Diff for /imach/src/imach.c between versions 1.49 and 1.144

version 1.49, 2002/06/20 14:03:39 version 1.144, 2014/02/10 22:17:31
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.144  2014/02/10 22:17:31  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.143  2014/01/26 09:45:38  brouard
   first survey ("cross") where individuals from different ages are    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   second wave of interviews ("longitudinal") which measure each change    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.142  2014/01/26 03:57:36  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.141  2014/01/26 02:42:01  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.140  2011/09/02 10:37:54  brouard
   where the markup *Covariates have to be included here again* invites    Summary: times.h is ok with mingw32 now.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   The advantage of this computer programme, compared to a simple    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.138  2010/04/30 18:19:40  brouard
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.137  2010/04/29 18:11:38  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): Checking covariates for more complex models
   conditional to the observed state i at age x. The delay 'h' can be    than V1+V2. A lot of change to be done. Unstable.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.136  2010/04/26 20:30:53  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): merging some libgsl code. Fixing computation
   matrix is simply the matrix product of nh*stepm elementary matrices    of likelione (using inter/intrapolation if mle = 0) in order to
   and the contribution of each individual to the likelihood is simply    get same likelihood as if mle=1.
   hPijx.    Some cleaning of code and comments added.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.135  2009/10/29 15:33:14  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.134  2009/10/29 13:18:53  brouard
            Institut national d'études démographiques, Paris.    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.133  2009/07/06 10:21:25  brouard
   It is copyrighted identically to a GNU software product, ie programme and    just nforces
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.132  2009/07/06 08:22:05  brouard
   **********************************************************************/    Many tings
    
 #include <math.h>    Revision 1.131  2009/06/20 16:22:47  brouard
 #include <stdio.h>    Some dimensions resccaled
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
 #define MAXLINE 256    lot of cleaning with variables initialized to 0. Trying to make
 #define GNUPLOTPROGRAM "gnuplot"    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.129  2007/08/31 13:49:27  lievre
 /*#define DEBUG*/    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.128  2006/06/30 13:02:05  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Clarifications on computing e.j
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.127  2006/04/28 18:11:50  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 #define NINTERVMAX 8    loop. Now we define nhstepma in the age loop.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): In order to speed up (in case of numerous covariates) we
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    compute health expectancies (without variances) in a first step
 #define NCOVMAX 8 /* Maximum number of covariates */    and then all the health expectancies with variances or standard
 #define MAXN 20000    deviation (needs data from the Hessian matrices) which slows the
 #define YEARM 12. /* Number of months per year */    computation.
 #define AGESUP 130    In the future we should be able to stop the program is only health
 #define AGEBASE 40    expectancies and graph are needed without standard deviations.
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.126  2006/04/28 17:23:28  brouard
 #else    (Module): Yes the sum of survivors was wrong since
 #define DIRSEPARATOR '/'    imach-114 because nhstepm was no more computed in the age
 #endif    loop. Now we define nhstepma in the age loop.
     Version 0.98h
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.125  2006/04/04 15:20:31  lievre
 int nvar;    Errors in calculation of health expectancies. Age was not initialized.
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Forecasting file added.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.124  2006/03/22 17:13:53  lievre
 int ndeath=1; /* Number of dead states */    Parameters are printed with %lf instead of %f (more numbers after the comma).
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    The log-likelihood is printed in the log file
 int popbased=0;  
     Revision 1.123  2006/03/20 10:52:43  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    * imach.c (Module): <title> changed, corresponds to .htm file
 int maxwav; /* Maxim number of waves */    name. <head> headers where missing.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    * imach.c (Module): Weights can have a decimal point as for
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    English (a comma might work with a correct LC_NUMERIC environment,
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    otherwise the weight is truncated).
 double jmean; /* Mean space between 2 waves */    Modification of warning when the covariates values are not 0 or
 double **oldm, **newm, **savm; /* Working pointers to matrices */    1.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Version 0.98g
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.122  2006/03/20 09:45:41  brouard
 FILE *fichtm; /* Html File */    (Module): Weights can have a decimal point as for
 FILE *ficreseij;    English (a comma might work with a correct LC_NUMERIC environment,
 char filerese[FILENAMELENGTH];    otherwise the weight is truncated).
 FILE  *ficresvij;    Modification of warning when the covariates values are not 0 or
 char fileresv[FILENAMELENGTH];    1.
 FILE  *ficresvpl;    Version 0.98g
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.121  2006/03/16 17:45:01  lievre
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    * imach.c (Module): Comments concerning covariates added
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     * imach.c (Module): refinements in the computation of lli if
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.120  2006/03/16 15:10:38  lievre
 char popfile[FILENAMELENGTH];    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    not 1 month. Version 0.98f
   
 #define NR_END 1    Revision 1.119  2006/03/15 17:42:26  brouard
 #define FREE_ARG char*    (Module): Bug if status = -2, the loglikelihood was
 #define FTOL 1.0e-10    computed as likelihood omitting the logarithm. Version O.98e
   
 #define NRANSI    Revision 1.118  2006/03/14 18:20:07  brouard
 #define ITMAX 200    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 #define TOL 2.0e-4    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 #define CGOLD 0.3819660    (Module): Version 0.98d
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
 #define GOLD 1.618034    table of variances if popbased=1 .
 #define GLIMIT 100.0    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define TINY 1.0e-20    (Module): Function pstamp added
     (Module): Version 0.98d
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.116  2006/03/06 10:29:27  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Variance-covariance wrong links and
      varian-covariance of ej. is needed (Saito).
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.114  2006/02/26 12:57:58  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Some improvements in processing parameter
     filename with strsep.
 int imx;  
 int stepm;    Revision 1.113  2006/02/24 14:20:24  brouard
 /* Stepm, step in month: minimum step interpolation*/    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 int estepm;    allocation too.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.112  2006/01/30 09:55:26  brouard
 int m,nb;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.111  2006/01/25 20:38:18  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): Lots of cleaning and bugs added (Gompertz)
 double dateintmean=0;    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 double *weight;  
 int **s; /* Status */    Revision 1.110  2006/01/25 00:51:50  brouard
 double *agedc, **covar, idx;    (Module): Lots of cleaning and bugs added (Gompertz)
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.109  2006/01/24 19:37:15  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Module): Comments (lines starting with a #) are allowed in data.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.108  2006/01/19 18:05:42  lievre
 /**************** split *************************/    Gnuplot problem appeared...
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    To be fixed
 {  
    char *s;                             /* pointer */    Revision 1.107  2006/01/19 16:20:37  brouard
    int  l1, l2;                         /* length counters */    Test existence of gnuplot in imach path
   
    l1 = strlen( path );                 /* length of path */    Revision 1.106  2006/01/19 13:24:36  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Some cleaning and links added in html output
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.105  2006/01/05 20:23:19  lievre
 #if     defined(__bsd__)                /* get current working directory */    *** empty log message ***
       extern char       *getwd( );  
     Revision 1.104  2005/09/30 16:11:43  lievre
       if ( getwd( dirc ) == NULL ) {    (Module): sump fixed, loop imx fixed, and simplifications.
 #else    (Module): If the status is missing at the last wave but we know
       extern char       *getcwd( );    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    contributions to the likelihood is 1 - Prob of dying from last
 #endif    health status (= 1-p13= p11+p12 in the easiest case of somebody in
          return( GLOCK_ERROR_GETCWD );    the healthy state at last known wave). Version is 0.98
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.103  2005/09/30 15:54:49  lievre
    } else {                             /* strip direcotry from path */    (Module): sump fixed, loop imx fixed, and simplifications.
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.102  2004/09/15 17:31:30  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Add the possibility to read data file including tab characters.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.101  2004/09/15 10:38:38  brouard
       dirc[l1-l2] = 0;                  /* add zero */    Fix on curr_time
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.100  2004/07/12 18:29:06  brouard
 #ifdef windows    Add version for Mac OS X. Just define UNIX in Makefile
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.99  2004/06/05 08:57:40  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    *** empty log message ***
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.98  2004/05/16 15:05:56  brouard
    s++;    New version 0.97 . First attempt to estimate force of mortality
    strcpy(ext,s);                       /* save extension */    directly from the data i.e. without the need of knowing the health
    l1= strlen( name);    state at each age, but using a Gompertz model: log u =a + b*age .
    l2= strlen( s)+1;    This is the basic analysis of mortality and should be done before any
    strncpy( finame, name, l1-l2);    other analysis, in order to test if the mortality estimated from the
    finame[l1-l2]= 0;    cross-longitudinal survey is different from the mortality estimated
    return( 0 );                         /* we're done */    from other sources like vital statistic data.
 }  
     The same imach parameter file can be used but the option for mle should be -3.
   
 /******************************************/    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 void replace(char *s, char*t)  
 {    The output is very simple: only an estimate of the intercept and of
   int i;    the slope with 95% confident intervals.
   int lg=20;  
   i=0;    Current limitations:
   lg=strlen(t);    A) Even if you enter covariates, i.e. with the
   for(i=0; i<= lg; i++) {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     (s[i] = t[i]);    B) There is no computation of Life Expectancy nor Life Table.
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.97  2004/02/20 13:25:42  lievre
 }    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 int nbocc(char *s, char occ)  
 {    Revision 1.96  2003/07/15 15:38:55  brouard
   int i,j=0;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   int lg=20;    rewritten within the same printf. Workaround: many printfs.
   i=0;  
   lg=strlen(s);    Revision 1.95  2003/07/08 07:54:34  brouard
   for(i=0; i<= lg; i++) {    * imach.c (Repository):
   if  (s[i] == occ ) j++;    (Repository): Using imachwizard code to output a more meaningful covariance
   }    matrix (cov(a12,c31) instead of numbers.
   return j;  
 }    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.93  2003/06/25 16:33:55  brouard
   int i,lg,j,p=0;    (Module): On windows (cygwin) function asctime_r doesn't
   i=0;    exist so I changed back to asctime which exists.
   for(j=0; j<=strlen(t)-1; j++) {    (Module): Version 0.96b
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
   lg=strlen(t);    exist so I changed back to asctime which exists.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.91  2003/06/25 15:30:29  brouard
   }    * imach.c (Repository): Duplicated warning errors corrected.
      u[p]='\0';    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
    for(j=0; j<= lg; j++) {    is stamped in powell.  We created a new html file for the graphs
     if (j>=(p+1))(v[j-p-1] = t[j]);    concerning matrix of covariance. It has extension -cov.htm.
   }  
 }    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 /********************** nrerror ********************/    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 void nrerror(char error_text[])  
 {    Revision 1.89  2003/06/24 12:30:52  brouard
   fprintf(stderr,"ERREUR ...\n");    (Module): Some bugs corrected for windows. Also, when
   fprintf(stderr,"%s\n",error_text);    mle=-1 a template is output in file "or"mypar.txt with the design
   exit(1);    of the covariance matrix to be input.
 }  
 /*********************** vector *******************/    Revision 1.88  2003/06/23 17:54:56  brouard
 double *vector(int nl, int nh)    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 {  
   double *v;    Revision 1.87  2003/06/18 12:26:01  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Version 0.96
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.86  2003/06/17 20:04:08  brouard
 }    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.85  2003/06/17 13:12:43  brouard
 {    * imach.c (Repository): Check when date of death was earlier that
   free((FREE_ARG)(v+nl-NR_END));    current date of interview. It may happen when the death was just
 }    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 /************************ivector *******************************/    assuming that the date of death was just one stepm after the
 int *ivector(long nl,long nh)    interview.
 {    (Repository): Because some people have very long ID (first column)
   int *v;    we changed int to long in num[] and we added a new lvector for
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    memory allocation. But we also truncated to 8 characters (left
   if (!v) nrerror("allocation failure in ivector");    truncation)
   return v-nl+NR_END;    (Repository): No more line truncation errors.
 }  
     Revision 1.84  2003/06/13 21:44:43  brouard
 /******************free ivector **************************/    * imach.c (Repository): Replace "freqsummary" at a correct
 void free_ivector(int *v, long nl, long nh)    place. It differs from routine "prevalence" which may be called
 {    many times. Probs is memory consuming and must be used with
   free((FREE_ARG)(v+nl-NR_END));    parcimony.
 }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 /******************* imatrix *******************************/    Revision 1.83  2003/06/10 13:39:11  lievre
 int **imatrix(long nrl, long nrh, long ncl, long nch)    *** empty log message ***
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.82  2003/06/05 15:57:20  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Add log in  imach.c and  fullversion number is now printed.
   int **m;  
    */
   /* allocate pointers to rows */  /*
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));     Interpolated Markov Chain
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Short summary of the programme:
   m -= nrl;    
      This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   /* allocate rows and set pointers to them */    first survey ("cross") where individuals from different ages are
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    interviewed on their health status or degree of disability (in the
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    case of a health survey which is our main interest) -2- at least a
   m[nrl] += NR_END;    second wave of interviews ("longitudinal") which measure each change
   m[nrl] -= ncl;    (if any) in individual health status.  Health expectancies are
      computed from the time spent in each health state according to a
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    model. More health states you consider, more time is necessary to reach the
      Maximum Likelihood of the parameters involved in the model.  The
   /* return pointer to array of pointers to rows */    simplest model is the multinomial logistic model where pij is the
   return m;    probability to be observed in state j at the second wave
 }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /****************** free_imatrix *************************/    'age' is age and 'sex' is a covariate. If you want to have a more
 void free_imatrix(m,nrl,nrh,ncl,nch)    complex model than "constant and age", you should modify the program
       int **m;    where the markup *Covariates have to be included here again* invites
       long nch,ncl,nrh,nrl;    you to do it.  More covariates you add, slower the
      /* free an int matrix allocated by imatrix() */    convergence.
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    The advantage of this computer programme, compared to a simple
   free((FREE_ARG) (m+nrl-NR_END));    multinomial logistic model, is clear when the delay between waves is not
 }    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 /******************* matrix *******************************/    account using an interpolation or extrapolation.  
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    hPijx is the probability to be observed in state i at age x+h
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    conditional to the observed state i at age x. The delay 'h' can be
   double **m;    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    semester or year) is modelled as a multinomial logistic.  The hPx
   if (!m) nrerror("allocation failure 1 in matrix()");    matrix is simply the matrix product of nh*stepm elementary matrices
   m += NR_END;    and the contribution of each individual to the likelihood is simply
   m -= nrl;    hPijx.
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Also this programme outputs the covariance matrix of the parameters but also
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    of the life expectancies. It also computes the period (stable) prevalence. 
   m[nrl] += NR_END;    
   m[nrl] -= ncl;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    This software have been partly granted by Euro-REVES, a concerted action
   return m;    from the European Union.
 }    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 /*************************free matrix ************************/    can be accessed at http://euroreves.ined.fr/imach .
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   free((FREE_ARG)(m+nrl-NR_END));    
 }    **********************************************************************/
   /*
 /******************* ma3x *******************************/    main
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    read parameterfile
 {    read datafile
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    concatwav
   double ***m;    freqsummary
     if (mle >= 1)
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      mlikeli
   if (!m) nrerror("allocation failure 1 in matrix()");    print results files
   m += NR_END;    if mle==1 
   m -= nrl;       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));        begin-prev-date,...
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    open gnuplot file
   m[nrl] += NR_END;    open html file
   m[nrl] -= ncl;    period (stable) prevalence
      for age prevalim()
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    h Pij x
     variance of p varprob
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    forecasting if prevfcast==1 prevforecast call prevalence()
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    health expectancies
   m[nrl][ncl] += NR_END;    Variance-covariance of DFLE
   m[nrl][ncl] -= nll;    prevalence()
   for (j=ncl+1; j<=nch; j++)     movingaverage()
     m[nrl][j]=m[nrl][j-1]+nlay;    varevsij() 
      if popbased==1 varevsij(,popbased)
   for (i=nrl+1; i<=nrh; i++) {    total life expectancies
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Variance of period (stable) prevalence
     for (j=ncl+1; j<=nch; j++)   end
       m[i][j]=m[i][j-1]+nlay;  */
   }  
   return m;  
 }  
    
