Diff for /imach/src/imach.c between versions 1.41 and 1.144

version 1.41, 2002/05/07 15:53:01 version 1.144, 2014/02/10 22:17:31
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.144  2014/02/10 22:17:31  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.143  2014/01/26 09:45:38  brouard
   first survey ("cross") where individuals from different ages are    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   second wave of interviews ("longitudinal") which measure each change    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.142  2014/01/26 03:57:36  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.141  2014/01/26 02:42:01  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.140  2011/09/02 10:37:54  brouard
   where the markup *Covariates have to be included here again* invites    Summary: times.h is ok with mingw32 now.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   The advantage of this computer programme, compared to a simple    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.138  2010/04/30 18:19:40  brouard
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.137  2010/04/29 18:11:38  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): Checking covariates for more complex models
   conditional to the observed state i at age x. The delay 'h' can be    than V1+V2. A lot of change to be done. Unstable.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.136  2010/04/26 20:30:53  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): merging some libgsl code. Fixing computation
   matrix is simply the matrix product of nh*stepm elementary matrices    of likelione (using inter/intrapolation if mle = 0) in order to
   and the contribution of each individual to the likelihood is simply    get same likelihood as if mle=1.
   hPijx.    Some cleaning of code and comments added.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.135  2009/10/29 15:33:14  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.134  2009/10/29 13:18:53  brouard
            Institut national d'études démographiques, Paris.    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.133  2009/07/06 10:21:25  brouard
   It is copyrighted identically to a GNU software product, ie programme and    just nforces
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.132  2009/07/06 08:22:05  brouard
   **********************************************************************/    Many tings
    
 #include <math.h>    Revision 1.131  2009/06/20 16:22:47  brouard
 #include <stdio.h>    Some dimensions resccaled
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
 #define MAXLINE 256    lot of cleaning with variables initialized to 0. Trying to make
 #define GNUPLOTPROGRAM "wgnuplot"    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.129  2007/08/31 13:49:27  lievre
 /*#define DEBUG*/    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.128  2006/06/30 13:02:05  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Clarifications on computing e.j
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.127  2006/04/28 18:11:50  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 #define NINTERVMAX 8    loop. Now we define nhstepma in the age loop.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): In order to speed up (in case of numerous covariates) we
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    compute health expectancies (without variances) in a first step
 #define NCOVMAX 8 /* Maximum number of covariates */    and then all the health expectancies with variances or standard
 #define MAXN 20000    deviation (needs data from the Hessian matrices) which slows the
 #define YEARM 12. /* Number of months per year */    computation.
 #define AGESUP 130    In the future we should be able to stop the program is only health
 #define AGEBASE 40    expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
 int erreur; /* Error number */    (Module): Yes the sum of survivors was wrong since
 int nvar;    imach-114 because nhstepm was no more computed in the age
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    loop. Now we define nhstepma in the age loop.
 int npar=NPARMAX;    Version 0.98h
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.125  2006/04/04 15:20:31  lievre
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Errors in calculation of health expectancies. Age was not initialized.
 int popbased=0;    Forecasting file added.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.124  2006/03/22 17:13:53  lievre
 int maxwav; /* Maxim number of waves */    Parameters are printed with %lf instead of %f (more numbers after the comma).
 int jmin, jmax; /* min, max spacing between 2 waves */    The log-likelihood is printed in the log file
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.123  2006/03/20 10:52:43  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    * imach.c (Module): <title> changed, corresponds to .htm file
 double jmean; /* Mean space between 2 waves */    name. <head> headers where missing.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    * imach.c (Module): Weights can have a decimal point as for
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    English (a comma might work with a correct LC_NUMERIC environment,
 FILE *ficgp,*ficresprob,*ficpop;    otherwise the weight is truncated).
 FILE *ficreseij;    Modification of warning when the covariates values are not 0 or
   char filerese[FILENAMELENGTH];    1.
  FILE  *ficresvij;    Version 0.98g
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.122  2006/03/20 09:45:41  brouard
   char fileresvpl[FILENAMELENGTH];    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 #define NR_END 1    otherwise the weight is truncated).
 #define FREE_ARG char*    Modification of warning when the covariates values are not 0 or
 #define FTOL 1.0e-10    1.
     Version 0.98g
 #define NRANSI  
 #define ITMAX 200    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
 #define TOL 2.0e-4  
     * imach.c (Module): refinements in the computation of lli if
 #define CGOLD 0.3819660    status=-2 in order to have more reliable computation if stepm is
 #define ZEPS 1.0e-10    not 1 month. Version 0.98f
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.120  2006/03/16 15:10:38  lievre
 #define GOLD 1.618034    (Module): refinements in the computation of lli if
 #define GLIMIT 100.0    status=-2 in order to have more reliable computation if stepm is
 #define TINY 1.0e-20    not 1 month. Version 0.98f
   
 static double maxarg1,maxarg2;    Revision 1.119  2006/03/15 17:42:26  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Bug if status = -2, the loglikelihood was
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    computed as likelihood omitting the logarithm. Version O.98e
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.118  2006/03/14 18:20:07  brouard
 #define rint(a) floor(a+0.5)    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 static double sqrarg;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Function pstamp added
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Version 0.98d
   
 int imx;    Revision 1.117  2006/03/14 17:16:22  brouard
 int stepm;    (Module): varevsij Comments added explaining the second
 /* Stepm, step in month: minimum step interpolation*/    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int estepm;    (Module): Function pstamp added
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): Version 0.98d
   
 int m,nb;    Revision 1.116  2006/03/06 10:29:27  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): Variance-covariance wrong links and
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    varian-covariance of ej. is needed (Saito).
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
 double *weight;  
 int **s; /* Status */    Revision 1.114  2006/02/26 12:57:58  brouard
 double *agedc, **covar, idx;    (Module): Some improvements in processing parameter
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    filename with strsep.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.113  2006/02/24 14:20:24  brouard
 double ftolhess; /* Tolerance for computing hessian */    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 /**************** split *************************/    allocation too.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.112  2006/01/30 09:55:26  brouard
    char *s;                             /* pointer */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
    int  l1, l2;                         /* length counters */  
     Revision 1.111  2006/01/25 20:38:18  brouard
    l1 = strlen( path );                 /* length of path */    (Module): Lots of cleaning and bugs added (Gompertz)
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Comments can be added in data file. Missing date values
 #ifdef windows    can be a simple dot '.'.
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Revision 1.110  2006/01/25 00:51:50  brouard
    s = strrchr( path, '/' );            /* find last / */    (Module): Lots of cleaning and bugs added (Gompertz)
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.109  2006/01/24 19:37:15  brouard
 #if     defined(__bsd__)                /* get current working directory */    (Module): Comments (lines starting with a #) are allowed in data.
       extern char       *getwd( );  
     Revision 1.108  2006/01/19 18:05:42  lievre
       if ( getwd( dirc ) == NULL ) {    Gnuplot problem appeared...
 #else    To be fixed
       extern char       *getcwd( );  
     Revision 1.107  2006/01/19 16:20:37  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Test existence of gnuplot in imach path
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.106  2006/01/19 13:24:36  brouard
       }    Some cleaning and links added in html output
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.105  2006/01/05 20:23:19  lievre
       s++;                              /* after this, the filename */    *** empty log message ***
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.104  2005/09/30 16:11:43  lievre
       strcpy( name, s );                /* save file name */    (Module): sump fixed, loop imx fixed, and simplifications.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): If the status is missing at the last wave but we know
       dirc[l1-l2] = 0;                  /* add zero */    that the person is alive, then we can code his/her status as -2
    }    (instead of missing=-1 in earlier versions) and his/her
    l1 = strlen( dirc );                 /* length of directory */    contributions to the likelihood is 1 - Prob of dying from last
 #ifdef windows    health status (= 1-p13= p11+p12 in the easiest case of somebody in
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    the healthy state at last known wave). Version is 0.98
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.103  2005/09/30 15:54:49  lievre
 #endif    (Module): sump fixed, loop imx fixed, and simplifications.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.102  2004/09/15 17:31:30  brouard
    strcpy(ext,s);                       /* save extension */    Add the possibility to read data file including tab characters.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.101  2004/09/15 10:38:38  brouard
    strncpy( finame, name, l1-l2);    Fix on curr_time
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.100  2004/07/12 18:29:06  brouard
 }    Add version for Mac OS X. Just define UNIX in Makefile
   
     Revision 1.99  2004/06/05 08:57:40  brouard
 /******************************************/    *** empty log message ***
   
 void replace(char *s, char*t)    Revision 1.98  2004/05/16 15:05:56  brouard
 {    New version 0.97 . First attempt to estimate force of mortality
   int i;    directly from the data i.e. without the need of knowing the health
   int lg=20;    state at each age, but using a Gompertz model: log u =a + b*age .
   i=0;    This is the basic analysis of mortality and should be done before any
   lg=strlen(t);    other analysis, in order to test if the mortality estimated from the
   for(i=0; i<= lg; i++) {    cross-longitudinal survey is different from the mortality estimated
     (s[i] = t[i]);    from other sources like vital statistic data.
     if (t[i]== '\\') s[i]='/';  
   }    The same imach parameter file can be used but the option for mle should be -3.
 }  
     Agnès, who wrote this part of the code, tried to keep most of the
 int nbocc(char *s, char occ)    former routines in order to include the new code within the former code.
 {  
   int i,j=0;    The output is very simple: only an estimate of the intercept and of
   int lg=20;    the slope with 95% confident intervals.
   i=0;  
   lg=strlen(s);    Current limitations:
   for(i=0; i<= lg; i++) {    A) Even if you enter covariates, i.e. with the
   if  (s[i] == occ ) j++;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   }    B) There is no computation of Life Expectancy nor Life Table.
   return j;  
 }    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 void cutv(char *u,char *v, char*t, char occ)    suppressed.
 {  
   int i,lg,j,p=0;    Revision 1.96  2003/07/15 15:38:55  brouard
   i=0;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   for(j=0; j<=strlen(t)-1; j++) {    rewritten within the same printf. Workaround: many printfs.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
   lg=strlen(t);    (Repository): Using imachwizard code to output a more meaningful covariance
   for(j=0; j<p; j++) {    matrix (cov(a12,c31) instead of numbers.
     (u[j] = t[j]);  
   }    Revision 1.94  2003/06/27 13:00:02  brouard
      u[p]='\0';    Just cleaning
   
    for(j=0; j<= lg; j++) {    Revision 1.93  2003/06/25 16:33:55  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    (Module): On windows (cygwin) function asctime_r doesn't
   }    exist so I changed back to asctime which exists.
 }    (Module): Version 0.96b
   
 /********************** nrerror ********************/    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 void nrerror(char error_text[])    exist so I changed back to asctime which exists.
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.91  2003/06/25 15:30:29  brouard
   fprintf(stderr,"%s\n",error_text);    * imach.c (Repository): Duplicated warning errors corrected.
   exit(1);    (Repository): Elapsed time after each iteration is now output. It
 }    helps to forecast when convergence will be reached. Elapsed time
 /*********************** vector *******************/    is stamped in powell.  We created a new html file for the graphs
 double *vector(int nl, int nh)    concerning matrix of covariance. It has extension -cov.htm.
 {  
   double *v;    Revision 1.90  2003/06/24 12:34:15  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Module): Some bugs corrected for windows. Also, when
   if (!v) nrerror("allocation failure in vector");    mle=-1 a template is output in file "or"mypar.txt with the design
   return v-nl+NR_END;    of the covariance matrix to be input.
 }  
     Revision 1.89  2003/06/24 12:30:52  brouard
 /************************ free vector ******************/    (Module): Some bugs corrected for windows. Also, when
 void free_vector(double*v, int nl, int nh)    mle=-1 a template is output in file "or"mypar.txt with the design
 {    of the covariance matrix to be input.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.87  2003/06/18 12:26:01  brouard
 {    Version 0.96
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.86  2003/06/17 20:04:08  brouard
   if (!v) nrerror("allocation failure in ivector");    (Module): Change position of html and gnuplot routines and added
   return v-nl+NR_END;    routine fileappend.
 }  
     Revision 1.85  2003/06/17 13:12:43  brouard
 /******************free ivector **************************/    * imach.c (Repository): Check when date of death was earlier that
 void free_ivector(int *v, long nl, long nh)    current date of interview. It may happen when the death was just
 {    prior to the death. In this case, dh was negative and likelihood
   free((FREE_ARG)(v+nl-NR_END));    was wrong (infinity). We still send an "Error" but patch by
 }    assuming that the date of death was just one stepm after the
     interview.
 /******************* imatrix *******************************/    (Repository): Because some people have very long ID (first column)
 int **imatrix(long nrl, long nrh, long ncl, long nch)    we changed int to long in num[] and we added a new lvector for
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    memory allocation. But we also truncated to 8 characters (left
 {    truncation)
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Repository): No more line truncation errors.
   int **m;  
      Revision 1.84  2003/06/13 21:44:43  brouard
   /* allocate pointers to rows */    * imach.c (Repository): Replace "freqsummary" at a correct
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    place. It differs from routine "prevalence" which may be called
   if (!m) nrerror("allocation failure 1 in matrix()");    many times. Probs is memory consuming and must be used with
   m += NR_END;    parcimony.
   m -= nrl;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    
      Revision 1.83  2003/06/10 13:39:11  lievre
   /* allocate rows and set pointers to them */    *** empty log message ***
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.82  2003/06/05 15:57:20  brouard
   m[nrl] += NR_END;    Add log in  imach.c and  fullversion number is now printed.
   m[nrl] -= ncl;  
    */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  /*
       Interpolated Markov Chain
   /* return pointer to array of pointers to rows */  
   return m;    Short summary of the programme:
 }    
     This program computes Healthy Life Expectancies from
 /****************** free_imatrix *************************/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 void free_imatrix(m,nrl,nrh,ncl,nch)    first survey ("cross") where individuals from different ages are
       int **m;    interviewed on their health status or degree of disability (in the
       long nch,ncl,nrh,nrl;    case of a health survey which is our main interest) -2- at least a
      /* free an int matrix allocated by imatrix() */    second wave of interviews ("longitudinal") which measure each change
 {    (if any) in individual health status.  Health expectancies are
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    computed from the time spent in each health state according to a
   free((FREE_ARG) (m+nrl-NR_END));    model. More health states you consider, more time is necessary to reach the
 }    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 /******************* matrix *******************************/    probability to be observed in state j at the second wave
 double **matrix(long nrl, long nrh, long ncl, long nch)    conditional to be observed in state i at the first wave. Therefore
 {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    'age' is age and 'sex' is a covariate. If you want to have a more
   double **m;    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    you to do it.  More covariates you add, slower the
   if (!m) nrerror("allocation failure 1 in matrix()");    convergence.
   m += NR_END;  
   m -= nrl;    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    identical for each individual. Also, if a individual missed an
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    intermediate interview, the information is lost, but taken into
   m[nrl] += NR_END;    account using an interpolation or extrapolation.  
   m[nrl] -= ncl;  
     hPijx is the probability to be observed in state i at age x+h
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    conditional to the observed state i at age x. The delay 'h' can be
   return m;    split into an exact number (nh*stepm) of unobserved intermediate
 }    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 /*************************free matrix ************************/    matrix is simply the matrix product of nh*stepm elementary matrices
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    and the contribution of each individual to the likelihood is simply
 {    hPijx.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Also this programme outputs the covariance matrix of the parameters but also
 }    of the life expectancies. It also computes the period (stable) prevalence. 
     
