02/10 22:17:31  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.143  2014/01/26 09:45:38  brouard
   first survey ("cross") where individuals from different ages are    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   second wave of interviews ("longitudinal") which measure each change    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.142  2014/01/26 03:57:36  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   probabibility to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.141  2014/01/26 02:42:01  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.140  2011/09/02 10:37:54  brouard
   where the markup *Covariates have to be included here again* invites    Summary: times.h is ok with mingw32 now.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   The advantage of this computer programme, compared to a simple    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.138  2010/04/30 18:19:40  brouard
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.137  2010/04/29 18:11:38  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): Checking covariates for more complex models
   conditional to the observed state i at age x. The delay 'h' can be    than V1+V2. A lot of change to be done. Unstable.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.136  2010/04/26 20:30:53  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): merging some libgsl code. Fixing computation
   matrix is simply the matrix product of nh*stepm elementary matrices    of likelione (using inter/intrapolation if mle = 0) in order to
   and the contribution of each individual to the likelihood is simply    get same likelihood as if mle=1.
   hPijx.    Some cleaning of code and comments added.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.135  2009/10/29 15:33:14  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.134  2009/10/29 13:18:53  brouard
            Institut national d'études démographiques, Paris.    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.133  2009/07/06 10:21:25  brouard
   It is copyrighted identically to a GNU software product, ie programme and    just nforces
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.132  2009/07/06 08:22:05  brouard
   **********************************************************************/    Many tings
    
 #include <math.h>    Revision 1.131  2009/06/20 16:22:47  brouard
 #include <stdio.h>    Some dimensions resccaled
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
 #define MAXLINE 256    lot of cleaning with variables initialized to 0. Trying to make
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.129  2007/08/31 13:49:27  lievre
 #define windows    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
 #define NINTERVMAX 8    imach-114 because nhstepm was no more computed in the age
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    loop. Now we define nhstepma in the age loop.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): In order to speed up (in case of numerous covariates) we
 #define NCOVMAX 8 /* Maximum number of covariates */    compute health expectancies (without variances) in a first step
 #define MAXN 20000    and then all the health expectancies with variances or standard
 #define YEARM 12. /* Number of months per year */    deviation (needs data from the Hessian matrices) which slows the
 #define AGESUP 130    computation.
 #define AGEBASE 40    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
 int erreur; /* Error number */    Revision 1.126  2006/04/28 17:23:28  brouard
 int nvar;    (Module): Yes the sum of survivors was wrong since
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    imach-114 because nhstepm was no more computed in the age
 int npar=NPARMAX;    loop. Now we define nhstepma in the age loop.
 int nlstate=2; /* Number of live states */    Version 0.98h
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.125  2006/04/04 15:20:31  lievre
 int popbased=0;    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.124  2006/03/22 17:13:53  lievre
 int jmin, jmax; /* min, max spacing between 2 waves */    Parameters are printed with %lf instead of %f (more numbers after the comma).
 int mle, weightopt;    The log-likelihood is printed in the log file
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.123  2006/03/20 10:52:43  brouard
 double jmean; /* Mean space between 2 waves */    * imach.c (Module): <title> changed, corresponds to .htm file
 double **oldm, **newm, **savm; /* Working pointers to matrices */    name. <head> headers where missing.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    * imach.c (Module): Weights can have a decimal point as for
 FILE *ficgp,*ficresprob,*ficpop;    English (a comma might work with a correct LC_NUMERIC environment,
 FILE *ficreseij;    otherwise the weight is truncated).
   char filerese[FILENAMELENGTH];    Modification of warning when the covariates values are not 0 or
  FILE  *ficresvij;    1.
   char fileresv[FILENAMELENGTH];    Version 0.98g
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
 #define NR_END 1    English (a comma might work with a correct LC_NUMERIC environment,
 #define FREE_ARG char*    otherwise the weight is truncated).
 #define FTOL 1.0e-10    Modification of warning when the covariates values are not 0 or
     1.
 #define NRANSI    Version 0.98g
 #define ITMAX 200  
     Revision 1.121  2006/03/16 17:45:01  lievre
 #define TOL 2.0e-4    * imach.c (Module): Comments concerning covariates added
   
 #define CGOLD 0.3819660    * imach.c (Module): refinements in the computation of lli if
 #define ZEPS 1.0e-10    status=-2 in order to have more reliable computation if stepm is
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    not 1 month. Version 0.98f
   
 #define GOLD 1.618034    Revision 1.120  2006/03/16 15:10:38  lievre
 #define GLIMIT 100.0    (Module): refinements in the computation of lli if
 #define TINY 1.0e-20    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.119  2006/03/15 17:42:26  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Bug if status = -2, the loglikelihood was
      computed as likelihood omitting the logarithm. Version O.98e
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 static double sqrarg;    table of variances if popbased=1 .
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Function pstamp added
     (Module): Version 0.98d
 int imx;  
 int stepm;    Revision 1.117  2006/03/14 17:16:22  brouard
 /* Stepm, step in month: minimum step interpolation*/    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 int m,nb;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): Function pstamp added
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Version 0.98d
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 double *weight;    varian-covariance of ej. is needed (Saito).
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.115  2006/02/27 12:17:45  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (Module): One freematrix added in mlikeli! 0.98c
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.114  2006/02/26 12:57:58  brouard
 double ftolhess; /* Tolerance for computing hessian */    (Module): Some improvements in processing parameter
     filename with strsep.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.113  2006/02/24 14:20:24  brouard
 {    (Module): Memory leaks checks with valgrind and:
    char *s;                             /* pointer */    datafile was not closed, some imatrix were not freed and on matrix
    int  l1, l2;                         /* length counters */    allocation too.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.112  2006/01/30 09:55:26  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.111  2006/01/25 20:38:18  brouard
 #else    (Module): Lots of cleaning and bugs added (Gompertz)
    s = strrchr( path, '/' );            /* find last / */    (Module): Comments can be added in data file. Missing date values
 #endif    can be a simple dot '.'.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.110  2006/01/25 00:51:50  brouard
       extern char       *getwd( );    (Module): Lots of cleaning and bugs added (Gompertz)
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.109  2006/01/24 19:37:15  brouard
 #else    (Module): Comments (lines starting with a #) are allowed in data.
       extern char       *getcwd( );  
     Revision 1.108  2006/01/19 18:05:42  lievre
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Gnuplot problem appeared...
 #endif    To be fixed
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.107  2006/01/19 16:20:37  brouard
       strcpy( name, path );             /* we've got it */    Test existence of gnuplot in imach path
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.106  2006/01/19 13:24:36  brouard
       l2 = strlen( s );                 /* length of filename */    Some cleaning and links added in html output
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.105  2006/01/05 20:23:19  lievre
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    *** empty log message ***
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.104  2005/09/30 16:11:43  lievre
    l1 = strlen( dirc );                 /* length of directory */    (Module): sump fixed, loop imx fixed, and simplifications.
 #ifdef windows    (Module): If the status is missing at the last wave but we know
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    that the person is alive, then we can code his/her status as -2
 #else    (instead of missing=-1 in earlier versions) and his/her
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    contributions to the likelihood is 1 - Prob of dying from last
 #endif    health status (= 1-p13= p11+p12 in the easiest case of somebody in
    s = strrchr( name, '.' );            /* find last / */    the healthy state at last known wave). Version is 0.98
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.103  2005/09/30 15:54:49  lievre
    l1= strlen( name);    (Module): sump fixed, loop imx fixed, and simplifications.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.102  2004/09/15 17:31:30  brouard
    finame[l1-l2]= 0;    Add the possibility to read data file including tab characters.
    return( 0 );                         /* we're done */  
 }    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
   
 /******************************************/    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 void replace(char *s, char*t)  
 {    Revision 1.99  2004/06/05 08:57:40  brouard
   int i;    *** empty log message ***
   int lg=20;  
   i=0;    Revision 1.98  2004/05/16 15:05:56  brouard
   lg=strlen(t);    New version 0.97 . First attempt to estimate force of mortality
   for(i=0; i<= lg; i++) {    directly from the data i.e. without the need of knowing the health
     (s[i] = t[i]);    state at each age, but using a Gompertz model: log u =a + b*age .
     if (t[i]== '\\') s[i]='/';    This is the basic analysis of mortality and should be done before any
   }    other analysis, in order to test if the mortality estimated from the
 }    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 int nbocc(char *s, char occ)  
 {    The same imach parameter file can be used but the option for mle should be -3.
   int i,j=0;  
   int lg=20;    Agnès, who wrote this part of the code, tried to keep most of the
   i=0;    former routines in order to include the new code within the former code.
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    The output is very simple: only an estimate of the intercept and of
   if  (s[i] == occ ) j++;    the slope with 95% confident intervals.
   }  
   return j;    Current limitations:
 }    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 void cutv(char *u,char *v, char*t, char occ)    B) There is no computation of Life Expectancy nor Life Table.
 {  
   int i,lg,j,p=0;    Revision 1.97  2004/02/20 13:25:42  lievre
   i=0;    Version 0.96d. Population forecasting command line is (temporarily)
   for(j=0; j<=strlen(t)-1; j++) {    suppressed.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   lg=strlen(t);    rewritten within the same printf. Workaround: many printfs.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.95  2003/07/08 07:54:34  brouard
   }    * imach.c (Repository):
      u[p]='\0';    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.94  2003/06/27 13:00:02  brouard
   }    Just cleaning
 }  
     Revision 1.93  2003/06/25 16:33:55  brouard
 /********************** nrerror ********************/    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 void nrerror(char error_text[])    (Module): Version 0.96b
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.92  2003/06/25 16:30:45  brouard
   fprintf(stderr,"%s\n",error_text);    (Module): On windows (cygwin) function asctime_r doesn't
   exit(1);    exist so I changed back to asctime which exists.
 }  
 /*********************** vector *******************/    Revision 1.91  2003/06/25 15:30:29  brouard
 double *vector(int nl, int nh)    * imach.c (Repository): Duplicated warning errors corrected.
 {    (Repository): Elapsed time after each iteration is now output. It
   double *v;    helps to forecast when convergence will be reached. Elapsed time
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    is stamped in powell.  We created a new html file for the graphs
   if (!v) nrerror("allocation failure in vector");    concerning matrix of covariance. It has extension -cov.htm.
   return v-nl+NR_END;  
 }    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 /************************ free vector ******************/    mle=-1 a template is output in file "or"mypar.txt with the design
 void free_vector(double*v, int nl, int nh)    of the covariance matrix to be input.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.89  2003/06/24 12:30:52  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /************************ivector *******************************/    of the covariance matrix to be input.
 int *ivector(long nl,long nh)  
 {    Revision 1.88  2003/06/23 17:54:56  brouard
   int *v;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Revision 1.87  2003/06/18 12:26:01  brouard
   return v-nl+NR_END;    Version 0.96
 }  
     Revision 1.86  2003/06/17 20:04:08  brouard
 /******************free ivector **************************/    (Module): Change position of html and gnuplot routines and added
 void free_ivector(int *v, long nl, long nh)    routine fileappend.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.85  2003/06/17 13:12:43  brouard
 }    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 /******************* imatrix *******************************/    prior to the death. In this case, dh was negative and likelihood
 int **imatrix(long nrl, long nrh, long ncl, long nch)    was wrong (infinity). We still send an "Error" but patch by
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    assuming that the date of death was just one stepm after the
 {    interview.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Repository): Because some people have very long ID (first column)
   int **m;    we changed int to long in num[] and we added a new lvector for
      memory allocation. But we also truncated to 8 characters (left
   /* allocate pointers to rows */    truncation)
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    (Repository): No more line truncation errors.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.84  2003/06/13 21:44:43  brouard
   m -= nrl;    * imach.c (Repository): Replace "freqsummary" at a correct
      place. It differs from routine "prevalence" which may be called
      many times. Probs is memory consuming and must be used with
   /* allocate rows and set pointers to them */    parcimony.
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.83  2003/06/10 13:39:11  lievre
   m[nrl] -= ncl;    *** empty log message ***
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
   /* return pointer to array of pointers to rows */  
   return m;  */
 }  /*
      Interpolated Markov Chain
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Short summary of the programme:
       int **m;    
       long nch,ncl,nrh,nrl;    This program computes Healthy Life Expectancies from
      /* free an int matrix allocated by imatrix() */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 {    first survey ("cross") where individuals from different ages are
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    interviewed on their health status or degree of disability (in the
   free((FREE_ARG) (m+nrl-NR_END));    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /******************* matrix *******************************/    computed from the time spent in each health state according to a
 double **matrix(long nrl, long nrh, long ncl, long nch)    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    simplest model is the multinomial logistic model where pij is the
   double **m;    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   if (!m) nrerror("allocation failure 1 in matrix()");    'age' is age and 'sex' is a covariate. If you want to have a more
   m += NR_END;    complex model than "constant and age", you should modify the program
   m -= nrl;    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    convergence.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    The advantage of this computer programme, compared to a simple
   m[nrl] -= ncl;    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    intermediate interview, the information is lost, but taken into
   return m;    account using an interpolation or extrapolation.  
 }  
     hPijx is the probability to be observed in state i at age x+h
 /*************************free matrix ************************/    conditional to the observed state i at age x. The delay 'h' can be
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    split into an exact number (nh*stepm) of unobserved intermediate
 {    states. This elementary transition (by month, quarter,
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    semester or year) is modelled as a multinomial logistic.  The hPx
   free((FREE_ARG)(m+nrl-NR_END));    matrix is simply the matrix product of nh*stepm elementary matrices
 }    and the contribution of each individual to the likelihood is simply
     hPijx.
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Also this programme outputs the covariance matrix of the parameters but also
 {    of the life expectancies. It also computes the period (stable) prevalence. 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    
   double ***m;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    This software have been partly granted by Euro-REVES, a concerted action
   if (!m) nrerror("allocation failure 1 in matrix()");    from the European Union.
   m += NR_END;    It is copyrighted identically to a GNU software product, ie programme and
   m -= nrl;    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m[nrl] += NR_END;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   m[nrl] -= ncl;    
     **********************************************************************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /*
     main
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    read parameterfile
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    read datafile
   m[nrl][ncl] += NR_END;    concatwav
   m[nrl][ncl] -= nll;    freqsummary
   for (j=ncl+1; j<=nch; j++)    if (mle >= 1)
     m[nrl][j]=m[nrl][j-1]+nlay;      mlikeli
      print results files
   for (i=nrl+1; i<=nrh; i++) {    if mle==1 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;       computes hessian
     for (j=ncl+1; j<=nch; j++)    read end of parameter file: agemin, agemax, bage, fage, estepm
       m[i][j]=m[i][j-1]+nlay;        begin-prev-date,...
   }    open gnuplot file
   return m;    open html file
 }    period (stable) prevalence
      for age prevalim()
 /*************************free ma3x ************************/    h Pij x
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    variance of p varprob
 {    forecasting if prevfcast==1 prevforecast call prevalence()
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    health expectancies
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Variance-covariance of DFLE
   free((FREE_ARG)(m+nrl-NR_END));    prevalence()
 }     movingaverage()
     varevsij() 
 /***************** f1dim *************************/    if popbased==1 varevsij(,popbased)
 extern int ncom;    total life expectancies
 extern double *pcom,*xicom;    Variance of period (stable) prevalence
 extern double (*nrfunc)(double []);   end
    */
 double f1dim(double x)  
 {  
   int j;  
   double f;   
   double *xt;  #include <math.h>
    #include <stdio.h>
   xt=vector(1,ncom);  #include <stdlib.h>
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #include <string.h>
   f=(*nrfunc)(xt);  #include <unistd.h>
   free_vector(xt,1,ncom);  
   return f;  #include <limits.h>
 }  #include <sys/types.h>
   #include <sys/stat.h>
 /*****************brent *************************/  #include <errno.h>
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  extern int errno;
 {  
   int iter;  #ifdef LINUX
   double a,b,d,etemp;  #include <time.h>
   double fu,fv,fw,fx;  #include "timeval.h"
   double ftemp;  #else
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #include <sys/time.h>
   double e=0.0;  #endif
    