 /*************************free ma3x ************************/  #include <math.h>
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #include <stdio.h>
 {  #include <stdlib.h>
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #include <string.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <unistd.h>
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #include <limits.h>
   #include <sys/types.h>
 /***************** f1dim *************************/  #include <sys/stat.h>
 extern int ncom;  #include <errno.h>
 extern double *pcom,*xicom;  extern int errno;
 extern double (*nrfunc)(double []);  
    #ifdef LINUX
 double f1dim(double x)  #include <time.h>
 {  #include "timeval.h"
   int j;  #else
   double f;  #include <sys/time.h>
   double *xt;  #endif
    
   xt=vector(1,ncom);  #ifdef GSL
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #include <gsl/gsl_errno.h>
   f=(*nrfunc)(xt);  #include <gsl/gsl_multimin.h>
   free_vector(xt,1,ncom);  #endif
   return f;  
 }  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 {  
   int iter;  #define GNUPLOTPROGRAM "gnuplot"
   double a,b,d,etemp;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   double fu,fv,fw,fx;  #define FILENAMELENGTH 132
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   double e=0.0;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    
   a=(ax < cx ? ax : cx);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   b=(ax > cx ? ax : cx);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  #define NINTERVMAX 8
   for (iter=1;iter<=ITMAX;iter++) {  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     xm=0.5*(a+b);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define MAXN 20000
     printf(".");fflush(stdout);  #define YEARM 12. /**< Number of months per year */
 #ifdef DEBUG  #define AGESUP 130
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define AGEBASE 40
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
 #endif  #ifdef UNIX
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define DIRSEPARATOR '/'
       *xmin=x;  #define CHARSEPARATOR "/"
       return fx;  #define ODIRSEPARATOR '\\'
     }  #else
     ftemp=fu;  #define DIRSEPARATOR '\\'
     if (fabs(e) > tol1) {  #define CHARSEPARATOR "\\"
       r=(x-w)*(fx-fv);  #define ODIRSEPARATOR '/'
       q=(x-v)*(fx-fw);  #endif
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  /* $Id$ */
       if (q > 0.0) p = -p;  /* $State$ */
       q=fabs(q);  
       etemp=e;  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
       e=d;  char fullversion[]="$Revision$ $Date$"; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char strstart[80];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       else {  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
         d=p/q;  int nvar=0, nforce=0; /* Number of variables, number of forces */
         u=x+d;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
         if (u-a < tol2 || b-u < tol2)  int npar=NPARMAX;
           d=SIGN(tol1,xm-x);  int nlstate=2; /* Number of live states */
       }  int ndeath=1; /* Number of dead states */
     } else {  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  int popbased=0;
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int *wav; /* Number of waves for this individuual 0 is possible */
     fu=(*f)(u);  int maxwav=0; /* Maxim number of waves */
     if (fu <= fx) {  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       if (u >= x) a=x; else b=x;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       SHFT(v,w,x,u)  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
         SHFT(fv,fw,fx,fu)                     to the likelihood and the sum of weights (done by funcone)*/
         } else {  int mle=1, weightopt=0;
           if (u < x) a=u; else b=u;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
           if (fu <= fw || w == x) {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
             v=w;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
             w=u;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
             fv=fw;  double jmean=1; /* Mean space between 2 waves */
             fw=fu;  double **oldm, **newm, **savm; /* Working pointers to matrices */
           } else if (fu <= fv || v == x || v == w) {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
             v=u;  /*FILE *fic ; */ /* Used in readdata only */
             fv=fu;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
           }  FILE *ficlog, *ficrespow;
         }  int globpr=0; /* Global variable for printing or not */
   }  double fretone; /* Only one call to likelihood */
   nrerror("Too many iterations in brent");  long ipmx=0; /* Number of contributions */
   *xmin=x;  double sw; /* Sum of weights */
   return fx;  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /****************** mnbrak ***********************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  FILE *fichtm, *fichtmcov; /* Html File */
             double (*func)(double))  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   double ulim,u,r,q, dum;  FILE *ficresstdeij;
   double fu;  char fileresstde[FILENAMELENGTH];
    FILE *ficrescveij;
   *fa=(*func)(*ax);  char filerescve[FILENAMELENGTH];
   *fb=(*func)(*bx);  FILE  *ficresvij;
   if (*fb > *fa) {  char fileresv[FILENAMELENGTH];
     SHFT(dum,*ax,*bx,dum)  FILE  *ficresvpl;
       SHFT(dum,*fb,*fa,dum)  char fileresvpl[FILENAMELENGTH];
       }  char title[MAXLINE];
   *cx=(*bx)+GOLD*(*bx-*ax);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   *fc=(*func)(*cx);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   while (*fb > *fc) {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     r=(*bx-*ax)*(*fb-*fc);  char command[FILENAMELENGTH];
     q=(*bx-*cx)*(*fb-*fa);  int  outcmd=0;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  char filelog[FILENAMELENGTH]; /* Log file */
       fu=(*func)(u);  char filerest[FILENAMELENGTH];
     } else if ((*cx-u)*(u-ulim) > 0.0) {  char fileregp[FILENAMELENGTH];
       fu=(*func)(u);  char popfile[FILENAMELENGTH];
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  struct timezone tzp;
       u=ulim;  extern int gettimeofday();
       fu=(*func)(u);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     } else {  long time_value;
       u=(*cx)+GOLD*(*cx-*bx);  extern long time();
       fu=(*func)(u);  char strcurr[80], strfor[80];
     }  
     SHFT(*ax,*bx,*cx,u)  char *endptr;
       SHFT(*fa,*fb,*fc,fu)  long lval;
       }  double dval;
 }  
   #define NR_END 1
 /*************** linmin ************************/  #define FREE_ARG char*
   #define FTOL 1.0e-10
 int ncom;  
 double *pcom,*xicom;  #define NRANSI 
 double (*nrfunc)(double []);  #define ITMAX 200 
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #define TOL 2.0e-4 
 {  
   double brent(double ax, double bx, double cx,  #define CGOLD 0.3819660 
                double (*f)(double), double tol, double *xmin);  #define ZEPS 1.0e-10 
   double f1dim(double x);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  #define GOLD 1.618034 
   int j;  #define GLIMIT 100.0 
   double xx,xmin,bx,ax;  #define TINY 1.0e-20 
   double fx,fb,fa;  
    static double maxarg1,maxarg2;
   ncom=n;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   pcom=vector(1,n);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   xicom=vector(1,n);    
   nrfunc=func;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   for (j=1;j<=n;j++) {  #define rint(a) floor(a+0.5)
     pcom[j]=p[j];  
     xicom[j]=xi[j];  static double sqrarg;
   }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   ax=0.0;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   xx=1.0;  int agegomp= AGEGOMP;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  int imx; 
 #ifdef DEBUG  int stepm=1;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /* Stepm, step in month: minimum step interpolation*/
 #endif  
   for (j=1;j<=n;j++) {  int estepm;
     xi[j] *= xmin;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     p[j] += xi[j];  
   }  int m,nb;
   free_vector(xicom,1,n);  long *num;
   free_vector(pcom,1,n);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
 /*************** powell ************************/  double *ageexmed,*agecens;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  double dateintmean=0;
             double (*func)(double []))  
 {  double *weight;
   void linmin(double p[], double xi[], int n, double *fret,  int **s; /* Status */
               double (*func)(double []));  double *agedc;
   int i,ibig,j;  double  **covar; /**< covar[i,j], value of jth covariate for individual i,
   double del,t,*pt,*ptt,*xit;                    * covar=matrix(0,NCOVMAX,1,n); 
   double fp,fptt;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   double *xits;  double  idx; 
   pt=vector(1,n);  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   ptt=vector(1,n);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   xit=vector(1,n);  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   xits=vector(1,n);  double *lsurv, *lpop, *tpop;
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   for (*iter=1;;++(*iter)) {  double ftolhess; /**< Tolerance for computing hessian */
     fp=(*fret);  
     ibig=0;  /**************** split *************************/
     del=0.0;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  {
     for (i=1;i<=n;i++)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       printf(" %d %.12f",i, p[i]);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     printf("\n");    */ 
     for (i=1;i<=n;i++) {    char  *ss;                            /* pointer */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    int   l1, l2;                         /* length counters */
       fptt=(*fret);  
 #ifdef DEBUG    l1 = strlen(path );                   /* length of path */
       printf("fret=%lf \n",*fret);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 #endif    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       printf("%d",i);fflush(stdout);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       linmin(p,xit,n,fret,func);      strcpy( name, path );               /* we got the fullname name because no directory */
       if (fabs(fptt-(*fret)) > del) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         del=fabs(fptt-(*fret));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         ibig=i;      /* get current working directory */
       }      /*    extern  char* getcwd ( char *buf , int len);*/
 #ifdef DEBUG      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       printf("%d %.12e",i,(*fret));        return( GLOCK_ERROR_GETCWD );
       for (j=1;j<=n;j++) {      }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      /* got dirc from getcwd*/
         printf(" x(%d)=%.12e",j,xit[j]);      printf(" DIRC = %s \n",dirc);
       }    } else {                              /* strip direcotry from path */
       for(j=1;j<=n;j++)      ss++;                               /* after this, the filename */
         printf(" p=%.12e",p[j]);      l2 = strlen( ss );                  /* length of filename */
       printf("\n");      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 #endif      strcpy( name, ss );         /* save file name */
     }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      dirc[l1-l2] = 0;                    /* add zero */
 #ifdef DEBUG      printf(" DIRC2 = %s \n",dirc);
       int k[2],l;    }
       k[0]=1;    /* We add a separator at the end of dirc if not exists */
       k[1]=-1;    l1 = strlen( dirc );                  /* length of directory */
       printf("Max: %.12e",(*func)(p));    if( dirc[l1-1] != DIRSEPARATOR ){
       for (j=1;j<=n;j++)      dirc[l1] =  DIRSEPARATOR;
         printf(" %.12e",p[j]);      dirc[l1+1] = 0; 
       printf("\n");      printf(" DIRC3 = %s \n",dirc);
       for(l=0;l<=1;l++) {    }
         for (j=1;j<=n;j++) {    ss = strrchr( name, '.' );            /* find last / */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if (ss >0){
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      ss++;
         }      strcpy(ext,ss);                     /* save extension */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      l1= strlen( name);
       }      l2= strlen(ss)+1;
 #endif      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
     }
       free_vector(xit,1,n);  
       free_vector(xits,1,n);    return( 0 );                          /* we're done */
       free_vector(ptt,1,n);  }
       free_vector(pt,1,n);  
       return;  
     }  /******************************************/
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  void replace_back_to_slash(char *s, char*t)
       ptt[j]=2.0*p[j]-pt[j];  {
       xit[j]=p[j]-pt[j];    int i;
       pt[j]=p[j];    int lg=0;
     }    i=0;
     fptt=(*func)(ptt);    lg=strlen(t);
     if (fptt < fp) {    for(i=0; i<= lg; i++) {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      (s[i] = t[i]);
       if (t < 0.0) {      if (t[i]== '\\') s[i]='/';
         linmin(p,xit,n,fret,func);    }
         for (j=1;j<=n;j++) {  }
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  char *trimbb(char *out, char *in)
         }  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
 #ifdef DEBUG    char *s;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    s=out;
         for(j=1;j<=n;j++)    while (*in != '\0'){
           printf(" %.12e",xit[j]);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         printf("\n");        in++;
 #endif      }
       }      *out++ = *in++;
     }    }
   }    *out='\0';
 }    return s;
   }
 /**** Prevalence limit ****************/  
   char *cutv(char *blocc, char *alocc, char *in, char occ)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  {
 {    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
      matrix by transitions matrix until convergence is reached */       gives blocc="abcdef2ghi" and alocc="j".
        If occ is not found blocc is null and alocc is equal to in. Returns alocc
   int i, ii,j,k;    */
   double min, max, maxmin, maxmax,sumnew=0.;    char *s, *t;
   double **matprod2();    t=in;s=in;
   double **out, cov[NCOVMAX], **pmij();    while (*in != '\0'){
   double **newm;      while( *in == occ){
   double agefin, delaymax=50 ; /* Max number of years to converge */        *blocc++ = *in++;
         s=in;
   for (ii=1;ii<=nlstate+ndeath;ii++)      }
     for (j=1;j<=nlstate+ndeath;j++){      *blocc++ = *in++;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }
     }    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
    cov[1]=1.;    else
        *(blocc-(in-s)-1)='\0';
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    in=s;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    while ( *in != '\0'){
     newm=savm;      *alocc++ = *in++;
     /* Covariates have to be included here again */    }
      cov[2]=agefin;  
      *alocc='\0';
       for (k=1; k<=cptcovn;k++) {    return s;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  int nbocc(char *s, char occ)
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    int i,j=0;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int lg=20;
     i=0;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    lg=strlen(s);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    for(i=0; i<= lg; i++) {
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    if  (s[i] == occ ) j++;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    }
     return j;
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  /* void cutv(char *u,char *v, char*t, char occ) */
     for(j=1;j<=nlstate;j++){  /* { */
       min=1.;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
       max=0.;  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       for(i=1; i<=nlstate; i++) {  /*      gives u="abcdef2ghi" and v="j" *\/ */
         sumnew=0;  /*   int i,lg,j,p=0; */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /*   i=0; */
         prlim[i][j]= newm[i][j]/(1-sumnew);  /*   lg=strlen(t); */
         max=FMAX(max,prlim[i][j]);  /*   for(j=0; j<=lg-1; j++) { */
         min=FMIN(min,prlim[i][j]);  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       }  /*   } */
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  /*   for(j=0; j<p; j++) { */
     }  /*     (u[j] = t[j]); */
     if(maxmax < ftolpl){  /*   } */
       return prlim;  /*      u[p]='\0'; */
     }  
   }  /*    for(j=0; j<= lg; j++) { */
 }  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   /*   } */
 /*************** transition probabilities ***************/  /* } */
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /********************** nrerror ********************/
 {  
   double s1, s2;  void nrerror(char error_text[])
   /*double t34;*/  {
   int i,j,j1, nc, ii, jj;    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
     for(i=1; i<= nlstate; i++){    exit(EXIT_FAILURE);
     for(j=1; j<i;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*********************** vector *******************/
         /*s2 += param[i][j][nc]*cov[nc];*/  double *vector(int nl, int nh)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double *v;
       }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       ps[i][j]=s2;    if (!v) nrerror("allocation failure in vector");
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    return v-nl+NR_END;
     }  }
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /************************ free vector ******************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  void free_vector(double*v, int nl, int nh)
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  {
       }    free((FREE_ARG)(v+nl-NR_END));
       ps[i][j]=s2;  }
     }  
   }  /************************ivector *******************************/
     /*ps[3][2]=1;*/  int *ivector(long nl,long nh)
   {
   for(i=1; i<= nlstate; i++){    int *v;
      s1=0;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     for(j=1; j<i; j++)    if (!v) nrerror("allocation failure in ivector");
       s1+=exp(ps[i][j]);    return v-nl+NR_END;
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  /******************free ivector **************************/
     for(j=1; j<i; j++)  void free_ivector(int *v, long nl, long nh)
       ps[i][j]= exp(ps[i][j])*ps[i][i];  {
     for(j=i+1; j<=nlstate+ndeath; j++)    free((FREE_ARG)(v+nl-NR_END));
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /************************lvector *******************************/
   long *lvector(long nl,long nh)
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    long *v;
       ps[ii][jj]=0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       ps[ii][ii]=1;    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
   }  }
   