 /******************* ma3x *******************************/    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)             Institut national d'études démographiques, Paris.
 {    This software have been partly granted by Euro-REVES, a concerted action
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    from the European Union.
   double ***m;    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    can be accessed at http://euroreves.ined.fr/imach .
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m -= nrl;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    **********************************************************************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*
   m[nrl] += NR_END;    main
   m[nrl] -= ncl;    read parameterfile
     read datafile
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    concatwav
     freqsummary
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if (mle >= 1)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      mlikeli
   m[nrl][ncl] += NR_END;    print results files
   m[nrl][ncl] -= nll;    if mle==1 
   for (j=ncl+1; j<=nch; j++)       computes hessian
     m[nrl][j]=m[nrl][j-1]+nlay;    read end of parameter file: agemin, agemax, bage, fage, estepm
          begin-prev-date,...
   for (i=nrl+1; i<=nrh; i++) {    open gnuplot file
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    open html file
     for (j=ncl+1; j<=nch; j++)    period (stable) prevalence
       m[i][j]=m[i][j-1]+nlay;     for age prevalim()
   }    h Pij x
   return m;    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /*************************free ma3x ************************/    Variance-covariance of DFLE
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    prevalence()
 {     movingaverage()
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    varevsij() 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if popbased==1 varevsij(,popbased)
   free((FREE_ARG)(m+nrl-NR_END));    total life expectancies
 }    Variance of period (stable) prevalence
    end
 /***************** f1dim *************************/  */
 extern int ncom;  
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  
     
 double f1dim(double x)  #include <math.h>
 {  #include <stdio.h>
   int j;  #include <stdlib.h>
   double f;  #include <string.h>
   double *xt;  #include <unistd.h>
    
   xt=vector(1,ncom);  #include <limits.h>
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #include <sys/types.h>
   f=(*nrfunc)(xt);  #include <sys/stat.h>
   free_vector(xt,1,ncom);  #include <errno.h>
   return f;  extern int errno;
 }  
   #ifdef LINUX
 /*****************brent *************************/  #include <time.h>
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #include "timeval.h"
 {  #else
   int iter;  #include <sys/time.h>
   double a,b,d,etemp;  #endif
   double fu,fv,fw,fx;  
   double ftemp;  #ifdef GSL
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #include <gsl/gsl_errno.h>
   double e=0.0;  #include <gsl/gsl_multimin.h>
    #endif
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  /* #include <libintl.h> */
   x=w=v=bx;  /* #define _(String) gettext (String) */
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define GNUPLOTPROGRAM "gnuplot"
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     printf(".");fflush(stdout);  #define FILENAMELENGTH 132
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       *xmin=x;  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       return fx;  
     }  #define NINTERVMAX 8
     ftemp=fu;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     if (fabs(e) > tol1) {  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
       r=(x-w)*(fx-fv);  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       q=(x-v)*(fx-fw);  #define MAXN 20000
       p=(x-v)*q-(x-w)*r;  #define YEARM 12. /**< Number of months per year */
       q=2.0*(q-r);  #define AGESUP 130
       if (q > 0.0) p = -p;  #define AGEBASE 40
       q=fabs(q);  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
       etemp=e;  #ifdef UNIX
       e=d;  #define DIRSEPARATOR '/'
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define CHARSEPARATOR "/"
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define ODIRSEPARATOR '\\'
       else {  #else
         d=p/q;  #define DIRSEPARATOR '\\'
         u=x+d;  #define CHARSEPARATOR "\\"
         if (u-a < tol2 || b-u < tol2)  #define ODIRSEPARATOR '/'
           d=SIGN(tol1,xm-x);  #endif
       }  
     } else {  /* $Id$ */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /* $State$ */
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
     fu=(*f)(u);  char fullversion[]="$Revision$ $Date$"; 
     if (fu <= fx) {  char strstart[80];
       if (u >= x) a=x; else b=x;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       SHFT(v,w,x,u)  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
         SHFT(fv,fw,fx,fu)  int nvar=0, nforce=0; /* Number of variables, number of forces */
         } else {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
           if (u < x) a=u; else b=u;  int npar=NPARMAX;
           if (fu <= fw || w == x) {  int nlstate=2; /* Number of live states */
             v=w;  int ndeath=1; /* Number of dead states */
             w=u;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
             fv=fw;  int popbased=0;
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  int *wav; /* Number of waves for this individuual 0 is possible */
             v=u;  int maxwav=0; /* Maxim number of waves */
             fv=fu;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
           }  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
         }  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   }                     to the likelihood and the sum of weights (done by funcone)*/
   nrerror("Too many iterations in brent");  int mle=1, weightopt=0;
   *xmin=x;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   return fx;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /****************** mnbrak ***********************/  double jmean=1; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
             double (*func)(double))  /*FILE *fic ; */ /* Used in readdata only */
 {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   double ulim,u,r,q, dum;  FILE *ficlog, *ficrespow;
   double fu;  int globpr=0; /* Global variable for printing or not */
    double fretone; /* Only one call to likelihood */
   *fa=(*func)(*ax);  long ipmx=0; /* Number of contributions */
   *fb=(*func)(*bx);  double sw; /* Sum of weights */
   if (*fb > *fa) {  char filerespow[FILENAMELENGTH];
     SHFT(dum,*ax,*bx,dum)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       SHFT(dum,*fb,*fa,dum)  FILE *ficresilk;
       }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   *cx=(*bx)+GOLD*(*bx-*ax);  FILE *ficresprobmorprev;
   *fc=(*func)(*cx);  FILE *fichtm, *fichtmcov; /* Html File */
   while (*fb > *fc) {  FILE *ficreseij;
     r=(*bx-*ax)*(*fb-*fc);  char filerese[FILENAMELENGTH];
     q=(*bx-*cx)*(*fb-*fa);  FILE *ficresstdeij;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  char fileresstde[FILENAMELENGTH];
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  FILE *ficrescveij;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  char filerescve[FILENAMELENGTH];
     if ((*bx-u)*(u-*cx) > 0.0) {  FILE  *ficresvij;
       fu=(*func)(u);  char fileresv[FILENAMELENGTH];
     } else if ((*cx-u)*(u-ulim) > 0.0) {  FILE  *ficresvpl;
       fu=(*func)(u);  char fileresvpl[FILENAMELENGTH];
       if (fu < *fc) {  char title[MAXLINE];
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
           SHFT(*fb,*fc,fu,(*func)(u))  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
           }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  char command[FILENAMELENGTH];
       u=ulim;  int  outcmd=0;
       fu=(*func)(u);  
     } else {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  char filelog[FILENAMELENGTH]; /* Log file */
     }  char filerest[FILENAMELENGTH];
     SHFT(*ax,*bx,*cx,u)  char fileregp[FILENAMELENGTH];
       SHFT(*fa,*fb,*fc,fu)  char popfile[FILENAMELENGTH];
       }  
 }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
 /*************** linmin ************************/  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 int ncom;  extern int gettimeofday();
 double *pcom,*xicom;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 double (*nrfunc)(double []);  long time_value;
    extern long time();
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  char strcurr[80], strfor[80];
 {  
   double brent(double ax, double bx, double cx,  char *endptr;
                double (*f)(double), double tol, double *xmin);  long lval;
   double f1dim(double x);  double dval;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  #define NR_END 1
   int j;  #define FREE_ARG char*
   double xx,xmin,bx,ax;  #define FTOL 1.0e-10
   double fx,fb,fa;  
    #define NRANSI 
   ncom=n;  #define ITMAX 200 
   pcom=vector(1,n);  
   xicom=vector(1,n);  #define TOL 2.0e-4 
   nrfunc=func;  
   for (j=1;j<=n;j++) {  #define CGOLD 0.3819660 
     pcom[j]=p[j];  #define ZEPS 1.0e-10 
     xicom[j]=xi[j];  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   }  
   ax=0.0;  #define GOLD 1.618034 
   xx=1.0;  #define GLIMIT 100.0 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #define TINY 1.0e-20 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  static double maxarg1,maxarg2;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 #endif  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   for (j=1;j<=n;j++) {    
     xi[j] *= xmin;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     p[j] += xi[j];  #define rint(a) floor(a+0.5)
   }  
   free_vector(xicom,1,n);  static double sqrarg;
   free_vector(pcom,1,n);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  int imx; 
             double (*func)(double []))  int stepm=1;
 {  /* Stepm, step in month: minimum step interpolation*/
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  int estepm;
   int i,ibig,j;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  int m,nb;
   double *xits;  long *num;
   pt=vector(1,n);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   ptt=vector(1,n);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   xit=vector(1,n);  double **pmmij, ***probs;
   xits=vector(1,n);  double *ageexmed,*agecens;
   *fret=(*func)(p);  double dateintmean=0;
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  double *weight;
     fp=(*fret);  int **s; /* Status */
     ibig=0;  double *agedc;
     del=0.0;  double  **covar; /**< covar[i,j], value of jth covariate for individual i,
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);                    * covar=matrix(0,NCOVMAX,1,n); 
     for (i=1;i<=n;i++)                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       printf(" %d %.12f",i, p[i]);  double  idx; 
     printf("\n");  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     for (i=1;i<=n;i++) {  int **codtab; /**< codtab=imatrix(1,100,1,10); */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       fptt=(*fret);  double *lsurv, *lpop, *tpop;
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
 #endif  double ftolhess; /**< Tolerance for computing hessian */
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  /**************** split *************************/
       if (fabs(fptt-(*fret)) > del) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
         del=fabs(fptt-(*fret));  {
         ibig=i;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 #ifdef DEBUG    */ 
       printf("%d %.12e",i,(*fret));    char  *ss;                            /* pointer */
       for (j=1;j<=n;j++) {    int   l1, l2;                         /* length counters */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);    l1 = strlen(path );                   /* length of path */
       }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       for(j=1;j<=n;j++)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         printf(" p=%.12e",p[j]);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       printf("\n");      strcpy( name, path );               /* we got the fullname name because no directory */
 #endif      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      /* get current working directory */
 #ifdef DEBUG      /*    extern  char* getcwd ( char *buf , int len);*/
       int k[2],l;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       k[0]=1;        return( GLOCK_ERROR_GETCWD );
       k[1]=-1;      }
       printf("Max: %.12e",(*func)(p));      /* got dirc from getcwd*/
       for (j=1;j<=n;j++)      printf(" DIRC = %s \n",dirc);
         printf(" %.12e",p[j]);    } else {                              /* strip direcotry from path */
       printf("\n");      ss++;                               /* after this, the filename */
       for(l=0;l<=1;l++) {      l2 = strlen( ss );                  /* length of filename */
         for (j=1;j<=n;j++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      strcpy( name, ss );         /* save file name */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         }      dirc[l1-l2] = 0;                    /* add zero */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      printf(" DIRC2 = %s \n",dirc);
       }    }
 #endif    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
       free_vector(xit,1,n);      dirc[l1] =  DIRSEPARATOR;
       free_vector(xits,1,n);      dirc[l1+1] = 0; 
       free_vector(ptt,1,n);      printf(" DIRC3 = %s \n",dirc);
       free_vector(pt,1,n);    }
       return;    ss = strrchr( name, '.' );            /* find last / */
     }    if (ss >0){
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      ss++;
     for (j=1;j<=n;j++) {      strcpy(ext,ss);                     /* save extension */
       ptt[j]=2.0*p[j]-pt[j];      l1= strlen( name);
       xit[j]=p[j]-pt[j];      l2= strlen(ss)+1;
       pt[j]=p[j];      strncpy( finame, name, l1-l2);
     }      finame[l1-l2]= 0;
     fptt=(*func)(ptt);    }
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    return( 0 );                          /* we're done */
       if (t < 0.0) {  }
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  /******************************************/
           xi[j][n]=xit[j];  
         }  void replace_back_to_slash(char *s, char*t)
 #ifdef DEBUG  {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    int i;
         for(j=1;j<=n;j++)    int lg=0;
           printf(" %.12e",xit[j]);    i=0;
         printf("\n");    lg=strlen(t);
 #endif    for(i=0; i<= lg; i++) {
       }      (s[i] = t[i]);
     }      if (t[i]== '\\') s[i]='/';
   }    }
 }  }
   
 /**** Prevalence limit ****************/  char *trimbb(char *out, char *in)
   { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    char *s;
 {    s=out;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    while (*in != '\0'){
      matrix by transitions matrix until convergence is reached */      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         in++;
   int i, ii,j,k;      }
   double min, max, maxmin, maxmax,sumnew=0.;      *out++ = *in++;
   double **matprod2();    }
   double **out, cov[NCOVMAX], **pmij();    *out='\0';
   double **newm;    return s;
   double agefin, delaymax=50 ; /* Max number of years to converge */  }
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  char *cutv(char *blocc, char *alocc, char *in, char occ)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
     }       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
    cov[1]=1.;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
      */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    char *s, *t;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    t=in;s=in;
     newm=savm;    while (*in != '\0'){
     /* Covariates have to be included here again */      while( *in == occ){
      cov[2]=agefin;        *blocc++ = *in++;
          s=in;
       for (k=1; k<=cptcovn;k++) {      }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      *blocc++ = *in++;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    }
       }    if (s == t) /* occ not found */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      *(blocc-(in-s))='\0';
       for (k=1; k<=cptcovprod;k++)    else
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      *(blocc-(in-s)-1)='\0';
     in=s;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    while ( *in != '\0'){
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      *alocc++ = *in++;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
     *alocc='\0';
     savm=oldm;    return s;
     oldm=newm;  }
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  int nbocc(char *s, char occ)
       min=1.;  {
       max=0.;    int i,j=0;
       for(i=1; i<=nlstate; i++) {    int lg=20;
         sumnew=0;    i=0;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    lg=strlen(s);
         prlim[i][j]= newm[i][j]/(1-sumnew);    for(i=0; i<= lg; i++) {
         max=FMAX(max,prlim[i][j]);    if  (s[i] == occ ) j++;
         min=FMIN(min,prlim[i][j]);    }
       }    return j;
       maxmin=max-min;  }
       maxmax=FMAX(maxmax,maxmin);  
     }  /* void cutv(char *u,char *v, char*t, char occ) */
     if(maxmax < ftolpl){  /* { */
       return prlim;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     }  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   }  /*      gives u="abcdef2ghi" and v="j" *\/ */
 }  /*   int i,lg,j,p=0; */
   /*   i=0; */
 /*************** transition probabilities ***************/  /*   lg=strlen(t); */
   /*   for(j=0; j<=lg-1; j++) { */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
 {  /*   } */
   double s1, s2;  
   /*double t34;*/  /*   for(j=0; j<p; j++) { */
   int i,j,j1, nc, ii, jj;  /*     (u[j] = t[j]); */
   /*   } */
     for(i=1; i<= nlstate; i++){  /*      u[p]='\0'; */
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*    for(j=0; j<= lg; j++) { */
         /*s2 += param[i][j][nc]*cov[nc];*/  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*   } */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /* } */
       }  
       ps[i][j]=s2;  /********************** nrerror ********************/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  void nrerror(char error_text[])
     for(j=i+1; j<=nlstate+ndeath;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    fprintf(stderr,"ERREUR ...\n");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    fprintf(stderr,"%s\n",error_text);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    exit(EXIT_FAILURE);
       }  }
       ps[i][j]=s2;  /*********************** vector *******************/
     }  double *vector(int nl, int nh)
   }  {
     /*ps[3][2]=1;*/    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for(i=1; i<= nlstate; i++){    if (!v) nrerror("allocation failure in vector");
      s1=0;    return v-nl+NR_END;
     for(j=1; j<i; j++)  }
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  /************************ free vector ******************/
       s1+=exp(ps[i][j]);  void free_vector(double*v, int nl, int nh)
     ps[i][i]=1./(s1+1.);  {
     for(j=1; j<i; j++)    free((FREE_ARG)(v+nl-NR_END));
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /************************ivector *******************************/
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  int *ivector(long nl,long nh)
   } /* end i */  {
     int *v;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     for(jj=1; jj<= nlstate+ndeath; jj++){    if (!v) nrerror("allocation failure in ivector");
       ps[ii][jj]=0;    return v-nl+NR_END;
       ps[ii][ii]=1;  }
     }  
   }  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
   {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    free((FREE_ARG)(v+nl-NR_END));
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
      printf("%lf ",ps[ii][jj]);  
    }  /************************lvector *******************************/
     printf("\n ");  long *lvector(long nl,long nh)
     }  {
     printf("\n ");printf("%lf ",cov[2]);*/    long *v;
 /*    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    if (!v) nrerror("allocation failure in ivector");
   goto end;*/    return v-nl+NR_END;
     return ps;  }
 }  
   /******************free lvector **************************/
 /**************** Product of 2 matrices ******************/  void free_lvector(long *v, long nl, long nh)
   {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /******************* imatrix *******************************/
   /* in, b, out are matrice of pointers which should have been initialized  int **imatrix(long nrl, long nrh, long ncl, long nch) 
      before: only the contents of out is modified. The function returns       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
      a pointer to pointers identical to out */  { 
   long i, j, k;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   for(i=nrl; i<= nrh; i++)    int **m; 
     for(k=ncolol; k<=ncoloh; k++)    
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    /* allocate pointers to rows */ 
         out[i][k] +=in[i][j]*b[j][k];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
   return out;    m += NR_END; 
 }    m -= nrl; 
     
     
 /************* Higher Matrix Product ***************/    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 {    m[nrl] += NR_END; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    m[nrl] -= ncl; 
      duration (i.e. until    
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    
      (typically every 2 years instead of every month which is too big).    /* return pointer to array of pointers to rows */ 
      Model is determined by parameters x and covariates have to be    return m; 
      included manually here.  } 
   
      */  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
   int i, j, d, h, k;        int **m;
   double **out, cov[NCOVMAX];        long nch,ncl,nrh,nrl; 
   double **newm;       /* free an int matrix allocated by imatrix() */ 
   { 
   /* Hstepm could be zero and should return the unit matrix */    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   for (i=1;i<=nlstate+ndeath;i++)    free((FREE_ARG) (m+nrl-NR_END)); 
     for (j=1;j<=nlstate+ndeath;j++){  } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /******************* matrix *******************************/
     }  double **matrix(long nrl, long nrh, long ncl, long nch)
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  {
   for(h=1; h <=nhstepm; h++){    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     for(d=1; d <=hstepm; d++){    double **m;
       newm=savm;  
       /* Covariates have to be included here again */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       cov[1]=1.;    if (!m) nrerror("allocation failure 1 in matrix()");
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    m += NR_END;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m -= nrl;
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for (k=1; k<=cptcovprod;k++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m[nrl] += NR_END;
     m[nrl] -= ncl;
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    return m;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));     */
       savm=oldm;  }
       oldm=newm;  
     }  /*************************free matrix ************************/
     for(i=1; i<=nlstate+ndeath; i++)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for(j=1;j<=nlstate+ndeath;j++) {  {
         po[i][j][h]=newm[i][j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    free((FREE_ARG)(m+nrl-NR_END));
          */  }
       }  
   } /* end h */  /******************* ma3x *******************************/
   return po;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 }  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
 /*************** log-likelihood *************/  
 double func( double *x)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 {    if (!m) nrerror("allocation failure 1 in matrix()");
   int i, ii, j, k, mi, d, kk;    m += NR_END;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    m -= nrl;
   double **out;  
   double sw; /* Sum of weights */    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double lli; /* Individual log likelihood */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   long ipmx;    m[nrl] += NR_END;
   /*extern weight */    m[nrl] -= ncl;
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   */    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   cov[1]=1.;    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for (j=ncl+1; j<=nch; j++) 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      m[nrl][j]=m[nrl][j-1]+nlay;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    
     for(mi=1; mi<= wav[i]-1; mi++){    for (i=nrl+1; i<=nrh; i++) {
       for (ii=1;ii<=nlstate+ndeath;ii++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (j=ncl+1; j<=nch; j++) 
       for(d=0; d<dh[mi][i]; d++){        m[i][j]=m[i][j-1]+nlay;
         newm=savm;    }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    return m; 
         for (kk=1; kk<=cptcovage;kk++) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         }    */
          }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************************free ma3x ************************/
         savm=oldm;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         oldm=newm;  {
            free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
            free((FREE_ARG)(m[nrl]+ncl-NR_END));
       } /* end mult */    free((FREE_ARG)(m+nrl-NR_END));
        }
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /*************** function subdirf ***********/
       ipmx +=1;  char *subdirf(char fileres[])
       sw += weight[i];  {
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /* Caution optionfilefiname is hidden */
     } /* end of wave */    strcpy(tmpout,optionfilefiname);
   } /* end of individual */    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    return tmpout;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;  /*************** function subdirf2 ***********/
 }  char *subdirf2(char fileres[], char *preop)
   {
     