   a=(ax < cx ? ax : cx);  #ifdef GSL
   b=(ax > cx ? ax : cx);  #include <gsl/gsl_errno.h>
   x=w=v=bx;  #include <gsl/gsl_multimin.h>
   fw=fv=fx=(*f)(x);  #endif
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  /* #include <libintl.h> */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  /* #define _(String) gettext (String) */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define GNUPLOTPROGRAM "gnuplot"
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #endif  #define FILENAMELENGTH 132
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       return fx;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     }  
     ftemp=fu;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     if (fabs(e) > tol1) {  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  #define NINTERVMAX 8
       p=(x-v)*q-(x-w)*r;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       q=2.0*(q-r);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
       if (q > 0.0) p = -p;  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       q=fabs(q);  #define MAXN 20000
       etemp=e;  #define YEARM 12. /**< Number of months per year */
       e=d;  #define AGESUP 130
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define AGEBASE 40
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
       else {  #ifdef UNIX
         d=p/q;  #define DIRSEPARATOR '/'
         u=x+d;  #define CHARSEPARATOR "/"
         if (u-a < tol2 || b-u < tol2)  #define ODIRSEPARATOR '\\'
           d=SIGN(tol1,xm-x);  #else
       }  #define DIRSEPARATOR '\\'
     } else {  #define CHARSEPARATOR "\\"
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define ODIRSEPARATOR '/'
     }  #endif
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  /* $Id$ */
     if (fu <= fx) {  /* $State$ */
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
         SHFT(fv,fw,fx,fu)  char fullversion[]="$Revision$ $Date$"; 
         } else {  char strstart[80];
           if (u < x) a=u; else b=u;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
           if (fu <= fw || w == x) {  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
             v=w;  int nvar=0, nforce=0; /* Number of variables, number of forces */
             w=u;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
             fv=fw;  int npar=NPARMAX;
             fw=fu;  int nlstate=2; /* Number of live states */
           } else if (fu <= fv || v == x || v == w) {  int ndeath=1; /* Number of dead states */
             v=u;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
             fv=fu;  int popbased=0;
           }  
         }  int *wav; /* Number of waves for this individuual 0 is possible */
   }  int maxwav=0; /* Maxim number of waves */
   nrerror("Too many iterations in brent");  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   *xmin=x;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   return fx;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 }                     to the likelihood and the sum of weights (done by funcone)*/
   int mle=1, weightopt=0;
 /****************** mnbrak ***********************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
             double (*func)(double))             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean=1; /* Mean space between 2 waves */
   double ulim,u,r,q, dum;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double fu;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    /*FILE *fic ; */ /* Used in readdata only */
   *fa=(*func)(*ax);  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   *fb=(*func)(*bx);  FILE *ficlog, *ficrespow;
   if (*fb > *fa) {  int globpr=0; /* Global variable for printing or not */
     SHFT(dum,*ax,*bx,dum)  double fretone; /* Only one call to likelihood */
       SHFT(dum,*fb,*fa,dum)  long ipmx=0; /* Number of contributions */
       }  double sw; /* Sum of weights */
   *cx=(*bx)+GOLD*(*bx-*ax);  char filerespow[FILENAMELENGTH];
   *fc=(*func)(*cx);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   while (*fb > *fc) {  FILE *ficresilk;
     r=(*bx-*ax)*(*fb-*fc);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     q=(*bx-*cx)*(*fb-*fa);  FILE *ficresprobmorprev;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  FILE *fichtm, *fichtmcov; /* Html File */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  FILE *ficreseij;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  char filerese[FILENAMELENGTH];
     if ((*bx-u)*(u-*cx) > 0.0) {  FILE *ficresstdeij;
       fu=(*func)(u);  char fileresstde[FILENAMELENGTH];
     } else if ((*cx-u)*(u-ulim) > 0.0) {  FILE *ficrescveij;
       fu=(*func)(u);  char filerescve[FILENAMELENGTH];
       if (fu < *fc) {  FILE  *ficresvij;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  char fileresv[FILENAMELENGTH];
           SHFT(*fb,*fc,fu,(*func)(u))  FILE  *ficresvpl;
           }  char fileresvpl[FILENAMELENGTH];
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  char title[MAXLINE];
       u=ulim;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       fu=(*func)(u);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     } else {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       u=(*cx)+GOLD*(*cx-*bx);  char command[FILENAMELENGTH];
       fu=(*func)(u);  int  outcmd=0;
     }  
     SHFT(*ax,*bx,*cx,u)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       SHFT(*fa,*fb,*fc,fu)  
       }  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 /*************** linmin ************************/  char popfile[FILENAMELENGTH];
   
 int ncom;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
    struct timezone tzp;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  extern int gettimeofday();
 {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   double brent(double ax, double bx, double cx,  long time_value;
                double (*f)(double), double tol, double *xmin);  extern long time();
   double f1dim(double x);  char strcurr[80], strfor[80];
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  char *endptr;
   int j;  long lval;
   double xx,xmin,bx,ax;  double dval;
   double fx,fb,fa;  
    #define NR_END 1
   ncom=n;  #define FREE_ARG char*
   pcom=vector(1,n);  #define FTOL 1.0e-10
   xicom=vector(1,n);  
   nrfunc=func;  #define NRANSI 
   for (j=1;j<=n;j++) {  #define ITMAX 200 
     pcom[j]=p[j];  
     xicom[j]=xi[j];  #define TOL 2.0e-4 
   }  
   ax=0.0;  #define CGOLD 0.3819660 
   xx=1.0;  #define ZEPS 1.0e-10 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  #define GOLD 1.618034 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define GLIMIT 100.0 
 #endif  #define TINY 1.0e-20 
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  static double maxarg1,maxarg2;
     p[j] += xi[j];  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   free_vector(xicom,1,n);    
   free_vector(pcom,1,n);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 }  #define rint(a) floor(a+0.5)
   
 /*************** powell ************************/  static double sqrarg;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
             double (*func)(double []))  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 {  int agegomp= AGEGOMP;
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  int imx; 
   int i,ibig,j;  int stepm=1;
   double del,t,*pt,*ptt,*xit;  /* Stepm, step in month: minimum step interpolation*/
   double fp,fptt;  
   double *xits;  int estepm;
   pt=vector(1,n);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   ptt=vector(1,n);  
   xit=vector(1,n);  int m,nb;
   xits=vector(1,n);  long *num;
   *fret=(*func)(p);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   for (j=1;j<=n;j++) pt[j]=p[j];  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for (*iter=1;;++(*iter)) {  double **pmmij, ***probs;
     fp=(*fret);  double *ageexmed,*agecens;
     ibig=0;  double dateintmean=0;
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  double *weight;
     for (i=1;i<=n;i++)  int **s; /* Status */
       printf(" %d %.12f",i, p[i]);  double *agedc;
     printf("\n");  double  **covar; /**< covar[i,j], value of jth covariate for individual i,
     for (i=1;i<=n;i++) {                    * covar=matrix(0,NCOVMAX,1,n); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       fptt=(*fret);  double  idx; 
 #ifdef DEBUG  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       printf("fret=%lf \n",*fret);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
 #endif  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       printf("%d",i);fflush(stdout);  double *lsurv, *lpop, *tpop;
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
         del=fabs(fptt-(*fret));  double ftolhess; /**< Tolerance for computing hessian */
         ibig=i;  
       }  /**************** split *************************/
 #ifdef DEBUG  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       printf("%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         printf(" x(%d)=%.12e",j,xit[j]);    */ 
       }    char  *ss;                            /* pointer */
       for(j=1;j<=n;j++)    int   l1, l2;                         /* length counters */
         printf(" p=%.12e",p[j]);  
       printf("\n");    l1 = strlen(path );                   /* length of path */
 #endif    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 #ifdef DEBUG      strcpy( name, path );               /* we got the fullname name because no directory */
       int k[2],l;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       k[0]=1;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       k[1]=-1;      /* get current working directory */
       printf("Max: %.12e",(*func)(p));      /*    extern  char* getcwd ( char *buf , int len);*/
       for (j=1;j<=n;j++)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         printf(" %.12e",p[j]);        return( GLOCK_ERROR_GETCWD );
       printf("\n");      }
       for(l=0;l<=1;l++) {      /* got dirc from getcwd*/
         for (j=1;j<=n;j++) {      printf(" DIRC = %s \n",dirc);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    } else {                              /* strip direcotry from path */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      ss++;                               /* after this, the filename */
         }      l2 = strlen( ss );                  /* length of filename */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       }      strcpy( name, ss );         /* save file name */
 #endif      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
       free_vector(xit,1,n);    }
       free_vector(xits,1,n);    /* We add a separator at the end of dirc if not exists */
       free_vector(ptt,1,n);    l1 = strlen( dirc );                  /* length of directory */
       free_vector(pt,1,n);    if( dirc[l1-1] != DIRSEPARATOR ){
       return;      dirc[l1] =  DIRSEPARATOR;
     }      dirc[l1+1] = 0; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      printf(" DIRC3 = %s \n",dirc);
     for (j=1;j<=n;j++) {    }
       ptt[j]=2.0*p[j]-pt[j];    ss = strrchr( name, '.' );            /* find last / */
       xit[j]=p[j]-pt[j];    if (ss >0){
       pt[j]=p[j];      ss++;
     }      strcpy(ext,ss);                     /* save extension */
     fptt=(*func)(ptt);      l1= strlen( name);
     if (fptt < fp) {      l2= strlen(ss)+1;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      strncpy( finame, name, l1-l2);
       if (t < 0.0) {      finame[l1-l2]= 0;
         linmin(p,xit,n,fret,func);    }
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];    return( 0 );                          /* we're done */
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /******************************************/
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  void replace_back_to_slash(char *s, char*t)
         printf("\n");  {
 #endif    int i;
       }    int lg=0;
     }    i=0;
   }    lg=strlen(t);
 }    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
 /**** Prevalence limit ****************/      if (t[i]== '\\') s[i]='/';
     }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  char *trimbb(char *out, char *in)
      matrix by transitions matrix until convergence is reached */  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     char *s;
   int i, ii,j,k;    s=out;
   double min, max, maxmin, maxmax,sumnew=0.;    while (*in != '\0'){
   double **matprod2();      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   double **out, cov[NCOVMAX], **pmij();        in++;
   double **newm;      }
   double agefin, delaymax=50 ; /* Max number of years to converge */      *out++ = *in++;
     }
   for (ii=1;ii<=nlstate+ndeath;ii++)    *out='\0';
     for (j=1;j<=nlstate+ndeath;j++){    return s;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
     }  
   char *cutv(char *blocc, char *alocc, char *in, char occ)
    cov[1]=1.;  {
      /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){       gives blocc="abcdef2ghi" and alocc="j".
     newm=savm;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     /* Covariates have to be included here again */    */
      cov[2]=agefin;    char *s, *t;
      t=in;s=in;
       for (k=1; k<=cptcovn;k++) {    while (*in != '\0'){
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      while( *in == occ){
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/        *blocc++ = *in++;
       }        s=in;
       for (k=1; k<=cptcovage;k++)      }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      *blocc++ = *in++;
       for (k=1; k<=cptcovprod;k++)    }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    else
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      *(blocc-(in-s)-1)='\0';
     in=s;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    while ( *in != '\0'){
       *alocc++ = *in++;
     savm=oldm;    }
     oldm=newm;  
     maxmax=0.;    *alocc='\0';
     for(j=1;j<=nlstate;j++){    return s;
       min=1.;  }
       max=0.;  
       for(i=1; i<=nlstate; i++) {  int nbocc(char *s, char occ)
         sumnew=0;  {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    int i,j=0;
         prlim[i][j]= newm[i][j]/(1-sumnew);    int lg=20;
         max=FMAX(max,prlim[i][j]);    i=0;
         min=FMIN(min,prlim[i][j]);    lg=strlen(s);
       }    for(i=0; i<= lg; i++) {
       maxmin=max-min;    if  (s[i] == occ ) j++;
       maxmax=FMAX(maxmax,maxmin);    }
     }    return j;
     if(maxmax < ftolpl){  }
       return prlim;  
     }  /* void cutv(char *u,char *v, char*t, char occ) */
   }  /* { */
 }  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
 /*************** transition probabilities ***************/  /*      gives u="abcdef2ghi" and v="j" *\/ */
   /*   int i,lg,j,p=0; */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /*   i=0; */
 {  /*   lg=strlen(t); */
   double s1, s2;  /*   for(j=0; j<=lg-1; j++) { */
   /*double t34;*/  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   int i,j,j1, nc, ii, jj;  /*   } */
   
     for(i=1; i<= nlstate; i++){  /*   for(j=0; j<p; j++) { */
     for(j=1; j<i;j++){  /*     (u[j] = t[j]); */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*   } */
         /*s2 += param[i][j][nc]*cov[nc];*/  /*      u[p]='\0'; */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /*    for(j=0; j<= lg; j++) { */
       }  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
       ps[i][j]=s2;  /*   } */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  /* } */
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  /********************** nrerror ********************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  void nrerror(char error_text[])
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  {
       }    fprintf(stderr,"ERREUR ...\n");
       ps[i][j]=s2;    fprintf(stderr,"%s\n",error_text);
     }    exit(EXIT_FAILURE);
   }  }
     /*ps[3][2]=1;*/  /*********************** vector *******************/
   double *vector(int nl, int nh)
   for(i=1; i<= nlstate; i++){  {
      s1=0;    double *v;
     for(j=1; j<i; j++)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       s1+=exp(ps[i][j]);    if (!v) nrerror("allocation failure in vector");
     for(j=i+1; j<=nlstate+ndeath; j++)    return v-nl+NR_END;
       s1+=exp(ps[i][j]);  }
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  /************************ free vector ******************/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  void free_vector(double*v, int nl, int nh)
     for(j=i+1; j<=nlstate+ndeath; j++)  {
       ps[i][j]= exp(ps[i][j])*ps[i][i];    free((FREE_ARG)(v+nl-NR_END));
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  }
   } /* end i */  
   /************************ivector *******************************/
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  int *ivector(long nl,long nh)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
       ps[ii][jj]=0;    int *v;
       ps[ii][ii]=1;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     }    if (!v) nrerror("allocation failure in ivector");
   }    return v-nl+NR_END;
   }
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /******************free ivector **************************/
     for(jj=1; jj<= nlstate+ndeath; jj++){  void free_ivector(int *v, long nl, long nh)
      printf("%lf ",ps[ii][jj]);  {
    }    free((FREE_ARG)(v+nl-NR_END));
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /************************lvector *******************************/
 /*  long *lvector(long nl,long nh)
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  {
   goto end;*/    long *v;
     return ps;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /**************** Product of 2 matrices ******************/  }
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /******************free lvector **************************/
 {  void free_lvector(long *v, long nl, long nh)
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    free((FREE_ARG)(v+nl-NR_END));
   /* in, b, out are matrice of pointers which should have been initialized  }
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  /******************* imatrix *******************************/
   long i, j, k;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   for(i=nrl; i<= nrh; i++)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     for(k=ncolol; k<=ncoloh; k++)  { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         out[i][k] +=in[i][j]*b[j][k];    int **m; 
     
   return out;    /* allocate pointers to rows */ 
 }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
 /************* Higher Matrix Product ***************/    m -= nrl; 
     
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    
 {    /* allocate rows and set pointers to them */ 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
      duration (i.e. until    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    m[nrl] += NR_END; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    m[nrl] -= ncl; 
      (typically every 2 years instead of every month which is too big).    
      Model is determined by parameters x and covariates have to be    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      included manually here.    
     /* return pointer to array of pointers to rows */ 
      */    return m; 
   } 
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  /****************** free_imatrix *************************/
   double **newm;  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
   /* Hstepm could be zero and should return the unit matrix */        long nch,ncl,nrh,nrl; 
   for (i=1;i<=nlstate+ndeath;i++)       /* free an int matrix allocated by imatrix() */ 
     for (j=1;j<=nlstate+ndeath;j++){  { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    free((FREE_ARG) (m+nrl-NR_END)); 
     }  } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /******************* matrix *******************************/
     for(d=1; d <=hstepm; d++){  double **matrix(long nrl, long nrh, long ncl, long nch)
       newm=savm;  {
       /* Covariates have to be included here again */    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       cov[1]=1.;    double **m;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (k=1; k<=cptcovage;k++)    if (!m) nrerror("allocation failure 1 in matrix()");
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m += NR_END;
       for (k=1; k<=cptcovprod;k++)    m -= nrl;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    m[nrl] += NR_END;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    m[nrl] -= ncl;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       savm=oldm;    return m;
       oldm=newm;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     }     */
     for(i=1; i<=nlstate+ndeath; i++)  }
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  /*************************free matrix ************************/
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
          */  {
       }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   } /* end h */    free((FREE_ARG)(m+nrl-NR_END));
   return po;  }
 }  
   /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 /*************** log-likelihood *************/  {
 double func( double *x)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 {    double ***m;
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double **out;    if (!m) nrerror("allocation failure 1 in matrix()");
   double sw; /* Sum of weights */    m += NR_END;
   double lli; /* Individual log likelihood */    m -= nrl;
   long ipmx;  
   /*extern weight */    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   /* We are differentiating ll according to initial status */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    m[nrl] += NR_END;
   /*for(i=1;i<imx;i++)    m[nrl] -= ncl;
     printf(" %d\n",s[4][i]);  
   */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   cov[1]=1.;  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   for(k=1; k<=nlstate; k++) ll[k]=0.;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    m[nrl][ncl] += NR_END;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    m[nrl][ncl] -= nll;
     for(mi=1; mi<= wav[i]-1; mi++){    for (j=ncl+1; j<=nch; j++) 
       for (ii=1;ii<=nlstate+ndeath;ii++)      m[nrl][j]=m[nrl][j-1]+nlay;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    
       for(d=0; d<dh[mi][i]; d++){    for (i=nrl+1; i<=nrh; i++) {
         newm=savm;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for (j=ncl+1; j<=nch; j++) 
         for (kk=1; kk<=cptcovage;kk++) {        m[i][j]=m[i][j-1]+nlay;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    }
         }    return m; 
            /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    */
         savm=oldm;  }
         oldm=newm;  
          /*************************free ma3x ************************/
          void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       } /* end mult */  {
          free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    free((FREE_ARG)(m+nrl-NR_END));
       ipmx +=1;  }
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*************** function subdirf ***********/
     } /* end of wave */  char *subdirf(char fileres[])
   } /* end of individual */  {
     /* Caution optionfilefiname is hidden */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    strcpy(tmpout,optionfilefiname);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    strcat(tmpout,"/"); /* Add to the right */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    strcat(tmpout,fileres);
   return -l;    return tmpout;
 }  }
   