   /******************free lvector **************************/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  void free_lvector(long *v, long nl, long nh)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
      printf("%lf ",ps[ii][jj]);    free((FREE_ARG)(v+nl-NR_END));
    }  }
     printf("\n ");  
     }  /******************* imatrix *******************************/
     printf("\n ");printf("%lf ",cov[2]);*/  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 /*       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  { 
   goto end;*/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     return ps;    int **m; 
 }    
     /* allocate pointers to rows */ 
 /**************** Product of 2 matrices ******************/    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    m += NR_END; 
 {    m -= nrl; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    
   /* in, b, out are matrice of pointers which should have been initialized    /* allocate rows and set pointers to them */ 
      before: only the contents of out is modified. The function returns    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
      a pointer to pointers identical to out */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   long i, j, k;    m[nrl] += NR_END; 
   for(i=nrl; i<= nrh; i++)    m[nrl] -= ncl; 
     for(k=ncolol; k<=ncoloh; k++)    
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         out[i][k] +=in[i][j]*b[j][k];    
     /* return pointer to array of pointers to rows */ 
   return out;    return m; 
 }  } 
   
   /****************** free_imatrix *************************/
 /************* Higher Matrix Product ***************/  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        long nch,ncl,nrh,nrl; 
 {       /* free an int matrix allocated by imatrix() */ 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  { 
      duration (i.e. until    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    free((FREE_ARG) (m+nrl-NR_END)); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  } 
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  /******************* matrix *******************************/
      included manually here.  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
      */    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double **newm;    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
   /* Hstepm could be zero and should return the unit matrix */    m -= nrl;
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       oldm[i][j]=(i==j ? 1.0 : 0.0);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       po[i][j][0]=(i==j ? 1.0 : 0.0);    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for(d=1; d <=hstepm; d++){    return m;
       newm=savm;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       /* Covariates have to be included here again */     */
       cov[1]=1.;  }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*************************free matrix ************************/
       for (k=1; k<=cptcovage;k++)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    free((FREE_ARG)(m+nrl-NR_END));
   }
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /******************* ma3x *******************************/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       savm=oldm;    double ***m;
       oldm=newm;  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(i=1; i<=nlstate+ndeath; i++)    if (!m) nrerror("allocation failure 1 in matrix()");
       for(j=1;j<=nlstate+ndeath;j++) {    m += NR_END;
         po[i][j][h]=newm[i][j];    m -= nrl;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   } /* end h */    m[nrl] += NR_END;
   return po;    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
 /*************** log-likelihood *************/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 double func( double *x)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 {    m[nrl][ncl] += NR_END;
   int i, ii, j, k, mi, d, kk;    m[nrl][ncl] -= nll;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for (j=ncl+1; j<=nch; j++) 
   double **out;      m[nrl][j]=m[nrl][j-1]+nlay;
   double sw; /* Sum of weights */    
   double lli; /* Individual log likelihood */    for (i=nrl+1; i<=nrh; i++) {
   long ipmx;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   /*extern weight */      for (j=ncl+1; j<=nch; j++) 
   /* We are differentiating ll according to initial status */        m[i][j]=m[i][j-1]+nlay;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    }
   /*for(i=1;i<imx;i++)    return m; 
     printf(" %d\n",s[4][i]);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   */             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   cov[1]=1.;    */
   }
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*************************free ma3x ************************/
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for(mi=1; mi<= wav[i]-1; mi++){  {
       for (ii=1;ii<=nlstate+ndeath;ii++)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for(d=0; d<dh[mi][i]; d++){    free((FREE_ARG)(m+nrl-NR_END));
         newm=savm;  }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  /*************** function subdirf ***********/
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  char *subdirf(char fileres[])
         }  {
            /* Caution optionfilefiname is hidden */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    strcpy(tmpout,optionfilefiname);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    strcat(tmpout,"/"); /* Add to the right */
         savm=oldm;    strcat(tmpout,fileres);
         oldm=newm;    return tmpout;
          }
          
       } /* end mult */  /*************** function subdirf2 ***********/
        char *subdirf2(char fileres[], char *preop)
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  {
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    
       ipmx +=1;    /* Caution optionfilefiname is hidden */
       sw += weight[i];    strcpy(tmpout,optionfilefiname);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    strcat(tmpout,"/");
     } /* end of wave */    strcat(tmpout,preop);
   } /* end of individual */    strcat(tmpout,fileres);
     return tmpout;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*************** function subdirf3 ***********/
   return -l;  char *subdirf3(char fileres[], char *preop, char *preop2)
 }  {
     
     /* Caution optionfilefiname is hidden */
 /*********** Maximum Likelihood Estimation ***************/    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    strcat(tmpout,preop);
 {    strcat(tmpout,preop2);
   int i,j, iter;    strcat(tmpout,fileres);
   double **xi,*delti;    return tmpout;
   double fret;  }
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)  /***************** f1dim *************************/
     for (j=1;j<=npar;j++)  extern int ncom; 
       xi[i][j]=(i==j ? 1.0 : 0.0);  extern double *pcom,*xicom;
   printf("Powell\n");  extern double (*nrfunc)(double []); 
   powell(p,xi,npar,ftol,&iter,&fret,func);   
   double f1dim(double x) 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    int j; 
     double f;
 }    double *xt; 
    
 /**** Computes Hessian and covariance matrix ***/    xt=vector(1,ncom); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 {    f=(*nrfunc)(xt); 
   double  **a,**y,*x,pd;    free_vector(xt,1,ncom); 
   double **hess;    return f; 
   int i, j,jk;  } 
   int *indx;  
   /*****************brent *************************/
   double hessii(double p[], double delta, int theta, double delti[]);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double hessij(double p[], double delti[], int i, int j);  { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    int iter; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double a,b,d,etemp;
     double fu,fv,fw,fx;
   hess=matrix(1,npar,1,npar);    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   printf("\nCalculation of the hessian matrix. Wait...\n");    double e=0.0; 
   for (i=1;i<=npar;i++){   
     printf("%d",i);fflush(stdout);    a=(ax < cx ? ax : cx); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    b=(ax > cx ? ax : cx); 
     /*printf(" %f ",p[i]);*/    x=w=v=bx; 
     /*printf(" %lf ",hess[i][i]);*/    fw=fv=fx=(*f)(x); 
   }    for (iter=1;iter<=ITMAX;iter++) { 
        xm=0.5*(a+b); 
   for (i=1;i<=npar;i++) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for (j=1;j<=npar;j++)  {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       if (j>i) {      printf(".");fflush(stdout);
         printf(".%d%d",i,j);fflush(stdout);      fprintf(ficlog,".");fflush(ficlog);
         hess[i][j]=hessij(p,delti,i,j);  #ifdef DEBUG
         hess[j][i]=hess[i][j];          printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*printf(" %lf ",hess[i][j]);*/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     }  #endif
   }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   printf("\n");        *xmin=x; 
         return fx; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      } 
        ftemp=fu;
   a=matrix(1,npar,1,npar);      if (fabs(e) > tol1) { 
   y=matrix(1,npar,1,npar);        r=(x-w)*(fx-fv); 
   x=vector(1,npar);        q=(x-v)*(fx-fw); 
   indx=ivector(1,npar);        p=(x-v)*q-(x-w)*r; 
   for (i=1;i<=npar;i++)        q=2.0*(q-r); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        if (q > 0.0) p = -p; 
   ludcmp(a,npar,indx,&pd);        q=fabs(q); 
         etemp=e; 
   for (j=1;j<=npar;j++) {        e=d; 
     for (i=1;i<=npar;i++) x[i]=0;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     x[j]=1;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     lubksb(a,npar,indx,x);        else { 
     for (i=1;i<=npar;i++){          d=p/q; 
       matcov[i][j]=x[i];          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
   }            d=SIGN(tol1,xm-x); 
         } 
   printf("\n#Hessian matrix#\n");      } else { 
   for (i=1;i<=npar;i++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for (j=1;j<=npar;j++) {      } 
       printf("%.3e ",hess[i][j]);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     }      fu=(*f)(u); 
     printf("\n");      if (fu <= fx) { 
   }        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
   /* Recompute Inverse */          SHFT(fv,fw,fx,fu) 
   for (i=1;i<=npar;i++)          } else { 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            if (u < x) a=u; else b=u; 
   ludcmp(a,npar,indx,&pd);            if (fu <= fw || w == x) { 
               v=w; 
   /*  printf("\n#Hessian matrix recomputed#\n");              w=u; 
               fv=fw; 
   for (j=1;j<=npar;j++) {              fw=fu; 
     for (i=1;i<=npar;i++) x[i]=0;            } else if (fu <= fv || v == x || v == w) { 
     x[j]=1;              v=u; 
     lubksb(a,npar,indx,x);              fv=fu; 
     for (i=1;i<=npar;i++){            } 
       y[i][j]=x[i];          } 
       printf("%.3e ",y[i][j]);    } 
     }    nrerror("Too many iterations in brent"); 
     printf("\n");    *xmin=x; 
   }    return fx; 
   */  } 
   