 /*********** Maximum Likelihood Estimation ***************/    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    strcat(tmpout,"/");
 {    strcat(tmpout,preop);
   int i,j, iter;    strcat(tmpout,fileres);
   double **xi,*delti;    return tmpout;
   double fret;  }
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)  /*************** function subdirf3 ***********/
     for (j=1;j<=npar;j++)  char *subdirf3(char fileres[], char *preop, char *preop2)
       xi[i][j]=(i==j ? 1.0 : 0.0);  {
   printf("Powell\n");    
   powell(p,xi,npar,ftol,&iter,&fret,func);    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    strcat(tmpout,"/");
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    strcat(tmpout,preop);
     strcat(tmpout,preop2);
 }    strcat(tmpout,fileres);
     return tmpout;
 /**** Computes Hessian and covariance matrix ***/  }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {  /***************** f1dim *************************/
   double  **a,**y,*x,pd;  extern int ncom; 
   double **hess;  extern double *pcom,*xicom;
   int i, j,jk;  extern double (*nrfunc)(double []); 
   int *indx;   
   double f1dim(double x) 
   double hessii(double p[], double delta, int theta, double delti[]);  { 
   double hessij(double p[], double delti[], int i, int j);    int j; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double f;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double *xt; 
    
   hess=matrix(1,npar,1,npar);    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   printf("\nCalculation of the hessian matrix. Wait...\n");    f=(*nrfunc)(xt); 
   for (i=1;i<=npar;i++){    free_vector(xt,1,ncom); 
     printf("%d",i);fflush(stdout);    return f; 
     hess[i][i]=hessii(p,ftolhess,i,delti);  } 
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  /*****************brent *************************/
   }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
    { 
   for (i=1;i<=npar;i++) {    int iter; 
     for (j=1;j<=npar;j++)  {    double a,b,d,etemp;
       if (j>i) {    double fu,fv,fw,fx;
         printf(".%d%d",i,j);fflush(stdout);    double ftemp;
         hess[i][j]=hessij(p,delti,i,j);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         hess[j][i]=hess[i][j];        double e=0.0; 
         /*printf(" %lf ",hess[i][j]);*/   
       }    a=(ax < cx ? ax : cx); 
     }    b=(ax > cx ? ax : cx); 
   }    x=w=v=bx; 
   printf("\n");    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      xm=0.5*(a+b); 
        tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   a=matrix(1,npar,1,npar);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   y=matrix(1,npar,1,npar);      printf(".");fflush(stdout);
   x=vector(1,npar);      fprintf(ficlog,".");fflush(ficlog);
   indx=ivector(1,npar);  #ifdef DEBUG
   for (i=1;i<=npar;i++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   ludcmp(a,npar,indx,&pd);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
   for (j=1;j<=npar;j++) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for (i=1;i<=npar;i++) x[i]=0;        *xmin=x; 
     x[j]=1;        return fx; 
     lubksb(a,npar,indx,x);      } 
     for (i=1;i<=npar;i++){      ftemp=fu;
       matcov[i][j]=x[i];      if (fabs(e) > tol1) { 
     }        r=(x-w)*(fx-fv); 
   }        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
   printf("\n#Hessian matrix#\n");        q=2.0*(q-r); 
   for (i=1;i<=npar;i++) {        if (q > 0.0) p = -p; 
     for (j=1;j<=npar;j++) {        q=fabs(q); 
       printf("%.3e ",hess[i][j]);        etemp=e; 
     }        e=d; 
     printf("\n");        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
   /* Recompute Inverse */          d=p/q; 
   for (i=1;i<=npar;i++)          u=x+d; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          if (u-a < tol2 || b-u < tol2) 
   ludcmp(a,npar,indx,&pd);            d=SIGN(tol1,xm-x); 
         } 
   /*  printf("\n#Hessian matrix recomputed#\n");      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (j=1;j<=npar;j++) {      } 
     for (i=1;i<=npar;i++) x[i]=0;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     x[j]=1;      fu=(*f)(u); 
     lubksb(a,npar,indx,x);      if (fu <= fx) { 
     for (i=1;i<=npar;i++){        if (u >= x) a=x; else b=x; 
       y[i][j]=x[i];        SHFT(v,w,x,u) 
       printf("%.3e ",y[i][j]);          SHFT(fv,fw,fx,fu) 
     }          } else { 
     printf("\n");            if (u < x) a=u; else b=u; 
   }            if (fu <= fw || w == x) { 
   */              v=w; 
               w=u; 
   free_matrix(a,1,npar,1,npar);              fv=fw; 
   free_matrix(y,1,npar,1,npar);              fw=fu; 
   free_vector(x,1,npar);            } else if (fu <= fv || v == x || v == w) { 
   free_ivector(indx,1,npar);              v=u; 
   free_matrix(hess,1,npar,1,npar);              fv=fu; 
             } 
           } 
 }    } 
     nrerror("Too many iterations in brent"); 
 /*************** hessian matrix ****************/    *xmin=x; 
 double hessii( double x[], double delta, int theta, double delti[])    return fx; 
 {  } 
   int i;  
   int l=1, lmax=20;  /****************** mnbrak ***********************/
   double k1,k2;  
   double p2[NPARMAX+1];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   double res;              double (*func)(double)) 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  { 
   double fx;    double ulim,u,r,q, dum;
   int k=0,kmax=10;    double fu; 
   double l1;   
     *fa=(*func)(*ax); 
   fx=func(x);    *fb=(*func)(*bx); 
   for (i=1;i<=npar;i++) p2[i]=x[i];    if (*fb > *fa) { 
   for(l=0 ; l <=lmax; l++){      SHFT(dum,*ax,*bx,dum) 
     l1=pow(10,l);        SHFT(dum,*fb,*fa,dum) 
     delts=delt;        } 
     for(k=1 ; k <kmax; k=k+1){    *cx=(*bx)+GOLD*(*bx-*ax); 
       delt = delta*(l1*k);    *fc=(*func)(*cx); 
       p2[theta]=x[theta] +delt;    while (*fb > *fc) { 
       k1=func(p2)-fx;      r=(*bx-*ax)*(*fb-*fc); 
       p2[theta]=x[theta]-delt;      q=(*bx-*cx)*(*fb-*fa); 
       k2=func(p2)-fx;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
            if ((*bx-u)*(u-*cx) > 0.0) { 
 #ifdef DEBUG        fu=(*func)(u); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 #endif        fu=(*func)(u); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        if (fu < *fc) { 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         k=kmax;            SHFT(*fb,*fc,fu,(*func)(u)) 
       }            } 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         k=kmax; l=lmax*10.;        u=ulim; 
       }        fu=(*func)(u); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      } else { 
         delts=delt;        u=(*cx)+GOLD*(*cx-*bx); 
       }        fu=(*func)(u); 
     }      } 
   }      SHFT(*ax,*bx,*cx,u) 
   delti[theta]=delts;        SHFT(*fa,*fb,*fc,fu) 
   return res;        } 
    } 
 }  
   /*************** linmin ************************/
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {  int ncom; 
   int i;  double *pcom,*xicom;
   int l=1, l1, lmax=20;  double (*nrfunc)(double []); 
   double k1,k2,k3,k4,res,fx;   
   double p2[NPARMAX+1];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   int k;  { 
     double brent(double ax, double bx, double cx, 
   fx=func(x);                 double (*f)(double), double tol, double *xmin); 
   for (k=1; k<=2; k++) {    double f1dim(double x); 
     for (i=1;i<=npar;i++) p2[i]=x[i];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     p2[thetai]=x[thetai]+delti[thetai]/k;                double *fc, double (*func)(double)); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int j; 
     k1=func(p2)-fx;    double xx,xmin,bx,ax; 
      double fx,fb,fa;
     p2[thetai]=x[thetai]+delti[thetai]/k;   
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    ncom=n; 
     k2=func(p2)-fx;    pcom=vector(1,n); 
      xicom=vector(1,n); 
     p2[thetai]=x[thetai]-delti[thetai]/k;    nrfunc=func; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (j=1;j<=n;j++) { 
     k3=func(p2)-fx;      pcom[j]=p[j]; 
        xicom[j]=xi[j]; 
     p2[thetai]=x[thetai]-delti[thetai]/k;    } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    ax=0.0; 
     k4=func(p2)-fx;    xx=1.0; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 #ifdef DEBUG    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  #ifdef DEBUG
 #endif    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   return res;  #endif
 }    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
 /************** Inverse of matrix **************/      p[j] += xi[j]; 
 void ludcmp(double **a, int n, int *indx, double *d)    } 
 {    free_vector(xicom,1,n); 
   int i,imax,j,k;    free_vector(pcom,1,n); 
   double big,dum,sum,temp;  } 
   double *vv;  
    char *asc_diff_time(long time_sec, char ascdiff[])
   vv=vector(1,n);  {
   *d=1.0;    long sec_left, days, hours, minutes;
   for (i=1;i<=n;i++) {    days = (time_sec) / (60*60*24);
     big=0.0;    sec_left = (time_sec) % (60*60*24);
     for (j=1;j<=n;j++)    hours = (sec_left) / (60*60) ;
       if ((temp=fabs(a[i][j])) > big) big=temp;    sec_left = (sec_left) %(60*60);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    minutes = (sec_left) /60;
     vv[i]=1.0/big;    sec_left = (sec_left) % (60);
   }    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   for (j=1;j<=n;j++) {    return ascdiff;
     for (i=1;i<j;i++) {  }
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /*************** powell ************************/
       a[i][j]=sum;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     }              double (*func)(double [])) 
     big=0.0;  { 
     for (i=j;i<=n;i++) {    void linmin(double p[], double xi[], int n, double *fret, 
       sum=a[i][j];                double (*func)(double [])); 
       for (k=1;k<j;k++)    int i,ibig,j; 
         sum -= a[i][k]*a[k][j];    double del,t,*pt,*ptt,*xit;
       a[i][j]=sum;    double fp,fptt;
       if ( (dum=vv[i]*fabs(sum)) >= big) {    double *xits;
         big=dum;    int niterf, itmp;
         imax=i;  
       }    pt=vector(1,n); 
     }    ptt=vector(1,n); 
     if (j != imax) {    xit=vector(1,n); 
       for (k=1;k<=n;k++) {    xits=vector(1,n); 
         dum=a[imax][k];    *fret=(*func)(p); 
         a[imax][k]=a[j][k];    for (j=1;j<=n;j++) pt[j]=p[j]; 
         a[j][k]=dum;    for (*iter=1;;++(*iter)) { 
       }      fp=(*fret); 
       *d = -(*d);      ibig=0; 
       vv[imax]=vv[j];      del=0.0; 
     }      last_time=curr_time;
     indx[j]=imax;      (void) gettimeofday(&curr_time,&tzp);
     if (a[j][j] == 0.0) a[j][j]=TINY;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     if (j != n) {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       dum=1.0/(a[j][j]);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;     for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
   }        fprintf(ficlog," %d %.12lf",i, p[i]);
   free_vector(vv,1,n);  /* Doesn't work */        fprintf(ficrespow," %.12lf", p[i]);
 ;      }
 }      printf("\n");
       fprintf(ficlog,"\n");
 void lubksb(double **a, int n, int *indx, double b[])      fprintf(ficrespow,"\n");fflush(ficrespow);
 {      if(*iter <=3){
   int i,ii=0,ip,j;        tm = *localtime(&curr_time.tv_sec);
   double sum;        strcpy(strcurr,asctime(&tm));
    /*       asctime_r(&tm,strcurr); */
   for (i=1;i<=n;i++) {        forecast_time=curr_time; 
     ip=indx[i];        itmp = strlen(strcurr);
     sum=b[ip];        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     b[ip]=b[i];          strcurr[itmp-1]='\0';
     if (ii)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     else if (sum) ii=i;        for(niterf=10;niterf<=30;niterf+=10){
     b[i]=sum;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   }          tmf = *localtime(&forecast_time.tv_sec);
   for (i=n;i>=1;i--) {  /*      asctime_r(&tmf,strfor); */
     sum=b[i];          strcpy(strfor,asctime(&tmf));
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          itmp = strlen(strfor);
     b[i]=sum/a[i][i];          if(strfor[itmp-1]=='\n')
   }          strfor[itmp-1]='\0';
 }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 /************ Frequencies ********************/        }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      }
 {  /* Some frequencies */      for (i=1;i<=n;i++) { 
          for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        fptt=(*fret); 
   double ***freq; /* Frequencies */  #ifdef DEBUG
   double *pp;        printf("fret=%lf \n",*fret);
   double pos, k2, dateintsum=0,k2cpt=0;        fprintf(ficlog,"fret=%lf \n",*fret);
   FILE *ficresp;  #endif
   char fileresp[FILENAMELENGTH];        printf("%d",i);fflush(stdout);
          fprintf(ficlog,"%d",i);fflush(ficlog);
   pp=vector(1,nlstate);        linmin(p,xit,n,fret,func); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        if (fabs(fptt-(*fret)) > del) { 
   strcpy(fileresp,"p");          del=fabs(fptt-(*fret)); 
   strcat(fileresp,fileres);          ibig=i; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {        } 
     printf("Problem with prevalence resultfile: %s\n", fileresp);  #ifdef DEBUG
     exit(0);        printf("%d %.12e",i,(*fret));
   }        fprintf(ficlog,"%d %.12e",i,(*fret));
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for (j=1;j<=n;j++) {
   j1=0;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
            printf(" x(%d)=%.12e",j,xit[j]);
   j=cptcoveff;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        }
          for(j=1;j<=n;j++) {
   for(k1=1; k1<=j;k1++){          printf(" p=%.12e",p[j]);
     for(i1=1; i1<=ncodemax[k1];i1++){          fprintf(ficlog," p=%.12e",p[j]);
       j1++;        }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        printf("\n");
         scanf("%d", i);*/        fprintf(ficlog,"\n");
       for (i=-1; i<=nlstate+ndeath; i++)    #endif
         for (jk=-1; jk<=nlstate+ndeath; jk++)        } 
           for(m=agemin; m <= agemax+3; m++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
             freq[i][jk][m]=0;  #ifdef DEBUG
              int k[2],l;
       dateintsum=0;        k[0]=1;
       k2cpt=0;        k[1]=-1;
       for (i=1; i<=imx; i++) {        printf("Max: %.12e",(*func)(p));
         bool=1;        fprintf(ficlog,"Max: %.12e",(*func)(p));
         if  (cptcovn>0) {        for (j=1;j<=n;j++) {
           for (z1=1; z1<=cptcoveff; z1++)          printf(" %.12e",p[j]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          fprintf(ficlog," %.12e",p[j]);
               bool=0;        }
         }        printf("\n");
         if (bool==1) {        fprintf(ficlog,"\n");
           for(m=firstpass; m<=lastpass; m++){        for(l=0;l<=1;l++) {
             k2=anint[m][i]+(mint[m][i]/12.);          for (j=1;j<=n;j++) {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
               if(agev[m][i]==0) agev[m][i]=agemax+1;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
               if (m<lastpass) {          }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
               }        }
                #endif
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;  
                 k2cpt++;        free_vector(xit,1,n); 
               }        free_vector(xits,1,n); 
             }        free_vector(ptt,1,n); 
           }        free_vector(pt,1,n); 
         }        return; 
       }      } 
              if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
       if  (cptcovn>0) {        xit[j]=p[j]-pt[j]; 
         fprintf(ficresp, "\n#********** Variable ");        pt[j]=p[j]; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      } 
         fprintf(ficresp, "**********\n#");      fptt=(*func)(ptt); 
       }      if (fptt < fp) { 
       for(i=1; i<=nlstate;i++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        if (t < 0.0) { 
       fprintf(ficresp, "\n");          linmin(p,xit,n,fret,func); 
                for (j=1;j<=n;j++) { 
       for(i=(int)agemin; i <= (int)agemax+3; i++){            xi[j][ibig]=xi[j][n]; 
         if(i==(int)agemax+3)            xi[j][n]=xit[j]; 
           printf("Total");          }
         else  #ifdef DEBUG
           printf("Age %d", i);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for(j=1;j<=n;j++){
             pp[jk] += freq[jk][m][i];            printf(" %.12e",xit[j]);
         }            fprintf(ficlog," %.12e",xit[j]);
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=-1, pos=0; m <=0 ; m++)          printf("\n");
             pos += freq[jk][m][i];          fprintf(ficlog,"\n");
           if(pp[jk]>=1.e-10)  #endif
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        }
           else      } 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    } 
         }  } 
   