   /*************** function subdirf2 ***********/
 /*********** Maximum Likelihood Estimation ***************/  char *subdirf2(char fileres[], char *preop)
   {
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    
 {    /* Caution optionfilefiname is hidden */
   int i,j, iter;    strcpy(tmpout,optionfilefiname);
   double **xi,*delti;    strcat(tmpout,"/");
   double fret;    strcat(tmpout,preop);
   xi=matrix(1,npar,1,npar);    strcat(tmpout,fileres);
   for (i=1;i<=npar;i++)    return tmpout;
     for (j=1;j<=npar;j++)  }
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  /*************** function subdirf3 ***********/
   powell(p,xi,npar,ftol,&iter,&fret,func);  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/");
     strcat(tmpout,preop);
 /**** Computes Hessian and covariance matrix ***/    strcat(tmpout,preop2);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    strcat(tmpout,fileres);
 {    return tmpout;
   double  **a,**y,*x,pd;  }
   double **hess;  
   int i, j,jk;  /***************** f1dim *************************/
   int *indx;  extern int ncom; 
   extern double *pcom,*xicom;
   double hessii(double p[], double delta, int theta, double delti[]);  extern double (*nrfunc)(double []); 
   double hessij(double p[], double delti[], int i, int j);   
   void lubksb(double **a, int npar, int *indx, double b[]) ;  double f1dim(double x) 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  { 
     int j; 
   hess=matrix(1,npar,1,npar);    double f;
     double *xt; 
   printf("\nCalculation of the hessian matrix. Wait...\n");   
   for (i=1;i<=npar;i++){    xt=vector(1,ncom); 
     printf("%d",i);fflush(stdout);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     hess[i][i]=hessii(p,ftolhess,i,delti);    f=(*nrfunc)(xt); 
     /*printf(" %f ",p[i]);*/    free_vector(xt,1,ncom); 
     /*printf(" %lf ",hess[i][i]);*/    return f; 
   }  } 
    
   for (i=1;i<=npar;i++) {  /*****************brent *************************/
     for (j=1;j<=npar;j++)  {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       if (j>i) {  { 
         printf(".%d%d",i,j);fflush(stdout);    int iter; 
         hess[i][j]=hessij(p,delti,i,j);    double a,b,d,etemp;
         hess[j][i]=hess[i][j];        double fu,fv,fw,fx;
         /*printf(" %lf ",hess[i][j]);*/    double ftemp;
       }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     }    double e=0.0; 
   }   
   printf("\n");    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    x=w=v=bx; 
      fw=fv=fx=(*f)(x); 
   a=matrix(1,npar,1,npar);    for (iter=1;iter<=ITMAX;iter++) { 
   y=matrix(1,npar,1,npar);      xm=0.5*(a+b); 
   x=vector(1,npar);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   indx=ivector(1,npar);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for (i=1;i<=npar;i++)      printf(".");fflush(stdout);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      fprintf(ficlog,".");fflush(ficlog);
   ludcmp(a,npar,indx,&pd);  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (j=1;j<=npar;j++) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for (i=1;i<=npar;i++) x[i]=0;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     x[j]=1;  #endif
     lubksb(a,npar,indx,x);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for (i=1;i<=npar;i++){        *xmin=x; 
       matcov[i][j]=x[i];        return fx; 
     }      } 
   }      ftemp=fu;
       if (fabs(e) > tol1) { 
   printf("\n#Hessian matrix#\n");        r=(x-w)*(fx-fv); 
   for (i=1;i<=npar;i++) {        q=(x-v)*(fx-fw); 
     for (j=1;j<=npar;j++) {        p=(x-v)*q-(x-w)*r; 
       printf("%.3e ",hess[i][j]);        q=2.0*(q-r); 
     }        if (q > 0.0) p = -p; 
     printf("\n");        q=fabs(q); 
   }        etemp=e; 
         e=d; 
   /* Recompute Inverse */        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for (i=1;i<=npar;i++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        else { 
   ludcmp(a,npar,indx,&pd);          d=p/q; 
           u=x+d; 
   /*  printf("\n#Hessian matrix recomputed#\n");          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
   for (j=1;j<=npar;j++) {        } 
     for (i=1;i<=npar;i++) x[i]=0;      } else { 
     x[j]=1;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     lubksb(a,npar,indx,x);      } 
     for (i=1;i<=npar;i++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       y[i][j]=x[i];      fu=(*f)(u); 
       printf("%.3e ",y[i][j]);      if (fu <= fx) { 
     }        if (u >= x) a=x; else b=x; 
     printf("\n");        SHFT(v,w,x,u) 
   }          SHFT(fv,fw,fx,fu) 
   */          } else { 
             if (u < x) a=u; else b=u; 
   free_matrix(a,1,npar,1,npar);            if (fu <= fw || w == x) { 
   free_matrix(y,1,npar,1,npar);              v=w; 
   free_vector(x,1,npar);              w=u; 
   free_ivector(indx,1,npar);              fv=fw; 
   free_matrix(hess,1,npar,1,npar);              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
               v=u; 
 }              fv=fu; 
             } 
 /*************** hessian matrix ****************/          } 
 double hessii( double x[], double delta, int theta, double delti[])    } 
 {    nrerror("Too many iterations in brent"); 
   int i;    *xmin=x; 
   int l=1, lmax=20;    return fx; 
   double k1,k2;  } 
   double p2[NPARMAX+1];  
   double res;  /****************** mnbrak ***********************/
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   int k=0,kmax=10;              double (*func)(double)) 
   double l1;  { 
     double ulim,u,r,q, dum;
   fx=func(x);    double fu; 
   for (i=1;i<=npar;i++) p2[i]=x[i];   
   for(l=0 ; l <=lmax; l++){    *fa=(*func)(*ax); 
     l1=pow(10,l);    *fb=(*func)(*bx); 
     delts=delt;    if (*fb > *fa) { 
     for(k=1 ; k <kmax; k=k+1){      SHFT(dum,*ax,*bx,dum) 
       delt = delta*(l1*k);        SHFT(dum,*fb,*fa,dum) 
       p2[theta]=x[theta] +delt;        } 
       k1=func(p2)-fx;    *cx=(*bx)+GOLD*(*bx-*ax); 
       p2[theta]=x[theta]-delt;    *fc=(*func)(*cx); 
       k2=func(p2)-fx;    while (*fb > *fc) { 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      r=(*bx-*ax)*(*fb-*fc); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      q=(*bx-*cx)*(*fb-*fa); 
            u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 #ifdef DEBUG        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 #endif      if ((*bx-u)*(u-*cx) > 0.0) { 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        fu=(*func)(u); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         k=kmax;        fu=(*func)(u); 
       }        if (fu < *fc) { 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         k=kmax; l=lmax*10.;            SHFT(*fb,*fc,fu,(*func)(u)) 
       }            } 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         delts=delt;        u=ulim; 
       }        fu=(*func)(u); 
     }      } else { 
   }        u=(*cx)+GOLD*(*cx-*bx); 
   delti[theta]=delts;        fu=(*func)(u); 
   return res;      } 
        SHFT(*ax,*bx,*cx,u) 
 }        SHFT(*fa,*fb,*fc,fu) 
         } 
 double hessij( double x[], double delti[], int thetai,int thetaj)  } 
 {  
   int i;  /*************** linmin ************************/
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  int ncom; 
   double p2[NPARMAX+1];  double *pcom,*xicom;
   int k;  double (*nrfunc)(double []); 
    
   fx=func(x);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   for (k=1; k<=2; k++) {  { 
     for (i=1;i<=npar;i++) p2[i]=x[i];    double brent(double ax, double bx, double cx, 
     p2[thetai]=x[thetai]+delti[thetai]/k;                 double (*f)(double), double tol, double *xmin); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double f1dim(double x); 
     k1=func(p2)-fx;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                  double *fc, double (*func)(double)); 
     p2[thetai]=x[thetai]+delti[thetai]/k;    int j; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double xx,xmin,bx,ax; 
     k2=func(p2)-fx;    double fx,fb,fa;
     
     p2[thetai]=x[thetai]-delti[thetai]/k;    ncom=n; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    pcom=vector(1,n); 
     k3=func(p2)-fx;    xicom=vector(1,n); 
      nrfunc=func; 
     p2[thetai]=x[thetai]-delti[thetai]/k;    for (j=1;j<=n;j++) { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      pcom[j]=p[j]; 
     k4=func(p2)-fx;      xicom[j]=xi[j]; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    } 
 #ifdef DEBUG    ax=0.0; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    xx=1.0; 
 #endif    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   return res;  #ifdef DEBUG
 }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /************** Inverse of matrix **************/  #endif
 void ludcmp(double **a, int n, int *indx, double *d)    for (j=1;j<=n;j++) { 
 {      xi[j] *= xmin; 
   int i,imax,j,k;      p[j] += xi[j]; 
   double big,dum,sum,temp;    } 
   double *vv;    free_vector(xicom,1,n); 
      free_vector(pcom,1,n); 
   vv=vector(1,n);  } 
   *d=1.0;  
   for (i=1;i<=n;i++) {  char *asc_diff_time(long time_sec, char ascdiff[])
     big=0.0;  {
     for (j=1;j<=n;j++)    long sec_left, days, hours, minutes;
       if ((temp=fabs(a[i][j])) > big) big=temp;    days = (time_sec) / (60*60*24);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    sec_left = (time_sec) % (60*60*24);
     vv[i]=1.0/big;    hours = (sec_left) / (60*60) ;
   }    sec_left = (sec_left) %(60*60);
   for (j=1;j<=n;j++) {    minutes = (sec_left) /60;
     for (i=1;i<j;i++) {    sec_left = (sec_left) % (60);
       sum=a[i][j];    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    return ascdiff;
       a[i][j]=sum;  }
     }  
     big=0.0;  /*************** powell ************************/
     for (i=j;i<=n;i++) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       sum=a[i][j];              double (*func)(double [])) 
       for (k=1;k<j;k++)  { 
         sum -= a[i][k]*a[k][j];    void linmin(double p[], double xi[], int n, double *fret, 
       a[i][j]=sum;                double (*func)(double [])); 
       if ( (dum=vv[i]*fabs(sum)) >= big) {    int i,ibig,j; 
         big=dum;    double del,t,*pt,*ptt,*xit;
         imax=i;    double fp,fptt;
       }    double *xits;
     }    int niterf, itmp;
     if (j != imax) {  
       for (k=1;k<=n;k++) {    pt=vector(1,n); 
         dum=a[imax][k];    ptt=vector(1,n); 
         a[imax][k]=a[j][k];    xit=vector(1,n); 
         a[j][k]=dum;    xits=vector(1,n); 
       }    *fret=(*func)(p); 
       *d = -(*d);    for (j=1;j<=n;j++) pt[j]=p[j]; 
       vv[imax]=vv[j];    for (*iter=1;;++(*iter)) { 
     }      fp=(*fret); 
     indx[j]=imax;      ibig=0; 
     if (a[j][j] == 0.0) a[j][j]=TINY;      del=0.0; 
     if (j != n) {      last_time=curr_time;
       dum=1.0/(a[j][j]);      (void) gettimeofday(&curr_time,&tzp);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   free_vector(vv,1,n);  /* Doesn't work */     for (i=1;i<=n;i++) {
 ;        printf(" %d %.12f",i, p[i]);
 }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
 void lubksb(double **a, int n, int *indx, double b[])      }
 {      printf("\n");
   int i,ii=0,ip,j;      fprintf(ficlog,"\n");
   double sum;      fprintf(ficrespow,"\n");fflush(ficrespow);
        if(*iter <=3){
   for (i=1;i<=n;i++) {        tm = *localtime(&curr_time.tv_sec);
     ip=indx[i];        strcpy(strcurr,asctime(&tm));
     sum=b[ip];  /*       asctime_r(&tm,strcurr); */
     b[ip]=b[i];        forecast_time=curr_time; 
     if (ii)        itmp = strlen(strcurr);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     else if (sum) ii=i;          strcurr[itmp-1]='\0';
     b[i]=sum;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=n;i>=1;i--) {        for(niterf=10;niterf<=30;niterf+=10){
     sum=b[i];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          tmf = *localtime(&forecast_time.tv_sec);
     b[i]=sum/a[i][i];  /*      asctime_r(&tmf,strfor); */
   }          strcpy(strfor,asctime(&tmf));
 }          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
 /************ Frequencies ********************/          strfor[itmp-1]='\0';
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 {  /* Some frequencies */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
          }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      }
   double ***freq; /* Frequencies */      for (i=1;i<=n;i++) { 
   double *pp;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   double pos, k2, dateintsum=0,k2cpt=0;        fptt=(*fret); 
   FILE *ficresp;  #ifdef DEBUG
   char fileresp[FILENAMELENGTH];        printf("fret=%lf \n",*fret);
          fprintf(ficlog,"fret=%lf \n",*fret);
   pp=vector(1,nlstate);  #endif
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        printf("%d",i);fflush(stdout);
   strcpy(fileresp,"p");        fprintf(ficlog,"%d",i);fflush(ficlog);
   strcat(fileresp,fileres);        linmin(p,xit,n,fret,func); 
   if((ficresp=fopen(fileresp,"w"))==NULL) {        if (fabs(fptt-(*fret)) > del) { 
     printf("Problem with prevalence resultfile: %s\n", fileresp);          del=fabs(fptt-(*fret)); 
     exit(0);          ibig=i; 
   }        } 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  #ifdef DEBUG
   j1=0;        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   j=cptcoveff;        for (j=1;j<=n;j++) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   for(k1=1; k1<=j;k1++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
    for(i1=1; i1<=ncodemax[k1];i1++){        }
        j1++;        for(j=1;j<=n;j++) {
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          printf(" p=%.12e",p[j]);
          scanf("%d", i);*/          fprintf(ficlog," p=%.12e",p[j]);
         for (i=-1; i<=nlstate+ndeath; i++)          }
          for (jk=-1; jk<=nlstate+ndeath; jk++)          printf("\n");
            for(m=agemin; m <= agemax+3; m++)        fprintf(ficlog,"\n");
              freq[i][jk][m]=0;  #endif
       } 
         dateintsum=0;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         k2cpt=0;  #ifdef DEBUG
        for (i=1; i<=imx; i++) {        int k[2],l;
          bool=1;        k[0]=1;
          if  (cptcovn>0) {        k[1]=-1;
            for (z1=1; z1<=cptcoveff; z1++)        printf("Max: %.12e",(*func)(p));
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        fprintf(ficlog,"Max: %.12e",(*func)(p));
                bool=0;        for (j=1;j<=n;j++) {
          }          printf(" %.12e",p[j]);
          if (bool==1) {          fprintf(ficlog," %.12e",p[j]);
            for(m=firstpass; m<=lastpass; m++){        }
              k2=anint[m][i]+(mint[m][i]/12.);        printf("\n");
              if ((k2>=dateprev1) && (k2<=dateprev2)) {        fprintf(ficlog,"\n");
                if(agev[m][i]==0) agev[m][i]=agemax+1;        for(l=0;l<=1;l++) {
                if(agev[m][i]==1) agev[m][i]=agemax+2;          for (j=1;j<=n;j++) {
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                  dateintsum=dateintsum+k2;          }
                  k2cpt++;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
              }  #endif
            }  
          }  
        }        free_vector(xit,1,n); 
                free_vector(xits,1,n); 
        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
         if  (cptcovn>0) {        return; 
          fprintf(ficresp, "\n#********** Variable ");      } 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
        fprintf(ficresp, "**********\n#");      for (j=1;j<=n;j++) { 
         }        ptt[j]=2.0*p[j]-pt[j]; 
        for(i=1; i<=nlstate;i++)        xit[j]=p[j]-pt[j]; 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        pt[j]=p[j]; 
        fprintf(ficresp, "\n");      } 
              fptt=(*func)(ptt); 
   for(i=(int)agemin; i <= (int)agemax+3; i++){      if (fptt < fp) { 
     if(i==(int)agemax+3)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       printf("Total");        if (t < 0.0) { 
     else          linmin(p,xit,n,fret,func); 
       printf("Age %d", i);          for (j=1;j<=n;j++) { 
     for(jk=1; jk <=nlstate ; jk++){            xi[j][ibig]=xi[j][n]; 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            xi[j][n]=xit[j]; 
         pp[jk] += freq[jk][m][i];          }
     }  #ifdef DEBUG
     for(jk=1; jk <=nlstate ; jk++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for(m=-1, pos=0; m <=0 ; m++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         pos += freq[jk][m][i];          for(j=1;j<=n;j++){
       if(pp[jk]>=1.e-10)            printf(" %.12e",xit[j]);
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            fprintf(ficlog," %.12e",xit[j]);
       else          }
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          printf("\n");
     }          fprintf(ficlog,"\n");
   #endif
      for(jk=1; jk <=nlstate ; jk++){        }
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      } 
         pp[jk] += freq[jk][m][i];    } 
      }  } 
   