   free_matrix(a,1,npar,1,npar);  /****************** mnbrak ***********************/
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   free_ivector(indx,1,npar);              double (*func)(double)) 
   free_matrix(hess,1,npar,1,npar);  { 
     double ulim,u,r,q, dum;
     double fu; 
 }   
     *fa=(*func)(*ax); 
 /*************** hessian matrix ****************/    *fb=(*func)(*bx); 
 double hessii( double x[], double delta, int theta, double delti[])    if (*fb > *fa) { 
 {      SHFT(dum,*ax,*bx,dum) 
   int i;        SHFT(dum,*fb,*fa,dum) 
   int l=1, lmax=20;        } 
   double k1,k2;    *cx=(*bx)+GOLD*(*bx-*ax); 
   double p2[NPARMAX+1];    *fc=(*func)(*cx); 
   double res;    while (*fb > *fc) { 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      r=(*bx-*ax)*(*fb-*fc); 
   double fx;      q=(*bx-*cx)*(*fb-*fa); 
   int k=0,kmax=10;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double l1;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   fx=func(x);      if ((*bx-u)*(u-*cx) > 0.0) { 
   for (i=1;i<=npar;i++) p2[i]=x[i];        fu=(*func)(u); 
   for(l=0 ; l <=lmax; l++){      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     l1=pow(10,l);        fu=(*func)(u); 
     delts=delt;        if (fu < *fc) { 
     for(k=1 ; k <kmax; k=k+1){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       delt = delta*(l1*k);            SHFT(*fb,*fc,fu,(*func)(u)) 
       p2[theta]=x[theta] +delt;            } 
       k1=func(p2)-fx;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       p2[theta]=x[theta]-delt;        u=ulim; 
       k2=func(p2)-fx;        fu=(*func)(u); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      } else { 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        u=(*cx)+GOLD*(*cx-*bx); 
              fu=(*func)(u); 
 #ifdef DEBUG      } 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      SHFT(*ax,*bx,*cx,u) 
 #endif        SHFT(*fa,*fb,*fc,fu) 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        } 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  } 
         k=kmax;  
       }  /*************** linmin ************************/
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  int ncom; 
       }  double *pcom,*xicom;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  double (*nrfunc)(double []); 
         delts=delt;   
       }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     }  { 
   }    double brent(double ax, double bx, double cx, 
   delti[theta]=delts;                 double (*f)(double), double tol, double *xmin); 
   return res;    double f1dim(double x); 
      void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 }                double *fc, double (*func)(double)); 
     int j; 
 double hessij( double x[], double delti[], int thetai,int thetaj)    double xx,xmin,bx,ax; 
 {    double fx,fb,fa;
   int i;   
   int l=1, l1, lmax=20;    ncom=n; 
   double k1,k2,k3,k4,res,fx;    pcom=vector(1,n); 
   double p2[NPARMAX+1];    xicom=vector(1,n); 
   int k;    nrfunc=func; 
     for (j=1;j<=n;j++) { 
   fx=func(x);      pcom[j]=p[j]; 
   for (k=1; k<=2; k++) {      xicom[j]=xi[j]; 
     for (i=1;i<=npar;i++) p2[i]=x[i];    } 
     p2[thetai]=x[thetai]+delti[thetai]/k;    ax=0.0; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    xx=1.0; 
     k1=func(p2)-fx;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     p2[thetai]=x[thetai]+delti[thetai]/k;  #ifdef DEBUG
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     k2=func(p2)-fx;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    #endif
     p2[thetai]=x[thetai]-delti[thetai]/k;    for (j=1;j<=n;j++) { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      xi[j] *= xmin; 
     k3=func(p2)-fx;      p[j] += xi[j]; 
      } 
     p2[thetai]=x[thetai]-delti[thetai]/k;    free_vector(xicom,1,n); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    free_vector(pcom,1,n); 
     k4=func(p2)-fx;  } 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG  char *asc_diff_time(long time_sec, char ascdiff[])
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  {
 #endif    long sec_left, days, hours, minutes;
   }    days = (time_sec) / (60*60*24);
   return res;    sec_left = (time_sec) % (60*60*24);
 }    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
 /************** Inverse of matrix **************/    minutes = (sec_left) /60;
 void ludcmp(double **a, int n, int *indx, double *d)    sec_left = (sec_left) % (60);
 {    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   int i,imax,j,k;    return ascdiff;
   double big,dum,sum,temp;  }
   double *vv;  
    /*************** powell ************************/
   vv=vector(1,n);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   *d=1.0;              double (*func)(double [])) 
   for (i=1;i<=n;i++) {  { 
     big=0.0;    void linmin(double p[], double xi[], int n, double *fret, 
     for (j=1;j<=n;j++)                double (*func)(double [])); 
       if ((temp=fabs(a[i][j])) > big) big=temp;    int i,ibig,j; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double del,t,*pt,*ptt,*xit;
     vv[i]=1.0/big;    double fp,fptt;
   }    double *xits;
   for (j=1;j<=n;j++) {    int niterf, itmp;
     for (i=1;i<j;i++) {  
       sum=a[i][j];    pt=vector(1,n); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    ptt=vector(1,n); 
       a[i][j]=sum;    xit=vector(1,n); 
     }    xits=vector(1,n); 
     big=0.0;    *fret=(*func)(p); 
     for (i=j;i<=n;i++) {    for (j=1;j<=n;j++) pt[j]=p[j]; 
       sum=a[i][j];    for (*iter=1;;++(*iter)) { 
       for (k=1;k<j;k++)      fp=(*fret); 
         sum -= a[i][k]*a[k][j];      ibig=0; 
       a[i][j]=sum;      del=0.0; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {      last_time=curr_time;
         big=dum;      (void) gettimeofday(&curr_time,&tzp);
         imax=i;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     if (j != imax) {     for (i=1;i<=n;i++) {
       for (k=1;k<=n;k++) {        printf(" %d %.12f",i, p[i]);
         dum=a[imax][k];        fprintf(ficlog," %d %.12lf",i, p[i]);
         a[imax][k]=a[j][k];        fprintf(ficrespow," %.12lf", p[i]);
         a[j][k]=dum;      }
       }      printf("\n");
       *d = -(*d);      fprintf(ficlog,"\n");
       vv[imax]=vv[j];      fprintf(ficrespow,"\n");fflush(ficrespow);
     }      if(*iter <=3){
     indx[j]=imax;        tm = *localtime(&curr_time.tv_sec);
     if (a[j][j] == 0.0) a[j][j]=TINY;        strcpy(strcurr,asctime(&tm));
     if (j != n) {  /*       asctime_r(&tm,strcurr); */
       dum=1.0/(a[j][j]);        forecast_time=curr_time; 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        itmp = strlen(strcurr);
     }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   }          strcurr[itmp-1]='\0';
   free_vector(vv,1,n);  /* Doesn't work */        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 ;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 }        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 void lubksb(double **a, int n, int *indx, double b[])          tmf = *localtime(&forecast_time.tv_sec);
 {  /*      asctime_r(&tmf,strfor); */
   int i,ii=0,ip,j;          strcpy(strfor,asctime(&tmf));
   double sum;          itmp = strlen(strfor);
            if(strfor[itmp-1]=='\n')
   for (i=1;i<=n;i++) {          strfor[itmp-1]='\0';
     ip=indx[i];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     sum=b[ip];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     b[ip]=b[i];        }
     if (ii)      }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      for (i=1;i<=n;i++) { 
     else if (sum) ii=i;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     b[i]=sum;        fptt=(*fret); 
   }  #ifdef DEBUG
   for (i=n;i>=1;i--) {        printf("fret=%lf \n",*fret);
     sum=b[i];        fprintf(ficlog,"fret=%lf \n",*fret);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  #endif
     b[i]=sum/a[i][i];        printf("%d",i);fflush(stdout);
   }        fprintf(ficlog,"%d",i);fflush(ficlog);
 }        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
 /************ Frequencies ********************/          del=fabs(fptt-(*fret)); 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          ibig=i; 
 {  /* Some frequencies */        } 
    #ifdef DEBUG
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        printf("%d %.12e",i,(*fret));
   double ***freq; /* Frequencies */        fprintf(ficlog,"%d %.12e",i,(*fret));
   double *pp;        for (j=1;j<=n;j++) {
   double pos, k2, dateintsum=0,k2cpt=0;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   FILE *ficresp;          printf(" x(%d)=%.12e",j,xit[j]);
   char fileresp[FILENAMELENGTH];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
          }
   pp=vector(1,nlstate);        for(j=1;j<=n;j++) {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          printf(" p=%.12e",p[j]);
   strcpy(fileresp,"p");          fprintf(ficlog," p=%.12e",p[j]);
   strcat(fileresp,fileres);        }
   if((ficresp=fopen(fileresp,"w"))==NULL) {        printf("\n");
     printf("Problem with prevalence resultfile: %s\n", fileresp);        fprintf(ficlog,"\n");
     exit(0);  #endif
   }      } 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   j1=0;  #ifdef DEBUG
          int k[2],l;
   j=cptcoveff;        k[0]=1;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        k[1]=-1;
          printf("Max: %.12e",(*func)(p));
   for(k1=1; k1<=j;k1++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for(i1=1; i1<=ncodemax[k1];i1++){        for (j=1;j<=n;j++) {
       j1++;          printf(" %.12e",p[j]);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          fprintf(ficlog," %.12e",p[j]);
         scanf("%d", i);*/        }
       for (i=-1; i<=nlstate+ndeath; i++)          printf("\n");
         for (jk=-1; jk<=nlstate+ndeath; jk++)          fprintf(ficlog,"\n");
           for(m=agemin; m <= agemax+3; m++)        for(l=0;l<=1;l++) {
             freq[i][jk][m]=0;          for (j=1;j<=n;j++) {
                  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       dateintsum=0;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       k2cpt=0;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for (i=1; i<=imx; i++) {          }
         bool=1;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         if  (cptcovn>0) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           for (z1=1; z1<=cptcoveff; z1++)        }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  #endif
               bool=0;  
         }  
         if (bool==1) {        free_vector(xit,1,n); 
           for(m=firstpass; m<=lastpass; m++){        free_vector(xits,1,n); 
             k2=anint[m][i]+(mint[m][i]/12.);        free_vector(ptt,1,n); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        free_vector(pt,1,n); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        return; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;      } 
               if (m<lastpass) {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for (j=1;j<=n;j++) { 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        ptt[j]=2.0*p[j]-pt[j]; 
               }        xit[j]=p[j]-pt[j]; 
                      pt[j]=p[j]; 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      } 
                 dateintsum=dateintsum+k2;      fptt=(*func)(ptt); 
                 k2cpt++;      if (fptt < fp) { 
               }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
             }        if (t < 0.0) { 
           }          linmin(p,xit,n,fret,func); 
         }          for (j=1;j<=n;j++) { 
       }            xi[j][ibig]=xi[j][n]; 
                    xi[j][n]=xit[j]; 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          }
   #ifdef DEBUG
       if  (cptcovn>0) {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         fprintf(ficresp, "\n#********** Variable ");          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(j=1;j<=n;j++){
         fprintf(ficresp, "**********\n#");            printf(" %.12e",xit[j]);
       }            fprintf(ficlog," %.12e",xit[j]);
       for(i=1; i<=nlstate;i++)          }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          printf("\n");
       fprintf(ficresp, "\n");          fprintf(ficlog,"\n");
        #endif
       for(i=(int)agemin; i <= (int)agemax+3; i++){        }
         if(i==(int)agemax+3)      } 
           printf("Total");    } 
         else  } 
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){  /**** Prevalence limit (stable or period prevalence)  ****************/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         }  {
         for(jk=1; jk <=nlstate ; jk++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
           for(m=-1, pos=0; m <=0 ; m++)       matrix by transitions matrix until convergence is reached */
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10)    int i, ii,j,k;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double min, max, maxmin, maxmax,sumnew=0.;
           else    double **matprod2();
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double **out, cov[NCOVMAX+1], **pmij();
         }    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    for (ii=1;ii<=nlstate+ndeath;ii++)
             pp[jk] += freq[jk][m][i];      for (j=1;j<=nlstate+ndeath;j++){
         }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];     cov[1]=1.;
         for(jk=1; jk <=nlstate ; jk++){   
           if(pos>=1.e-5)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           else      newm=savm;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      /* Covariates have to be included here again */
           if( i <= (int) agemax){      cov[2]=agefin;
             if(pos>=1.e-5){      
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      for (k=1; k<=cptcovn;k++) {
               probs[i][jk][j1]= pp[jk]/pos;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
             }      }
             else      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      for (k=1; k<=cptcovprod;k++)
           }        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         }      
              /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         for(jk=-1; jk <=nlstate+ndeath; jk++)      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           for(m=-1; m <=nlstate+ndeath; m++)      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
         if(i <= (int) agemax)      
           fprintf(ficresp,"\n");      savm=oldm;
         printf("\n");      oldm=newm;
       }      maxmax=0.;
     }      for(j=1;j<=nlstate;j++){
   }        min=1.;
   dateintmean=dateintsum/k2cpt;        max=0.;
          for(i=1; i<=nlstate; i++) {
   fclose(ficresp);          sumnew=0;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   free_vector(pp,1,nlstate);          prlim[i][j]= newm[i][j]/(1-sumnew);
            max=FMAX(max,prlim[i][j]);
   /* End of Freq */          min=FMIN(min,prlim[i][j]);
 }        }
         maxmin=max-min;
 /************ Prevalence ********************/        maxmax=FMAX(maxmax,maxmin);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      }
 {  /* Some frequencies */      if(maxmax < ftolpl){
          return prlim;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      }
   double ***freq; /* Frequencies */    }
   double *pp;  }
   double pos, k2;  
   /*************** transition probabilities ***************/ 
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
    {
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* According to parameters values stored in x and the covariate's values stored in cov,
   j1=0;       computes the probability to be observed in state j being in state i by appying the
         model to the ncovmodel covariates (including constant and age).
   j=cptcoveff;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         ncth covariate in the global vector x is given by the formula:
   for(k1=1; k1<=j;k1++){       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
     for(i1=1; i1<=ncodemax[k1];i1++){       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
       j1++;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
             sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
       for (i=-1; i<=nlstate+ndeath; i++)         Outputs ps[i][j] the probability to be observed in j being in j according to
         for (jk=-1; jk<=nlstate+ndeath; jk++)         the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
           for(m=agemin; m <= agemax+3; m++)    */
             freq[i][jk][m]=0;    double s1, lnpijopii;
          /*double t34;*/
       for (i=1; i<=imx; i++) {    int i,j,j1, nc, ii, jj;
         bool=1;  
         if  (cptcovn>0) {      for(i=1; i<= nlstate; i++){
           for (z1=1; z1<=cptcoveff; z1++)        for(j=1; j<i;j++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
               bool=0;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
         }            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         if (bool==1) {  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           for(m=firstpass; m<=lastpass; m++){          }
             k2=anint[m][i]+(mint[m][i]/12.);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        }
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for(j=i+1; j<=nlstate+ndeath;j++){
               if (m<lastpass) {          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                 if (calagedate>0)            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
                 else  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
               }        }
             }      }
           }      
         }      for(i=1; i<= nlstate; i++){
       }        s1=0;
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for(j=1; j<i; j++){
         for(jk=1; jk <=nlstate ; jk++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             pp[jk] += freq[jk][m][i];        }
         }        for(j=i+1; j<=nlstate+ndeath; j++){
         for(jk=1; jk <=nlstate ; jk++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           for(m=-1, pos=0; m <=0 ; m++)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             pos += freq[jk][m][i];        }
         }        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                ps[i][i]=1./(s1+1.);
         for(jk=1; jk <=nlstate ; jk++){        /* Computing other pijs */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(j=1; j<i; j++)
             pp[jk] += freq[jk][m][i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
         }        for(j=i+1; j<=nlstate+ndeath; j++)
                  ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
              } /* end i */
         for(jk=1; jk <=nlstate ; jk++){          
           if( i <= (int) agemax){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
             if(pos>=1.e-5){        for(jj=1; jj<= nlstate+ndeath; jj++){
               probs[i][jk][j1]= pp[jk]/pos;          ps[ii][jj]=0;
             }          ps[ii][ii]=1;
           }        }
         }      }
              
       }  
     }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
    /*       } */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*       printf("\n "); */
   free_vector(pp,1,nlstate);  /*        } */
    /*        printf("\n ");printf("%lf ",cov[2]); */
 }  /* End of Freq */         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
 /************* Waves Concatenation ***************/        goto end;*/
       return ps;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  }
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  /**************** Product of 2 matrices ******************/
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  {
      and mw[mi+1][i]. dh depends on stepm.    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
      */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
   int i, mi, m;       before: only the contents of out is modified. The function returns
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;       a pointer to pointers identical to out */
      double sum=0., jmean=0.;*/    long i, j, k;
     for(i=nrl; i<= nrh; i++)
   int j, k=0,jk, ju, jl;      for(k=ncolol; k<=ncoloh; k++)
   double sum=0.;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   jmin=1e+5;          out[i][k] +=in[i][j]*b[j][k];
   jmax=-1;  
   jmean=0.;    return out;
   for(i=1; i<=imx; i++){  }
     mi=0;  
     m=firstpass;  
     while(s[m][i] <= nlstate){  /************* Higher Matrix Product ***************/
       if(s[m][i]>=1)  
         mw[++mi][i]=m;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       if(m >=lastpass)  {
         break;    /* Computes the transition matrix starting at age 'age' over 
       else       'nhstepm*hstepm*stepm' months (i.e. until
         m++;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }/* end while */       nhstepm*hstepm matrices. 
     if (s[m][i] > nlstate){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       mi++;     /* Death is another wave */       (typically every 2 years instead of every month which is too big 
       /* if(mi==0)  never been interviewed correctly before death */       for the memory).
          /* Only death is a correct wave */       Model is determined by parameters x and covariates have to be 
       mw[mi][i]=m;       included manually here. 
     }  
        */
     wav[i]=mi;  
     if(mi==0)    int i, j, d, h, k;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    double **out, cov[NCOVMAX+1];
   }    double **newm;
   
   for(i=1; i<=imx; i++){    /* Hstepm could be zero and should return the unit matrix */
     for(mi=1; mi<wav[i];mi++){    for (i=1;i<=nlstate+ndeath;i++)
       if (stepm <=0)      for (j=1;j<=nlstate+ndeath;j++){
         dh[mi][i]=1;        oldm[i][j]=(i==j ? 1.0 : 0.0);
       else{        po[i][j][0]=(i==j ? 1.0 : 0.0);
         if (s[mw[mi+1][i]][i] > nlstate) {      }
           if (agedc[i] < 2*AGESUP) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    for(h=1; h <=nhstepm; h++){
           if(j==0) j=1;  /* Survives at least one month after exam */      for(d=1; d <=hstepm; d++){
           k=k+1;        newm=savm;
           if (j >= jmax) jmax=j;        /* Covariates have to be included here again */
           if (j <= jmin) jmin=j;        cov[1]=1.;
           sum=sum+j;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        for (k=1; k<=cptcovn;k++) 
           }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         }        for (k=1; k<=cptcovage;k++)
         else{          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for (k=1; k<=cptcovprod;k++)
           k=k+1;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;  
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           sum=sum+j;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         jk= j/stepm;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         jl= j -jk*stepm;        savm=oldm;
         ju= j -(jk+1)*stepm;        oldm=newm;
         if(jl <= -ju)      }
           dh[mi][i]=jk;      for(i=1; i<=nlstate+ndeath; i++)
         else        for(j=1;j<=nlstate+ndeath;j++) {
           dh[mi][i]=jk+1;          po[i][j][h]=newm[i][j];
         if(dh[mi][i]==0)          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
           dh[mi][i]=1; /* At least one step */        }
       }      /*printf("h=%d ",h);*/
     }    } /* end h */
   }  /*     printf("\n H=%d \n",h); */
   jmean=sum/k;    return po;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  }
  }  
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)  /*************** log-likelihood *************/
 {  double func( double *x)
   int Ndum[20],ij=1, k, j, i;  {
   int cptcode=0;    int i, ii, j, k, mi, d, kk;
   cptcoveff=0;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      double **out;
   for (k=0; k<19; k++) Ndum[k]=0;    double sw; /* Sum of weights */
   for (k=1; k<=7; k++) ncodemax[k]=0;    double lli; /* Individual log likelihood */
     int s1, s2;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double bbh, survp;
     for (i=1; i<=imx; i++) {    long ipmx;
       ij=(int)(covar[Tvar[j]][i]);    /*extern weight */
       Ndum[ij]++;    /* We are differentiating ll according to initial status */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if (ij > cptcode) cptcode=ij;    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     */
     for (i=0; i<=cptcode; i++) {    cov[1]=1.;
       if(Ndum[i]!=0) ncodemax[j]++;  
     }    for(k=1; k<=nlstate; k++) ll[k]=0.;
     ij=1;  
     if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1; i<=ncodemax[j]; i++) {        /* Computes the values of the ncovmodel covariates of the model
       for (k=0; k<=19; k++) {           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
         if (Ndum[k] != 0) {           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
           nbcode[Tvar[j]][ij]=k;           to be observed in j being in i according to the model.
                   */
           ij++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
         if (ij > ncodemax[j]) break;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       }             has been calculated etc */
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }            for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
  for (k=0; k<19; k++) Ndum[k]=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (i=1; i<=ncovmodel-2; i++) {            }
       ij=Tvar[i];          for(d=0; d<dh[mi][i]; d++){
       Ndum[ij]++;            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
  ij=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
  for (i=1; i<=10; i++) {            }
    if((Ndum[i]!=0) && (i<=ncovcol)){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Tvaraff[ij]=i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      ij++;            savm=oldm;
    }            oldm=newm;
  }          } /* end mult */
          