         for(jk=1; jk <=nlstate ; jk++){  /**** Prevalence limit (stable or period prevalence)  ****************/
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         }  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         for(jk=1,pos=0; jk <=nlstate ; jk++)       matrix by transitions matrix until convergence is reached */
           pos += pp[jk];  
         for(jk=1; jk <=nlstate ; jk++){    int i, ii,j,k;
           if(pos>=1.e-5)    double min, max, maxmin, maxmax,sumnew=0.;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double **matprod2();
           else    double **out, cov[NCOVMAX+1], **pmij();
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    double **newm;
           if( i <= (int) agemax){    double agefin, delaymax=50 ; /* Max number of years to converge */
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    for (ii=1;ii<=nlstate+ndeath;ii++)
               probs[i][jk][j1]= pp[jk]/pos;      for (j=1;j<=nlstate+ndeath;j++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             }      }
             else  
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);     cov[1]=1.;
           }   
         }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
            for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         for(jk=-1; jk <=nlstate+ndeath; jk++)      newm=savm;
           for(m=-1; m <=nlstate+ndeath; m++)      /* Covariates have to be included here again */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      cov[2]=agefin;
         if(i <= (int) agemax)      
           fprintf(ficresp,"\n");      for (k=1; k<=cptcovn;k++) {
         printf("\n");        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     }      }
   }      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   dateintmean=dateintsum/k2cpt;      for (k=1; k<=cptcovprod;k++)
          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   fclose(ficresp);      
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   free_vector(pp,1,nlstate);      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   /* End of Freq */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 }      
       savm=oldm;
 /************ Prevalence ********************/      oldm=newm;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      maxmax=0.;
 {  /* Some frequencies */      for(j=1;j<=nlstate;j++){
          min=1.;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        max=0.;
   double ***freq; /* Frequencies */        for(i=1; i<=nlstate; i++) {
   double *pp;          sumnew=0;
   double pos, k2;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   pp=vector(1,nlstate);          max=FMAX(max,prlim[i][j]);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          min=FMIN(min,prlim[i][j]);
          }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        maxmin=max-min;
   j1=0;        maxmax=FMAX(maxmax,maxmin);
        }
   j=cptcoveff;      if(maxmax < ftolpl){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        return prlim;
        }
  for(k1=1; k1<=j;k1++){    }
     for(i1=1; i1<=ncodemax[k1];i1++){  }
       j1++;  
    /*************** transition probabilities ***************/ 
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)    double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           for(m=agemin; m <= agemax+3; m++)  {
             freq[i][jk][m]=0;    /* According to parameters values stored in x and the covariate's values stored in cov,
             computes the probability to be observed in state j being in state i by appying the
       for (i=1; i<=imx; i++) {       model to the ncovmodel covariates (including constant and age).
         bool=1;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         if  (cptcovn>0) {       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
           for (z1=1; z1<=cptcoveff; z1++)       ncth covariate in the global vector x is given by the formula:
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
               bool=0;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         }       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
         if (bool==1) {       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
           for(m=firstpass; m<=lastpass; m++){       Outputs ps[i][j] the probability to be observed in j being in j according to
             k2=anint[m][i]+(mint[m][i]/12.);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    double s1, lnpijopii;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /*double t34;*/
               if (m<lastpass)    int i,j,j1, nc, ii, jj;
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  
               else      for(i=1; i<= nlstate; i++){
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(j=1; j<i;j++){
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             }            /*lnpijopii += param[i][j][nc]*cov[nc];*/
           }            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         }  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       }          }
         for(i=(int)agemin; i <= (int)agemax+3; i++){          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           for(jk=1; jk <=nlstate ; jk++){  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        }
               pp[jk] += freq[jk][m][i];        for(j=i+1; j<=nlstate+ndeath;j++){
           }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           for(jk=1; jk <=nlstate ; jk++){            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
             for(m=-1, pos=0; m <=0 ; m++)            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
             pos += freq[jk][m][i];  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         }          }
                  ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
          for(jk=1; jk <=nlstate ; jk++){        }
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      }
              pp[jk] += freq[jk][m][i];      
          }      for(i=1; i<= nlstate; i++){
                  s1=0;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        for(j=1; j<i; j++){
           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
          for(jk=1; jk <=nlstate ; jk++){                    /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
            if( i <= (int) agemax){        }
              if(pos>=1.e-5){        for(j=i+1; j<=nlstate+ndeath; j++){
                probs[i][jk][j1]= pp[jk]/pos;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
              }          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
            }        }
          }        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                  ps[i][i]=1./(s1+1.);
         }        /* Computing other pijs */
     }        for(j=1; j<i; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   free_vector(pp,1,nlstate);      } /* end i */
        
 }  /* End of Freq */      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
 /************* Waves Concatenation ***************/          ps[ii][jj]=0;
           ps[ii][ii]=1;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        }
 {      }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
      and mw[mi+1][i]. dh depends on stepm.  /*         printf("ddd %lf ",ps[ii][jj]); */
      */  /*       } */
   /*       printf("\n "); */
   int i, mi, m;  /*        } */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  /*        printf("\n ");printf("%lf ",cov[2]); */
      double sum=0., jmean=0.;*/         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
   int j, k=0,jk, ju, jl;        goto end;*/
   double sum=0.;      return ps;
   jmin=1e+5;  }
   jmax=-1;  
   jmean=0.;  /**************** Product of 2 matrices ******************/
   for(i=1; i<=imx; i++){  
     mi=0;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     m=firstpass;  {
     while(s[m][i] <= nlstate){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       if(s[m][i]>=1)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         mw[++mi][i]=m;    /* in, b, out are matrice of pointers which should have been initialized 
       if(m >=lastpass)       before: only the contents of out is modified. The function returns
         break;       a pointer to pointers identical to out */
       else    long i, j, k;
         m++;    for(i=nrl; i<= nrh; i++)
     }/* end while */      for(k=ncolol; k<=ncoloh; k++)
     if (s[m][i] > nlstate){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       mi++;     /* Death is another wave */          out[i][k] +=in[i][j]*b[j][k];
       /* if(mi==0)  never been interviewed correctly before death */  
          /* Only death is a correct wave */    return out;
       mw[mi][i]=m;  }
     }  
   
     wav[i]=mi;  /************* Higher Matrix Product ***************/
     if(mi==0)  
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   }  {
     /* Computes the transition matrix starting at age 'age' over 
   for(i=1; i<=imx; i++){       'nhstepm*hstepm*stepm' months (i.e. until
     for(mi=1; mi<wav[i];mi++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       if (stepm <=0)       nhstepm*hstepm matrices. 
         dh[mi][i]=1;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       else{       (typically every 2 years instead of every month which is too big 
         if (s[mw[mi+1][i]][i] > nlstate) {       for the memory).
           if (agedc[i] < 2*AGESUP) {       Model is determined by parameters x and covariates have to be 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       included manually here. 
           if(j==0) j=1;  /* Survives at least one month after exam */  
           k=k+1;       */
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;    int i, j, d, h, k;
           sum=sum+j;    double **out, cov[NCOVMAX+1];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    double **newm;
           }  
         }    /* Hstepm could be zero and should return the unit matrix */
         else{    for (i=1;i<=nlstate+ndeath;i++)
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      for (j=1;j<=nlstate+ndeath;j++){
           k=k+1;        oldm[i][j]=(i==j ? 1.0 : 0.0);
           if (j >= jmax) jmax=j;        po[i][j][0]=(i==j ? 1.0 : 0.0);
           else if (j <= jmin)jmin=j;      }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           sum=sum+j;    for(h=1; h <=nhstepm; h++){
         }      for(d=1; d <=hstepm; d++){
         jk= j/stepm;        newm=savm;
         jl= j -jk*stepm;        /* Covariates have to be included here again */
         ju= j -(jk+1)*stepm;        cov[1]=1.;
         if(jl <= -ju)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           dh[mi][i]=jk;        for (k=1; k<=cptcovn;k++) 
         else          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           dh[mi][i]=jk+1;        for (k=1; k<=cptcovage;k++)
         if(dh[mi][i]==0)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           dh[mi][i]=1; /* At least one step */        for (k=1; k<=cptcovprod;k++)
       }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }  
   }  
   jmean=sum/k;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
  }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 /*********** Tricode ****************************/                     pmij(pmmij,cov,ncovmodel,x,nlstate));
 void tricode(int *Tvar, int **nbcode, int imx)        savm=oldm;
 {        oldm=newm;
   int Ndum[20],ij=1, k, j, i;      }
   int cptcode=0;      for(i=1; i<=nlstate+ndeath; i++)
   cptcoveff=0;        for(j=1;j<=nlstate+ndeath;j++) {
            po[i][j][h]=newm[i][j];
   for (k=0; k<19; k++) Ndum[k]=0;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   for (k=1; k<=7; k++) ncodemax[k]=0;        }
       /*printf("h=%d ",h);*/
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    } /* end h */
     for (i=1; i<=imx; i++) {  /*     printf("\n H=%d \n",h); */
       ij=(int)(covar[Tvar[j]][i]);    return po;
       Ndum[ij]++;  }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;  
     }  /*************** log-likelihood *************/
   double func( double *x)
     for (i=0; i<=cptcode; i++) {  {
       if(Ndum[i]!=0) ncodemax[j]++;    int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     ij=1;    double **out;
     double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
     for (i=1; i<=ncodemax[j]; i++) {    int s1, s2;
       for (k=0; k<=19; k++) {    double bbh, survp;
         if (Ndum[k] != 0) {    long ipmx;
           nbcode[Tvar[j]][ij]=k;    /*extern weight */
              /* We are differentiating ll according to initial status */
           ij++;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++) 
         if (ij > ncodemax[j]) break;      printf(" %d\n",s[4][i]);
       }      */
     }    cov[1]=1.;
   }    
     for(k=1; k<=nlstate; k++) ll[k]=0.;
  for (k=0; k<19; k++) Ndum[k]=0;  
     if(mle==1){
  for (i=1; i<=ncovmodel-2; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       ij=Tvar[i];        /* Computes the values of the ncovmodel covariates of the model
       Ndum[ij]++;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     }           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
            to be observed in j being in i according to the model.
  ij=1;         */
  for (i=1; i<=10; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    if((Ndum[i]!=0) && (i<=ncovcol)){        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
      Tvaraff[ij]=i;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
      ij++;           has been calculated etc */
    }        for(mi=1; mi<= wav[i]-1; mi++){
  }          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
     cptcoveff=ij-1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 /*********** Health Expectancies ****************/          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   /* Health expectancies */            }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double age, agelim, hf;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***p3mat,***varhe;            savm=oldm;
   double **dnewm,**doldm;            oldm=newm;
   double *xp;          } /* end mult */
   double **gp, **gm;        
   double ***gradg, ***trgradg;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   int theta;          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);           * (in months) between two waves is not a multiple of stepm, we rounded to 
   xp=vector(1,npar);           * the nearest (and in case of equal distance, to the lowest) interval but now
   dnewm=matrix(1,nlstate*2,1,npar);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   doldm=matrix(1,nlstate*2,1,nlstate*2);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             * probability in order to take into account the bias as a fraction of the way
   fprintf(ficreseij,"# Health expectancies\n");           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   fprintf(ficreseij,"# Age");           * -stepm/2 to stepm/2 .
   for(i=1; i<=nlstate;i++)           * For stepm=1 the results are the same as for previous versions of Imach.
     for(j=1; j<=nlstate;j++)           * For stepm > 1 the results are less biased than in previous versions. 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);           */
   fprintf(ficreseij,"\n");          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   if(estepm < stepm){          bbh=(double)bh[mi][i]/(double)stepm; 
     printf ("Problem %d lower than %d\n",estepm, stepm);          /* bias bh is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
   else  hstepm=estepm;             */
   /* We compute the life expectancy from trapezoids spaced every estepm months          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
    * This is mainly to measure the difference between two models: for example          if( s2 > nlstate){ 
    * if stepm=24 months pijx are given only every 2 years and by summing them            /* i.e. if s2 is a death state and if the date of death is known 
    * we are calculating an estimate of the Life Expectancy assuming a linear               then the contribution to the likelihood is the probability to 
    * progression inbetween and thus overestimating or underestimating according               die between last step unit time and current  step unit time, 
    * to the curvature of the survival function. If, for the same date, we               which is also equal to probability to die before dh 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months               minus probability to die before dh-stepm . 
    * to compare the new estimate of Life expectancy with the same linear               In version up to 0.92 likelihood was computed
    * hypothesis. A more precise result, taking into account a more precise          as if date of death was unknown. Death was treated as any other
    * curvature will be obtained if estepm is as small as stepm. */          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   /* For example we decided to compute the life expectancy with the smallest unit */          to consider that at each interview the state was recorded
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          (healthy, disable or death) and IMaCh was corrected; but when we
      nhstepm is the number of hstepm from age to agelim          introduced the exact date of death then we should have modified
      nstepm is the number of stepm from age to agelin.          the contribution of an exact death to the likelihood. This new
      Look at hpijx to understand the reason of that which relies in memory size          contribution is smaller and very dependent of the step unit
      and note for a fixed period like estepm months */          stepm. It is no more the probability to die between last interview
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          and month of death but the probability to survive from last
      survival function given by stepm (the optimization length). Unfortunately it          interview up to one month before death multiplied by the
      means that if the survival funtion is printed only each two years of age and if          probability to die within a month. Thanks to Chris
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          Jackson for correcting this bug.  Former versions increased
      results. So we changed our mind and took the option of the best precision.          mortality artificially. The bad side is that we add another loop
   */          which slows down the processing. The difference can be up to 10%
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          lower mortality.
             */
   agelim=AGESUP;            lli=log(out[s1][s2] - savm[s1][s2]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          } else if  (s2==-2) {
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            for (j=1,survp=0. ; j<=nlstate; j++) 
     /* if (stepm >= YEARM) hstepm=1;*/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            /*survp += out[s1][j]; */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli= log(survp);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          }
     gp=matrix(0,nhstepm,1,nlstate*2);          
     gm=matrix(0,nhstepm,1,nlstate*2);          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
     /* Computed by stepm unit matrices, product of hstepm matrices, stored              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            lli= log(survp); 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            } 
    
           else if  (s2==-5) { 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     /* Computing Variances of health expectancies */            lli= log(survp); 
           } 
      for(theta=1; theta <=npar; theta++){          
       for(i=1; i<=npar; i++){          else{
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            } 
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       cptj=0;          /*if(lli ==000.0)*/
       for(j=1; j<= nlstate; j++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         for(i=1; i<=nlstate; i++){          ipmx +=1;
           cptj=cptj+1;          sw += weight[i];
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        } /* end of wave */
           }      } /* end of individual */
         }    }  else if(mle==2){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
       for(i=1; i<=npar; i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for (j=1;j<=nlstate+ndeath;j++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    savm[ii][j]=(ii==j ? 1.0 : 0.0);
       cptj=0;            }
       for(j=1; j<= nlstate; j++){          for(d=0; d<=dh[mi][i]; d++){
         for(i=1;i<=nlstate;i++){            newm=savm;
           cptj=cptj+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){            for (kk=1; kk<=cptcovage;kk++) {
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                  savm=oldm;
                oldm=newm;
           } /* end mult */
       for(j=1; j<= nlstate*2; j++)        
         for(h=0; h<=nhstepm-1; h++){          s1=s[mw[mi][i]][i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      }          ipmx +=1;
              sw += weight[i];
 /* End theta */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
      for(h=0; h<=nhstepm-1; h++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<=nlstate*2;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(theta=1; theta <=npar; theta++)        for(mi=1; mi<= wav[i]-1; mi++){
         trgradg[h][j][theta]=gradg[h][theta][j];          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      for(i=1;i<=nlstate*2;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1;j<=nlstate*2;j++)            }
         varhe[i][j][(int)age] =0.;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     for(h=0;h<=nhstepm-1;h++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(k=0;k<=nhstepm-1;k++){            for (kk=1; kk<=cptcovage;kk++) {
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);            }
         for(i=1;i<=nlstate*2;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(j=1;j<=nlstate*2;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;            savm=oldm;
       }            oldm=newm;
     }          } /* end mult */
         