     for(jk=1,pos=0; jk <=nlstate ; jk++)  /**** Prevalence limit (stable or period prevalence)  ****************/
       pos += pp[jk];  
     for(jk=1; jk <=nlstate ; jk++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       if(pos>=1.e-5)  {
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       else       matrix by transitions matrix until convergence is reached */
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
       if( i <= (int) agemax){    int i, ii,j,k;
         if(pos>=1.e-5){    double min, max, maxmin, maxmax,sumnew=0.;
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    double **matprod2();
           probs[i][jk][j1]= pp[jk]/pos;    double **out, cov[NCOVMAX+1], **pmij();
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    double **newm;
         }    double agefin, delaymax=50 ; /* Max number of years to converge */
       else  
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    for (ii=1;ii<=nlstate+ndeath;ii++)
       }      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jk=-1; jk <=nlstate+ndeath; jk++)      }
       for(m=-1; m <=nlstate+ndeath; m++)  
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);     cov[1]=1.;
     if(i <= (int) agemax)   
       fprintf(ficresp,"\n");   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     printf("\n");    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     }      newm=savm;
     }      /* Covariates have to be included here again */
  }      cov[2]=agefin;
   dateintmean=dateintsum/k2cpt;      
        for (k=1; k<=cptcovn;k++) {
   fclose(ficresp);        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   free_vector(pp,1,nlstate);      }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /* End of Freq */      for (k=1; k<=cptcovprod;k++)
 }        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       
 /************ Prevalence ********************/      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 {  /* Some frequencies */      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
        out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      
   double ***freq; /* Frequencies */      savm=oldm;
   double *pp;      oldm=newm;
   double pos, k2;      maxmax=0.;
       for(j=1;j<=nlstate;j++){
   pp=vector(1,nlstate);        min=1.;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        max=0.;
          for(i=1; i<=nlstate; i++) {
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          sumnew=0;
   j1=0;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
            prlim[i][j]= newm[i][j]/(1-sumnew);
   j=cptcoveff;          max=FMAX(max,prlim[i][j]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          min=FMIN(min,prlim[i][j]);
          }
  for(k1=1; k1<=j;k1++){        maxmin=max-min;
     for(i1=1; i1<=ncodemax[k1];i1++){        maxmax=FMAX(maxmax,maxmin);
       j1++;      }
        if(maxmax < ftolpl){
       for (i=-1; i<=nlstate+ndeath; i++)          return prlim;
         for (jk=-1; jk<=nlstate+ndeath; jk++)        }
           for(m=agemin; m <= agemax+3; m++)    }
             freq[i][jk][m]=0;  }
        
       for (i=1; i<=imx; i++) {  /*************** transition probabilities ***************/ 
         bool=1;  
         if  (cptcovn>0) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           for (z1=1; z1<=cptcoveff; z1++)  {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    /* According to parameters values stored in x and the covariate's values stored in cov,
               bool=0;       computes the probability to be observed in state j being in state i by appying the
         }       model to the ncovmodel covariates (including constant and age).
         if (bool==1) {       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
           for(m=firstpass; m<=lastpass; m++){       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
             k2=anint[m][i]+(mint[m][i]/12.);       ncth covariate in the global vector x is given by the formula:
             if ((k2>=dateprev1) && (k2<=dateprev2)) {       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
               if(agev[m][i]==0) agev[m][i]=agemax+1;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
               if(agev[m][i]==1) agev[m][i]=agemax+2;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */       Outputs ps[i][j] the probability to be observed in j being in j according to
             }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
           }    */
         }    double s1, lnpijopii;
       }    /*double t34;*/
         for(i=(int)agemin; i <= (int)agemax+3; i++){    int i,j,j1, nc, ii, jj;
           for(jk=1; jk <=nlstate ; jk++){  
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for(i=1; i<= nlstate; i++){
               pp[jk] += freq[jk][m][i];        for(j=1; j<i;j++){
           }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           for(jk=1; jk <=nlstate ; jk++){            /*lnpijopii += param[i][j][nc]*cov[nc];*/
             for(m=-1, pos=0; m <=0 ; m++)            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
             pos += freq[jk][m][i];  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }          }
                  ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
          for(jk=1; jk <=nlstate ; jk++){  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        }
              pp[jk] += freq[jk][m][i];        for(j=i+1; j<=nlstate+ndeath;j++){
          }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                      /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
          for(jk=1; jk <=nlstate ; jk++){                    }
            if( i <= (int) agemax){          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
              if(pos>=1.e-5){        }
                probs[i][jk][j1]= pp[jk]/pos;      }
              }      
            }      for(i=1; i<= nlstate; i++){
          }        s1=0;
                  for(j=1; j<i; j++){
         }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   }        }
          for(j=i+1; j<=nlstate+ndeath; j++){
            s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   free_vector(pp,1,nlstate);        }
          /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 }  /* End of Freq */        ps[i][i]=1./(s1+1.);
         /* Computing other pijs */
 /************* Waves Concatenation ***************/        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for(j=i+1; j<=nlstate+ndeath; j++)
 {          ps[i][j]= exp(ps[i][j])*ps[i][i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
      Death is a valid wave (if date is known).      } /* end i */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
      and mw[mi+1][i]. dh depends on stepm.        for(jj=1; jj<= nlstate+ndeath; jj++){
      */          ps[ii][jj]=0;
           ps[ii][ii]=1;
   int i, mi, m;        }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      }
      double sum=0., jmean=0.;*/      
   
   int j, k=0,jk, ju, jl;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double sum=0.;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   jmin=1e+5;  /*         printf("ddd %lf ",ps[ii][jj]); */
   jmax=-1;  /*       } */
   jmean=0.;  /*       printf("\n "); */
   for(i=1; i<=imx; i++){  /*        } */
     mi=0;  /*        printf("\n ");printf("%lf ",cov[2]); */
     m=firstpass;         /*
     while(s[m][i] <= nlstate){        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       if(s[m][i]>=1)        goto end;*/
         mw[++mi][i]=m;      return ps;
       if(m >=lastpass)  }
         break;  
       else  /**************** Product of 2 matrices ******************/
         m++;  
     }/* end while */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     if (s[m][i] > nlstate){  {
       mi++;     /* Death is another wave */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       /* if(mi==0)  never been interviewed correctly before death */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
          /* Only death is a correct wave */    /* in, b, out are matrice of pointers which should have been initialized 
       mw[mi][i]=m;       before: only the contents of out is modified. The function returns
     }       a pointer to pointers identical to out */
     long i, j, k;
     wav[i]=mi;    for(i=nrl; i<= nrh; i++)
     if(mi==0)      for(k=ncolol; k<=ncoloh; k++)
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   }          out[i][k] +=in[i][j]*b[j][k];
   
   for(i=1; i<=imx; i++){    return out;
     for(mi=1; mi<wav[i];mi++){  }
       if (stepm <=0)  
         dh[mi][i]=1;  
       else{  /************* Higher Matrix Product ***************/
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  {
           if(j==0) j=1;  /* Survives at least one month after exam */    /* Computes the transition matrix starting at age 'age' over 
           k=k+1;       'nhstepm*hstepm*stepm' months (i.e. until
           if (j >= jmax) jmax=j;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
           if (j <= jmin) jmin=j;       nhstepm*hstepm matrices. 
           sum=sum+j;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */       (typically every 2 years instead of every month which is too big 
           }       for the memory).
         }       Model is determined by parameters x and covariates have to be 
         else{       included manually here. 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;       */
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;    int i, j, d, h, k;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    double **out, cov[NCOVMAX+1];
           sum=sum+j;    double **newm;
         }  
         jk= j/stepm;    /* Hstepm could be zero and should return the unit matrix */
         jl= j -jk*stepm;    for (i=1;i<=nlstate+ndeath;i++)
         ju= j -(jk+1)*stepm;      for (j=1;j<=nlstate+ndeath;j++){
         if(jl <= -ju)        oldm[i][j]=(i==j ? 1.0 : 0.0);
           dh[mi][i]=jk;        po[i][j][0]=(i==j ? 1.0 : 0.0);
         else      }
           dh[mi][i]=jk+1;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         if(dh[mi][i]==0)    for(h=1; h <=nhstepm; h++){
           dh[mi][i]=1; /* At least one step */      for(d=1; d <=hstepm; d++){
       }        newm=savm;
     }        /* Covariates have to be included here again */
   }        cov[1]=1.;
   jmean=sum/k;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        for (k=1; k<=cptcovn;k++) 
  }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 /*********** Tricode ****************************/        for (k=1; k<=cptcovage;k++)
 void tricode(int *Tvar, int **nbcode, int imx)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {        for (k=1; k<=cptcovprod;k++)
   int Ndum[20],ij=1, k, j, i;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int cptcode=0;  
   cptcoveff=0;  
          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   for (k=0; k<19; k++) Ndum[k]=0;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for (k=1; k<=7; k++) ncodemax[k]=0;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        savm=oldm;
     for (i=1; i<=imx; i++) {        oldm=newm;
       ij=(int)(covar[Tvar[j]][i]);      }
       Ndum[ij]++;      for(i=1; i<=nlstate+ndeath; i++)
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        for(j=1;j<=nlstate+ndeath;j++) {
       if (ij > cptcode) cptcode=ij;          po[i][j][h]=newm[i][j];
     }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
     for (i=0; i<=cptcode; i++) {      /*printf("h=%d ",h);*/
       if(Ndum[i]!=0) ncodemax[j]++;    } /* end h */
     }  /*     printf("\n H=%d \n",h); */
     ij=1;    return po;
   }
   
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {  /*************** log-likelihood *************/
         if (Ndum[k] != 0) {  double func( double *x)
           nbcode[Tvar[j]][ij]=k;  {
           ij++;    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         if (ij > ncodemax[j]) break;    double **out;
       }      double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
   }      int s1, s2;
     double bbh, survp;
  for (k=0; k<19; k++) Ndum[k]=0;    long ipmx;
     /*extern weight */
  for (i=1; i<=ncovmodel-2; i++) {    /* We are differentiating ll according to initial status */
       ij=Tvar[i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       Ndum[ij]++;    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     */
  ij=1;    cov[1]=1.;
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncov)){    for(k=1; k<=nlstate; k++) ll[k]=0.;
      Tvaraff[ij]=i;  
      ij++;    if(mle==1){
    }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  }        /* Computes the values of the ncovmodel covariates of the model
             depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     cptcoveff=ij-1;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 }           to be observed in j being in i according to the model.
          */
 /*********** Health Expectancies ****************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 {           has been calculated etc */
   /* Health expectancies */        for(mi=1; mi<= wav[i]-1; mi++){
   int i, j, nhstepm, hstepm, h, nstepm, k;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double age, agelim,hf;            for (j=1;j<=nlstate+ndeath;j++){
   double ***p3mat;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Health expectancies\n");            }
   fprintf(ficreseij,"# Age");          for(d=0; d<dh[mi][i]; d++){
   for(i=1; i<=nlstate;i++)            newm=savm;
     for(j=1; j<=nlstate;j++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficreseij," %1d-%1d",i,j);            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficreseij,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
             }
   k=1;             /* For example stepm=6 months */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */            savm=oldm;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            oldm=newm;
      nhstepm is the number of hstepm from age to agelim          } /* end mult */
      nstepm is the number of stepm from age to agelin.        
      Look at hpijx to understand the reason of that which relies in memory size          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
      and note for a fixed period like k years */          /* But now since version 0.9 we anticipate for bias at large stepm.
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the           * If stepm is larger than one month (smallest stepm) and if the exact delay 
      survival function given by stepm (the optimization length). Unfortunately it           * (in months) between two waves is not a multiple of stepm, we rounded to 
      means that if the survival funtion is printed only each two years of age and if           * the nearest (and in case of equal distance, to the lowest) interval but now
      you sum them up and add 1 year (area under the trapezoids) you won't get the same           * we keep into memory the bias bh[mi][i] and also the previous matrix product
      results. So we changed our mind and took the option of the best precision.           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   */           * probability in order to take into account the bias as a fraction of the way
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
   agelim=AGESUP;           * For stepm=1 the results are the same as for previous versions of Imach.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */           * For stepm > 1 the results are less biased than in previous versions. 
     /* nhstepm age range expressed in number of stepm */           */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          s1=s[mw[mi][i]][i];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          s2=s[mw[mi+1][i]][i];
     /* if (stepm >= YEARM) hstepm=1;*/          bbh=(double)bh[mi][i]/(double)stepm; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          /* bias bh is positive if real duration
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           * is higher than the multiple of stepm and negative otherwise.
     /* Computed by stepm unit matrices, product of hstepm matrices, stored           */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            if( s2 > nlstate){ 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            /* i.e. if s2 is a death state and if the date of death is known 
     for(i=1; i<=nlstate;i++)               then the contribution to the likelihood is the probability to 
       for(j=1; j<=nlstate;j++)               die between last step unit time and current  step unit time, 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){               which is also equal to probability to die before dh 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;               minus probability to die before dh-stepm . 
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/               In version up to 0.92 likelihood was computed
         }          as if date of death was unknown. Death was treated as any other
     fprintf(ficreseij,"%3.0f",age );          health state: the date of the interview describes the actual state
     for(i=1; i<=nlstate;i++)          and not the date of a change in health state. The former idea was
       for(j=1; j<=nlstate;j++){          to consider that at each interview the state was recorded
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);          (healthy, disable or death) and IMaCh was corrected; but when we
       }          introduced the exact date of death then we should have modified
     fprintf(ficreseij,"\n");          the contribution of an exact death to the likelihood. This new
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          contribution is smaller and very dependent of the step unit
   }          stepm. It is no more the probability to die between last interview
 }          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
 /************ Variance ******************/          probability to die within a month. Thanks to Chris
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          Jackson for correcting this bug.  Former versions increased
 {          mortality artificially. The bad side is that we add another loop
   /* Variance of health expectancies */          which slows down the processing. The difference can be up to 10%
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          lower mortality.
   double **newm;            */
   double **dnewm,**doldm;            lli=log(out[s1][s2] - savm[s1][s2]);
   int i, j, nhstepm, hstepm, h;  
   int k, cptcode;  
   double *xp;          } else if  (s2==-2) {
   double **gp, **gm;            for (j=1,survp=0. ; j<=nlstate; j++) 
   double ***gradg, ***trgradg;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double ***p3mat;            /*survp += out[s1][j]; */
   double age,agelim;            lli= log(survp);
   int theta;          }
           