     cptcoveff=ij-1;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 }          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
 /*********** Health Expectancies ****************/           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 {           * probability in order to take into account the bias as a fraction of the way
   /* Health expectancies */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;           * -stepm/2 to stepm/2 .
   double age, agelim, hf;           * For stepm=1 the results are the same as for previous versions of Imach.
   double ***p3mat,***varhe;           * For stepm > 1 the results are less biased than in previous versions. 
   double **dnewm,**doldm;           */
   double *xp;          s1=s[mw[mi][i]][i];
   double **gp, **gm;          s2=s[mw[mi+1][i]][i];
   double ***gradg, ***trgradg;          bbh=(double)bh[mi][i]/(double)stepm; 
   int theta;          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);           */
   xp=vector(1,npar);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   dnewm=matrix(1,nlstate*2,1,npar);          if( s2 > nlstate){ 
   doldm=matrix(1,nlstate*2,1,nlstate*2);            /* i.e. if s2 is a death state and if the date of death is known 
                 then the contribution to the likelihood is the probability to 
   fprintf(ficreseij,"# Health expectancies\n");               die between last step unit time and current  step unit time, 
   fprintf(ficreseij,"# Age");               which is also equal to probability to die before dh 
   for(i=1; i<=nlstate;i++)               minus probability to die before dh-stepm . 
     for(j=1; j<=nlstate;j++)               In version up to 0.92 likelihood was computed
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          as if date of death was unknown. Death was treated as any other
   fprintf(ficreseij,"\n");          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   if(estepm < stepm){          to consider that at each interview the state was recorded
     printf ("Problem %d lower than %d\n",estepm, stepm);          (healthy, disable or death) and IMaCh was corrected; but when we
   }          introduced the exact date of death then we should have modified
   else  hstepm=estepm;            the contribution of an exact death to the likelihood. This new
   /* We compute the life expectancy from trapezoids spaced every estepm months          contribution is smaller and very dependent of the step unit
    * This is mainly to measure the difference between two models: for example          stepm. It is no more the probability to die between last interview
    * if stepm=24 months pijx are given only every 2 years and by summing them          and month of death but the probability to survive from last
    * we are calculating an estimate of the Life Expectancy assuming a linear          interview up to one month before death multiplied by the
    * progression inbetween and thus overestimating or underestimating according          probability to die within a month. Thanks to Chris
    * to the curvature of the survival function. If, for the same date, we          Jackson for correcting this bug.  Former versions increased
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          mortality artificially. The bad side is that we add another loop
    * to compare the new estimate of Life expectancy with the same linear          which slows down the processing. The difference can be up to 10%
    * hypothesis. A more precise result, taking into account a more precise          lower mortality.
    * curvature will be obtained if estepm is as small as stepm. */            */
             lli=log(out[s1][s2] - savm[s1][s2]);
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim          } else if  (s2==-2) {
      nstepm is the number of stepm from age to agelin.            for (j=1,survp=0. ; j<=nlstate; j++) 
      Look at hpijx to understand the reason of that which relies in memory size              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      and note for a fixed period like estepm months */            /*survp += out[s1][j]; */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            lli= log(survp);
      survival function given by stepm (the optimization length). Unfortunately it          }
      means that if the survival funtion is printed only each two years of age and if          
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          else if  (s2==-4) { 
      results. So we changed our mind and took the option of the best precision.            for (j=3,survp=0. ; j<=nlstate; j++)  
   */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            lli= log(survp); 
           } 
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          else if  (s2==-5) { 
     /* nhstepm age range expressed in number of stepm */            for (j=1,survp=0. ; j<=2; j++)  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            lli= log(survp); 
     /* if (stepm >= YEARM) hstepm=1;*/          } 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          else{
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     gp=matrix(0,nhstepm,1,nlstate*2);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     gm=matrix(0,nhstepm,1,nlstate*2);          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          /*if(lli ==000.0)*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            ipmx +=1;
            sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        } /* end of wave */
       } /* end of individual */
     /* Computing Variances of health expectancies */    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      for(theta=1; theta <=npar; theta++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=1; i<=npar; i++){        for(mi=1; mi<= wav[i]-1; mi++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
       cptj=0;            }
       for(j=1; j<= nlstate; j++){          for(d=0; d<=dh[mi][i]; d++){
         for(i=1; i<=nlstate; i++){            newm=savm;
           cptj=cptj+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){            for (kk=1; kk<=cptcovage;kk++) {
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                  savm=oldm;
                  oldm=newm;
       for(i=1; i<=npar; i++)          } /* end mult */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            s1=s[mw[mi][i]][i];
                s2=s[mw[mi+1][i]][i];
       cptj=0;          bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1; j<= nlstate; j++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for(i=1;i<=nlstate;i++){          ipmx +=1;
           cptj=cptj+1;          sw += weight[i];
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        } /* end of wave */
           }      } /* end of individual */
         }    }  else if(mle==3){  /* exponential inter-extrapolation */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<= nlstate*2; j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(h=0; h<=nhstepm-1; h++){        for(mi=1; mi<= wav[i]-1; mi++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
      }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /* End theta */            }
           for(d=0; d<dh[mi][i]; d++){
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      for(h=0; h<=nhstepm-1; h++)            for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<=nlstate*2;j++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(theta=1; theta <=npar; theta++)            }
           trgradg[h][j][theta]=gradg[h][theta][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                               1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
      for(i=1;i<=nlstate*2;i++)            oldm=newm;
       for(j=1;j<=nlstate*2;j++)          } /* end mult */
         varhe[i][j][(int)age] =0.;        
           s1=s[mw[mi][i]][i];
      printf("%d|",(int)age);fflush(stdout);          s2=s[mw[mi+1][i]][i];
      for(h=0;h<=nhstepm-1;h++){          bbh=(double)bh[mi][i]/(double)stepm; 
       for(k=0;k<=nhstepm-1;k++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          ipmx +=1;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          sw += weight[i];
         for(i=1;i<=nlstate*2;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(j=1;j<=nlstate*2;j++)        } /* end of wave */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      } /* end of individual */
       }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /* Computing expectancies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<=nlstate;j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            for (j=1;j<=nlstate+ndeath;j++){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                        savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            }
           for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficreseij,"%3.0f",age );            for (kk=1; kk<=cptcovage;kk++) {
     cptj=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){          
         cptj++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     fprintf(ficreseij,"\n");            oldm=newm;
              } /* end mult */
     free_matrix(gm,0,nhstepm,1,nlstate*2);        
     free_matrix(gp,0,nhstepm,1,nlstate*2);          s1=s[mw[mi][i]][i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          s2=s[mw[mi+1][i]][i];
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          if( s2 > nlstate){ 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli=log(out[s1][s2] - savm[s1][s2]);
   }          }else{
   printf("\n");            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
   free_vector(xp,1,npar);          ipmx +=1;
   free_matrix(dnewm,1,nlstate*2,1,npar);          sw += weight[i];
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 }        } /* end of wave */
       } /* end of individual */
 /************ Variance ******************/    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Variance of health expectancies */        for(mi=1; mi<= wav[i]-1; mi++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          for (ii=1;ii<=nlstate+ndeath;ii++)
   double **newm;            for (j=1;j<=nlstate+ndeath;j++){
   double **dnewm,**doldm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h, nstepm ;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k, cptcode;            }
   double *xp;          for(d=0; d<dh[mi][i]; d++){
   double **gp, **gm;            newm=savm;
   double ***gradg, ***trgradg;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double ***p3mat;            for (kk=1; kk<=cptcovage;kk++) {
   double age,agelim, hf;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int theta;            }
           
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficresvij,"# Age");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=nlstate;i++)            savm=oldm;
     for(j=1; j<=nlstate;j++)            oldm=newm;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          } /* end mult */
   fprintf(ficresvij,"\n");        
           s1=s[mw[mi][i]][i];
   xp=vector(1,npar);          s2=s[mw[mi+1][i]][i];
   dnewm=matrix(1,nlstate,1,npar);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   doldm=matrix(1,nlstate,1,nlstate);          ipmx +=1;
            sw += weight[i];
   if(estepm < stepm){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf ("Problem %d lower than %d\n",estepm, stepm);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   }        } /* end of wave */
   else  hstepm=estepm;        } /* end of individual */
   /* For example we decided to compute the life expectancy with the smallest unit */    } /* End of if */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      nhstepm is the number of hstepm from age to agelim    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      nstepm is the number of stepm from age to agelin.    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      Look at hpijx to understand the reason of that which relies in memory size    return -l;
      and note for a fixed period like k years */  }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it  /*************** log-likelihood *************/
      means that if the survival funtion is printed only each two years of age and if  double funcone( double *x)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  {
      results. So we changed our mind and took the option of the best precision.    /* Same as likeli but slower because of a lot of printf and if */
   */    int i, ii, j, k, mi, d, kk;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   agelim = AGESUP;    double **out;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double lli; /* Individual log likelihood */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double llt;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    int s1, s2;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double bbh, survp;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /*extern weight */
     gp=matrix(0,nhstepm,1,nlstate);    /* We are differentiating ll according to initial status */
     gm=matrix(0,nhstepm,1,nlstate);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
     for(theta=1; theta <=npar; theta++){      printf(" %d\n",s[4][i]);
       for(i=1; i<=npar; i++){ /* Computes gradient */    */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    cov[1]=1.;
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for(k=1; k<=nlstate; k++) ll[k]=0.;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if (popbased==1) {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(i=1; i<=nlstate;i++)      for(mi=1; mi<= wav[i]-1; mi++){
           prlim[i][i]=probs[(int)age][i][ij];        for (ii=1;ii<=nlstate+ndeath;ii++)
       }          for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(h=0; h<=nhstepm; h++){          }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        for(d=0; d<dh[mi][i]; d++){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          newm=savm;
         }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }          for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          savm=oldm;
            oldm=newm;
       if (popbased==1) {        } /* end mult */
         for(i=1; i<=nlstate;i++)        
           prlim[i][i]=probs[(int)age][i][ij];        s1=s[mw[mi][i]][i];
       }        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1; j<= nlstate; j++){        /* bias is positive if real duration
         for(h=0; h<=nhstepm; h++){         * is higher than the multiple of stepm and negative otherwise.
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)         */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         }          lli=log(out[s1][s2] - savm[s1][s2]);
       }        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
       for(j=1; j<= nlstate; j++)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for(h=0; h<=nhstepm; h++){          lli= log(survp);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        }else if (mle==1){
         }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     } /* End theta */        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for(h=0; h<=nhstepm; h++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for(j=1; j<=nlstate;j++)          lli=log(out[s1][s2]); /* Original formula */
         for(theta=1; theta <=npar; theta++)        } else{  /* mle=0 back to 1 */
           trgradg[h][j][theta]=gradg[h][theta][j];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           /*lli=log(out[s1][s2]); */ /* Original formula */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        } /* End of if */
     for(i=1;i<=nlstate;i++)        ipmx +=1;
       for(j=1;j<=nlstate;j++)        sw += weight[i];
         vareij[i][j][(int)age] =0.;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(h=0;h<=nhstepm;h++){        if(globpr){
       for(k=0;k<=nhstepm;k++){          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);   %11.6f %11.6f %11.6f ", \
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         for(i=1;i<=nlstate;i++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(j=1;j<=nlstate;j++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            llt +=ll[k]*gipmx/gsw;
       }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     }          }
           fprintf(ficresilk," %10.6f\n", -llt);
     fprintf(ficresvij,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)      } /* end of wave */
       for(j=1; j<=nlstate;j++){    } /* end of individual */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     fprintf(ficresvij,"\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     free_matrix(gp,0,nhstepm,1,nlstate);    if(globpr==0){ /* First time we count the contributions and weights */
     free_matrix(gm,0,nhstepm,1,nlstate);      gipmx=ipmx;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      gsw=sw;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    return -l;
   } /* End age */  }
    
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  /*************** function likelione ***********/
   free_matrix(dnewm,1,nlstate,1,nlstate);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
 }    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
 /************ Variance of prevlim ******************/       to check the exact contribution to the likelihood.
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)       Plotting could be done.
 {     */
   /* Variance of prevalence limit */    int k;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    if(*globpri !=0){ /* Just counts and sums, no printings */
   double **dnewm,**doldm;      strcpy(fileresilk,"ilk"); 
   int i, j, nhstepm, hstepm;      strcat(fileresilk,fileres);
   int k, cptcode;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double *xp;        printf("Problem with resultfile: %s\n", fileresilk);
   double *gp, *gm;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double **gradg, **trgradg;      }
   double age,agelim;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int theta;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
          /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      for(k=1; k<=nlstate; k++) 
   fprintf(ficresvpl,"# Age");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   for(i=1; i<=nlstate;i++)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       fprintf(ficresvpl," %1d-%1d",i,i);    }
   fprintf(ficresvpl,"\n");  
     *fretone=(*funcone)(p);
   xp=vector(1,npar);    if(*globpri !=0){
   dnewm=matrix(1,nlstate,1,npar);      fclose(ficresilk);
   doldm=matrix(1,nlstate,1,nlstate);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
        fflush(fichtm); 
   hstepm=1*YEARM; /* Every year of age */    } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    return;
   agelim = AGESUP;  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  /*********** Maximum Likelihood Estimation ***************/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     gp=vector(1,nlstate);  {
     gm=vector(1,nlstate);    int i,j, iter;
     double **xi;
     for(theta=1; theta <=npar; theta++){    double fret;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double fretone; /* Only one call to likelihood */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /*  char filerespow[FILENAMELENGTH];*/
       }    xi=matrix(1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++)
       for(i=1;i<=nlstate;i++)      for (j=1;j<=npar;j++)
         gp[i] = prlim[i][i];        xi[i][j]=(i==j ? 1.0 : 0.0);
        printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(i=1; i<=npar; i++) /* Computes gradient */    strcpy(filerespow,"pow"); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    strcat(filerespow,fileres);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(i=1;i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
         gm[i] = prlim[i][i];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
       for(i=1;i<=nlstate;i++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    for (i=1;i<=nlstate;i++)
     } /* End theta */      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     trgradg =matrix(1,nlstate,1,npar);    fprintf(ficrespow,"\n");
   
     for(j=1; j<=nlstate;j++)    powell(p,xi,npar,ftol,&iter,&fret,func);
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
     for(i=1;i<=nlstate;i++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       varpl[i][(int)age] =0.;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)  }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
   /**** Computes Hessian and covariance matrix ***/
     fprintf(ficresvpl,"%.0f ",age );  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     for(i=1; i<=nlstate;i++)  {
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double  **a,**y,*x,pd;
     fprintf(ficresvpl,"\n");    double **hess;
     free_vector(gp,1,nlstate);    int i, j,jk;
     free_vector(gm,1,nlstate);    int *indx;
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   } /* End age */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
   free_vector(xp,1,npar);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   free_matrix(doldm,1,nlstate,1,npar);    double gompertz(double p[]);
   free_matrix(dnewm,1,nlstate,1,nlstate);    hess=matrix(1,npar,1,npar);
   