                s1=s[mw[mi][i]][i];
     /* Computing expectancies */          s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1; j<=nlstate;j++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          ipmx +=1;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          sw += weight[i];
                    ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        } /* end of wave */
       } /* end of individual */
         }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficreseij,"%3.0f",age );        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     cptj=0;        for(mi=1; mi<= wav[i]-1; mi++){
     for(i=1; i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<=nlstate;j++){            for (j=1;j<=nlstate+ndeath;j++){
         cptj++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     fprintf(ficreseij,"\n");          for(d=0; d<dh[mi][i]; d++){
                newm=savm;
     free_matrix(gm,0,nhstepm,1,nlstate*2);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_matrix(gp,0,nhstepm,1,nlstate*2);            for (kk=1; kk<=cptcovage;kk++) {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);            }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_vector(xp,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_matrix(dnewm,1,nlstate*2,1,npar);            savm=oldm;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);            oldm=newm;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          } /* end mult */
 }        
           s1=s[mw[mi][i]][i];
 /************ Variance ******************/          s2=s[mw[mi+1][i]][i];
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          if( s2 > nlstate){ 
 {            lli=log(out[s1][s2] - savm[s1][s2]);
   /* Variance of health expectancies */          }else{
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double **newm;          }
   double **dnewm,**doldm;          ipmx +=1;
   int i, j, nhstepm, hstepm, h, nstepm ;          sw += weight[i];
   int k, cptcode;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double *xp;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double **gp, **gm;        } /* end of wave */
   double ***gradg, ***trgradg;      } /* end of individual */
   double ***p3mat;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   double age,agelim, hf;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int theta;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
    fprintf(ficresvij,"# Covariances of life expectancies\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficresvij,"# Age");            for (j=1;j<=nlstate+ndeath;j++){
   for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=1; j<=nlstate;j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            }
   fprintf(ficresvij,"\n");          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   xp=vector(1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   dnewm=matrix(1,nlstate,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   doldm=matrix(1,nlstate,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   if(estepm < stepm){          
     printf ("Problem %d lower than %d\n",estepm, stepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   else  hstepm=estepm;              savm=oldm;
   /* For example we decided to compute the life expectancy with the smallest unit */            oldm=newm;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          } /* end mult */
      nhstepm is the number of hstepm from age to agelim        
      nstepm is the number of stepm from age to agelin.          s1=s[mw[mi][i]][i];
      Look at hpijx to understand the reason of that which relies in memory size          s2=s[mw[mi+1][i]][i];
      and note for a fixed period like k years */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          ipmx +=1;
      survival function given by stepm (the optimization length). Unfortunately it          sw += weight[i];
      means that if the survival funtion is printed only each two years of age and if          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      results. So we changed our mind and took the option of the best precision.        } /* end of wave */
   */      } /* end of individual */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    } /* End of if */
   agelim = AGESUP;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    return -l;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);  /*************** log-likelihood *************/
     gm=matrix(0,nhstepm,1,nlstate);  double funcone( double *x)
   {
     for(theta=1; theta <=npar; theta++){    /* Same as likeli but slower because of a lot of printf and if */
       for(i=1; i<=npar; i++){ /* Computes gradient */    int i, ii, j, k, mi, d, kk;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       }    double **out;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double lli; /* Individual log likelihood */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double llt;
     int s1, s2;
       if (popbased==1) {    double bbh, survp;
         for(i=1; i<=nlstate;i++)    /*extern weight */
           prlim[i][i]=probs[(int)age][i][ij];    /* We are differentiating ll according to initial status */
       }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
       for(j=1; j<= nlstate; j++){      printf(" %d\n",s[4][i]);
         for(h=0; h<=nhstepm; h++){    */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    cov[1]=1.;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }  
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1; i<=npar; i++) /* Computes gradient */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(mi=1; mi<= wav[i]-1; mi++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (ii=1;ii<=nlstate+ndeath;ii++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (popbased==1) {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1; i<=nlstate;i++)          }
           prlim[i][i]=probs[(int)age][i][ij];        for(d=0; d<dh[mi][i]; d++){
       }          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(j=1; j<= nlstate; j++){          for (kk=1; kk<=cptcovage;kk++) {
         for(h=0; h<=nhstepm; h++){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }          savm=oldm;
           oldm=newm;
       for(j=1; j<= nlstate; j++)        } /* end mult */
         for(h=0; h<=nhstepm; h++){        
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        s1=s[mw[mi][i]][i];
         }        s2=s[mw[mi+1][i]][i];
     } /* End theta */        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);         * is higher than the multiple of stepm and negative otherwise.
          */
     for(h=0; h<=nhstepm; h++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       for(j=1; j<=nlstate;j++)          lli=log(out[s1][s2] - savm[s1][s2]);
         for(theta=1; theta <=npar; theta++)        } else if  (s2==-2) {
           trgradg[h][j][theta]=gradg[h][theta][j];          for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          lli= log(survp);
     for(i=1;i<=nlstate;i++)        }else if (mle==1){
       for(j=1;j<=nlstate;j++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         vareij[i][j][(int)age] =0.;        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(h=0;h<=nhstepm;h++){        } else if(mle==3){  /* exponential inter-extrapolation */
       for(k=0;k<=nhstepm;k++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          lli=log(out[s1][s2]); /* Original formula */
         for(i=1;i<=nlstate;i++)        } else{  /* mle=0 back to 1 */
           for(j=1;j<=nlstate;j++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          /*lli=log(out[s1][s2]); */ /* Original formula */
       }        } /* End of if */
     }        ipmx +=1;
         sw += weight[i];
     fprintf(ficresvij,"%.0f ",age );        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(i=1; i<=nlstate;i++)        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for(j=1; j<=nlstate;j++){        if(globpr){
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       }   %11.6f %11.6f %11.6f ", \
     fprintf(ficresvij,"\n");                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     free_matrix(gp,0,nhstepm,1,nlstate);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     free_matrix(gm,0,nhstepm,1,nlstate);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            llt +=ll[k]*gipmx/gsw;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
   } /* End age */          fprintf(ficresilk," %10.6f\n", -llt);
          }
   free_vector(xp,1,npar);      } /* end of wave */
   free_matrix(doldm,1,nlstate,1,npar);    } /* end of individual */
   free_matrix(dnewm,1,nlstate,1,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
 /************ Variance of prevlim ******************/      gipmx=ipmx;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      gsw=sw;
 {    }
   /* Variance of prevalence limit */    return -l;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  }
   double **newm;  
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;  /*************** function likelione ***********/
   int k, cptcode;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   double *xp;  {
   double *gp, *gm;    /* This routine should help understanding what is done with 
   double **gradg, **trgradg;       the selection of individuals/waves and
   double age,agelim;       to check the exact contribution to the likelihood.
   int theta;       Plotting could be done.
         */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    int k;
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    if(*globpri !=0){ /* Just counts and sums, no printings */
       fprintf(ficresvpl," %1d-%1d",i,i);      strcpy(fileresilk,"ilk"); 
   fprintf(ficresvpl,"\n");      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   xp=vector(1,npar);        printf("Problem with resultfile: %s\n", fileresilk);
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   doldm=matrix(1,nlstate,1,nlstate);      }
        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   hstepm=1*YEARM; /* Every year of age */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   agelim = AGESUP;      for(k=1; k<=nlstate; k++) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     if (stepm >= YEARM) hstepm=1;    }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);    *fretone=(*funcone)(p);
     gp=vector(1,nlstate);    if(*globpri !=0){
     gm=vector(1,nlstate);      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     for(theta=1; theta <=npar; theta++){      fflush(fichtm); 
       for(i=1; i<=npar; i++){ /* Computes gradient */    } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    return;
       }  }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];  /*********** Maximum Likelihood Estimation ***************/
      
       for(i=1; i<=npar; i++) /* Computes gradient */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i,j, iter;
       for(i=1;i<=nlstate;i++)    double **xi;
         gm[i] = prlim[i][i];    double fret;
     double fretone; /* Only one call to likelihood */
       for(i=1;i<=nlstate;i++)    /*  char filerespow[FILENAMELENGTH];*/
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    xi=matrix(1,npar,1,npar);
     } /* End theta */    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
     trgradg =matrix(1,nlstate,1,npar);        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     for(j=1; j<=nlstate;j++)    strcpy(filerespow,"pow"); 
       for(theta=1; theta <=npar; theta++)    strcat(filerespow,fileres);
         trgradg[j][theta]=gradg[theta][j];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
     for(i=1;i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       varpl[i][(int)age] =0.;    }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    for (i=1;i<=nlstate;i++)
     for(i=1;i<=nlstate;i++)      for(j=1;j<=nlstate+ndeath;j++)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    free_matrix(xi,1,npar,1,npar);
     free_vector(gp,1,nlstate);    fclose(ficrespow);
     free_vector(gm,1,nlstate);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     free_matrix(gradg,1,npar,1,nlstate);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     free_matrix(trgradg,1,nlstate,1,npar);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   } /* End age */  
   }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  /**** Computes Hessian and covariance matrix ***/
   free_matrix(dnewm,1,nlstate,1,nlstate);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
 }    double  **a,**y,*x,pd;
     double **hess;
 /************ Variance of one-step probabilities  ******************/    int i, j,jk;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    int *indx;
 {  
   int i, j, i1, k1, j1, z1;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   int k=0, cptcode;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   double **dnewm,**doldm;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   double *xp;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   double *gp, *gm;    double gompertz(double p[]);
   double **gradg, **trgradg;    hess=matrix(1,npar,1,npar);
   double age,agelim, cov[NCOVMAX];  
   int theta;    printf("\nCalculation of the hessian matrix. Wait...\n");
   char fileresprob[FILENAMELENGTH];    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
   strcpy(fileresprob,"prob");      printf("%d",i);fflush(stdout);
   strcat(fileresprob,fileres);      fprintf(ficlog,"%d",i);fflush(ficlog);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {     
     printf("Problem with resultfile: %s\n", fileresprob);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   }      
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      /*  printf(" %f ",p[i]);
            printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    }
   fprintf(ficresprob,"# Age");    
   for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++) {
     for(j=1; j<=(nlstate+ndeath);j++)      for (j=1;j<=npar;j++)  {
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   fprintf(ficresprob,"\n");          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
           hess[j][i]=hess[i][j];    
   xp=vector(1,npar);          /*printf(" %lf ",hess[i][j]);*/
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      }
      }
   cov[1]=1;    printf("\n");
   j=cptcoveff;    fprintf(ficlog,"\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
   j1=0;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   for(k1=1; k1<=1;k1++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(i1=1; i1<=ncodemax[k1];i1++){    
     j1++;    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     if  (cptcovn>0) {    x=vector(1,npar);
       fprintf(ficresprob, "\n#********** Variable ");    indx=ivector(1,npar);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (i=1;i<=npar;i++)
       fprintf(ficresprob, "**********\n#");      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     }    ludcmp(a,npar,indx,&pd);
      
       for (age=bage; age<=fage; age ++){    for (j=1;j<=npar;j++) {
         cov[2]=age;      for (i=1;i<=npar;i++) x[i]=0;
         for (k=1; k<=cptcovn;k++) {      x[j]=1;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      lubksb(a,npar,indx,x);
                for (i=1;i<=npar;i++){ 
         }        matcov[i][j]=x[i];
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      }
         for (k=1; k<=cptcovprod;k++)    }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
            printf("\n#Hessian matrix#\n");
         gradg=matrix(1,npar,1,9);    fprintf(ficlog,"\n#Hessian matrix#\n");
         trgradg=matrix(1,9,1,npar);    for (i=1;i<=npar;i++) { 
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      for (j=1;j<=npar;j++) { 
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        printf("%.3e ",hess[i][j]);
            fprintf(ficlog,"%.3e ",hess[i][j]);
         for(theta=1; theta <=npar; theta++){      }
           for(i=1; i<=npar; i++)      printf("\n");
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficlog,"\n");
              }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
              /* Recompute Inverse */
           k=0;    for (i=1;i<=npar;i++)
           for(i=1; i<= (nlstate+ndeath); i++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             for(j=1; j<=(nlstate+ndeath);j++){    ludcmp(a,npar,indx,&pd);
               k=k+1;  
               gp[k]=pmmij[i][j];    /*  printf("\n#Hessian matrix recomputed#\n");
             }  
           }    for (j=1;j<=npar;j++) {
                for (i=1;i<=npar;i++) x[i]=0;
           for(i=1; i<=npar; i++)      x[j]=1;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      lubksb(a,npar,indx,x);
          for (i=1;i<=npar;i++){ 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        y[i][j]=x[i];
           k=0;        printf("%.3e ",y[i][j]);
           for(i=1; i<=(nlstate+ndeath); i++){        fprintf(ficlog,"%.3e ",y[i][j]);
             for(j=1; j<=(nlstate+ndeath);j++){      }
               k=k+1;      printf("\n");
               gm[k]=pmmij[i][j];      fprintf(ficlog,"\n");
             }    }
           }    */
        
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    free_matrix(a,1,npar,1,npar);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      free_matrix(y,1,npar,1,npar);
         }    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    free_matrix(hess,1,npar,1,npar);
           for(theta=1; theta <=npar; theta++)  
             trgradg[j][theta]=gradg[theta][j];  
          }
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  /*************** hessian matrix ****************/
          double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         pmij(pmmij,cov,ncovmodel,x,nlstate);  {
            int i;
         k=0;    int l=1, lmax=20;
         for(i=1; i<=(nlstate+ndeath); i++){    double k1,k2;
           for(j=1; j<=(nlstate+ndeath);j++){    double p2[MAXPARM+1]; /* identical to x */
             k=k+1;    double res;
             gm[k]=pmmij[i][j];    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           }    double fx;
         }    int k=0,kmax=10;
          double l1;
      /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    fx=func(x);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    for (i=1;i<=npar;i++) p2[i]=x[i];
      }*/    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
         fprintf(ficresprob,"\n%d ",(int)age);      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)        delt = delta*(l1*k);
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));        p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;
       }        p2[theta]=x[theta]-delt;
     }        k2=func(p2)-fx;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        /*res= (k1-2.0*fx+k2)/delt/delt; */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  #ifdef DEBUGHESS
   }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   free_vector(xp,1,npar);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   fclose(ficresprob);  #endif
          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
 /******************* Printing html file ***********/        }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
  int lastpass, int stepm, int weightopt, char model[],\          k=kmax; l=lmax*10.;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \        }
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
  char version[], int popforecast, int estepm ){          delts=delt;
   int jj1, k1, i1, cpt;        }
   FILE *fichtm;      }
   /*char optionfilehtm[FILENAMELENGTH];*/    }
     delti[theta]=delts;
   strcpy(optionfilehtm,optionfile);    return res; 
   strcat(optionfilehtm,".htm");    
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  }
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    int i;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    int l=1, l1, lmax=20;
 \n    double k1,k2,k3,k4,res,fx;
 Total number of observations=%d <br>\n    double p2[MAXPARM+1];
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    int k;
 <hr  size=\"2\" color=\"#EC5E5E\">  
  <ul><li>Outputs files<br>\n    fx=func(x);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    for (k=1; k<=2; k++) {
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      for (i=1;i<=npar;i++) p2[i]=x[i];
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      p2[thetai]=x[thetai]+delti[thetai]/k;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      k1=func(p2)-fx;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    
       p2[thetai]=x[thetai]+delti[thetai]/k;
  fprintf(fichtm,"\n      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n      k2=func(p2)-fx;
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      p2[thetai]=x[thetai]-delti[thetai]/k;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      k3=func(p2)-fx;
     
  if(popforecast==1) fprintf(fichtm,"\n      p2[thetai]=x[thetai]-delti[thetai]/k;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      k4=func(p2)-fx;
         <br>",fileres,fileres,fileres,fileres);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
  else  #ifdef DEBUG
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 fprintf(fichtm," <li>Graphs</li><p>");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
  m=cptcoveff;    }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    return res;
   }
  jj1=0;  
  for(k1=1; k1<=m;k1++){  /************** Inverse of matrix **************/
    for(i1=1; i1<=ncodemax[k1];i1++){  void ludcmp(double **a, int n, int *indx, double *d) 
        jj1++;  { 
        if (cptcovn > 0) {    int i,imax,j,k; 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double big,dum,sum,temp; 
          for (cpt=1; cpt<=cptcoveff;cpt++)    double *vv; 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);   
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    vv=vector(1,n); 
        }    *d=1.0; 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    for (i=1;i<=n;i++) { 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          big=0.0; 
        for(cpt=1; cpt<nlstate;cpt++){      for (j=1;j<=n;j++) 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        if ((temp=fabs(a[i][j])) > big) big=temp; 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
        }      vv[i]=1.0/big; 
     for(cpt=1; cpt<=nlstate;cpt++) {    } 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    for (j=1;j<=n;j++) { 
 interval) in state (%d): v%s%d%d.gif <br>      for (i=1;i<j;i++) { 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          sum=a[i][j]; 
      }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      for(cpt=1; cpt<=nlstate;cpt++) {        a[i][j]=sum; 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      } 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      big=0.0; 
      }      for (i=j;i<=n;i++) { 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        sum=a[i][j]; 
 health expectancies in states (1) and (2): e%s%d.gif<br>        for (k=1;k<j;k++) 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          sum -= a[i][k]*a[k][j]; 
 fprintf(fichtm,"\n</body>");        a[i][j]=sum; 
    }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
    }          big=dum; 
 fclose(fichtm);          imax=i; 
 }        } 
       } 
 /******************* Gnuplot file **************/      if (j != imax) { 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
   strcpy(optionfilegnuplot,optionfilefiname);        } 
   strcat(optionfilegnuplot,".gp.txt");        *d = -(*d); 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        vv[imax]=vv[j]; 
     printf("Problem with file %s",optionfilegnuplot);      } 
   }      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
 #ifdef windows      if (j != n) { 
     fprintf(ficgp,"cd \"%s\" \n",pathc);        dum=1.0/(a[j][j]); 
 #endif        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 m=pow(2,cptcoveff);      } 
      } 
  /* 1eme*/    free_vector(vv,1,n);  /* Doesn't work */
   for (cpt=1; cpt<= nlstate ; cpt ++) {  ;
    for (k1=1; k1<= m ; k1 ++) {  } 
   