    fprintf(ficresvij,"# Covariances of life expectancies\n");          else if  (s2==-4) { 
   fprintf(ficresvij,"# Age");            for (j=3,survp=0. ; j<=nlstate; j++)  
   for(i=1; i<=nlstate;i++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(j=1; j<=nlstate;j++)            lli= log(survp); 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          } 
   fprintf(ficresvij,"\n");  
           else if  (s2==-5) { 
   xp=vector(1,npar);            for (j=1,survp=0. ; j<=2; j++)  
   dnewm=matrix(1,nlstate,1,npar);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   doldm=matrix(1,nlstate,1,nlstate);            lli= log(survp); 
            } 
   hstepm=1*YEARM; /* Every year of age */          
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          else{
   agelim = AGESUP;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          } 
     if (stepm >= YEARM) hstepm=1;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          /*if(lli ==000.0)*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          ipmx +=1;
     gp=matrix(0,nhstepm,1,nlstate);          sw += weight[i];
     gm=matrix(0,nhstepm,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     for(theta=1; theta <=npar; theta++){      } /* end of individual */
       for(i=1; i<=npar; i++){ /* Computes gradient */    }  else if(mle==2){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(mi=1; mi<= wav[i]-1; mi++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
       if (popbased==1) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1; i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           prlim[i][i]=probs[(int)age][i][ij];            }
       }          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
       for(j=1; j<= nlstate; j++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(h=0; h<=nhstepm; h++){            for (kk=1; kk<=cptcovage;kk++) {
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                savm=oldm;
       for(i=1; i<=npar; i++) /* Computes gradient */            oldm=newm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          } /* end mult */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
       if (popbased==1) {          bbh=(double)bh[mi][i]/(double)stepm; 
         for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           prlim[i][i]=probs[(int)age][i][ij];          ipmx +=1;
       }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<= nlstate; j++){        } /* end of wave */
         for(h=0; h<=nhstepm; h++){      } /* end of individual */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    }  else if(mle==3){  /* exponential inter-extrapolation */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<= nlstate; j++)            for (j=1;j<=nlstate+ndeath;j++){
         for(h=0; h<=nhstepm; h++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
     } /* End theta */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     for(h=0; h<=nhstepm; h++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<=nlstate;j++)            }
         for(theta=1; theta <=npar; theta++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           trgradg[h][j][theta]=gradg[h][theta][j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     for(i=1;i<=nlstate;i++)            oldm=newm;
       for(j=1;j<=nlstate;j++)          } /* end mult */
         vareij[i][j][(int)age] =0.;        
     for(h=0;h<=nhstepm;h++){          s1=s[mw[mi][i]][i];
       for(k=0;k<=nhstepm;k++){          s2=s[mw[mi+1][i]][i];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          bbh=(double)bh[mi][i]/(double)stepm; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(i=1;i<=nlstate;i++)          ipmx +=1;
           for(j=1;j<=nlstate;j++)          sw += weight[i];
             vareij[i][j][(int)age] += doldm[i][j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     }      } /* end of individual */
     h=1;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     if (stepm >= YEARM) h=stepm/YEARM;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficresvij,"%.0f ",age );        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<=nlstate;j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresvij,"\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(gp,0,nhstepm,1,nlstate);            }
     free_matrix(gm,0,nhstepm,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            newm=savm;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (kk=1; kk<=cptcovage;kk++) {
   } /* End age */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   free_vector(xp,1,npar);          
   free_matrix(doldm,1,nlstate,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_matrix(dnewm,1,nlstate,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /************ Variance of prevlim ******************/        
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          s1=s[mw[mi][i]][i];
 {          s2=s[mw[mi+1][i]][i];
   /* Variance of prevalence limit */          if( s2 > nlstate){ 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            lli=log(out[s1][s2] - savm[s1][s2]);
   double **newm;          }else{
   double **dnewm,**doldm;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int i, j, nhstepm, hstepm;          }
   int k, cptcode;          ipmx +=1;
   double *xp;          sw += weight[i];
   double *gp, *gm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **gradg, **trgradg;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double age,agelim;        } /* end of wave */
   int theta;      } /* end of individual */
        }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficresvpl,"# Age");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficresvpl," %1d-%1d",i,i);          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficresvpl,"\n");            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   xp=vector(1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   dnewm=matrix(1,nlstate,1,npar);            }
   doldm=matrix(1,nlstate,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   hstepm=1*YEARM; /* Every year of age */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            for (kk=1; kk<=cptcovage;kk++) {
   agelim = AGESUP;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          
     if (stepm >= YEARM) hstepm=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gradg=matrix(1,npar,1,nlstate);            savm=oldm;
     gp=vector(1,nlstate);            oldm=newm;
     gm=vector(1,nlstate);          } /* end mult */
         
     for(theta=1; theta <=npar; theta++){          s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */          s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          ipmx +=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          sw += weight[i];
       for(i=1;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         gp[i] = prlim[i][i];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
            } /* end of wave */
       for(i=1; i<=npar; i++) /* Computes gradient */      } /* end of individual */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    } /* End of if */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(i=1;i<=nlstate;i++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         gm[i] = prlim[i][i];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
       for(i=1;i<=nlstate;i++)  }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */  /*************** log-likelihood *************/
   double funcone( double *x)
     trgradg =matrix(1,nlstate,1,npar);  {
     /* Same as likeli but slower because of a lot of printf and if */
     for(j=1; j<=nlstate;j++)    int i, ii, j, k, mi, d, kk;
       for(theta=1; theta <=npar; theta++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         trgradg[j][theta]=gradg[theta][j];    double **out;
     double lli; /* Individual log likelihood */
     for(i=1;i<=nlstate;i++)    double llt;
       varpl[i][(int)age] =0.;    int s1, s2;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double bbh, survp;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    /*extern weight */
     for(i=1;i<=nlstate;i++)    /* We are differentiating ll according to initial status */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
     fprintf(ficresvpl,"%.0f ",age );      printf(" %d\n",s[4][i]);
     for(i=1; i<=nlstate;i++)    */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    cov[1]=1.;
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_matrix(trgradg,1,nlstate,1,npar);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   } /* End age */      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
   free_vector(xp,1,npar);          for (j=1;j<=nlstate+ndeath;j++){
   free_matrix(doldm,1,nlstate,1,npar);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(dnewm,1,nlstate,1,nlstate);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
 }        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
 /************ Variance of one-step probabilities  ******************/          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)          for (kk=1; kk<=cptcovage;kk++) {
 {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, j;          }
   int k=0, cptcode;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **dnewm,**doldm;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *xp;          savm=oldm;
   double *gp, *gm;          oldm=newm;
   double **gradg, **trgradg;        } /* end mult */
   double age,agelim, cov[NCOVMAX];        
   int theta;        s1=s[mw[mi][i]][i];
   char fileresprob[FILENAMELENGTH];        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
   strcpy(fileresprob,"prob");        /* bias is positive if real duration
   strcat(fileresprob,fileres);         * is higher than the multiple of stepm and negative otherwise.
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {         */
     printf("Problem with resultfile: %s\n", fileresprob);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   }          lli=log(out[s1][s2] - savm[s1][s2]);
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        } else if  (s2==-2) {
            for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   xp=vector(1,npar);          lli= log(survp);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }else if (mle==1){
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
          } else if(mle==2){
   cov[1]=1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for (age=bage; age<=fage; age ++){        } else if(mle==3){  /* exponential inter-extrapolation */
     cov[2]=age;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     gradg=matrix(1,npar,1,9);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     trgradg=matrix(1,9,1,npar);          lli=log(out[s1][s2]); /* Original formula */
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        } else{  /* mle=0 back to 1 */
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              /*lli=log(out[s1][s2]); */ /* Original formula */
     for(theta=1; theta <=npar; theta++){        } /* End of if */
       for(i=1; i<=npar; i++)        ipmx +=1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        sw += weight[i];
              ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            if(globpr){
       k=0;          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for(i=1; i<= (nlstate+ndeath); i++){   %11.6f %11.6f %11.6f ", \
         for(j=1; j<=(nlstate+ndeath);j++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
            k=k+1;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           gp[k]=pmmij[i][j];          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         }            llt +=ll[k]*gipmx/gsw;
       }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
       for(i=1; i<=npar; i++)          fprintf(ficresilk," %10.6f\n", -llt);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
          } /* end of wave */
     } /* end of individual */
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       k=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(i=1; i<=(nlstate+ndeath); i++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(j=1; j<=(nlstate+ndeath);j++){    if(globpr==0){ /* First time we count the contributions and weights */
           k=k+1;      gipmx=ipmx;
           gm[k]=pmmij[i][j];      gsw=sw;
         }    }
       }    return -l;
        }
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
     }  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  {
       for(theta=1; theta <=npar; theta++)    /* This routine should help understanding what is done with 
       trgradg[j][theta]=gradg[theta][j];       the selection of individuals/waves and
         to check the exact contribution to the likelihood.
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);       Plotting could be done.
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);     */
     int k;
      pmij(pmmij,cov,ncovmodel,x,nlstate);  
     if(*globpri !=0){ /* Just counts and sums, no printings */
      k=0;      strcpy(fileresilk,"ilk"); 
      for(i=1; i<=(nlstate+ndeath); i++){      strcat(fileresilk,fileres);
        for(j=1; j<=(nlstate+ndeath);j++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
          k=k+1;        printf("Problem with resultfile: %s\n", fileresilk);
          gm[k]=pmmij[i][j];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         }      }
      }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
            fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      /*printf("\n%d ",(int)age);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      for(k=1; k<=nlstate; k++) 
                fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    }
      }*/  
     *fretone=(*funcone)(p);
   fprintf(ficresprob,"\n%d ",(int)age);    if(*globpri !=0){
       fclose(ficresilk);
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      fflush(fichtm); 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    } 
   }    return;
   }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  /*********** Maximum Likelihood Estimation ***************/
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
 }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
  free_vector(xp,1,npar);  {
 fclose(ficresprob);    int i,j, iter;
     double **xi;
 }    double fret;
     double fretone; /* Only one call to likelihood */
 /******************* Printing html file ***********/    /*  char filerespow[FILENAMELENGTH];*/
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, int lastpass, int stepm, int weightopt, char model[],int imx,int jmin, int jmax, double jmeanint,char optionfile[],char optionfilehtm[],char rfileres[] ){    xi=matrix(1,npar,1,npar);
   int jj1, k1, i1, cpt;    for (i=1;i<=npar;i++)
   FILE *fichtm;      for (j=1;j<=npar;j++)
   /*char optionfilehtm[FILENAMELENGTH];*/        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
   strcpy(optionfilehtm,optionfile);    strcpy(filerespow,"pow"); 
   strcat(optionfilehtm,".htm");    strcat(filerespow,fileres);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     printf("Problem with %s \n",optionfilehtm), exit(0);      printf("Problem with resultfile: %s\n", filerespow);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.71e </font> <hr size=\"2\" color=\"#EC5E5E\">    fprintf(ficrespow,"# Powell\n# iter -2*LL");
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
 Total number of observations=%d <br>        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>    fprintf(ficrespow,"\n");
 <hr  size=\"2\" color=\"#EC5E5E\">  
 <li>Outputs files<br><br>\n    powell(p,xi,npar,ftol,&iter,&fret,func);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    free_matrix(xi,1,npar,1,npar);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    fclose(ficrespow);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  }
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>  
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>  /**** Computes Hessian and covariance matrix ***/
         - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  {
      double  **a,**y,*x,pd;
 fprintf(fichtm," <li>Graphs</li><p>");    double **hess;
     int i, j,jk;
  m=cptcoveff;    int *indx;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
  jj1=0;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
  for(k1=1; k1<=m;k1++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
    for(i1=1; i1<=ncodemax[k1];i1++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
        jj1++;    double gompertz(double p[]);
        if (cptcovn > 0) {    hess=matrix(1,npar,1,npar);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
          for (cpt=1; cpt<=cptcoveff;cpt++)    printf("\nCalculation of the hessian matrix. Wait...\n");
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    for (i=1;i<=npar;i++){
        }      printf("%d",i);fflush(stdout);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      fprintf(ficlog,"%d",i);fflush(ficlog);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);         
        for(cpt=1; cpt<nlstate;cpt++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      /*  printf(" %f ",p[i]);
        }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     for(cpt=1; cpt<=nlstate;cpt++) {    }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    
 interval) in state (%d): v%s%d%d.gif <br>    for (i=1;i<=npar;i++) {
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for (j=1;j<=npar;j++)  {
      }        if (j>i) { 
      for(cpt=1; cpt<=nlstate;cpt++) {          printf(".%d%d",i,j);fflush(stdout);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          hess[i][j]=hessij(p,delti,i,j,func,npar);
      }          
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          hess[j][i]=hess[i][j];    
 health expectancies in states (1) and (2): e%s%d.gif<br>          /*printf(" %lf ",hess[i][j]);*/
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        }
 fprintf(fichtm,"\n</body>");      }
    }    }
    }    printf("\n");
 fclose(fichtm);    fprintf(ficlog,"\n");
 }  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 /******************* Gnuplot file **************/    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double agemin, double agemaxpar, double fage , char pathc[], double p[]){    
     a=matrix(1,npar,1,npar);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
   strcpy(optionfilegnuplot,optionfilefiname);    indx=ivector(1,npar);
   strcat(optionfilegnuplot,".plt");    for (i=1;i<=npar;i++)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     printf("Problem with file %s",optionfilegnuplot);    ludcmp(a,npar,indx,&pd);
   }  
     for (j=1;j<=npar;j++) {
 #ifdef windows      for (i=1;i<=npar;i++) x[i]=0;
     fprintf(ficgp,"cd \"%s\" \n",pathc);      x[j]=1;
 #endif      lubksb(a,npar,indx,x);
 m=pow(2,cptcoveff);      for (i=1;i<=npar;i++){ 
          matcov[i][j]=x[i];
  /* 1eme*/      }
   for (cpt=1; cpt<= nlstate ; cpt ++) {    }
    for (k1=1; k1<= m ; k1 ++) {  
     printf("\n#Hessian matrix#\n");
 #ifdef windows    fprintf(ficlog,"\n#Hessian matrix#\n");
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    for (i=1;i<=npar;i++) { 
 #endif      for (j=1;j<=npar;j++) { 
 #ifdef unix        printf("%.3e ",hess[i][j]);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);        fprintf(ficlog,"%.3e ",hess[i][j]);
 #endif      }
       printf("\n");
 for (i=1; i<= nlstate ; i ++) {      fprintf(ficlog,"\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    /* Recompute Inverse */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    for (i=1;i<=npar;i++)
     for (i=1; i<= nlstate ; i ++) {      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    ludcmp(a,npar,indx,&pd);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    /*  printf("\n#Hessian matrix recomputed#\n");
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {    for (j=1;j<=npar;j++) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for (i=1;i<=npar;i++) x[i]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      x[j]=1;
 }        lubksb(a,npar,indx,x);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      for (i=1;i<=npar;i++){ 
 #ifdef unix        y[i][j]=x[i];
 fprintf(ficgp,"\nset ter gif small size 400,300");        printf("%.3e ",y[i][j]);
 #endif        fprintf(ficlog,"%.3e ",y[i][j]);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      }
    }      printf("\n");
   }      fprintf(ficlog,"\n");
   /*2 eme*/    }
     */
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    free_matrix(a,1,npar,1,npar);
        free_matrix(y,1,npar,1,npar);
     for (i=1; i<= nlstate+1 ; i ++) {    free_vector(x,1,npar);
       k=2*i;    free_ivector(indx,1,npar);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    free_matrix(hess,1,npar,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  /*************** hessian matrix ****************/
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  {
       for (j=1; j<= nlstate+1 ; j ++) {    int i;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int l=1, lmax=20;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double k1,k2;
 }      double p2[MAXPARM+1]; /* identical to x */
       fprintf(ficgp,"\" t\"\" w l 0,");    double res;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for (j=1; j<= nlstate+1 ; j ++) {    double fx;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int k=0,kmax=10;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double l1;
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    fx=func(x);
       else fprintf(ficgp,"\" t\"\" w l 0,");    for (i=1;i<=npar;i++) p2[i]=x[i];
     }    for(l=0 ; l <=lmax; l++){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      l1=pow(10,l);
   }      delts=delt;
        for(k=1 ; k <kmax; k=k+1){
   /*3eme*/        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
   for (k1=1; k1<= m ; k1 ++) {        k1=func(p2)-fx;
     for (cpt=1; cpt<= nlstate ; cpt ++) {        p2[theta]=x[theta]-delt;
       k=2+nlstate*(cpt-1);        k2=func(p2)-fx;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);        /*res= (k1-2.0*fx+k2)/delt/delt; */
       for (i=1; i< nlstate ; i ++) {        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);        
       }  #ifdef DEBUGHESS
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     }  #endif
          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   /* CV preval stat */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for (k1=1; k1<= m ; k1 ++) {          k=kmax;
     for (cpt=1; cpt<nlstate ; cpt ++) {        }
       k=3;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemaxpar,fileres,k1,k+cpt+1,k+1);          k=kmax; l=lmax*10.;
         }
       for (i=1; i< nlstate ; i ++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         fprintf(ficgp,"+$%d",k+i+1);          delts=delt;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        }
            }
       l=3+(nlstate+ndeath)*cpt;    }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    delti[theta]=delts;
       for (i=1; i< nlstate ; i ++) {    return res; 
         l=3+(nlstate+ndeath)*cpt;    
         fprintf(ficgp,"+$%d",l+i+1);  }
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  {
     }    int i;
   }      int l=1, l1, lmax=20;
      double k1,k2,k3,k4,res,fx;
   /* proba elementaires */    double p2[MAXPARM+1];
    for(i=1,jk=1; i <=nlstate; i++){    int k;
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {    fx=func(x);
         for(j=1; j <=ncovmodel; j++){    for (k=1; k<=2; k++) {
              for (i=1;i<=npar;i++) p2[i]=x[i];
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      p2[thetai]=x[thetai]+delti[thetai]/k;
           jk++;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           fprintf(ficgp,"\n");      k1=func(p2)-fx;
         }    
       }      p2[thetai]=x[thetai]+delti[thetai]/k;
     }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     }      k2=func(p2)-fx;
     