 }    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 /************ Variance of one-step probabilities  ******************/    for (i=1;i<=npar;i++){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      printf("%d",i);fflush(stdout);
 {      fprintf(ficlog,"%d",i);fflush(ficlog);
   int i, j=0,  i1, k1, l1, t, tj;     
   int k2, l2, j1,  z1;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   int k=0,l, cptcode;      
   int first=1;      /*  printf(" %f ",p[i]);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double **dnewm,**doldm;    }
   double *xp;    
   double *gp, *gm;    for (i=1;i<=npar;i++) {
   double **gradg, **trgradg;      for (j=1;j<=npar;j++)  {
   double **mu;        if (j>i) { 
   double age,agelim, cov[NCOVMAX];          printf(".%d%d",i,j);fflush(stdout);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   int theta;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   char fileresprob[FILENAMELENGTH];          
   char fileresprobcov[FILENAMELENGTH];          hess[j][i]=hess[i][j];    
   char fileresprobcor[FILENAMELENGTH];          /*printf(" %lf ",hess[i][j]);*/
         }
   double ***varpij;      }
     }
   strcpy(fileresprob,"prob");    printf("\n");
   strcat(fileresprob,fileres);    fprintf(ficlog,"\n");
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   strcpy(fileresprobcov,"probcov");    
   strcat(fileresprobcov,fileres);    a=matrix(1,npar,1,npar);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    y=matrix(1,npar,1,npar);
     printf("Problem with resultfile: %s\n", fileresprobcov);    x=vector(1,npar);
   }    indx=ivector(1,npar);
   strcpy(fileresprobcor,"probcor");    for (i=1;i<=npar;i++)
   strcat(fileresprobcor,fileres);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    ludcmp(a,npar,indx,&pd);
     printf("Problem with resultfile: %s\n", fileresprobcor);  
   }    for (j=1;j<=npar;j++) {
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      for (i=1;i<=npar;i++) x[i]=0;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      x[j]=1;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        matcov[i][j]=x[i];
   fprintf(ficresprob,"# Age");      }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    }
   fprintf(ficresprobcov,"# Age");  
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    printf("\n#Hessian matrix#\n");
   fprintf(ficresprobcov,"# Age");    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   for(i=1; i<=nlstate;i++)        printf("%.3e ",hess[i][j]);
     for(j=1; j<=(nlstate+ndeath);j++){        fprintf(ficlog,"%.3e ",hess[i][j]);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      }
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      printf("\n");
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      fprintf(ficlog,"\n");
     }      }
   fprintf(ficresprob,"\n");  
   fprintf(ficresprobcov,"\n");    /* Recompute Inverse */
   fprintf(ficresprobcor,"\n");    for (i=1;i<=npar;i++)
   xp=vector(1,npar);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    ludcmp(a,npar,indx,&pd);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    /*  printf("\n#Hessian matrix recomputed#\n");
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  
   first=1;    for (j=1;j<=npar;j++) {
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      for (i=1;i<=npar;i++) x[i]=0;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      x[j]=1;
     exit(0);      lubksb(a,npar,indx,x);
   }      for (i=1;i<=npar;i++){ 
   else{        y[i][j]=x[i];
     fprintf(ficgp,"\n# Routine varprob");        printf("%.3e ",y[i][j]);
   }        fprintf(ficlog,"%.3e ",y[i][j]);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      }
     printf("Problem with html file: %s\n", optionfilehtm);      printf("\n");
     exit(0);      fprintf(ficlog,"\n");
   }    }
   else{    */
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");  
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    free_matrix(a,1,npar,1,npar);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
   }    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
    
   cov[1]=1;  
   tj=cptcoveff;  }
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}  
   j1=0;  /*************** hessian matrix ****************/
   for(t=1; t<=tj;t++){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     for(i1=1; i1<=ncodemax[t];i1++){  {
       j1++;    int i;
          int l=1, lmax=20;
       if  (cptcovn>0) {    double k1,k2;
         fprintf(ficresprob, "\n#********** Variable ");    double p2[MAXPARM+1]; /* identical to x */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double res;
         fprintf(ficresprob, "**********\n#");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         fprintf(ficresprobcov, "\n#********** Variable ");    double fx;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int k=0,kmax=10;
         fprintf(ficresprobcov, "**********\n#");    double l1;
          
         fprintf(ficgp, "\n#********** Variable ");    fx=func(x);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (i=1;i<=npar;i++) p2[i]=x[i];
         fprintf(ficgp, "**********\n#");    for(l=0 ; l <=lmax; l++){
              l1=pow(10,l);
              delts=delt;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");      for(k=1 ; k <kmax; k=k+1){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        delt = delta*(l1*k);
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        p2[theta]=x[theta] +delt;
                k1=func(p2)-fx;
         fprintf(ficresprobcor, "\n#********** Variable ");            p2[theta]=x[theta]-delt;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        k2=func(p2)-fx;
         fprintf(ficgp, "**********\n#");            /*res= (k1-2.0*fx+k2)/delt/delt; */
       }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
              
       for (age=bage; age<=fage; age ++){  #ifdef DEBUGHESS
         cov[2]=age;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for (k=1; k<=cptcovn;k++) {        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  #endif
         }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         for (k=1; k<=cptcovprod;k++)          k=kmax;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        }
                else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          k=kmax; l=lmax*10.;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        }
         gp=vector(1,(nlstate)*(nlstate+ndeath));        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         gm=vector(1,(nlstate)*(nlstate+ndeath));          delts=delt;
            }
         for(theta=1; theta <=npar; theta++){      }
           for(i=1; i<=npar; i++)    }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    delti[theta]=delts;
              return res; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    
            }
           k=0;  
           for(i=1; i<= (nlstate); i++){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
             for(j=1; j<=(nlstate+ndeath);j++){  {
               k=k+1;    int i;
               gp[k]=pmmij[i][j];    int l=1, l1, lmax=20;
             }    double k1,k2,k3,k4,res,fx;
           }    double p2[MAXPARM+1];
              int k;
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    fx=func(x);
        for (k=1; k<=2; k++) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for (i=1;i<=npar;i++) p2[i]=x[i];
           k=0;      p2[thetai]=x[thetai]+delti[thetai]/k;
           for(i=1; i<=(nlstate); i++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             for(j=1; j<=(nlstate+ndeath);j++){      k1=func(p2)-fx;
               k=k+1;    
               gm[k]=pmmij[i][j];      p2[thetai]=x[thetai]+delti[thetai]/k;
             }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           }      k2=func(p2)-fx;
          
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         }      k3=func(p2)-fx;
     
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      p2[thetai]=x[thetai]-delti[thetai]/k;
           for(theta=1; theta <=npar; theta++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             trgradg[j][theta]=gradg[theta][j];      k4=func(p2)-fx;
              res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);  #ifdef DEBUG
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
              fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         pmij(pmmij,cov,ncovmodel,x,nlstate);  #endif
            }
         k=0;    return res;
         for(i=1; i<=(nlstate); i++){  }
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;  /************** Inverse of matrix **************/
             mu[k][(int) age]=pmmij[i][j];  void ludcmp(double **a, int n, int *indx, double *d) 
           }  { 
         }    int i,imax,j,k; 
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    double big,dum,sum,temp; 
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    double *vv; 
             varpij[i][j][(int)age] = doldm[i][j];   
     vv=vector(1,n); 
         /*printf("\n%d ",(int)age);    *d=1.0; 
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    for (i=1;i<=n;i++) { 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      big=0.0; 
      }*/      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
         fprintf(ficresprob,"\n%d ",(int)age);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         fprintf(ficresprobcov,"\n%d ",(int)age);      vv[i]=1.0/big; 
         fprintf(ficresprobcor,"\n%d ",(int)age);    } 
     for (j=1;j<=n;j++) { 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      for (i=1;i<j;i++) { 
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        sum=a[i][j]; 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        a[i][j]=sum; 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      } 
         }      big=0.0; 
         i=0;      for (i=j;i<=n;i++) { 
         for (k=1; k<=(nlstate);k++){        sum=a[i][j]; 
           for (l=1; l<=(nlstate+ndeath);l++){        for (k=1;k<j;k++) 
             i=i++;          sum -= a[i][k]*a[k][j]; 
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        a[i][j]=sum; 
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
             for (j=1; j<=i;j++){          big=dum; 
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          imax=i; 
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        } 
             }      } 
           }      if (j != imax) { 
         }/* end of loop for state */        for (k=1;k<=n;k++) { 
       } /* end of loop for age */          dum=a[imax][k]; 
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          a[imax][k]=a[j][k]; 
       for (k1=1; k1<=(nlstate);k1++){          a[j][k]=dum; 
         for (l1=1; l1<=(nlstate+ndeath);l1++){        } 
           if(l1==k1) continue;        *d = -(*d); 
           i=(k1-1)*(nlstate+ndeath)+l1;        vv[imax]=vv[j]; 
           for (k2=1; k2<=(nlstate);k2++){      } 
             for (l2=1; l2<=(nlstate+ndeath);l2++){      indx[j]=imax; 
               if(l2==k2) continue;      if (a[j][j] == 0.0) a[j][j]=TINY; 
               j=(k2-1)*(nlstate+ndeath)+l2;      if (j != n) { 
               if(j<=i) continue;        dum=1.0/(a[j][j]); 
               for (age=bage; age<=fage; age ++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
                 if ((int)age %5==0){      } 
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    } 
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    free_vector(vv,1,n);  /* Doesn't work */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  ;
                   mu1=mu[i][(int) age]/stepm*YEARM ;  } 
                   mu2=mu[j][(int) age]/stepm*YEARM;  
                   /* Computing eigen value of matrix of covariance */  void lubksb(double **a, int n, int *indx, double b[]) 
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));  { 
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    int i,ii=0,ip,j; 
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    double sum; 
                   /* Eigen vectors */   
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    for (i=1;i<=n;i++) { 
                   v21=sqrt(1.-v11*v11);      ip=indx[i]; 
                   v12=-v21;      sum=b[ip]; 
                   v22=v11;      b[ip]=b[i]; 
                   /*printf(fignu*/      if (ii) 
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */      else if (sum) ii=i; 
                   if(first==1){      b[i]=sum; 
                     first=0;    } 
                     fprintf(ficgp,"\nset parametric;set nolabel");    for (i=n;i>=1;i--) { 
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);      sum=b[i]; 
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);      b[i]=sum/a[i][i]; 
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);    } 
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);  } 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  void pstamp(FILE *fichier)
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\  {
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  }
                   }else{  
                     first=0;  /************ Frequencies ********************/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  {  /* Some frequencies */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    int i, m, jk, k1,i1, j1, bool, z1,j;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    int first;
                   }/* if first */    double ***freq; /* Frequencies */
                 } /* age mod 5 */    double *pp, **prop;
               } /* end loop age */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);    char fileresp[FILENAMELENGTH];
               first=1;    
             } /*l12 */    pp=vector(1,nlstate);
           } /* k12 */    prop=matrix(1,nlstate,iagemin,iagemax+3);
         } /*l1 */    strcpy(fileresp,"p");
       }/* k1 */    strcat(fileresp,fileres);
     } /* loop covariates */    if((ficresp=fopen(fileresp,"w"))==NULL) {
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      exit(0);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    j1=0;
   }    
   free_vector(xp,1,npar);    j=cptcoveff;
   fclose(ficresprob);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fclose(ficresprobcov);  
   fclose(ficresprobcor);    first=1;
   fclose(ficgp);  
   fclose(fichtm);    for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
 }      for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
         j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 /******************* Printing html file ***********/          scanf("%d", i);*/
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        for (i=-5; i<=nlstate+ndeath; i++)  
                   int lastpass, int stepm, int weightopt, char model[],\          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\            for(m=iagemin; m <= iagemax+3; m++)
                   int popforecast, int estepm ,\              freq[i][jk][m]=0;
                   double jprev1, double mprev1,double anprev1, \        
                   double jprev2, double mprev2,double anprev2){        for (i=1; i<=nlstate; i++)  
   int jj1, k1, i1, cpt;          for(m=iagemin; m <= iagemax+3; m++)
   /*char optionfilehtm[FILENAMELENGTH];*/            prop[i][m]=0;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {        
     printf("Problem with %s \n",optionfilehtm), exit(0);        dateintsum=0;
   }        k2cpt=0;
         for (i=1; i<=imx; i++) {
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n          bool=1;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n            for (z1=1; z1<=cptcoveff; z1++)       
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
  - Life expectancies by age and initial health status (estepm=%2d months):                bool=0;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \                printf("bool=%d i=%d, z1=%d, i1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);                  bool,i,z1, i1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                   j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n              } 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          }
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n   
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          if (bool==1){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            for(m=firstpass; m<=lastpass; m++){
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n              k2=anint[m][i]+(mint[m][i]/12.);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
  if(popforecast==1) fprintf(fichtm,"\n                if(agev[m][i]==1) agev[m][i]=iagemax+2;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                if (m<lastpass) {
         <br>",fileres,fileres,fileres,fileres);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
  else                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);                }
 fprintf(fichtm," <li><b>Graphs</b></li><p>");                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
  m=cptcoveff;                  dateintsum=dateintsum+k2;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                  k2cpt++;
                 }
  jj1=0;                /*}*/
  for(k1=1; k1<=m;k1++){            }
    for(i1=1; i1<=ncodemax[k1];i1++){          }
      jj1++;        }
      if (cptcovn > 0) {         
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
        for (cpt=1; cpt<=cptcoveff;cpt++)        pstamp(ficresp);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        if  (cptcovn>0) {
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          fprintf(ficresp, "\n#********** Variable "); 
      }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      /* Pij */          fprintf(ficresp, "**********\n#");
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          fprintf(ficlog, "\n#********** Variable "); 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      /* Quasi-incidences */          fprintf(ficlog, "**********\n#");
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        }
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(i=1; i<=nlstate;i++) 
        /* Stable prevalence in each health state */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
        for(cpt=1; cpt<nlstate;cpt++){        fprintf(ficresp, "\n");
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(i=iagemin; i <= iagemax+3; i++){
        }          if(i==iagemax+3){
     for(cpt=1; cpt<=nlstate;cpt++) {            fprintf(ficlog,"Total");
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          }else{
 interval) in state (%d): v%s%d%d.png <br>            if(first==1){
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                first=0;
      }              printf("See log file for details...\n");
      for(cpt=1; cpt<=nlstate;cpt++) {            }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>            fprintf(ficlog,"Age %d", i);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }
      }          for(jk=1; jk <=nlstate ; jk++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 health expectancies in states (1) and (2): e%s%d.png<br>              pp[jk] += freq[jk][m][i]; 
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }
    }          for(jk=1; jk <=nlstate ; jk++){
  }            for(m=-1, pos=0; m <=0 ; m++)
 fclose(fichtm);              pos += freq[jk][m][i];
 }            if(pp[jk]>=1.e-10){
               if(first==1){
 /******************* Gnuplot file **************/                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            }else{
   int ng;              if(first==1)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     printf("Problem with file %s",optionfilegnuplot);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   }            }
           }
 #ifdef windows  
     fprintf(ficgp,"cd \"%s\" \n",pathc);          for(jk=1; jk <=nlstate ; jk++){
 #endif            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 m=pow(2,cptcoveff);              pp[jk] += freq[jk][m][i];
            }       
  /* 1eme*/          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {            pos += pp[jk];
    for (k1=1; k1<= m ; k1 ++) {            posprop += prop[jk][i];
           }
 #ifdef windows          for(jk=1; jk <=nlstate ; jk++){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            if(pos>=1.e-5){
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              if(first==1)
 #endif                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 #ifdef unix              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            }else{
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);              if(first==1)
 #endif                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if( i <= iagemax){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if(pos>=1.e-5){
 }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     for (i=1; i<= nlstate ; i ++) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              }
   else fprintf(ficgp," \%%*lf (\%%*lf)");              else
 }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            }
      for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=-1; jk <=nlstate+ndeath; jk++)
 }              for(m=-1; m <=nlstate+ndeath; m++)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              if(freq[jk][m][i] !=0 ) {
 #ifdef unix              if(first==1)
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 #endif                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
    }              }
   }          if(i <= iagemax)
   /*2 eme*/            fprintf(ficresp,"\n");
           if(first==1)
   for (k1=1; k1<= m ; k1 ++) {            printf("Others in log...\n");
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          fprintf(ficlog,"\n");
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        }
          }
     for (i=1; i<= nlstate+1 ; i ++) {    }
       k=2*i;    dateintmean=dateintsum/k2cpt; 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);   
       for (j=1; j<= nlstate+1 ; j ++) {    fclose(ficresp);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    free_vector(pp,1,nlstate);
 }      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    /* End of Freq */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  /************ Prevalence ********************/
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         else fprintf(ficgp," \%%*lf (\%%*lf)");  {  
 }      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       fprintf(ficgp,"\" t\"\" w l 0,");       in each health status at the date of interview (if between dateprev1 and dateprev2).
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);       We still use firstpass and lastpass as another selection.
       for (j=1; j<= nlstate+1 ; j ++) {    */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int i, m, jk, k1, i1, j1, bool, z1,j;
 }      double ***freq; /* Frequencies */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    double *pp, **prop;
       else fprintf(ficgp,"\" t\"\" w l 0,");    double pos,posprop; 
     }    double  y2; /* in fractional years */
   }    int iagemin, iagemax;
    
   /*3eme*/    iagemin= (int) agemin;
     iagemax= (int) agemax;
   for (k1=1; k1<= m ; k1 ++) {    /*pp=vector(1,nlstate);*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       k=2+nlstate*(2*cpt-2);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    j1=0;
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    j=cptcoveff;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    for(k1=1; k1<=j;k1++){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      for(i1=1; i1<=ncodemax[k1];i1++){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        j1++;
         
 */        for (i=1; i<=nlstate; i++)  
       for (i=1; i< nlstate ; i ++) {          for(m=iagemin; m <= iagemax+3; m++)
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            prop[i][m]=0.0;
        