 #ifdef windows  void lubksb(double **a, int n, int *indx, double b[]) 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  { 
 #endif    int i,ii=0,ip,j; 
 #ifdef unix    double sum; 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);   
 #endif    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
 for (i=1; i<= nlstate ; i ++) {      sum=b[ip]; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      b[ip]=b[i]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if (ii) 
 }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      else if (sum) ii=i; 
     for (i=1; i<= nlstate ; i ++) {      b[i]=sum; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (i=n;i>=1;i--) { 
 }      sum=b[i]; 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      for (i=1; i<= nlstate ; i ++) {      b[i]=sum/a[i][i]; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");  } 
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  void pstamp(FILE *fichier)
 #ifdef unix  {
 fprintf(ficgp,"\nset ter gif small size 400,300");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 #endif  }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
    }  /************ Frequencies ********************/
   }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   /*2 eme*/  {  /* Some frequencies */
     
   for (k1=1; k1<= m ; k1 ++) {    int i, m, jk, k1,i1, j1, bool, z1,j;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    int first;
        double ***freq; /* Frequencies */
     for (i=1; i<= nlstate+1 ; i ++) {    double *pp, **prop;
       k=2*i;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    char fileresp[FILENAMELENGTH];
       for (j=1; j<= nlstate+1 ; j ++) {    
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    pp=vector(1,nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    prop=matrix(1,nlstate,iagemin,iagemax+3);
 }      strcpy(fileresp,"p");
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    strcat(fileresp,fileres);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      exit(0);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       fprintf(ficgp,"\" t\"\" w l 0,");    j1=0;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    
       for (j=1; j<= nlstate+1 ; j ++) {    j=cptcoveff;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      first=1;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");    for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
     }      for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        j1++;
   }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
            scanf("%d", i);*/
   /*3eme*/        for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
   for (k1=1; k1<= m ; k1 ++) {            for(m=iagemin; m <= iagemax+3; m++)
     for (cpt=1; cpt<= nlstate ; cpt ++) {              freq[i][jk][m]=0;
       k=2+nlstate*(2*cpt-2);        
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        for (i=1; i<=nlstate; i++)  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          for(m=iagemin; m <= iagemax+3; m++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            prop[i][m]=0;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        dateintsum=0;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        k2cpt=0;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for (i=1; i<=imx; i++) {
           bool=1;
 */          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
       for (i=1; i< nlstate ; i ++) {            for (z1=1; z1<=cptcoveff; z1++)       
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
                 bool=0;
       }                printf("bool=%d i=%d, z1=%d, i1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                  bool,i,z1, i1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
     }                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);
     }                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
                } 
   /* CV preval stat */          }
     for (k1=1; k1<= m ; k1 ++) {   
     for (cpt=1; cpt<nlstate ; cpt ++) {          if (bool==1){
       k=3;            for(m=firstpass; m<=lastpass; m++){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       for (i=1; i< nlstate ; i ++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         fprintf(ficgp,"+$%d",k+i+1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                      if (m<lastpass) {
       l=3+(nlstate+ndeath)*cpt;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for (i=1; i< nlstate ; i ++) {                }
         l=3+(nlstate+ndeath)*cpt;                
         fprintf(ficgp,"+$%d",l+i+1);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       }                  dateintsum=dateintsum+k2;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                    k2cpt++;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                }
     }                /*}*/
   }              }
            }
   /* proba elementaires */        }
    for(i=1,jk=1; i <=nlstate; i++){         
     for(k=1; k <=(nlstate+ndeath); k++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       if (k != i) {        pstamp(ficresp);
         for(j=1; j <=ncovmodel; j++){        if  (cptcovn>0) {
                  fprintf(ficresp, "\n#********** Variable "); 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           jk++;          fprintf(ficresp, "**********\n#");
           fprintf(ficgp,"\n");          fprintf(ficlog, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficlog, "**********\n#");
     }        }
     }        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     for(jk=1; jk <=m; jk++) {        fprintf(ficresp, "\n");
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        
    i=1;        for(i=iagemin; i <= iagemax+3; i++){
    for(k2=1; k2<=nlstate; k2++) {          if(i==iagemax+3){
      k3=i;            fprintf(ficlog,"Total");
      for(k=1; k<=(nlstate+ndeath); k++) {          }else{
        if (k != k2){            if(first==1){
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              first=0;
 ij=1;              printf("See log file for details...\n");
         for(j=3; j <=ncovmodel; j++) {            }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            fprintf(ficlog,"Age %d", i);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }
             ij++;          for(jk=1; jk <=nlstate ; jk++){
           }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           else              pp[jk] += freq[jk][m][i]; 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
         }          for(jk=1; jk <=nlstate ; jk++){
           fprintf(ficgp,")/(1");            for(m=-1, pos=0; m <=0 ; m++)
                      pos += freq[jk][m][i];
         for(k1=1; k1 <=nlstate; k1++){              if(pp[jk]>=1.e-10){
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              if(first==1){
 ij=1;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for(j=3; j <=ncovmodel; j++){              }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            }else{
             ij++;              if(first==1)
           }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           else              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            }
           }          }
           fprintf(ficgp,")");  
         }          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              pp[jk] += freq[jk][m][i];
         i=i+ncovmodel;          }       
        }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
      }            pos += pp[jk];
    }            posprop += prop[jk][i];
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          }
    }          for(jk=1; jk <=nlstate ; jk++){
                if(pos>=1.e-5){
   fclose(ficgp);              if(first==1)
 }  /* end gnuplot */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
 /*************** Moving average **************/              if(first==1)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int i, cpt, cptcod;            }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            if( i <= iagemax){
       for (i=1; i<=nlstate;i++)              if(pos>=1.e-5){
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           mobaverage[(int)agedeb][i][cptcod]=0.;                /*probs[i][jk][j1]= pp[jk]/pos;*/
                    /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){              }
       for (i=1; i<=nlstate;i++){              else
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           for (cpt=0;cpt<=4;cpt++){            }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          }
           }          
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          for(jk=-1; jk <=nlstate+ndeath; jk++)
         }            for(m=-1; m <=nlstate+ndeath; m++)
       }              if(freq[jk][m][i] !=0 ) {
     }              if(first==1)
                    printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
           if(i <= iagemax)
 /************** Forecasting ******************/            fprintf(ficresp,"\n");
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          if(first==1)
              printf("Others in log...\n");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          fprintf(ficlog,"\n");
   int *popage;        }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      }
   double *popeffectif,*popcount;    }
   double ***p3mat;    dateintmean=dateintsum/k2cpt; 
   char fileresf[FILENAMELENGTH];   
     fclose(ficresp);
  agelim=AGESUP;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /* End of Freq */
    }
    
   strcpy(fileresf,"f");  /************ Prevalence ********************/
   strcat(fileresf,fileres);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   if((ficresf=fopen(fileresf,"w"))==NULL) {  {  
     printf("Problem with forecast resultfile: %s\n", fileresf);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   }       in each health status at the date of interview (if between dateprev1 and dateprev2).
   printf("Computing forecasting: result on file '%s' \n", fileresf);       We still use firstpass and lastpass as another selection.
     */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   
     int i, m, jk, k1, i1, j1, bool, z1,j;
   if (mobilav==1) {    double ***freq; /* Frequencies */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *pp, **prop;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    double pos,posprop; 
   }    double  y2; /* in fractional years */
     int iagemin, iagemax;
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    iagemin= (int) agemin;
      iagemax= (int) agemax;
   agelim=AGESUP;    /*pp=vector(1,nlstate);*/
      prop=matrix(1,nlstate,iagemin,iagemax+3); 
   hstepm=1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   hstepm=hstepm/stepm;    j1=0;
   yp1=modf(dateintmean,&yp);    
   anprojmean=yp;    j=cptcoveff;
   yp2=modf((yp1*12),&yp);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   mprojmean=yp;    
   yp1=modf((yp2*30.5),&yp);    for(k1=1; k1<=j;k1++){
   jprojmean=yp;      for(i1=1; i1<=ncodemax[k1];i1++){
   if(jprojmean==0) jprojmean=1;        j1++;
   if(mprojmean==0) jprojmean=1;        
          for (i=1; i<=nlstate; i++)  
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0.0;
   for(cptcov=1;cptcov<=i2;cptcov++){       
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for (i=1; i<=imx; i++) { /* Each individual */
       k=k+1;          bool=1;
       fprintf(ficresf,"\n#******");          if  (cptcovn>0) {
       for(j=1;j<=cptcoveff;j++) {            for (z1=1; z1<=cptcoveff; z1++) 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       }                bool=0;
       fprintf(ficresf,"******\n");          } 
       fprintf(ficresf,"# StartingAge FinalAge");          if (bool==1) { 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         fprintf(ficresf,"\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           nhstepm = nhstepm/hstepm;                  prop[s[m][i]][iagemax+3] += weight[i]; 
                          } 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              }
           oldm=oldms;savm=savms;            } /* end selection of waves */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
                }
           for (h=0; h<=nhstepm; h++){        for(i=iagemin; i <= iagemax+3; i++){  
             if (h==(int) (calagedate+YEARM*cpt)) {          
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             }            posprop += prop[jk][i]; 
             for(j=1; j<=nlstate+ndeath;j++) {          } 
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                        for(jk=1; jk <=nlstate ; jk++){     
                 if (mobilav==1)            if( i <=  iagemax){ 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              if(posprop>=1.e-5){ 
                 else {                probs[i][jk][j1]= prop[jk][i]/posprop;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              } else
                 }                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
                            } 
               }          }/* end jk */ 
               if (h==(int)(calagedate+12*cpt)){        }/* end i */ 
                 fprintf(ficresf," %.3f", kk1);      } /* end i1 */
                            } /* end k1 */
               }    
             }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           }    /*free_vector(pp,1,nlstate);*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         }  }  /* End of prevalence */
       }  
     }  /************* Waves Concatenation ***************/
   }  
          void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   fclose(ficresf);       Death is a valid wave (if date is known).
 }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 /************** Forecasting ******************/       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){       and mw[mi+1][i]. dh depends on stepm.
         */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;    int i, mi, m;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   double *popeffectif,*popcount;       double sum=0., jmean=0.;*/
   double ***p3mat,***tabpop,***tabpopprev;    int first;
   char filerespop[FILENAMELENGTH];    int j, k=0,jk, ju, jl;
     double sum=0.;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    first=0;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    jmin=1e+5;
   agelim=AGESUP;    jmax=-1;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    jmean=0.;
      for(i=1; i<=imx; i++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      mi=0;
        m=firstpass;
        while(s[m][i] <= nlstate){
   strcpy(filerespop,"pop");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   strcat(filerespop,fileres);          mw[++mi][i]=m;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        if(m >=lastpass)
     printf("Problem with forecast resultfile: %s\n", filerespop);          break;
   }        else
   printf("Computing forecasting: result on file '%s' \n", filerespop);          m++;
       }/* end while */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
   if (mobilav==1) {        /* if(mi==0)  never been interviewed correctly before death */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           /* Only death is a correct wave */
     movingaverage(agedeb, fage, ageminpar, mobaverage);        mw[mi][i]=m;
   }      }
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;      wav[i]=mi;
   if (stepm<=12) stepsize=1;      if(mi==0){
          nbwarn++;
   agelim=AGESUP;        if(first==0){
            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   hstepm=1;          first=1;
   hstepm=hstepm/stepm;        }
          if(first==1){
   if (popforecast==1) {          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     if((ficpop=fopen(popfile,"r"))==NULL) {        }
       printf("Problem with population file : %s\n",popfile);exit(0);      } /* end mi==0 */
     }    } /* End individuals */
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);    for(i=1; i<=imx; i++){
     popcount=vector(0,AGESUP);      for(mi=1; mi<wav[i];mi++){
            if (stepm <=0)
     i=1;            dh[mi][i]=1;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        else{
              if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     imx=i;            if (agedc[i] < 2*AGESUP) {
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   }              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
   for(cptcov=1;cptcov<=i2;cptcov++){                nberr++;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       k=k+1;                j=1; /* Temporary Dangerous patch */
       fprintf(ficrespop,"\n#******");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for(j=1;j<=cptcoveff;j++) {                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       }              }
       fprintf(ficrespop,"******\n");              k=k+1;
       fprintf(ficrespop,"# Age");              if (j >= jmax){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                jmax=j;
       if (popforecast==1)  fprintf(ficrespop," [Population]");                ijmax=i;
                    }
       for (cpt=0; cpt<=0;cpt++) {              if (j <= jmin){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  jmin=j;
                        ijmin=i;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              sum=sum+j;
           nhstepm = nhstepm/hstepm;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                        /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            else{
                    j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           for (h=0; h<=nhstepm; h++){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            k=k+1;
             }            if (j >= jmax) {
             for(j=1; j<=nlstate+ndeath;j++) {              jmax=j;
               kk1=0.;kk2=0;              ijmax=i;
               for(i=1; i<=nlstate;i++) {                          }
                 if (mobilav==1)            else if (j <= jmin){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              jmin=j;
                 else {              ijmin=i;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            }
                 }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
               }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
               if (h==(int)(calagedate+12*cpt)){            if(j<0){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              nberr++;
                   /*fprintf(ficrespop," %.3f", kk1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               }            }
             }            sum=sum+j;
             for(i=1; i<=nlstate;i++){          }
               kk1=0.;          jk= j/stepm;
                 for(j=1; j<=nlstate;j++){          jl= j -jk*stepm;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          ju= j -(jk+1)*stepm;
                 }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];            if(jl==0){
             }              dh[mi][i]=jk;
               bh[mi][i]=0;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            }else{ /* We want a negative bias in order to only have interpolation ie
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                    * to avoid the price of an extra matrix product in likelihood */
           }              dh[mi][i]=jk+1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              bh[mi][i]=ju;
         }            }
       }          }else{
              if(jl <= -ju){
   /******/              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                                   * is higher than the multiple of stepm and negative otherwise.
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                                     */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            else{
           nhstepm = nhstepm/hstepm;              dh[mi][i]=jk+1;
                        bh[mi][i]=ju;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;            if(dh[mi][i]==0){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                dh[mi][i]=1; /* At least one step */
           for (h=0; h<=nhstepm; h++){              bh[mi][i]=ju; /* At least one step */
             if (h==(int) (calagedate+YEARM*cpt)) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            }
             }          } /* end if mle */
             for(j=1; j<=nlstate+ndeath;j++) {        }
               kk1=0.;kk2=0;      } /* end wave */
               for(i=1; i<=nlstate;i++) {                  }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        jmean=sum/k;
               }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
             }   }
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*********** Tricode ****************************/
         }  void tricode(int *Tvar, int **nbcode, int imx)
       }  {
    }    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   }    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
      /* Boring subroutine which should only output nbcode[Tvar[j]][k]
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* nbcode[Tvar[j][1]= 
     */
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     free_vector(popeffectif,0,AGESUP);    int modmaxcovj=0; /* Modality max of covariates j */
     free_vector(popcount,0,AGESUP);    cptcoveff=0; 
   }   
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (k=0; k < maxncov; k++) Ndum[k]=0;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   fclose(ficrespop);  
 }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
 /***********************************************/                                 modality of this covariate Vj*/ 
 /**************** Main Program *****************/        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
 /***********************************************/                                        modality of the nth covariate of individual i. */
         Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 int main(int argc, char *argv[])        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 {        if (ij > modmaxcovj) modmaxcovj=ij; 
         /* getting the maximum value of the modality of the covariate
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   double agedeb, agefin,hf;           female is 1, then modmaxcovj=1.*/
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      }
       /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   double fret;      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
   double **xi,tmp,delta;        if( Ndum[i] != 0 )
           ncodemax[j]++; 
   double dum; /* Dummy variable */        /* Number of modalities of the j th covariate. In fact
   double ***p3mat;           ncodemax[j]=2 (dichotom. variables only) but it could be more for
   int *indx;           historical reasons */
   char line[MAXLINE], linepar[MAXLINE];      } /* Ndum[-1] number of undefined modalities */
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      ij=1; 
        for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
           if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   char filerest[FILENAMELENGTH];            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   char fileregp[FILENAMELENGTH];                                       k is a modality. If we have model=V1+V1*sex 
   char popfile[FILENAMELENGTH];                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            ij++;
   int firstobs=1, lastobs=10;          }
   int sdeb, sfin; /* Status at beginning and end */          if (ij > ncodemax[j]) break; 
   int c,  h , cpt,l;        }  /* end of loop on */
   int ju,jl, mi;      } /* end of loop on modality */ 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    
   int mobilav=0,popforecast=0;    for (k=0; k< maxncov; k++) Ndum[k]=0;
   int hstepm, nhstepm;    
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   double bage, fage, age, agelim, agebase;     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
   double ftolpl=FTOL;     Ndum[ij]++;
   double **prlim;   }
   double *severity;  
   double ***param; /* Matrix of parameters */   ij=1;
   double  *p;   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   double **matcov; /* Matrix of covariance */     if((Ndum[i]!=0) && (i<=ncovcol)){
   double ***delti3; /* Scale */       Tvaraff[ij]=i; /*For printing */
   double *delti; /* Scale */       ij++;
   double ***eij, ***vareij;     }
   double **varpl; /* Variances of prevalence limits by age */   }
   double *epj, vepp;   ij--;
   double kk1, kk2;   cptcoveff=ij; /*Number of total covariates*/
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  }
    