     for(jk=1; jk <=m; jk++) {      p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemaxpar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
    i=1;      k3=func(p2)-fx;
    for(k2=1; k2<=nlstate; k2++) {    
      k3=i;      p2[thetai]=x[thetai]-delti[thetai]/k;
      for(k=1; k<=(nlstate+ndeath); k++) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        if (k != k2){      k4=func(p2)-fx;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 ij=1;  #ifdef DEBUG
         for(j=3; j <=ncovmodel; j++) {      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  #endif
             ij++;    }
           }    return res;
           else  }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         }  /************** Inverse of matrix **************/
           fprintf(ficgp,")/(1");  void ludcmp(double **a, int n, int *indx, double *d) 
          { 
         for(k1=1; k1 <=nlstate; k1++){      int i,imax,j,k; 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    double big,dum,sum,temp; 
 ij=1;    double *vv; 
           for(j=3; j <=ncovmodel; j++){   
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    vv=vector(1,n); 
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    *d=1.0; 
             ij++;    for (i=1;i<=n;i++) { 
           }      big=0.0; 
           else      for (j=1;j<=n;j++) 
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        if ((temp=fabs(a[i][j])) > big) big=temp; 
           }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           fprintf(ficgp,")");      vv[i]=1.0/big; 
         }    } 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    for (j=1;j<=n;j++) { 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      for (i=1;i<j;i++) { 
         i=i+ncovmodel;        sum=a[i][j]; 
        }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      }        a[i][j]=sum; 
    }      } 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      big=0.0; 
    }      for (i=j;i<=n;i++) { 
            sum=a[i][j]; 
   fclose(ficgp);        for (k=1;k<j;k++) 
 }  /* end gnuplot */          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
 /*************** Moving average **************/          big=dum; 
 void movingaverage(double agedeb, double fage,double agemin, double ***mobaverage){          imax=i; 
         } 
   int i, cpt, cptcod;      } 
     for (agedeb=agemin; agedeb<=fage; agedeb++)      if (j != imax) { 
       for (i=1; i<=nlstate;i++)        for (k=1;k<=n;k++) { 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          dum=a[imax][k]; 
           mobaverage[(int)agedeb][i][cptcod]=0.;          a[imax][k]=a[j][k]; 
              a[j][k]=dum; 
     for (agedeb=agemin+4; agedeb<=fage; agedeb++){        } 
       for (i=1; i<=nlstate;i++){        *d = -(*d); 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        vv[imax]=vv[j]; 
           for (cpt=0;cpt<=4;cpt++){      } 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      indx[j]=imax; 
           }      if (a[j][j] == 0.0) a[j][j]=TINY; 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      if (j != n) { 
         }        dum=1.0/(a[j][j]); 
       }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     }      } 
        } 
 }    free_vector(vv,1,n);  /* Doesn't work */
   ;
   } 
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  void lubksb(double **a, int n, int *indx, double b[]) 
    { 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    int i,ii=0,ip,j; 
   int *popage;    double sum; 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   
   double *popeffectif,*popcount;    for (i=1;i<=n;i++) { 
   double ***p3mat;      ip=indx[i]; 
   char fileresf[FILENAMELENGTH];      sum=b[ip]; 
       b[ip]=b[i]; 
  agelim=AGESUP;      if (ii) 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      b[i]=sum; 
      } 
      for (i=n;i>=1;i--) { 
   strcpy(fileresf,"f");      sum=b[i]; 
   strcat(fileresf,fileres);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   if((ficresf=fopen(fileresf,"w"))==NULL) {      b[i]=sum/a[i][i]; 
     printf("Problem with forecast resultfile: %s\n", fileresf);    } 
   }  } 
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
   void pstamp(FILE *fichier)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  {
     fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   if (mobilav==1) {  }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, agemin, mobaverage);  /************ Frequencies ********************/
   }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    
   if (stepm<=12) stepsize=1;    int i, m, jk, k1,i1, j1, bool, z1,j;
      int first;
   agelim=AGESUP;    double ***freq; /* Frequencies */
      double *pp, **prop;
   hstepm=1;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   hstepm=hstepm/stepm;    char fileresp[FILENAMELENGTH];
   yp1=modf(dateintmean,&yp);    
   anprojmean=yp;    pp=vector(1,nlstate);
   yp2=modf((yp1*12),&yp);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   mprojmean=yp;    strcpy(fileresp,"p");
   yp1=modf((yp2*30.5),&yp);    strcat(fileresp,fileres);
   jprojmean=yp;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   if(jprojmean==0) jprojmean=1;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   if(mprojmean==0) jprojmean=1;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        exit(0);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    }
      freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   for(cptcov=1;cptcov<=i2;cptcov++){    j1=0;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    
       k=k+1;    j=cptcoveff;
       fprintf(ficresf,"\n#******");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    first=1;
       }  
       fprintf(ficresf,"******\n");    for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
       fprintf(ficresf,"# StartingAge FinalAge");      for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        j1++;
              /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                scanf("%d", i);*/
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        for (i=-5; i<=nlstate+ndeath; i++)  
         fprintf(ficresf,"\n");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);              for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){        
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for (i=1; i<=nlstate; i++)  
           nhstepm = nhstepm/hstepm;          for(m=iagemin; m <= iagemax+3; m++)
                      prop[i][m]=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
           oldm=oldms;savm=savms;        dateintsum=0;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          k2cpt=0;
                for (i=1; i<=imx; i++) {
           for (h=0; h<=nhstepm; h++){          bool=1;
             if (h==(int) (calagedate+YEARM*cpt)) {          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
               fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);            for (z1=1; z1<=cptcoveff; z1++)       
             }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
             for(j=1; j<=nlstate+ndeath;j++) {                bool=0;
               kk1=0.;kk2=0;                printf("bool=%d i=%d, z1=%d, i1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
               for(i=1; i<=nlstate;i++) {                                bool,i,z1, i1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                 if (mobilav==1)                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
                 else {              } 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          }
                 }   
                          if (bool==1){
               }            for(m=firstpass; m<=lastpass; m++){
               if (h==(int)(calagedate+12*cpt)){              k2=anint[m][i]+(mint[m][i]/12.);
                 fprintf(ficresf," %.3f", kk1);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                                        if(agev[m][i]==0) agev[m][i]=iagemax+1;
               }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           }                if (m<lastpass) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       }                }
     }                
   }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                          dateintsum=dateintsum+k2;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  k2cpt++;
                 }
   fclose(ficresf);                /*}*/
 }            }
 /************** Forecasting ******************/          }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        }
           
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   int *popage;        pstamp(ficresp);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        if  (cptcovn>0) {
   double *popeffectif,*popcount;          fprintf(ficresp, "\n#********** Variable "); 
   double ***p3mat,***tabpop,***tabpopprev;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   char filerespop[FILENAMELENGTH];          fprintf(ficresp, "**********\n#");
           fprintf(ficlog, "\n#********** Variable "); 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficlog, "**********\n#");
   agelim=AGESUP;        }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        for(i=1; i<=nlstate;i++) 
            fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        fprintf(ficresp, "\n");
          
          for(i=iagemin; i <= iagemax+3; i++){
   strcpy(filerespop,"pop");          if(i==iagemax+3){
   strcat(filerespop,fileres);            fprintf(ficlog,"Total");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          }else{
     printf("Problem with forecast resultfile: %s\n", filerespop);            if(first==1){
   }              first=0;
   printf("Computing forecasting: result on file '%s' \n", filerespop);              printf("See log file for details...\n");
             }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            fprintf(ficlog,"Age %d", i);
           }
   if (mobilav==1) {          for(jk=1; jk <=nlstate ; jk++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     movingaverage(agedeb, fage, agemin, mobaverage);              pp[jk] += freq[jk][m][i]; 
   }          }
           for(jk=1; jk <=nlstate ; jk++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;            for(m=-1, pos=0; m <=0 ; m++)
   if (stepm<=12) stepsize=1;              pos += freq[jk][m][i];
              if(pp[jk]>=1.e-10){
   agelim=AGESUP;              if(first==1){
                  printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   hstepm=1;              }
   hstepm=hstepm/stepm;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
              }else{
   if (popforecast==1) {              if(first==1)
     if((ficpop=fopen(popfile,"r"))==NULL) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       printf("Problem with population file : %s\n",popfile);exit(0);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }            }
     popage=ivector(0,AGESUP);          }
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);          for(jk=1; jk <=nlstate ; jk++){
                for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     i=1;                pp[jk] += freq[jk][m][i];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          }       
              for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     imx=i;            pos += pp[jk];
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            posprop += prop[jk][i];
   }          }
           for(jk=1; jk <=nlstate ; jk++){
   for(cptcov=1;cptcov<=i2;cptcov++){            if(pos>=1.e-5){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              if(first==1)
       k=k+1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficrespop,"\n#******");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(j=1;j<=cptcoveff;j++) {            }else{
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficrespop,"******\n");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficrespop,"# Age");            }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            if( i <= iagemax){
       if (popforecast==1)  fprintf(ficrespop," [Population]");              if(pos>=1.e-5){
                      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for (cpt=0; cpt<=0;cpt++) {                /*probs[i][jk][j1]= pp[jk]/pos;*/
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                      }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){              else
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           nhstepm = nhstepm/hstepm;            }
                    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
           oldm=oldms;savm=savms;          for(jk=-1; jk <=nlstate+ndeath; jk++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(m=-1; m <=nlstate+ndeath; m++)
                      if(freq[jk][m][i] !=0 ) {
           for (h=0; h<=nhstepm; h++){              if(first==1)
             if (h==(int) (calagedate+YEARM*cpt)) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             }              }
             for(j=1; j<=nlstate+ndeath;j++) {          if(i <= iagemax)
               kk1=0.;kk2=0;            fprintf(ficresp,"\n");
               for(i=1; i<=nlstate;i++) {                        if(first==1)
                 if (mobilav==1)            printf("Others in log...\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          fprintf(ficlog,"\n");
                 else {        }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      }
                 }    }
               }    dateintmean=dateintsum/k2cpt; 
               if (h==(int)(calagedate+12*cpt)){   
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    fclose(ficresp);
                   /*fprintf(ficrespop," %.3f", kk1);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    free_vector(pp,1,nlstate);
               }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             }    /* End of Freq */
             for(i=1; i<=nlstate;i++){  }
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){  /************ Prevalence ********************/
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                 }  {  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             }       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);   
           }    int i, m, jk, k1, i1, j1, bool, z1,j;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***freq; /* Frequencies */
         }    double *pp, **prop;
       }    double pos,posprop; 
      double  y2; /* in fractional years */
   /******/    int iagemin, iagemax;
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    iagemin= (int) agemin;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      iagemax= (int) agemax;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){    /*pp=vector(1,nlstate);*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           nhstepm = nhstepm/hstepm;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
              j1=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    j=cptcoveff;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if (cptcovn<1) {j=1;ncodemax[1]=1;}
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {    for(k1=1; k1<=j;k1++){
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for(i1=1; i1<=ncodemax[k1];i1++){
             }        j1++;
             for(j=1; j<=nlstate+ndeath;j++) {        
               kk1=0.;kk2=0;        for (i=1; i<=nlstate; i++)  
               for(i=1; i<=nlstate;i++) {                        for(m=iagemin; m <= iagemax+3; m++)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                prop[i][m]=0.0;
               }       
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        for (i=1; i<=imx; i++) { /* Each individual */
             }          bool=1;
           }          if  (cptcovn>0) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (z1=1; z1<=cptcoveff; z1++) 
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       }                bool=0;
    }          } 
   }          if (bool==1) { 
              for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   if (popforecast==1) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     free_ivector(popage,0,AGESUP);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     free_vector(popeffectif,0,AGESUP);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     free_vector(popcount,0,AGESUP);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  prop[s[m][i]][iagemax+3] += weight[i]; 
   fclose(ficrespop);                } 
 }              }
             } /* end selection of waves */
 /***********************************************/          }
 /**************** Main Program *****************/        }
 /***********************************************/        for(i=iagemin; i <= iagemax+3; i++){  
           