       }        for (i=1; i<=imx; i++) { /* Each individual */
     }          bool=1;
   }          if  (cptcovn>0) {
              for (z1=1; z1<=cptcoveff; z1++) 
   /* CV preval stat */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     for (k1=1; k1<= m ; k1 ++) {                bool=0;
     for (cpt=1; cpt<nlstate ; cpt ++) {          } 
       k=3;          if (bool==1) { 
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       for (i=1; i< nlstate ; i ++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         fprintf(ficgp,"+$%d",k+i+1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                      if (s[m][i]>0 && s[m][i]<=nlstate) { 
       l=3+(nlstate+ndeath)*cpt;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for (i=1; i< nlstate ; i ++) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
         l=3+(nlstate+ndeath)*cpt;                } 
         fprintf(ficgp,"+$%d",l+i+1);              }
       }            } /* end selection of waves */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            }
     }        }
   }          for(i=iagemin; i <= iagemax+3; i++){  
            
   /* proba elementaires */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
    for(i=1,jk=1; i <=nlstate; i++){            posprop += prop[jk][i]; 
     for(k=1; k <=(nlstate+ndeath); k++){          } 
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){          for(jk=1; jk <=nlstate ; jk++){     
                    if( i <=  iagemax){ 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              if(posprop>=1.e-5){ 
           jk++;                probs[i][jk][j1]= prop[jk][i]/posprop;
           fprintf(ficgp,"\n");              } else
         }                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
       }            } 
     }          }/* end jk */ 
    }        }/* end i */ 
       } /* end i1 */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    } /* end k1 */
      for(jk=1; jk <=m; jk++) {    
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
        if (ng==2)    /*free_vector(pp,1,nlstate);*/
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
        else  }  /* End of prevalence */
          fprintf(ficgp,"\nset title \"Probability\"\n");  
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  /************* Waves Concatenation ***************/
        i=1;  
        for(k2=1; k2<=nlstate; k2++) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
          k3=i;  {
          for(k=1; k<=(nlstate+ndeath); k++) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
            if (k != k2){       Death is a valid wave (if date is known).
              if(ng==2)       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
              else       and mw[mi+1][i]. dh depends on stepm.
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);       */
              ij=1;  
              for(j=3; j <=ncovmodel; j++) {    int i, mi, m;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       double sum=0., jmean=0.;*/
                  ij++;    int first;
                }    int j, k=0,jk, ju, jl;
                else    double sum=0.;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    first=0;
              }    jmin=1e+5;
              fprintf(ficgp,")/(1");    jmax=-1;
                  jmean=0.;
              for(k1=1; k1 <=nlstate; k1++){      for(i=1; i<=imx; i++){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      mi=0;
                ij=1;      m=firstpass;
                for(j=3; j <=ncovmodel; j++){      while(s[m][i] <= nlstate){
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          mw[++mi][i]=m;
                    ij++;        if(m >=lastpass)
                  }          break;
                  else        else
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          m++;
                }      }/* end while */
                fprintf(ficgp,")");      if (s[m][i] > nlstate){
              }        mi++;     /* Death is another wave */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        /* if(mi==0)  never been interviewed correctly before death */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");           /* Only death is a correct wave */
              i=i+ncovmodel;        mw[mi][i]=m;
            }      }
          }  
        }      wav[i]=mi;
      }      if(mi==0){
    }        nbwarn++;
    fclose(ficgp);        if(first==0){
 }  /* end gnuplot */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
         }
 /*************** Moving average **************/        if(first==1){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
   int i, cpt, cptcod;      } /* end mi==0 */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    } /* End individuals */
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    for(i=1; i<=imx; i++){
           mobaverage[(int)agedeb][i][cptcod]=0.;      for(mi=1; mi<wav[i];mi++){
            if (stepm <=0)
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          dh[mi][i]=1;
       for (i=1; i<=nlstate;i++){        else{
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           for (cpt=0;cpt<=4;cpt++){            if (agedc[i] < 2*AGESUP) {
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           }              if(j==0) j=1;  /* Survives at least one month after exam */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;              else if(j<0){
         }                nberr++;
       }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }                j=1; /* Temporary Dangerous patch */
                    printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
 /************** Forecasting ******************/              k=k+1;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){              if (j >= jmax){
                  jmax=j;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                ijmax=i;
   int *popage;              }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              if (j <= jmin){
   double *popeffectif,*popcount;                jmin=j;
   double ***p3mat;                ijmin=i;
   char fileresf[FILENAMELENGTH];              }
               sum=sum+j;
  agelim=AGESUP;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          }
            else{
              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   strcpy(fileresf,"f");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {            k=k+1;
     printf("Problem with forecast resultfile: %s\n", fileresf);            if (j >= jmax) {
   }              jmax=j;
   printf("Computing forecasting: result on file '%s' \n", fileresf);              ijmax=i;
             }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            else if (j <= jmin){
               jmin=j;
   if (mobilav==1) {              ijmin=i;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
     movingaverage(agedeb, fage, ageminpar, mobaverage);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
   stepsize=(int) (stepm+YEARM-1)/YEARM;              nberr++;
   if (stepm<=12) stepsize=1;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   agelim=AGESUP;            }
              sum=sum+j;
   hstepm=1;          }
   hstepm=hstepm/stepm;          jk= j/stepm;
   yp1=modf(dateintmean,&yp);          jl= j -jk*stepm;
   anprojmean=yp;          ju= j -(jk+1)*stepm;
   yp2=modf((yp1*12),&yp);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   mprojmean=yp;            if(jl==0){
   yp1=modf((yp2*30.5),&yp);              dh[mi][i]=jk;
   jprojmean=yp;              bh[mi][i]=0;
   if(jprojmean==0) jprojmean=1;            }else{ /* We want a negative bias in order to only have interpolation ie
   if(mprojmean==0) jprojmean=1;                    * to avoid the price of an extra matrix product in likelihood */
                dh[mi][i]=jk+1;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);              bh[mi][i]=ju;
              }
   for(cptcov=1;cptcov<=i2;cptcov++){          }else{
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            if(jl <= -ju){
       k=k+1;              dh[mi][i]=jk;
       fprintf(ficresf,"\n#******");              bh[mi][i]=jl;       /* bias is positive if real duration
       for(j=1;j<=cptcoveff;j++) {                                   * is higher than the multiple of stepm and negative otherwise.
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                                   */
       }            }
       fprintf(ficresf,"******\n");            else{
       fprintf(ficresf,"# StartingAge FinalAge");              dh[mi][i]=jk+1;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              bh[mi][i]=ju;
                  }
                  if(dh[mi][i]==0){
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {              dh[mi][i]=1; /* At least one step */
         fprintf(ficresf,"\n");              bh[mi][i]=ju; /* At least one step */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          } /* end if mle */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        }
           nhstepm = nhstepm/hstepm;      } /* end wave */
              }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    jmean=sum/k;
           oldm=oldms;savm=savms;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
           }
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {  /*********** Tricode ****************************/
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  void tricode(int *Tvar, int **nbcode, int imx)
             }  {
             for(j=1; j<=nlstate+ndeath;j++) {    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
               kk1=0.;kk2=0;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
               for(i=1; i<=nlstate;i++) {                  /* Boring subroutine which should only output nbcode[Tvar[j]][k]
                 if (mobilav==1)    /* nbcode[Tvar[j][1]= 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    */
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
                 }    int modmaxcovj=0; /* Modality max of covariates j */
                    cptcoveff=0; 
               }   
               if (h==(int)(calagedate+12*cpt)){    for (k=0; k < maxncov; k++) Ndum[k]=0;
                 fprintf(ficresf," %.3f", kk1);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
                          
               }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
             }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
           }                                 modality of this covariate Vj*/ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
         }                                        modality of the nth covariate of individual i. */
       }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
     }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   }        if (ij > modmaxcovj) modmaxcovj=ij; 
                /* getting the maximum value of the modality of the covariate
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
            female is 1, then modmaxcovj=1.*/
   fclose(ficresf);      }
 }      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 /************** Forecasting ******************/      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        if( Ndum[i] != 0 )
            ncodemax[j]++; 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        /* Number of modalities of the j th covariate. In fact
   int *popage;           ncodemax[j]=2 (dichotom. variables only) but it could be more for
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;           historical reasons */
   double *popeffectif,*popcount;      } /* Ndum[-1] number of undefined modalities */
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       ij=1; 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
   agelim=AGESUP;          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                         k is a modality. If we have model=V1+V1*sex 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
              ij++;
            }
   strcpy(filerespop,"pop");          if (ij > ncodemax[j]) break; 
   strcat(filerespop,fileres);        }  /* end of loop on */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      } /* end of loop on modality */ 
     printf("Problem with forecast resultfile: %s\n", filerespop);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   }    
   printf("Computing forecasting: result on file '%s' \n", filerespop);    for (k=0; k< maxncov; k++) Ndum[k]=0;
     
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   if (mobilav==1) {     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     Ndum[ij]++;
     movingaverage(agedeb, fage, ageminpar, mobaverage);   }
   }  
    ij=1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   if (stepm<=12) stepsize=1;     if((Ndum[i]!=0) && (i<=ncovcol)){
         Tvaraff[ij]=i; /*For printing */
   agelim=AGESUP;       ij++;
       }
   hstepm=1;   }
   hstepm=hstepm/stepm;   ij--;
     cptcoveff=ij; /*Number of total covariates*/
   if (popforecast==1) {  }
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);  /*********** Health Expectancies ****************/
     }  
     popage=ivector(0,AGESUP);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);  {
        /* Health expectancies, no variances */
     i=1;      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    int nhstepma, nstepma; /* Decreasing with age */
        double age, agelim, hf;
     imx=i;    double ***p3mat;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    double eip;
   }  
     pstamp(ficreseij);
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficreseij,"# Age");
       k=k+1;    for(i=1; i<=nlstate;i++){
       fprintf(ficrespop,"\n#******");      for(j=1; j<=nlstate;j++){
       for(j=1;j<=cptcoveff;j++) {        fprintf(ficreseij," e%1d%1d ",i,j);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       }      fprintf(ficreseij," e%1d. ",i);
       fprintf(ficrespop,"******\n");    }
       fprintf(ficrespop,"# Age");    fprintf(ficreseij,"\n");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");    
          if(estepm < stepm){
       for (cpt=0; cpt<=0;cpt++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      }
            else  hstepm=estepm;   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* We compute the life expectancy from trapezoids spaced every estepm months
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * This is mainly to measure the difference between two models: for example
           nhstepm = nhstepm/hstepm;     * if stepm=24 months pijx are given only every 2 years and by summing them
               * we are calculating an estimate of the Life Expectancy assuming a linear 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * progression in between and thus overestimating or underestimating according
           oldm=oldms;savm=savms;     * to the curvature of the survival function. If, for the same date, we 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * estimate the model with stepm=1 month, we can keep estepm to 24 months
             * to compare the new estimate of Life expectancy with the same linear 
           for (h=0; h<=nhstepm; h++){     * hypothesis. A more precise result, taking into account a more precise
             if (h==(int) (calagedate+YEARM*cpt)) {     * curvature will be obtained if estepm is as small as stepm. */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    /* For example we decided to compute the life expectancy with the smallest unit */
             for(j=1; j<=nlstate+ndeath;j++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               kk1=0.;kk2=0;       nhstepm is the number of hstepm from age to agelim 
               for(i=1; i<=nlstate;i++) {                     nstepm is the number of stepm from age to agelin. 
                 if (mobilav==1)       Look at hpijx to understand the reason of that which relies in memory size
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       and note for a fixed period like estepm months */
                 else {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       survival function given by stepm (the optimization length). Unfortunately it
                 }       means that if the survival funtion is printed only each two years of age and if
               }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               if (h==(int)(calagedate+12*cpt)){       results. So we changed our mind and took the option of the best precision.
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    */
                   /*fprintf(ficrespop," %.3f", kk1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  
               }    agelim=AGESUP;
             }    /* If stepm=6 months */
             for(i=1; i<=nlstate;i++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
               kk1=0.;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                 for(j=1; j<=nlstate;j++){      
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  /* nhstepm age range expressed in number of stepm */
                 }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             }    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }    for (age=bage; age<=fage; age ++){ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       }      /* if (stepm >= YEARM) hstepm=1;*/
        nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   /******/  
       /* If stepm=6 months */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      /* Computed by stepm unit matrices, product of hstepma matrices, stored
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);           in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           nhstepm = nhstepm/hstepm;      
                hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
           oldm=oldms;savm=savms;      printf("%d|",(int)age);fflush(stdout);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           for (h=0; h<=nhstepm; h++){      
             if (h==(int) (calagedate+YEARM*cpt)) {      /* Computing expectancies */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for(i=1; i<=nlstate;i++)
             }        for(j=1; j<=nlstate;j++)
             for(j=1; j<=nlstate+ndeath;j++) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               kk1=0.;kk2=0;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
               for(i=1; i<=nlstate;i++) {                          
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
               }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          }
             }  
           }      fprintf(ficreseij,"%3.0f",age );
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate;i++){
         }        eip=0;
       }        for(j=1; j<=nlstate;j++){
    }          eip +=eij[i][j][(int)age];
   }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
          }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficreseij,"%9.4f", eip );
       }
   if (popforecast==1) {      fprintf(ficreseij,"\n");
     free_ivector(popage,0,AGESUP);      
     free_vector(popeffectif,0,AGESUP);    }
     free_vector(popcount,0,AGESUP);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    printf("\n");
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficlog,"\n");
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   fclose(ficrespop);  }
 }  
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 /***********************************************/  
 /**************** Main Program *****************/  {
 /***********************************************/    /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
 int main(int argc, char *argv[])    */
 {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    double age, agelim, hf;
   double agedeb, agefin,hf;    double ***p3matp, ***p3matm, ***varhe;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    double **dnewm,**doldm;
     double *xp, *xm;
   double fret;    double **gp, **gm;
   double **xi,tmp,delta;    double ***gradg, ***trgradg;
     int theta;
   double dum; /* Dummy variable */  
   double ***p3mat;    double eip, vip;
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    xp=vector(1,npar);
   int firstobs=1, lastobs=10;    xm=vector(1,npar);
   int sdeb, sfin; /* Status at beginning and end */    dnewm=matrix(1,nlstate*nlstate,1,npar);
   int c,  h , cpt,l;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   int ju,jl, mi;    
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    pstamp(ficresstdeij);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   int mobilav=0,popforecast=0;    fprintf(ficresstdeij,"# Age");
   int hstepm, nhstepm;    for(i=1; i<=nlstate;i++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   double bage, fage, age, agelim, agebase;      fprintf(ficresstdeij," e%1d. ",i);
   double ftolpl=FTOL;    }
   double **prlim;    fprintf(ficresstdeij,"\n");
   double *severity;  
   double ***param; /* Matrix of parameters */    pstamp(ficrescveij);
   double  *p;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   double **matcov; /* Matrix of covariance */    fprintf(ficrescveij,"# Age");
   double ***delti3; /* Scale */    for(i=1; i<=nlstate;i++)
   double *delti; /* Scale */      for(j=1; j<=nlstate;j++){
   double ***eij, ***vareij;        cptj= (j-1)*nlstate+i;
   double **varpl; /* Variances of prevalence limits by age */        for(i2=1; i2<=nlstate;i2++)
   double *epj, vepp;          for(j2=1; j2<=nlstate;j2++){
   double kk1, kk2;            cptj2= (j2-1)*nlstate+i2;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            if(cptj2 <= cptj)
                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
   char *alph[]={"a","a","b","c","d","e"}, str[4];      }
     fprintf(ficrescveij,"\n");
     
   char z[1]="c", occ;    if(estepm < stepm){
 #include <sys/time.h>      printf ("Problem %d lower than %d\n",estepm, stepm);
 #include <time.h>    }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    else  hstepm=estepm;   
      /* We compute the life expectancy from trapezoids spaced every estepm months
   /* long total_usecs;     * This is mainly to measure the difference between two models: for example
   struct timeval start_time, end_time;     * if stepm=24 months pijx are given only every 2 years and by summing them
       * we are calculating an estimate of the Life Expectancy assuming a linear 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */     * progression in between and thus overestimating or underestimating according
   getcwd(pathcd, size);     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   printf("\n%s",version);     * to compare the new estimate of Life expectancy with the same linear 
   if(argc <=1){     * hypothesis. A more precise result, taking into account a more precise
     printf("\nEnter the parameter file name: ");     * curvature will be obtained if estepm is as small as stepm. */
     scanf("%s",pathtot);  
   }    /* For example we decided to compute the life expectancy with the smallest unit */
   else{    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     strcpy(pathtot,argv[1]);       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/       Look at hpijx to understand the reason of that which relies in memory size
   /*cygwin_split_path(pathtot,path,optionfile);       and note for a fixed period like estepm months */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /* cutv(path,optionfile,pathtot,'\\');*/       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);       results. So we changed our mind and took the option of the best precision.
   chdir(path);    */
   replace(pathc,path);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
 /*-------- arguments in the command line --------*/    /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
   strcpy(fileres,"r");    agelim=AGESUP;
   strcat(fileres, optionfilefiname);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   strcat(fileres,".txt");    /* Other files have txt extension */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   /*---------arguments file --------*/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with optionfile %s\n",optionfile);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     goto end;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
   strcpy(filereso,"o");    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {    for (age=bage; age<=fage; age ++){ 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
   /* Reads comments: lines beginning with '#' */      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      /* If stepm=6 months */
     fgets(line, MAXLINE, ficpar);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     puts(line);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     fputs(line,ficparo);      
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   ungetc(c,ficpar);  
       /* Computing  Variances of health expectancies */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);         decrease memory allocation */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      for(theta=1; theta <=npar; theta++){
 while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=npar; i++){ 
     ungetc(c,ficpar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fgets(line, MAXLINE, ficpar);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     puts(line);        }
     fputs(line,ficparo);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   ungetc(c,ficpar);    
          for(j=1; j<= nlstate; j++){
              for(i=1; i<=nlstate; i++){
   covar=matrix(0,NCOVMAX,1,n);            for(h=0; h<=nhstepm-1; h++){
   cptcovn=0;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
   ncovmodel=2+cptcovn;          }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        }
         