   /*********** Health Expectancies ****************/
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   {
   char z[1]="c", occ;    /* Health expectancies, no variances */
 #include <sys/time.h>    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
 #include <time.h>    int nhstepma, nstepma; /* Decreasing with age */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double age, agelim, hf;
      double ***p3mat;
   /* long total_usecs;    double eip;
   struct timeval start_time, end_time;  
      pstamp(ficreseij);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   getcwd(pathcd, size);    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
   printf("\n%s",version);      for(j=1; j<=nlstate;j++){
   if(argc <=1){        fprintf(ficreseij," e%1d%1d ",i,j);
     printf("\nEnter the parameter file name: ");      }
     scanf("%s",pathtot);      fprintf(ficreseij," e%1d. ",i);
   }    }
   else{    fprintf(ficreseij,"\n");
     strcpy(pathtot,argv[1]);  
   }    
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    if(estepm < stepm){
   /*cygwin_split_path(pathtot,path,optionfile);      printf ("Problem %d lower than %d\n",estepm, stepm);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    }
   /* cutv(path,optionfile,pathtot,'\\');*/    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);     * This is mainly to measure the difference between two models: for example
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);     * if stepm=24 months pijx are given only every 2 years and by summing them
   chdir(path);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   replace(pathc,path);     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
 /*-------- arguments in the command line --------*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
   strcpy(fileres,"r");     * hypothesis. A more precise result, taking into account a more precise
   strcat(fileres, optionfilefiname);     * curvature will be obtained if estepm is as small as stepm. */
   strcat(fileres,".txt");    /* Other files have txt extension */  
     /* For example we decided to compute the life expectancy with the smallest unit */
   /*---------arguments file --------*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       nstepm is the number of stepm from age to agelin. 
     printf("Problem with optionfile %s\n",optionfile);       Look at hpijx to understand the reason of that which relies in memory size
     goto end;       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   strcpy(filereso,"o");       means that if the survival funtion is printed only each two years of age and if
   strcat(filereso,fileres);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if((ficparo=fopen(filereso,"w"))==NULL) {       results. So we changed our mind and took the option of the best precision.
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   /* Reads comments: lines beginning with '#' */    agelim=AGESUP;
   while((c=getc(ficpar))=='#' && c!= EOF){    /* If stepm=6 months */
     ungetc(c,ficpar);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     fgets(line, MAXLINE, ficpar);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     puts(line);      
     fputs(line,ficparo);  /* nhstepm age range expressed in number of stepm */
   }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   ungetc(c,ficpar);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){    for (age=bage; age<=fage; age ++){ 
     ungetc(c,ficpar);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     fgets(line, MAXLINE, ficpar);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     puts(line);      /* if (stepm >= YEARM) hstepm=1;*/
     fputs(line,ficparo);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   }  
   ungetc(c,ficpar);      /* If stepm=6 months */
        /* Computed by stepm unit matrices, product of hstepma matrices, stored
             in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   covar=matrix(0,NCOVMAX,1,n);      
   cptcovn=0;      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   ncovmodel=2+cptcovn;      
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /* Read guess parameters */      
   /* Reads comments: lines beginning with '#' */      /* Computing expectancies */
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        for(j=1; j<=nlstate;j++)
     fgets(line, MAXLINE, ficpar);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     puts(line);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     fputs(line,ficparo);            
   }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   ungetc(c,ficpar);  
            }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)      fprintf(ficreseij,"%3.0f",age );
     for(j=1; j <=nlstate+ndeath-1; j++){      for(i=1; i<=nlstate;i++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);        eip=0;
       fprintf(ficparo,"%1d%1d",i1,j1);        for(j=1; j<=nlstate;j++){
       printf("%1d%1d",i,j);          eip +=eij[i][j][(int)age];
       for(k=1; k<=ncovmodel;k++){          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         fscanf(ficpar," %lf",&param[i][j][k]);        }
         printf(" %lf",param[i][j][k]);        fprintf(ficreseij,"%9.4f", eip );
         fprintf(ficparo," %lf",param[i][j][k]);      }
       }      fprintf(ficreseij,"\n");
       fscanf(ficpar,"\n");      
       printf("\n");    }
       fprintf(ficparo,"\n");    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    printf("\n");
      fprintf(ficlog,"\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    
   }
   p=param[1][1];  
    void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  {
     ungetc(c,ficpar);    /* Covariances of health expectancies eij and of total life expectancies according
     fgets(line, MAXLINE, ficpar);     to initial status i, ei. .
     puts(line);    */
     fputs(line,ficparo);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   }    int nhstepma, nstepma; /* Decreasing with age */
   ungetc(c,ficpar);    double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double **dnewm,**doldm;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    double *xp, *xm;
   for(i=1; i <=nlstate; i++){    double **gp, **gm;
     for(j=1; j <=nlstate+ndeath-1; j++){    double ***gradg, ***trgradg;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int theta;
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);    double eip, vip;
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         printf(" %le",delti3[i][j][k]);    xp=vector(1,npar);
         fprintf(ficparo," %le",delti3[i][j][k]);    xm=vector(1,npar);
       }    dnewm=matrix(1,nlstate*nlstate,1,npar);
       fscanf(ficpar,"\n");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       printf("\n");    
       fprintf(ficparo,"\n");    pstamp(ficresstdeij);
     }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   }    fprintf(ficresstdeij,"# Age");
   delti=delti3[1][1];    for(i=1; i<=nlstate;i++){
        for(j=1; j<=nlstate;j++)
   /* Reads comments: lines beginning with '#' */        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresstdeij," e%1d. ",i);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    fprintf(ficresstdeij,"\n");
     puts(line);  
     fputs(line,ficparo);    pstamp(ficrescveij);
   }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   ungetc(c,ficpar);    fprintf(ficrescveij,"# Age");
      for(i=1; i<=nlstate;i++)
   matcov=matrix(1,npar,1,npar);      for(j=1; j<=nlstate;j++){
   for(i=1; i <=npar; i++){        cptj= (j-1)*nlstate+i;
     fscanf(ficpar,"%s",&str);        for(i2=1; i2<=nlstate;i2++)
     printf("%s",str);          for(j2=1; j2<=nlstate;j2++){
     fprintf(ficparo,"%s",str);            cptj2= (j2-1)*nlstate+i2;
     for(j=1; j <=i; j++){            if(cptj2 <= cptj)
       fscanf(ficpar," %le",&matcov[i][j]);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       printf(" %.5le",matcov[i][j]);          }
       fprintf(ficparo," %.5le",matcov[i][j]);      }
     }    fprintf(ficrescveij,"\n");
     fscanf(ficpar,"\n");    
     printf("\n");    if(estepm < stepm){
     fprintf(ficparo,"\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   for(i=1; i <=npar; i++)    else  hstepm=estepm;   
     for(j=i+1;j<=npar;j++)    /* We compute the life expectancy from trapezoids spaced every estepm months
       matcov[i][j]=matcov[j][i];     * This is mainly to measure the difference between two models: for example
         * if stepm=24 months pijx are given only every 2 years and by summing them
   printf("\n");     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
     /*-------- Rewriting paramater file ----------*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      strcpy(rfileres,"r");    /* "Rparameterfile */     * to compare the new estimate of Life expectancy with the same linear 
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/     * hypothesis. A more precise result, taking into account a more precise
      strcat(rfileres,".");    /* */     * curvature will be obtained if estepm is as small as stepm. */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {    /* For example we decided to compute the life expectancy with the smallest unit */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     }       nhstepm is the number of hstepm from age to agelim 
     fprintf(ficres,"#%s\n",version);       nstepm is the number of stepm from age to agelin. 
           Look at hpijx to understand the reason of that which relies in memory size
     /*-------- data file ----------*/       and note for a fixed period like estepm months */
     if((fic=fopen(datafile,"r"))==NULL)    {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       printf("Problem with datafile: %s\n", datafile);goto end;       survival function given by stepm (the optimization length). Unfortunately it
     }       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     n= lastobs;       results. So we changed our mind and took the option of the best precision.
     severity = vector(1,maxwav);    */
     outcome=imatrix(1,maxwav+1,1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     num=ivector(1,n);  
     moisnais=vector(1,n);    /* If stepm=6 months */
     annais=vector(1,n);    /* nhstepm age range expressed in number of stepm */
     moisdc=vector(1,n);    agelim=AGESUP;
     andc=vector(1,n);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     agedc=vector(1,n);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     cod=ivector(1,n);    /* if (stepm >= YEARM) hstepm=1;*/
     weight=vector(1,n);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    
     mint=matrix(1,maxwav,1,n);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     anint=matrix(1,maxwav,1,n);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     s=imatrix(1,maxwav+1,1,n);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     adl=imatrix(1,maxwav+1,1,n);        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     tab=ivector(1,NCOVMAX);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     ncodemax=ivector(1,8);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     i=1;    for (age=bage; age<=fage; age ++){ 
     while (fgets(line, MAXLINE, fic) != NULL)    {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       if ((i >= firstobs) && (i <=lastobs)) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
              /* if (stepm >= YEARM) hstepm=1;*/
         for (j=maxwav;j>=1;j--){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);      /* If stepm=6 months */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         }      
              hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);         decrease memory allocation */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for (j=ncovcol;j>=1;j--){          xm[i] = x[i] - (i==theta ?delti[theta]:0);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }
         }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         num[i]=atol(stra);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
            
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        for(j=1; j<= nlstate; j++){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
         i=i+1;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     }            }
     /* printf("ii=%d", ij);          }
        scanf("%d",i);*/        }
   imx=i-1; /* Number of individuals */       
         for(ij=1; ij<= nlstate*nlstate; ij++)
   /* for (i=1; i<=imx; i++){          for(h=0; h<=nhstepm-1; h++){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      }/* End theta */
     }*/      
    /*  for (i=1; i<=imx; i++){      
      if (s[4][i]==9)  s[4][i]=-1;      for(h=0; h<=nhstepm-1; h++)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
   /* Calculation of the number of parameter from char model*/      
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);       for(ij=1;ij<=nlstate*nlstate;ij++)
   Tvaraff=ivector(1,15);        for(ji=1;ji<=nlstate*nlstate;ji++)
   Tvard=imatrix(1,15,1,2);          varhe[ij][ji][(int)age] =0.;
   Tage=ivector(1,15);        
           printf("%d|",(int)age);fflush(stdout);
   if (strlen(model) >1){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     j=0, j1=0, k1=1, k2=1;       for(h=0;h<=nhstepm-1;h++){
     j=nbocc(model,'+');        for(k=0;k<=nhstepm-1;k++){
     j1=nbocc(model,'*');          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     cptcovn=j+1;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     cptcovprod=j1;          for(ij=1;ij<=nlstate*nlstate;ij++)
                for(ji=1;ji<=nlstate*nlstate;ji++)
     strcpy(modelsav,model);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        }
       printf("Error. Non available option model=%s ",model);      }
       goto end;  
     }      /* Computing expectancies */
          hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     for(i=(j+1); i>=1;i--){      for(i=1; i<=nlstate;i++)
       cutv(stra,strb,modelsav,'+');        for(j=1; j<=nlstate;j++)
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       /*scanf("%d",i);*/            
       if (strchr(strb,'*')) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         cutv(strd,strc,strb,'*');  
         if (strcmp(strc,"age")==0) {          }
           cptcovprod--;  
           cutv(strb,stre,strd,'V');      fprintf(ficresstdeij,"%3.0f",age );
           Tvar[i]=atoi(stre);      for(i=1; i<=nlstate;i++){
           cptcovage++;        eip=0.;
             Tage[cptcovage]=i;        vip=0.;
             /*printf("stre=%s ", stre);*/        for(j=1; j<=nlstate;j++){
         }          eip += eij[i][j][(int)age];
         else if (strcmp(strd,"age")==0) {          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
           cptcovprod--;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           cutv(strb,stre,strc,'V');          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
           Tvar[i]=atoi(stre);        }
           cptcovage++;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
           Tage[cptcovage]=i;      }
         }      fprintf(ficresstdeij,"\n");
         else {  
           cutv(strb,stre,strc,'V');      fprintf(ficrescveij,"%3.0f",age );
           Tvar[i]=ncovcol+k1;      for(i=1; i<=nlstate;i++)
           cutv(strb,strc,strd,'V');        for(j=1; j<=nlstate;j++){
           Tprod[k1]=i;          cptj= (j-1)*nlstate+i;
           Tvard[k1][1]=atoi(strc);          for(i2=1; i2<=nlstate;i2++)
           Tvard[k1][2]=atoi(stre);            for(j2=1; j2<=nlstate;j2++){
           Tvar[cptcovn+k2]=Tvard[k1][1];              cptj2= (j2-1)*nlstate+i2;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];              if(cptj2 <= cptj)
           for (k=1; k<=lastobs;k++)                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            }
           k1++;        }
           k2=k2+2;      fprintf(ficrescveij,"\n");
         }     
       }    }
       else {    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
        /*  scanf("%d",i);*/    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       cutv(strd,strc,strb,'V');    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       Tvar[i]=atoi(strc);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       strcpy(modelsav,stra);      printf("\n");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fprintf(ficlog,"\n");
         scanf("%d",i);*/  
     }    free_vector(xm,1,npar);
 }    free_vector(xp,1,npar);
      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   printf("cptcovprod=%d ", cptcovprod);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   scanf("%d ",i);*/  }
     fclose(fic);  
   /************ Variance ******************/
     /*  if(mle==1){*/  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     if (weightopt != 1) { /* Maximisation without weights*/  {
       for(i=1;i<=n;i++) weight[i]=1.0;    /* Variance of health expectancies */
     }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /*-calculation of age at interview from date of interview and age at death -*/    /* double **newm;*/
     agev=matrix(1,maxwav,1,imx);    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     for (i=1; i<=imx; i++) {    int i, j, nhstepm, hstepm, h, nstepm ;
       for(m=2; (m<= maxwav); m++) {    int k, cptcode;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    double *xp;
          anint[m][i]=9999;    double **gp, **gm;  /* for var eij */
          s[m][i]=-1;    double ***gradg, ***trgradg; /*for var eij */
        }    double **gradgp, **trgradgp; /* for var p point j */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    double *gpp, *gmp; /* for var p point j */
       }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     }    double ***p3mat;
     double age,agelim, hf;
     for (i=1; i<=imx; i++)  {    double ***mobaverage;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    int theta;
       for(m=1; (m<= maxwav); m++){    char digit[4];
         if(s[m][i] >0){    char digitp[25];
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)    char fileresprobmorprev[FILENAMELENGTH];
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];    if(popbased==1){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      if(mobilav!=0)
            else {        strcpy(digitp,"-populbased-mobilav-");
               if (andc[i]!=9999){      else strcpy(digitp,"-populbased-nomobil-");
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    }
               agev[m][i]=-1;    else 
               }      strcpy(digitp,"-stablbased-");
             }  
           }    if (mobilav!=0) {
           else if(s[m][i] !=9){ /* Should no more exist */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
             if(mint[m][i]==99 || anint[m][i]==9999)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               agev[m][i]=1;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             else if(agev[m][i] <agemin){      }
               agemin=agev[m][i];    }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }    strcpy(fileresprobmorprev,"prmorprev"); 
             else if(agev[m][i] >agemax){    sprintf(digit,"%-d",ij);
               agemax=agev[m][i];    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    strcat(fileresprobmorprev,digit); /* Tvar to be done */
             }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
             /*agev[m][i]=anint[m][i]-annais[i];*/    strcat(fileresprobmorprev,fileres);
             /*   agev[m][i] = age[i]+2*m;*/    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           else { /* =9 */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             agev[m][i]=1;    }
             s[m][i]=-1;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           }   
         }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         else /*= 0 Unknown */    pstamp(ficresprobmorprev);
           agev[m][i]=1;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     }      fprintf(ficresprobmorprev," p.%-d SE",j);
     for (i=1; i<=imx; i++)  {      for(i=1; i<=nlstate;i++)
       for(m=1; (m<= maxwav); m++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         if (s[m][i] > (nlstate+ndeath)) {    }  
           printf("Error: Wrong value in nlstate or ndeath\n");      fprintf(ficresprobmorprev,"\n");
           goto end;    fprintf(ficgp,"\n# Routine varevsij");
         }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     free_vector(severity,1,maxwav);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     free_imatrix(outcome,1,maxwav+1,1,n);    if(popbased==1)
     free_vector(moisnais,1,n);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     free_vector(annais,1,n);    else
     /* free_matrix(mint,1,maxwav,1,n);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
        free_matrix(anint,1,maxwav,1,n);*/    fprintf(ficresvij,"# Age");
     free_vector(moisdc,1,n);    for(i=1; i<=nlstate;i++)
     free_vector(andc,1,n);      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
        fprintf(ficresvij,"\n");
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    xp=vector(1,npar);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    dnewm=matrix(1,nlstate,1,npar);
        doldm=matrix(1,nlstate,1,nlstate);
     /* Concatenates waves */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       Tcode=ivector(1,100);    gpp=vector(nlstate+1,nlstate+ndeath);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    gmp=vector(nlstate+1,nlstate+ndeath);
       ncodemax[1]=1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    
          if(estepm < stepm){
    codtab=imatrix(1,100,1,10);      printf ("Problem %d lower than %d\n",estepm, stepm);
    h=0;    }
    m=pow(2,cptcoveff);    else  hstepm=estepm;   
      /* For example we decided to compute the life expectancy with the smallest unit */
    for(k=1;k<=cptcoveff; k++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      for(i=1; i <=(m/pow(2,k));i++){       nhstepm is the number of hstepm from age to agelim 
        for(j=1; j <= ncodemax[k]; j++){       nstepm is the number of stepm from age to agelin. 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){       Look at function hpijx to understand why (it is linked to memory size questions) */
            h++;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;       survival function given by stepm (the optimization length). Unfortunately it
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/       means that if the survival funtion is printed every two years of age and if
          }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        }       results. So we changed our mind and took the option of the best precision.
      }    */
    }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    agelim = AGESUP;
       codtab[1][2]=1;codtab[2][2]=2; */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    /* for(i=1; i <=m ;i++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       for(k=1; k <=cptcovn; k++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       printf("\n");      gp=matrix(0,nhstepm,1,nlstate);
       }      gm=matrix(0,nhstepm,1,nlstate);
       scanf("%d",i);*/  
      