 int main(int argc, char *argv[])          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 {            posprop += prop[jk][i]; 
           } 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;          for(jk=1; jk <=nlstate ; jk++){     
   double agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
   double fret;                probs[i][jk][j1]= prop[jk][i]/posprop;
   double **xi,tmp,delta;              } else
                 printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
   double dum; /* Dummy variable */            } 
   double ***p3mat;          }/* end jk */ 
   int *indx;        }/* end i */ 
   char line[MAXLINE], linepar[MAXLINE];      } /* end i1 */
   char title[MAXLINE];    } /* end k1 */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      /*free_vector(pp,1,nlstate);*/
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];  /************* Waves Concatenation ***************/
   char popfile[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   int firstobs=1, lastobs=10;  {
   int sdeb, sfin; /* Status at beginning and end */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   int c,  h , cpt,l;       Death is a valid wave (if date is known).
   int ju,jl, mi;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;       and mw[mi+1][i]. dh depends on stepm.
   int mobilav=0,popforecast=0;       */
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   double bage, fage, age, agelim, agebase;       double sum=0., jmean=0.;*/
   double ftolpl=FTOL;    int first;
   double **prlim;    int j, k=0,jk, ju, jl;
   double *severity;    double sum=0.;
   double ***param; /* Matrix of parameters */    first=0;
   double  *p;    jmin=1e+5;
   double **matcov; /* Matrix of covariance */    jmax=-1;
   double ***delti3; /* Scale */    jmean=0.;
   double *delti; /* Scale */    for(i=1; i<=imx; i++){
   double ***eij, ***vareij;      mi=0;
   double **varpl; /* Variances of prevalence limits by age */      m=firstpass;
   double *epj, vepp;      while(s[m][i] <= nlstate){
   double kk1, kk2;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          mw[++mi][i]=m;
          if(m >=lastpass)
           break;
   char version[80]="Imach version 0.71e, March 2002, INED-EUROREVES ";        else
   char *alph[]={"a","a","b","c","d","e"}, str[4];          m++;
       }/* end while */
       if (s[m][i] > nlstate){
   char z[1]="c", occ;        mi++;     /* Death is another wave */
 #include <sys/time.h>        /* if(mi==0)  never been interviewed correctly before death */
 #include <time.h>           /* Only death is a correct wave */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        mw[mi][i]=m;
        }
   /* long total_usecs;  
   struct timeval start_time, end_time;      wav[i]=mi;
        if(mi==0){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        nbwarn++;
         if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   printf("\n%s",version);          first=1;
   if(argc <=1){        }
     printf("\nEnter the parameter file name: ");        if(first==1){
     scanf("%s",pathtot);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   }        }
   else{      } /* end mi==0 */
     strcpy(pathtot,argv[1]);    } /* End individuals */
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    for(i=1; i<=imx; i++){
   /*cygwin_split_path(pathtot,path,optionfile);      for(mi=1; mi<wav[i];mi++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        if (stepm <=0)
   /* cutv(path,optionfile,pathtot,'\\');*/          dh[mi][i]=1;
         else{
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            if (agedc[i] < 2*AGESUP) {
   chdir(path);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   replace(pathc,path);              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
 /*-------- arguments in the command line --------*/                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   strcpy(fileres,"r");                j=1; /* Temporary Dangerous patch */
   strcat(fileres, optionfilefiname);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   strcat(fileres,".txt");    /* Other files have txt extension */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   /*---------arguments file --------*/              }
               k=k+1;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {              if (j >= jmax){
     printf("Problem with optionfile %s\n",optionfile);                jmax=j;
     goto end;                ijmax=i;
   }              }
               if (j <= jmin){
   strcpy(filereso,"o");                jmin=j;
   strcat(filereso,fileres);                ijmin=i;
   if((ficparo=fopen(filereso,"w"))==NULL) {              }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;              sum=sum+j;
   }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   /* Reads comments: lines beginning with '#' */            }
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          else{
     fgets(line, MAXLINE, ficpar);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     puts(line);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     fputs(line,ficparo);  
   }            k=k+1;
   ungetc(c,ficpar);            if (j >= jmax) {
               jmax=j;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);              ijmax=i;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);            }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);            else if (j <= jmin){
 while((c=getc(ficpar))=='#' && c!= EOF){              jmin=j;
     ungetc(c,ficpar);              ijmin=i;
     fgets(line, MAXLINE, ficpar);            }
     puts(line);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     fputs(line,ficparo);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   }            if(j<0){
   ungetc(c,ficpar);              nberr++;
                printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   covar=matrix(0,NCOVMAX,1,n);            }
   cptcovn=0;            sum=sum+j;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          }
           jk= j/stepm;
   ncovmodel=2+cptcovn;          jl= j -jk*stepm;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          ju= j -(jk+1)*stepm;
            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   /* Read guess parameters */            if(jl==0){
   /* Reads comments: lines beginning with '#' */              dh[mi][i]=jk;
   while((c=getc(ficpar))=='#' && c!= EOF){              bh[mi][i]=0;
     ungetc(c,ficpar);            }else{ /* We want a negative bias in order to only have interpolation ie
     fgets(line, MAXLINE, ficpar);                    * to avoid the price of an extra matrix product in likelihood */
     puts(line);              dh[mi][i]=jk+1;
     fputs(line,ficparo);              bh[mi][i]=ju;
   }            }
   ungetc(c,ficpar);          }else{
              if(jl <= -ju){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              dh[mi][i]=jk;
     for(i=1; i <=nlstate; i++)              bh[mi][i]=jl;       /* bias is positive if real duration
     for(j=1; j <=nlstate+ndeath-1; j++){                                   * is higher than the multiple of stepm and negative otherwise.
       fscanf(ficpar,"%1d%1d",&i1,&j1);                                   */
       fprintf(ficparo,"%1d%1d",i1,j1);            }
       printf("%1d%1d",i,j);            else{
       for(k=1; k<=ncovmodel;k++){              dh[mi][i]=jk+1;
         fscanf(ficpar," %lf",&param[i][j][k]);              bh[mi][i]=ju;
         printf(" %lf",param[i][j][k]);            }
         fprintf(ficparo," %lf",param[i][j][k]);            if(dh[mi][i]==0){
       }              dh[mi][i]=1; /* At least one step */
       fscanf(ficpar,"\n");              bh[mi][i]=ju; /* At least one step */
       printf("\n");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficparo,"\n");            }
     }          } /* end if mle */
          }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      } /* end wave */
     }
   p=param[1][1];    jmean=sum/k;
      printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   /* Reads comments: lines beginning with '#' */    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   while((c=getc(ficpar))=='#' && c!= EOF){   }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /*********** Tricode ****************************/
     puts(line);  void tricode(int *Tvar, int **nbcode, int imx)
     fputs(line,ficparo);  {
   }    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   ungetc(c,ficpar);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     /* Boring subroutine which should only output nbcode[Tvar[j]][k]
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /* nbcode[Tvar[j][1]= 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    */
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int modmaxcovj=0; /* Modality max of covariates j */
       printf("%1d%1d",i,j);    cptcoveff=0; 
       fprintf(ficparo,"%1d%1d",i1,j1);   
       for(k=1; k<=ncovmodel;k++){    for (k=0; k < maxncov; k++) Ndum[k]=0;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
       }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
       fscanf(ficpar,"\n");                                 modality of this covariate Vj*/ 
       printf("\n");        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
       fprintf(ficparo,"\n");                                        modality of the nth covariate of individual i. */
     }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   delti=delti3[1][1];        if (ij > modmaxcovj) modmaxcovj=ij; 
          /* getting the maximum value of the modality of the covariate
   /* Reads comments: lines beginning with '#' */           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   while((c=getc(ficpar))=='#' && c!= EOF){           female is 1, then modmaxcovj=1.*/
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     puts(line);      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
     fputs(line,ficparo);        if( Ndum[i] != 0 )
   }          ncodemax[j]++; 
   ungetc(c,ficpar);        /* Number of modalities of the j th covariate. In fact
             ncodemax[j]=2 (dichotom. variables only) but it could be more for
   matcov=matrix(1,npar,1,npar);           historical reasons */
   for(i=1; i <=npar; i++){      } /* Ndum[-1] number of undefined modalities */
     fscanf(ficpar,"%s",&str);  
     printf("%s",str);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     fprintf(ficparo,"%s",str);      ij=1; 
     for(j=1; j <=i; j++){      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
       fscanf(ficpar," %le",&matcov[i][j]);        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
       printf(" %.5le",matcov[i][j]);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
       fprintf(ficparo," %.5le",matcov[i][j]);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
     }                                       k is a modality. If we have model=V1+V1*sex 
     fscanf(ficpar,"\n");                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     printf("\n");            ij++;
     fprintf(ficparo,"\n");          }
   }          if (ij > ncodemax[j]) break; 
   for(i=1; i <=npar; i++)        }  /* end of loop on */
     for(j=i+1;j<=npar;j++)      } /* end of loop on modality */ 
       matcov[i][j]=matcov[j][i];    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
        
   printf("\n");    for (k=0; k< maxncov; k++) Ndum[k]=0;
     
     for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
     /*-------- Rewriting paramater file ----------*/     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      strcpy(rfileres,"r");    /* "Rparameterfile */     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/     Ndum[ij]++;
      strcat(rfileres,".");    /* */   }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {   ij=1;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
     }     if((Ndum[i]!=0) && (i<=ncovcol)){
     fprintf(ficres,"#%s\n",version);       Tvaraff[ij]=i; /*For printing */
           ij++;
     /*-------- data file ----------*/     }
     if((fic=fopen(datafile,"r"))==NULL)    {   }
       printf("Problem with datafile: %s\n", datafile);goto end;   ij--;
     }   cptcoveff=ij; /*Number of total covariates*/
   }
     n= lastobs;  
     severity = vector(1,maxwav);  /*********** Health Expectancies ****************/
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     moisnais=vector(1,n);  
     annais=vector(1,n);  {
     moisdc=vector(1,n);    /* Health expectancies, no variances */
     andc=vector(1,n);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     agedc=vector(1,n);    int nhstepma, nstepma; /* Decreasing with age */
     cod=ivector(1,n);    double age, agelim, hf;
     weight=vector(1,n);    double ***p3mat;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    double eip;
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);    pstamp(ficreseij);
     s=imatrix(1,maxwav+1,1,n);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     adl=imatrix(1,maxwav+1,1,n);        fprintf(ficreseij,"# Age");
     tab=ivector(1,NCOVMAX);    for(i=1; i<=nlstate;i++){
     ncodemax=ivector(1,8);      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
     i=1;      }
     while (fgets(line, MAXLINE, fic) != NULL)    {      fprintf(ficreseij," e%1d. ",i);
       if ((i >= firstobs) && (i <=lastobs)) {    }
            fprintf(ficreseij,"\n");
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    
           strcpy(line,stra);    if(estepm < stepm){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      printf ("Problem %d lower than %d\n",estepm, stepm);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
         }    else  hstepm=estepm;   
            /* We compute the life expectancy from trapezoids spaced every estepm months
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);     * This is mainly to measure the difference between two models: for example
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);     * progression in between and thus overestimating or underestimating according
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);     * to compare the new estimate of Life expectancy with the same linear 
         for (j=ncov;j>=1;j--){     * hypothesis. A more precise result, taking into account a more precise
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);     * curvature will be obtained if estepm is as small as stepm. */
         }  
         num[i]=atol(stra);    /* For example we decided to compute the life expectancy with the smallest unit */
            /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){       nhstepm is the number of hstepm from age to agelim 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
         i=i+1;       and note for a fixed period like estepm months */
       }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
     /* printf("ii=%d", ij);       means that if the survival funtion is printed only each two years of age and if
        scanf("%d",i);*/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   imx=i-1; /* Number of individuals */       results. So we changed our mind and took the option of the best precision.
     */
   /* for (i=1; i<=imx; i++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    agelim=AGESUP;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    /* If stepm=6 months */
     }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     for (i=1; i<=imx; i++)      
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /* Calculation of the number of parameter from char model*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   Tvar=ivector(1,15);    /* if (stepm >= YEARM) hstepm=1;*/
   Tprod=ivector(1,15);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   Tvaraff=ivector(1,15);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);          for (age=bage; age<=fage; age ++){ 
          nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   if (strlen(model) >1){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     j=0, j1=0, k1=1, k2=1;      /* if (stepm >= YEARM) hstepm=1;*/
     j=nbocc(model,'+');      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     j1=nbocc(model,'*');  
     cptcovn=j+1;      /* If stepm=6 months */
     cptcovprod=j1;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
          
     strcpy(modelsav,model);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      
       printf("Error. Non available option model=%s ",model);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       goto end;      
     }      printf("%d|",(int)age);fflush(stdout);
          fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for(i=(j+1); i>=1;i--){      
       cutv(stra,strb,modelsav,'+');      /* Computing expectancies */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      for(i=1; i<=nlstate;i++)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        for(j=1; j<=nlstate;j++)
       /*scanf("%d",i);*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       if (strchr(strb,'*')) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         cutv(strd,strc,strb,'*');            
         if (strcmp(strc,"age")==0) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           cptcovprod--;  
           cutv(strb,stre,strd,'V');          }
           Tvar[i]=atoi(stre);  
           cptcovage++;      fprintf(ficreseij,"%3.0f",age );
             Tage[cptcovage]=i;      for(i=1; i<=nlstate;i++){
             /*printf("stre=%s ", stre);*/        eip=0;
         }        for(j=1; j<=nlstate;j++){
         else if (strcmp(strd,"age")==0) {          eip +=eij[i][j][(int)age];
           cptcovprod--;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           cutv(strb,stre,strc,'V');        }
           Tvar[i]=atoi(stre);        fprintf(ficreseij,"%9.4f", eip );
           cptcovage++;      }
           Tage[cptcovage]=i;      fprintf(ficreseij,"\n");
         }      
         else {    }
           cutv(strb,stre,strc,'V');    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tvar[i]=ncov+k1;    printf("\n");
           cutv(strb,strc,strd,'V');    fprintf(ficlog,"\n");
           Tprod[k1]=i;    
           Tvard[k1][1]=atoi(strc);  }
           Tvard[k1][2]=atoi(stre);  
           Tvar[cptcovn+k2]=Tvard[k1][1];  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)  {
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    /* Covariances of health expectancies eij and of total life expectancies according
           k1++;     to initial status i, ei. .
           k2=k2+2;    */
         }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       }    int nhstepma, nstepma; /* Decreasing with age */
       else {    double age, agelim, hf;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    double ***p3matp, ***p3matm, ***varhe;
        /*  scanf("%d",i);*/    double **dnewm,**doldm;
       cutv(strd,strc,strb,'V');    double *xp, *xm;
       Tvar[i]=atoi(strc);    double **gp, **gm;
       }    double ***gradg, ***trgradg;
       strcpy(modelsav,stra);      int theta;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/    double eip, vip;
     }  
 }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      xp=vector(1,npar);
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    xm=vector(1,npar);
   printf("cptcovprod=%d ", cptcovprod);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   scanf("%d ",i);*/    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     fclose(fic);    
     pstamp(ficresstdeij);
     /*  if(mle==1){*/    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     if (weightopt != 1) { /* Maximisation without weights*/    fprintf(ficresstdeij,"# Age");
       for(i=1;i<=n;i++) weight[i]=1.0;    for(i=1; i<=nlstate;i++){
     }      for(j=1; j<=nlstate;j++)
     /*-calculation of age at interview from date of interview and age at death -*/        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     agev=matrix(1,maxwav,1,imx);      fprintf(ficresstdeij," e%1d. ",i);
     }
    for (i=1; i<=imx; i++)    fprintf(ficresstdeij,"\n");
      for(m=2; (m<= maxwav); m++)  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    pstamp(ficrescveij);
          anint[m][i]=9999;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
          s[m][i]=-1;    fprintf(ficrescveij,"# Age");
        }    for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
     for (i=1; i<=imx; i++)  {        cptj= (j-1)*nlstate+i;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        for(i2=1; i2<=nlstate;i2++)
       for(m=1; (m<= maxwav); m++){          for(j2=1; j2<=nlstate;j2++){
         if(s[m][i] >0){            cptj2= (j2-1)*nlstate+i2;
           if (s[m][i] == nlstate+1) {            if(cptj2 <= cptj)
             if(agedc[i]>0)              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
               if(moisdc[i]!=99 && andc[i]!=9999)          }
               agev[m][i]=agedc[i];      }
             else {    fprintf(ficrescveij,"\n");
               if (andc[i]!=9999){    
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    if(estepm < stepm){
               agev[m][i]=-1;      printf ("Problem %d lower than %d\n",estepm, stepm);
               }    }
             }    else  hstepm=estepm;   
           }    /* We compute the life expectancy from trapezoids spaced every estepm months
           else if(s[m][i] !=9){ /* Should no more exist */     * This is mainly to measure the difference between two models: for example
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);     * if stepm=24 months pijx are given only every 2 years and by summing them
             if(mint[m][i]==99 || anint[m][i]==9999)     * we are calculating an estimate of the Life Expectancy assuming a linear 
               agev[m][i]=1;     * progression in between and thus overestimating or underestimating according
             else if(agev[m][i] <agemin){     * to the curvature of the survival function. If, for the same date, we 
               agemin=agev[m][i];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/     * to compare the new estimate of Life expectancy with the same linear 
             }     * hypothesis. A more precise result, taking into account a more precise
             else if(agev[m][i] >agemax){     * curvature will be obtained if estepm is as small as stepm. */
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    /* For example we decided to compute the life expectancy with the smallest unit */
             }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             /*agev[m][i]=anint[m][i]-annais[i];*/       nhstepm is the number of hstepm from age to agelim 
             /*   agev[m][i] = age[i]+2*m;*/       nstepm is the number of stepm from age to agelin. 
           }       Look at hpijx to understand the reason of that which relies in memory size
           else { /* =9 */       and note for a fixed period like estepm months */
             agev[m][i]=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             s[m][i]=-1;       survival function given by stepm (the optimization length). Unfortunately it
           }       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         else /*= 0 Unknown */       results. So we changed our mind and took the option of the best precision.
           agev[m][i]=1;    */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      
     }    /* If stepm=6 months */
     for (i=1; i<=imx; i++)  {    /* nhstepm age range expressed in number of stepm */
       for(m=1; (m<= maxwav); m++){    agelim=AGESUP;
         if (s[m][i] > (nlstate+ndeath)) {    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
           printf("Error: Wrong value in nlstate or ndeath\n");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           goto end;    /* if (stepm >= YEARM) hstepm=1;*/
         }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }    
     }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     free_vector(severity,1,maxwav);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     free_imatrix(outcome,1,maxwav+1,1,n);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);    for (age=bage; age<=fage; age ++){ 
     /* free_matrix(mint,1,maxwav,1,n);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        free_matrix(anint,1,maxwav,1,n);*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_vector(moisdc,1,n);      /* if (stepm >= YEARM) hstepm=1;*/
     free_vector(andc,1,n);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
          /* If stepm=6 months */
     wav=ivector(1,imx);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     dh=imatrix(1,lastpass-firstpass+1,1,imx);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       Tcode=ivector(1,100);      for(theta=1; theta <=npar; theta++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        for(i=1; i<=npar; i++){ 
       ncodemax[1]=1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
              }
    codtab=imatrix(1,100,1,10);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
    h=0;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
    m=pow(2,cptcoveff);    
          for(j=1; j<= nlstate; j++){
    for(k=1;k<=cptcoveff; k++){          for(i=1; i<=nlstate; i++){
      for(i=1; i <=(m/pow(2,k));i++){            for(h=0; h<=nhstepm-1; h++){
        for(j=1; j <= ncodemax[k]; j++){              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
            h++;            }
            if (h>m) h=1;codtab[h][k]=j;          }
          }        }
        }       
      }        for(ij=1; ij<= nlstate*nlstate; ij++)
    }          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
    /*for(i=1; i <=m ;i++){      }/* End theta */
      for(k=1; k <=cptcovn; k++){      
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);      
      }      for(h=0; h<=nhstepm-1; h++)
      printf("\n");        for(j=1; j<=nlstate*nlstate;j++)
    }          for(theta=1; theta <=npar; theta++)
    scanf("%d",i);*/            trgradg[h][j][theta]=gradg[h][theta][j];
          
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
              varhe[ij][ji][(int)age] =0.;
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       printf("%d|",(int)age);fflush(stdout);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       for(h=0;h<=nhstepm-1;h++){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(k=0;k<=nhstepm-1;k++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     /* For Powell, parameters are in a vector p[] starting at p[1]          for(ij=1;ij<=nlstate*nlstate;ij++)
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            for(ji=1;ji<=nlstate*nlstate;ji++)
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
     if(mle==1){      }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }      /* Computing expectancies */
          hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     /*--------- results files --------------*/      for(i=1; i<=nlstate;i++)
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, weightopt,model);        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
    jk=1;            
    fprintf(ficres,"# Parameters\n");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    printf("# Parameters\n");  
    for(i=1,jk=1; i <=nlstate; i++){          }
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)      fprintf(ficresstdeij,"%3.0f",age );
          {      for(i=1; i<=nlstate;i++){
            printf("%d%d ",i,k);        eip=0.;
            fprintf(ficres,"%1d%1d ",i,k);        vip=0.;
            for(j=1; j <=ncovmodel; j++){        for(j=1; j<=nlstate;j++){
              printf("%f ",p[jk]);          eip += eij[i][j][(int)age];
              fprintf(ficres,"%f ",p[jk]);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
              jk++;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
            }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
            printf("\n");        }
            fprintf(ficres,"\n");        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
          }      }
      }      fprintf(ficresstdeij,"\n");
    }  
  if(mle==1){      fprintf(ficrescveij,"%3.0f",age );
     /* Computing hessian and covariance matrix */      for(i=1; i<=nlstate;i++)
     ftolhess=ftol; /* Usually correct */        for(j=1; j<=nlstate;j++){
     hesscov(matcov, p, npar, delti, ftolhess, func);          cptj= (j-1)*nlstate+i;
  }          for(i2=1; i2<=nlstate;i2++)
     fprintf(ficres,"# Scales\n");            for(j2=1; j2<=nlstate;j2++){
     printf("# Scales\n");              cptj2= (j2-1)*nlstate+i2;
      for(i=1,jk=1; i <=nlstate; i++){              if(cptj2 <= cptj)
       for(j=1; j <=nlstate+ndeath; j++){                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
         if (j!=i) {            }
           fprintf(ficres,"%1d%1d",i,j);        }
           printf("%1d%1d",i,j);      fprintf(ficrescveij,"\n");
           for(k=1; k<=ncovmodel;k++){     
             printf(" %.5e",delti[jk]);    }
             fprintf(ficres," %.5e",delti[jk]);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
             jk++;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           }    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           printf("\n");    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           fprintf(ficres,"\n");    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    printf("\n");
      }    fprintf(ficlog,"\n");
      
     k=1;    free_vector(xm,1,npar);
     fprintf(ficres,"# Covariance\n");    free_vector(xp,1,npar);
     printf("# Covariance\n");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     for(i=1;i<=npar;i++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       /*  if (k>nlstate) k=1;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       i1=(i-1)/(ncovmodel*nlstate)+1;  }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/  /************ Variance ******************/
       fprintf(ficres,"%3d",i);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       printf("%3d",i);  {
       for(j=1; j<=i;j++){    /* Variance of health expectancies */
         fprintf(ficres," %.5e",matcov[i][j]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         printf(" %.5e",matcov[i][j]);    /* double **newm;*/
       }    double **dnewm,**doldm;
       fprintf(ficres,"\n");    double **dnewmp,**doldmp;
       printf("\n");    int i, j, nhstepm, hstepm, h, nstepm ;
       k++;    int k, cptcode;
     }    double *xp;
        double **gp, **gm;  /* for var eij */
     while((c=getc(ficpar))=='#' && c!= EOF){    double ***gradg, ***trgradg; /*for var eij */
       ungetc(c,ficpar);    double **gradgp, **trgradgp; /* for var p point j */
       fgets(line, MAXLINE, ficpar);    double *gpp, *gmp; /* for var p point j */
       puts(line);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       fputs(line,ficparo);    double ***p3mat;
     }    double age,agelim, hf;
     ungetc(c,ficpar);    double ***mobaverage;
      int theta;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemaxpar, &bage, &fage);    char digit[4];
        char digitp[25];
     if (fage <= 2) {  
       bage = agemin;    char fileresprobmorprev[FILENAMELENGTH];
       fage = agemaxpar;  
     }    if(popbased==1){
          if(mobilav!=0)
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        strcpy(digitp,"-populbased-mobilav-");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);      else strcpy(digitp,"-populbased-nomobil-");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);    }
      else 
     while((c=getc(ficpar))=='#' && c!= EOF){      strcpy(digitp,"-stablbased-");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    if (mobilav!=0) {
     puts(line);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fputs(line,ficparo);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   ungetc(c,ficpar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    strcpy(fileresprobmorprev,"prmorprev"); 
          sprintf(digit,"%-d",ij);
   while((c=getc(ficpar))=='#' && c!= EOF){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     ungetc(c,ficpar);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     puts(line);    strcat(fileresprobmorprev,fileres);
     fputs(line,ficparo);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;   
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
   fscanf(ficpar,"pop_based=%d\n",&popbased);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   fprintf(ficparo,"pop_based=%d\n",popbased);      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fprintf(ficres,"pop_based=%d\n",popbased);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     fgets(line, MAXLINE, ficpar);    }  
     puts(line);    fprintf(ficresprobmorprev,"\n");
     fputs(line,ficparo);    fprintf(ficgp,"\n# Routine varevsij");
   }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   ungetc(c,ficpar);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  /*   } */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
 while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     ungetc(c,ficpar);    else
     fgets(line, MAXLINE, ficpar);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     puts(line);    fprintf(ficresvij,"# Age");
     fputs(line,ficparo);    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++)
   ungetc(c,ficpar);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    xp=vector(1,npar);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 /*------------ gnuplot -------------*/  
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, agemin,agemaxpar,fage, pathc,p);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
 /*------------ free_vector  -------------*/    gmp=vector(nlstate+1,nlstate+ndeath);
  chdir(path);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      
  free_ivector(wav,1,imx);    if(estepm < stepm){
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      printf ("Problem %d lower than %d\n",estepm, stepm);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      }
  free_ivector(num,1,n);    else  hstepm=estepm;   
  free_vector(agedc,1,n);    /* For example we decided to compute the life expectancy with the smallest unit */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  fclose(ficparo);       nhstepm is the number of hstepm from age to agelim 
  fclose(ficres);       nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
 /*--------- index.htm --------*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres);       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   /*--------------- Prevalence limit --------------*/    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   strcpy(filerespl,"pl");    agelim = AGESUP;
   strcat(filerespl,fileres);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   fprintf(ficrespl,"#Prevalence limit\n");      gp=matrix(0,nhstepm,1,nlstate);
   fprintf(ficrespl,"#Age ");      gm=matrix(0,nhstepm,1,nlstate);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");  
        for(theta=1; theta <=npar; theta++){
   prlim=matrix(1,nlstate,1,nlstate);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;        if (popbased==1) {
   agebase=agemin;          if(mobilav ==0){
   agelim=agemaxpar;            for(i=1; i<=nlstate;i++)
   ftolpl=1.e-10;              prlim[i][i]=probs[(int)age][i][ij];
   i1=cptcoveff;          }else{ /* mobilav */ 
   if (cptcovn < 1){i1=1;}            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   for(cptcov=1;cptcov<=i1;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
         k=k+1;    
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        for(j=1; j<= nlstate; j++){
         fprintf(ficrespl,"\n#******");          for(h=0; h<=nhstepm; h++){
         for(j=1;j<=cptcoveff;j++)            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(ficrespl,"******\n");          }
                }
         for (age=agebase; age<=agelim; age++){        /* This for computing probability of death (h=1 means
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);           computed over hstepm matrices product = hstepm*stepm months) 
           fprintf(ficrespl,"%.0f",age );           as a weighted average of prlim.
           for(i=1; i<=nlstate;i++)        */
           fprintf(ficrespl," %.5f", prlim[i][i]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           fprintf(ficrespl,"\n");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
     }        /* end probability of death */
   fclose(ficrespl);  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   /*------------- h Pij x at various ages ------------*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {   
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        if (popbased==1) {
   }          if(mobilav ==0){
   printf("Computing pij: result on file '%s' \n", filerespij);            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }else{ /* mobilav */ 
   /*if (stepm<=24) stepsize=2;*/            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   agelim=AGESUP;          }
   hstepm=stepsize*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
          for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   k=0;          for(h=0; h<=nhstepm; h++){
   for(cptcov=1;cptcov<=i1;cptcov++){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       k=k+1;          }
         fprintf(ficrespij,"\n#****** ");        }
         for(j=1;j<=cptcoveff;j++)        /* This for computing probability of death (h=1 means
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficrespij,"******\n");           as a weighted average of prlim.
                */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }    
           oldm=oldms;savm=savms;        /* end probability of death */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");        for(j=1; j<= nlstate; j++) /* vareij */
           for(i=1; i<=nlstate;i++)          for(h=0; h<=nhstepm; h++){
             for(j=1; j<=nlstate+ndeath;j++)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
               fprintf(ficrespij," %1d-%1d",i,j);          }
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             for(i=1; i<=nlstate;i++)        }
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      } /* End theta */
             fprintf(ficrespij,"\n");  
           }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");      for(h=0; h<=nhstepm; h++) /* veij */
         }        for(j=1; j<=nlstate;j++)
     }          for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
   
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   fclose(ficrespij);          trgradgp[j][theta]=gradgp[theta][j];
     
   
   /*---------- Forecasting ------------------*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if((stepm == 1) && (strcmp(model,".")==0)){      for(i=1;i<=nlstate;i++)
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        for(j=1;j<=nlstate;j++)
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          vareij[i][j][(int)age] =0.;
     free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      for(h=0;h<=nhstepm;h++){
     free_vector(weight,1,n);}        for(k=0;k<=nhstepm;k++){
   else{          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     erreur=108;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          for(i=1;i<=nlstate;i++)
   }            for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   /*---------- Health expectancies and variances ------------*/      }
     
   strcpy(filerest,"t");      /* pptj */
   strcat(filerest,fileres);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   if((ficrest=fopen(filerest,"w"))==NULL) {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
   strcpy(filerese,"e");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   strcat(filerese,fileres);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   if((ficreseij=fopen(filerese,"w"))==NULL) {   
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      if (popbased==1) {
   }        if(mobilav ==0){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
  strcpy(fileresv,"v");        }else{ /* mobilav */ 
   strcat(fileresv,fileres);          for(i=1; i<=nlstate;i++)
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            prlim[i][i]=mobaverage[(int)age][i][ij];
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        }
   }      }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);               
       /* This for computing probability of death (h=1 means
   k=0;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   for(cptcov=1;cptcov<=i1;cptcov++){         as a weighted average of prlim.
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      */
       k=k+1;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficrest,"\n#****** ");        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       for(j=1;j<=cptcoveff;j++)          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }    
       fprintf(ficrest,"******\n");      /* end probability of death */
   
       fprintf(ficreseij,"\n#****** ");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=1;j<=cptcoveff;j++)      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       fprintf(ficreseij,"******\n");        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       fprintf(ficresvij,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)      } 
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      fprintf(ficresprobmorprev,"\n");
       fprintf(ficresvij,"******\n");  
       fprintf(ficresvij,"%.0f ",age );
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for(i=1; i<=nlstate;i++)
       oldm=oldms;savm=savms;        for(j=1; j<=nlstate;j++){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;      fprintf(ficresvij,"\n");
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      free_matrix(gp,0,nhstepm,1,nlstate);
          free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    } /* End age */
       fprintf(ficrest,"\n");    free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
       epj=vector(1,nlstate+1);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       for(age=bage; age <=fage ;age++){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
         if (popbased==1) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           for(i=1; i<=nlstate;i++)    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
             prlim[i][i]=probs[(int)age][i][k];  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
          /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficrest," %4.0f",age);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 2 ",subdirf(fileresprobmorprev));
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 3 ",subdirf(fileresprobmorprev));
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 3 ",subdirf(fileresprobmorprev));
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           epj[nlstate+1] +=epj[j];    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         }  */
         for(i=1, vepp=0.;i <=nlstate;i++)  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           for(j=1;j <=nlstate;j++)    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));    free_vector(xp,1,npar);
         for(j=1;j <=nlstate;j++){    free_matrix(doldm,1,nlstate,1,nlstate);
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));    free_matrix(dnewm,1,nlstate,1,npar);
         }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficrest,"\n");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    fclose(ficresprobmorprev);
     fflush(ficgp);
   fclose(ficreseij);    fflush(fichtm); 
   fclose(ficresvij);  }  /* end varevsij */
   fclose(ficrest);  
   fclose(ficpar);  /************ Variance of prevlim ******************/
   free_vector(epj,1,nlstate+1);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
    {
   /*------- Variance limit prevalence------*/      /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   strcpy(fileresvpl,"vpl");    double **newm;
   strcat(fileresvpl,fileres);    double **dnewm,**doldm;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    int i, j, nhstepm, hstepm;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    int k, cptcode;
     exit(0);    double *xp;
   }    double *gp, *gm;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    double **gradg, **trgradg;
     double age,agelim;
   k=0;    int theta;
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    pstamp(ficresvpl);
       k=k+1;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       fprintf(ficresvpl,"\n#****** ");    fprintf(ficresvpl,"# Age");
       for(j=1;j<=cptcoveff;j++)    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficresvpl," %1d-%1d",i,i);
       fprintf(ficresvpl,"******\n");    fprintf(ficresvpl,"\n");
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    xp=vector(1,npar);
       oldm=oldms;savm=savms;    dnewm=matrix(1,nlstate,1,npar);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    doldm=matrix(1,nlstate,1,nlstate);
     }    
  }    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   fclose(ficresvpl);    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /*---------- End : free ----------------*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      gradg=matrix(1,npar,1,nlstate);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      gp=vector(1,nlstate);
        gm=vector(1,nlstate);
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      for(theta=1; theta <=npar; theta++){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(i=1; i<=npar; i++){ /* Computes gradient */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   free_matrix(matcov,1,npar,1,npar);        for(i=1;i<=nlstate;i++)
   free_vector(delti,1,npar);          gp[i] = prlim[i][i];
   free_matrix(agev,1,maxwav,1,imx);      
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if(erreur >0)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     printf("End of Imach with error %d\n",erreur);        for(i=1;i<=nlstate;i++)
   else   printf("End of Imach\n");          gm[i] = prlim[i][i];
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
          for(i=1;i<=nlstate;i++)
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   /*printf("Total time was %d uSec.\n", total_usecs);*/      } /* End theta */
   /*------ End -----------*/  
       trgradg =matrix(1,nlstate,1,npar);
   
  end:      for(j=1; j<=nlstate;j++)
 #ifdef windows        for(theta=1; theta <=npar; theta++)
   /* chdir(pathcd);*/          trgradg[j][theta]=gradg[theta][j];
 #endif  
  /*system("wgnuplot graph.plt");*/      for(i=1;i<=nlstate;i++)
  /*system("../gp37mgw/wgnuplot graph.plt");*/        varpl[i][(int)age] =0.;
  /*system("cd ../gp37mgw");*/      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
  strcpy(plotcmd,GNUPLOTPROGRAM);      for(i=1;i<=nlstate;i++)
  strcat(plotcmd," ");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
 #ifdef windows        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   while (z[0] != 'q') {      fprintf(ficresvpl,"\n");
     chdir(path);      free_vector(gp,1,nlstate);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");      free_vector(gm,1,nlstate);
     scanf("%s",z);      free_matrix(gradg,1,npar,1,nlstate);
     if (z[0] == 'c') system("./imach");      free_matrix(trgradg,1,nlstate,1,npar);
     else if (z[0] == 'e') {    } /* End age */
       chdir(path);  
       system(optionfilehtm);    free_vector(xp,1,npar);
     }    free_matrix(doldm,1,nlstate,1,npar);
     else if (z[0] == 'q') exit(0);    free_matrix(dnewm,1,nlstate,1,nlstate);
   }  
 #endif  }
 }  
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
                       lc2=fabs(lc2);
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 1,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 2,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 2,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 3",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 1,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 1");
         else fprintf(ficgp,"\" t\"\" w l lt 1,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /**< codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) 
                                  */
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.33  
changed lines
  Added in v.1.144


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>