    /* Calculates basic frequencies. Computes observed prevalence at single age      for(theta=1; theta <=npar; theta++){
        and prints on file fileres'p'. */        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
            }
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if (popbased==1) {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if(mobilav ==0){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            for(i=1; i<=nlstate;i++)
                    prlim[i][i]=probs[(int)age][i][ij];
     /* For Powell, parameters are in a vector p[] starting at p[1]          }else{ /* mobilav */ 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            for(i=1; i<=nlstate;i++)
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
     if(mle==1){        }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    
     }        for(j=1; j<= nlstate; j++){
              for(h=0; h<=nhstepm; h++){
     /*--------- results files --------------*/            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
         }
    jk=1;        /* This for computing probability of death (h=1 means
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");           computed over hstepm matrices product = hstepm*stepm months) 
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");           as a weighted average of prlim.
    for(i=1,jk=1; i <=nlstate; i++){        */
      for(k=1; k <=(nlstate+ndeath); k++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
        if (k != i)          for(i=1,gpp[j]=0.; i<= nlstate; i++)
          {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
            printf("%d%d ",i,k);        }    
            fprintf(ficres,"%1d%1d ",i,k);        /* end probability of death */
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
              fprintf(ficres,"%f ",p[jk]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
              jk++;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
            printf("\n");   
            fprintf(ficres,"\n");        if (popbased==1) {
          }          if(mobilav ==0){
      }            for(i=1; i<=nlstate;i++)
    }              prlim[i][i]=probs[(int)age][i][ij];
  if(mle==1){          }else{ /* mobilav */ 
     /* Computing hessian and covariance matrix */            for(i=1; i<=nlstate;i++)
     ftolhess=ftol; /* Usually correct */              prlim[i][i]=mobaverage[(int)age][i][ij];
     hesscov(matcov, p, npar, delti, ftolhess, func);          }
  }        }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
      for(i=1,jk=1; i <=nlstate; i++){          for(h=0; h<=nhstepm; h++){
       for(j=1; j <=nlstate+ndeath; j++){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         if (j!=i) {              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           fprintf(ficres,"%1d%1d",i,j);          }
           printf("%1d%1d",i,j);        }
           for(k=1; k<=ncovmodel;k++){        /* This for computing probability of death (h=1 means
             printf(" %.5e",delti[jk]);           computed over hstepm matrices product = hstepm*stepm months) 
             fprintf(ficres," %.5e",delti[jk]);           as a weighted average of prlim.
             jk++;        */
           }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           printf("\n");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           fprintf(ficres,"\n");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }        }    
       }        /* end probability of death */
      }  
            for(j=1; j<= nlstate; j++) /* vareij */
     k=1;          for(h=0; h<=nhstepm; h++){
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          }
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       i1=(i-1)/(ncovmodel*nlstate)+1;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        }
       printf("%s%d%d",alph[k],i1,tab[i]);*/  
       fprintf(ficres,"%3d",i);      } /* End theta */
       printf("%3d",i);  
       for(j=1; j<=i;j++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);      for(h=0; h<=nhstepm; h++) /* veij */
       }        for(j=1; j<=nlstate;j++)
       fprintf(ficres,"\n");          for(theta=1; theta <=npar; theta++)
       printf("\n");            trgradg[h][j][theta]=gradg[h][theta][j];
       k++;  
     }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
            for(theta=1; theta <=npar; theta++)
     while((c=getc(ficpar))=='#' && c!= EOF){          trgradgp[j][theta]=gradgp[theta][j];
       ungetc(c,ficpar);    
       fgets(line, MAXLINE, ficpar);  
       puts(line);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fputs(line,ficparo);      for(i=1;i<=nlstate;i++)
     }        for(j=1;j<=nlstate;j++)
     ungetc(c,ficpar);          vareij[i][j][(int)age] =0.;
     estepm=0;  
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      for(h=0;h<=nhstepm;h++){
     if (estepm==0 || estepm < stepm) estepm=stepm;        for(k=0;k<=nhstepm;k++){
     if (fage <= 2) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       bage = ageminpar;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       fage = agemaxpar;          for(i=1;i<=nlstate;i++)
     }            for(j=1;j<=nlstate;j++)
                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    
        /* pptj */
     while((c=getc(ficpar))=='#' && c!= EOF){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     ungetc(c,ficpar);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     fgets(line, MAXLINE, ficpar);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     puts(line);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     fputs(line,ficparo);          varppt[j][i]=doldmp[j][i];
   }      /* end ppptj */
   ungetc(c,ficpar);      /*  x centered again */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      if (popbased==1) {
              if(mobilav ==0){
   while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);            prlim[i][i]=probs[(int)age][i][ij];
     fgets(line, MAXLINE, ficpar);        }else{ /* mobilav */ 
     puts(line);          for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);            prlim[i][i]=mobaverage[(int)age][i][ij];
   }        }
   ungetc(c,ficpar);      }
                 
       /* This for computing probability of death (h=1 means
    dateprev1=anprev1+mprev1/12.+jprev1/365.;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;         as a weighted average of prlim.
       */
   fscanf(ficpar,"pop_based=%d\n",&popbased);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fprintf(ficparo,"pop_based=%d\n",popbased);          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   fprintf(ficres,"pop_based=%d\n",popbased);            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }    
   while((c=getc(ficpar))=='#' && c!= EOF){      /* end probability of death */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     puts(line);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fputs(line,ficparo);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   }        for(i=1; i<=nlstate;i++){
   ungetc(c,ficpar);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      } 
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      fprintf(ficresprobmorprev,"\n");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
 while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate;j++){
     ungetc(c,ficpar);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      fprintf(ficresvij,"\n");
     fputs(line,ficparo);      free_matrix(gp,0,nhstepm,1,nlstate);
   }      free_matrix(gm,0,nhstepm,1,nlstate);
   ungetc(c,ficpar);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    } /* End age */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 /*------------ gnuplot -------------*/    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 /*------------ free_vector  -------------*/  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
  chdir(path);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
  free_ivector(wav,1,imx);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 2 ",subdirf(fileresprobmorprev));
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 3 ",subdirf(fileresprobmorprev));
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 3 ",subdirf(fileresprobmorprev));
  free_ivector(num,1,n);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
  free_vector(agedc,1,n);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
  fclose(ficparo);  */
  fclose(ficres);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 /*--------- index.htm --------*/  
     free_vector(xp,1,npar);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
      free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /*--------------- Prevalence limit --------------*/    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcpy(filerespl,"pl");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(filerespl,fileres);    fclose(ficresprobmorprev);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    fflush(ficgp);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    fflush(fichtm); 
   }  }  /* end varevsij */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");  /************ Variance of prevlim ******************/
   fprintf(ficrespl,"#Age ");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  {
   fprintf(ficrespl,"\n");    /* Variance of prevalence limit */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   prlim=matrix(1,nlstate,1,nlstate);    double **newm;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **dnewm,**doldm;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int i, j, nhstepm, hstepm;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int k, cptcode;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *xp;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double *gp, *gm;
   k=0;    double **gradg, **trgradg;
   agebase=ageminpar;    double age,agelim;
   agelim=agemaxpar;    int theta;
   ftolpl=1.e-10;    
   i1=cptcoveff;    pstamp(ficresvpl);
   if (cptcovn < 1){i1=1;}    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
   for(cptcov=1;cptcov<=i1;cptcov++){    for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficresvpl," %1d-%1d",i,i);
         k=k+1;    fprintf(ficresvpl,"\n");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");    xp=vector(1,npar);
         for(j=1;j<=cptcoveff;j++)    dnewm=matrix(1,nlstate,1,npar);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    doldm=matrix(1,nlstate,1,nlstate);
         fprintf(ficrespl,"******\n");    
            hstepm=1*YEARM; /* Every year of age */
         for (age=agebase; age<=agelim; age++){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    agelim = AGESUP;
           fprintf(ficrespl,"%.0f",age );    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           for(i=1; i<=nlstate;i++)      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           fprintf(ficrespl," %.5f", prlim[i][i]);      if (stepm >= YEARM) hstepm=1;
           fprintf(ficrespl,"\n");      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         }      gradg=matrix(1,npar,1,nlstate);
       }      gp=vector(1,nlstate);
     }      gm=vector(1,nlstate);
   fclose(ficrespl);  
       for(theta=1; theta <=npar; theta++){
   /*------------- h Pij x at various ages ------------*/        for(i=1; i<=npar; i++){ /* Computes gradient */
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        for(i=1;i<=nlstate;i++)
   }          gp[i] = prlim[i][i];
   printf("Computing pij: result on file '%s' \n", filerespij);      
          for(i=1; i<=npar; i++) /* Computes gradient */
   stepsize=(int) (stepm+YEARM-1)/YEARM;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   /*if (stepm<=24) stepsize=2;*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   agelim=AGESUP;          gm[i] = prlim[i][i];
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   k=0;      } /* End theta */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      trgradg =matrix(1,nlstate,1,npar);
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");      for(j=1; j<=nlstate;j++)
         for(j=1;j<=cptcoveff;j++)        for(theta=1; theta <=npar; theta++)
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          trgradg[j][theta]=gradg[theta][j];
         fprintf(ficrespij,"******\n");  
              for(i=1;i<=nlstate;i++)
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        varpl[i][(int)age] =0.;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1;i<=nlstate;i++)
           oldm=oldms;savm=savms;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");      fprintf(ficresvpl,"%.0f ",age );
           for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
               fprintf(ficrespij," %1d-%1d",i,j);      fprintf(ficresvpl,"\n");
           fprintf(ficrespij,"\n");      free_vector(gp,1,nlstate);
            for (h=0; h<=nhstepm; h++){      free_vector(gm,1,nlstate);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      free_matrix(gradg,1,npar,1,nlstate);
             for(i=1; i<=nlstate;i++)      free_matrix(trgradg,1,nlstate,1,npar);
               for(j=1; j<=nlstate+ndeath;j++)    } /* End age */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");    free_vector(xp,1,npar);
              }    free_matrix(doldm,1,nlstate,1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(dnewm,1,nlstate,1,nlstate);
           fprintf(ficrespij,"\n");  
         }  }
     }  
   }  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  {
     int i, j=0,  i1, k1, l1, t, tj;
   fclose(ficrespij);    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
   /*---------- Forecasting ------------------*/    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   if((stepm == 1) && (strcmp(model,".")==0)){    double **dnewm,**doldm;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    double *xp;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    double *gp, *gm;
   }    double **gradg, **trgradg;
   else{    double **mu;
     erreur=108;    double age,agelim, cov[NCOVMAX];
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   }    int theta;
      char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
   /*---------- Health expectancies and variances ------------*/    char fileresprobcor[FILENAMELENGTH];
   
   strcpy(filerest,"t");    double ***varpij;
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {    strcpy(fileresprob,"prob"); 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    strcat(fileresprob,fileres);
   }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
   strcpy(filerese,"e");    strcpy(fileresprobcov,"probcov"); 
   strcat(filerese,fileres);    strcat(fileresprobcov,fileres);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      printf("Problem with resultfile: %s\n", fileresprobcov);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    }
     strcpy(fileresprobcor,"probcor"); 
  strcpy(fileresv,"v");    strcat(fileresprobcor,fileres);
   strcat(fileresv,fileres);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      printf("Problem with resultfile: %s\n", fileresprobcor);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   }    }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   calagedate=-1;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   k=0;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    pstamp(ficresprob);
       k=k+1;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       fprintf(ficrest,"\n#****** ");    fprintf(ficresprob,"# Age");
       for(j=1;j<=cptcoveff;j++)    pstamp(ficresprobcov);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       fprintf(ficrest,"******\n");    fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
       fprintf(ficreseij,"\n#****** ");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresprobcor,"# Age");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");  
     for(i=1; i<=nlstate;i++)
       fprintf(ficresvij,"\n#****** ");      for(j=1; j<=(nlstate+ndeath);j++){
       for(j=1;j<=cptcoveff;j++)        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       fprintf(ficresvij,"******\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   /* fprintf(ficresprob,"\n");
       oldm=oldms;savm=savms;    fprintf(ficresprobcov,"\n");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      fprintf(ficresprobcor,"\n");
     */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    xp=vector(1,npar);
       oldm=oldms;savm=savms;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
        mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      first=1;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficgp,"\n# Routine varprob");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(ficrest,"\n");    fprintf(fichtm,"\n");
   
       epj=vector(1,nlstate+1);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       for(age=bage; age <=fage ;age++){    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    file %s<br>\n",optionfilehtmcov);
         if (popbased==1) {    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
           for(i=1; i<=nlstate;i++)  and drawn. It helps understanding how is the covariance between two incidences.\
             prlim[i][i]=probs[(int)age][i][k];   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
          It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         fprintf(ficrest," %4.0f",age);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  standard deviations wide on each axis. <br>\
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
             epj[j] += prlim[i][i]*eij[i][j][(int)age];   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
           }  
           epj[nlstate+1] +=epj[j];    cov[1]=1;
         }    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         for(i=1, vepp=0.;i <=nlstate;i++)    j1=0;
           for(j=1;j <=nlstate;j++)    for(t=1; t<=tj;t++){
             vepp += vareij[i][j][(int)age];      for(i1=1; i1<=ncodemax[t];i1++){ 
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        j1++;
         for(j=1;j <=nlstate;j++){        if  (cptcovn>0) {
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          fprintf(ficresprob, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrest,"\n");          fprintf(ficresprob, "**********\n#\n");
       }          fprintf(ficresprobcov, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcov, "**********\n#\n");
 free_matrix(mint,1,maxwav,1,n);          
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          fprintf(ficgp, "\n#********** Variable "); 
     free_vector(weight,1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fclose(ficreseij);          fprintf(ficgp, "**********\n#\n");
   fclose(ficresvij);          
   fclose(ficrest);          
   fclose(ficpar);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   free_vector(epj,1,nlstate+1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   /*------- Variance limit prevalence------*/            
           fprintf(ficresprobcor, "\n#********** Variable ");    
   strcpy(fileresvpl,"vpl");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcat(fileresvpl,fileres);          fprintf(ficresprobcor, "**********\n#");    
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        
     exit(0);        for (age=bage; age<=fage; age ++){ 
   }          cov[2]=age;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   k=0;          }
   for(cptcov=1;cptcov<=i1;cptcov++){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (k=1; k<=cptcovprod;k++)
       k=k+1;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       fprintf(ficresvpl,"\n#****** ");          
       for(j=1;j<=cptcoveff;j++)          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fprintf(ficresvpl,"******\n");          gp=vector(1,(nlstate)*(nlstate+ndeath));
                gm=vector(1,(nlstate)*(nlstate+ndeath));
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      
       oldm=oldms;savm=savms;          for(theta=1; theta <=npar; theta++){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            for(i=1; i<=npar; i++)
     }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
  }            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   fclose(ficresvpl);            
             k=0;
   /*---------- End : free ----------------*/            for(i=1; i<= (nlstate); i++){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);              for(j=1; j<=(nlstate+ndeath);j++){
                  k=k+1;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                gp[k]=pmmij[i][j];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              }
              }
              
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            for(i=1; i<=npar; i++)
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              k=0;
   free_matrix(matcov,1,npar,1,npar);            for(i=1; i<=(nlstate); i++){
   free_vector(delti,1,npar);              for(j=1; j<=(nlstate+ndeath);j++){
   free_matrix(agev,1,maxwav,1,imx);                k=k+1;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                gm[k]=pmmij[i][j];
               }
   if(erreur >0)            }
     printf("End of Imach with error or warning %d\n",erreur);       
   else   printf("End of Imach\n");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
            }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   /*------ End -----------*/            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
  end:          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 #ifdef windows          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   /* chdir(pathcd);*/          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 #endif          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
  /*system("wgnuplot graph.plt");*/          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  /*system("../gp37mgw/wgnuplot graph.plt");*/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          pmij(pmmij,cov,ncovmodel,x,nlstate);
  strcpy(plotcmd,GNUPLOTPROGRAM);          
  strcat(plotcmd," ");          k=0;
  strcat(plotcmd,optionfilegnuplot);          for(i=1; i<=(nlstate); i++){
  system(plotcmd);            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
 #ifdef windows              mu[k][(int) age]=pmmij[i][j];
   while (z[0] != 'q') {            }
     /* chdir(path); */          }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     scanf("%s",z);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     if (z[0] == 'c') system("./imach");              varpij[i][j][(int)age] = doldm[i][j];
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);          /*printf("\n%d ",(int)age);
     else if (z[0] == 'q') exit(0);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 #endif            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 }            }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
                       lc2=fabs(lc2);
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 1,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 2,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 2,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 3",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 1,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 1");
         else fprintf(ficgp,"\" t\"\" w l lt 1,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /**< codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) 
                                  */
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41  
changed lines
  Added in v.1.144


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>