   /* Read guess parameters */        for(ij=1; ij<= nlstate*nlstate; ij++)
   /* Reads comments: lines beginning with '#' */          for(h=0; h<=nhstepm-1; h++){
   while((c=getc(ficpar))=='#' && c!= EOF){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);      }/* End theta */
     puts(line);      
     fputs(line,ficparo);      
   }      for(h=0; h<=nhstepm-1; h++)
   ungetc(c,ficpar);        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            trgradg[h][j][theta]=gradg[h][theta][j];
     for(i=1; i <=nlstate; i++)      
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);       for(ij=1;ij<=nlstate*nlstate;ij++)
       fprintf(ficparo,"%1d%1d",i1,j1);        for(ji=1;ji<=nlstate*nlstate;ji++)
       printf("%1d%1d",i,j);          varhe[ij][ji][(int)age] =0.;
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);       printf("%d|",(int)age);fflush(stdout);
         printf(" %lf",param[i][j][k]);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         fprintf(ficparo," %lf",param[i][j][k]);       for(h=0;h<=nhstepm-1;h++){
       }        for(k=0;k<=nhstepm-1;k++){
       fscanf(ficpar,"\n");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       printf("\n");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       fprintf(ficparo,"\n");          for(ij=1;ij<=nlstate*nlstate;ij++)
     }            for(ji=1;ji<=nlstate*nlstate;ji++)
                varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        }
       }
   p=param[1][1];  
        /* Computing expectancies */
   /* Reads comments: lines beginning with '#' */      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        for(j=1; j<=nlstate;j++)
     fgets(line, MAXLINE, ficpar);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     puts(line);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     fputs(line,ficparo);            
   }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   ungetc(c,ficpar);  
           }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      fprintf(ficresstdeij,"%3.0f",age );
   for(i=1; i <=nlstate; i++){      for(i=1; i<=nlstate;i++){
     for(j=1; j <=nlstate+ndeath-1; j++){        eip=0.;
       fscanf(ficpar,"%1d%1d",&i1,&j1);        vip=0.;
       printf("%1d%1d",i,j);        for(j=1; j<=nlstate;j++){
       fprintf(ficparo,"%1d%1d",i1,j1);          eip += eij[i][j][(int)age];
       for(k=1; k<=ncovmodel;k++){          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
         fscanf(ficpar,"%le",&delti3[i][j][k]);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
         printf(" %le",delti3[i][j][k]);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         fprintf(ficparo," %le",delti3[i][j][k]);        }
       }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       fscanf(ficpar,"\n");      }
       printf("\n");      fprintf(ficresstdeij,"\n");
       fprintf(ficparo,"\n");  
     }      fprintf(ficrescveij,"%3.0f",age );
   }      for(i=1; i<=nlstate;i++)
   delti=delti3[1][1];        for(j=1; j<=nlstate;j++){
            cptj= (j-1)*nlstate+i;
   /* Reads comments: lines beginning with '#' */          for(i2=1; i2<=nlstate;i2++)
   while((c=getc(ficpar))=='#' && c!= EOF){            for(j2=1; j2<=nlstate;j2++){
     ungetc(c,ficpar);              cptj2= (j2-1)*nlstate+i2;
     fgets(line, MAXLINE, ficpar);              if(cptj2 <= cptj)
     puts(line);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     fputs(line,ficparo);            }
   }        }
   ungetc(c,ficpar);      fprintf(ficrescveij,"\n");
       
   matcov=matrix(1,npar,1,npar);    }
   for(i=1; i <=npar; i++){    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     fscanf(ficpar,"%s",&str);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     printf("%s",str);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     fprintf(ficparo,"%s",str);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     for(j=1; j <=i; j++){    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fscanf(ficpar," %le",&matcov[i][j]);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf(" %.5le",matcov[i][j]);    printf("\n");
       fprintf(ficparo," %.5le",matcov[i][j]);    fprintf(ficlog,"\n");
     }  
     fscanf(ficpar,"\n");    free_vector(xm,1,npar);
     printf("\n");    free_vector(xp,1,npar);
     fprintf(ficparo,"\n");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   for(i=1; i <=npar; i++)    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     for(j=i+1;j<=npar;j++)  }
       matcov[i][j]=matcov[j][i];  
      /************ Variance ******************/
   printf("\n");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*-------- Rewriting paramater file ----------*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      strcpy(rfileres,"r");    /* "Rparameterfile */    /* double **newm;*/
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    double **dnewm,**doldm;
      strcat(rfileres,".");    /* */    double **dnewmp,**doldmp;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    int i, j, nhstepm, hstepm, h, nstepm ;
     if((ficres =fopen(rfileres,"w"))==NULL) {    int k, cptcode;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    double *xp;
     }    double **gp, **gm;  /* for var eij */
     fprintf(ficres,"#%s\n",version);    double ***gradg, ***trgradg; /*for var eij */
        double **gradgp, **trgradgp; /* for var p point j */
     /*-------- data file ----------*/    double *gpp, *gmp; /* for var p point j */
     if((fic=fopen(datafile,"r"))==NULL)    {    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       printf("Problem with datafile: %s\n", datafile);goto end;    double ***p3mat;
     }    double age,agelim, hf;
     double ***mobaverage;
     n= lastobs;    int theta;
     severity = vector(1,maxwav);    char digit[4];
     outcome=imatrix(1,maxwav+1,1,n);    char digitp[25];
     num=ivector(1,n);  
     moisnais=vector(1,n);    char fileresprobmorprev[FILENAMELENGTH];
     annais=vector(1,n);  
     moisdc=vector(1,n);    if(popbased==1){
     andc=vector(1,n);      if(mobilav!=0)
     agedc=vector(1,n);        strcpy(digitp,"-populbased-mobilav-");
     cod=ivector(1,n);      else strcpy(digitp,"-populbased-nomobil-");
     weight=vector(1,n);    }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    else 
     mint=matrix(1,maxwav,1,n);      strcpy(digitp,"-stablbased-");
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);    if (mobilav!=0) {
     adl=imatrix(1,maxwav+1,1,n);          mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tab=ivector(1,NCOVMAX);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     ncodemax=ivector(1,8);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
     i=1;      }
     while (fgets(line, MAXLINE, fic) != NULL)    {    }
       if ((i >= firstobs) && (i <=lastobs)) {  
            strcpy(fileresprobmorprev,"prmorprev"); 
         for (j=maxwav;j>=1;j--){    sprintf(digit,"%-d",ij);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           strcpy(line,stra);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    strcat(fileresprobmorprev,fileres);
         }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
              printf("Problem with resultfile: %s\n", fileresprobmorprev);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);   
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         for (j=ncovcol;j>=1;j--){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         }      fprintf(ficresprobmorprev," p.%-d SE",j);
         num[i]=atol(stra);      for(i=1; i<=nlstate;i++)
                fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    }  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
         i=i+1;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     /* printf("ii=%d", ij);  /*   } */
        scanf("%d",i);*/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   imx=i-1; /* Number of individuals */    pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   /* for (i=1; i<=imx; i++){    if(popbased==1)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    else
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     }*/    fprintf(ficresvij,"# Age");
    /*  for (i=1; i<=imx; i++){    for(i=1; i<=nlstate;i++)
      if (s[4][i]==9)  s[4][i]=-1;      for(j=1; j<=nlstate;j++)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      fprintf(ficresvij,"\n");
    
   /* Calculation of the number of parameter from char model*/    xp=vector(1,npar);
   Tvar=ivector(1,15);    dnewm=matrix(1,nlstate,1,npar);
   Tprod=ivector(1,15);    doldm=matrix(1,nlstate,1,nlstate);
   Tvaraff=ivector(1,15);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   Tvard=imatrix(1,15,1,2);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   Tage=ivector(1,15);        
        gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   if (strlen(model) >1){    gpp=vector(nlstate+1,nlstate+ndeath);
     j=0, j1=0, k1=1, k2=1;    gmp=vector(nlstate+1,nlstate+ndeath);
     j=nbocc(model,'+');    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     j1=nbocc(model,'*');    
     cptcovn=j+1;    if(estepm < stepm){
     cptcovprod=j1;      printf ("Problem %d lower than %d\n",estepm, stepm);
        }
     strcpy(modelsav,model);    else  hstepm=estepm;   
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    /* For example we decided to compute the life expectancy with the smallest unit */
       printf("Error. Non available option model=%s ",model);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       goto end;       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
           Look at function hpijx to understand why (it is linked to memory size questions) */
     for(i=(j+1); i>=1;i--){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       cutv(stra,strb,modelsav,'+');       survival function given by stepm (the optimization length). Unfortunately it
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);       means that if the survival funtion is printed every two years of age and if
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       /*scanf("%d",i);*/       results. So we changed our mind and took the option of the best precision.
       if (strchr(strb,'*')) {    */
         cutv(strd,strc,strb,'*');    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         if (strcmp(strc,"age")==0) {    agelim = AGESUP;
           cptcovprod--;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           cutv(strb,stre,strd,'V');      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           Tvar[i]=atoi(stre);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           cptcovage++;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             Tage[cptcovage]=i;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
             /*printf("stre=%s ", stre);*/      gp=matrix(0,nhstepm,1,nlstate);
         }      gm=matrix(0,nhstepm,1,nlstate);
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;  
           cutv(strb,stre,strc,'V');      for(theta=1; theta <=npar; theta++){
           Tvar[i]=atoi(stre);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           cptcovage++;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           Tage[cptcovage]=i;        }
         }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         else {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncovcol+k1;        if (popbased==1) {
           cutv(strb,strc,strd,'V');          if(mobilav ==0){
           Tprod[k1]=i;            for(i=1; i<=nlstate;i++)
           Tvard[k1][1]=atoi(strc);              prlim[i][i]=probs[(int)age][i][ij];
           Tvard[k1][2]=atoi(stre);          }else{ /* mobilav */ 
           Tvar[cptcovn+k2]=Tvard[k1][1];            for(i=1; i<=nlstate;i++)
           Tvar[cptcovn+k2+1]=Tvard[k1][2];              prlim[i][i]=mobaverage[(int)age][i][ij];
           for (k=1; k<=lastobs;k++)          }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        }
           k1++;    
           k2=k2+2;        for(j=1; j<= nlstate; j++){
         }          for(h=0; h<=nhstepm; h++){
       }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       else {              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          }
        /*  scanf("%d",i);*/        }
       cutv(strd,strc,strb,'V');        /* This for computing probability of death (h=1 means
       Tvar[i]=atoi(strc);           computed over hstepm matrices product = hstepm*stepm months) 
       }           as a weighted average of prlim.
       strcpy(modelsav,stra);          */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         scanf("%d",i);*/          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
 }        }    
          /* end probability of death */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   scanf("%d ",i);*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fclose(fic);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     /*  if(mle==1){*/   
     if (weightopt != 1) { /* Maximisation without weights*/        if (popbased==1) {
       for(i=1;i<=n;i++) weight[i]=1.0;          if(mobilav ==0){
     }            for(i=1; i<=nlstate;i++)
     /*-calculation of age at interview from date of interview and age at death -*/              prlim[i][i]=probs[(int)age][i][ij];
     agev=matrix(1,maxwav,1,imx);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
     for (i=1; i<=imx; i++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
       for(m=2; (m<= maxwav); m++) {          }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        }
          anint[m][i]=9999;  
          s[m][i]=-1;        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
        }          for(h=0; h<=nhstepm; h++){
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
         }
     for (i=1; i<=imx; i++)  {        /* This for computing probability of death (h=1 means
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);           computed over hstepm matrices product = hstepm*stepm months) 
       for(m=1; (m<= maxwav); m++){           as a weighted average of prlim.
         if(s[m][i] >0){        */
           if (s[m][i] >= nlstate+1) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             if(agedc[i]>0)          for(i=1,gmp[j]=0.; i<= nlstate; i++)
               if(moisdc[i]!=99 && andc[i]!=9999)           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                 agev[m][i]=agedc[i];        }    
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        /* end probability of death */
            else {  
               if (andc[i]!=9999){        for(j=1; j<= nlstate; j++) /* vareij */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          for(h=0; h<=nhstepm; h++){
               agev[m][i]=-1;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
               }          }
             }  
           }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           else if(s[m][i] !=9){ /* Should no more exist */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        }
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;      } /* End theta */
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }      for(h=0; h<=nhstepm; h++) /* veij */
             else if(agev[m][i] >agemax){        for(j=1; j<=nlstate;j++)
               agemax=agev[m][i];          for(theta=1; theta <=npar; theta++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            trgradg[h][j][theta]=gradg[h][theta][j];
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
             /*   agev[m][i] = age[i]+2*m;*/        for(theta=1; theta <=npar; theta++)
           }          trgradgp[j][theta]=gradgp[theta][j];
           else { /* =9 */    
             agev[m][i]=1;  
             s[m][i]=-1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           }      for(i=1;i<=nlstate;i++)
         }        for(j=1;j<=nlstate;j++)
         else /*= 0 Unknown */          vareij[i][j][(int)age] =0.;
           agev[m][i]=1;  
       }      for(h=0;h<=nhstepm;h++){
            for(k=0;k<=nhstepm;k++){
     }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     for (i=1; i<=imx; i++)  {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       for(m=1; (m<= maxwav); m++){          for(i=1;i<=nlstate;i++)
         if (s[m][i] > (nlstate+ndeath)) {            for(j=1;j<=nlstate;j++)
           printf("Error: Wrong value in nlstate or ndeath\n");                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           goto end;        }
         }      }
       }    
     }      /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
     free_vector(severity,1,maxwav);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     free_imatrix(outcome,1,maxwav+1,1,n);          varppt[j][i]=doldmp[j][i];
     free_vector(moisnais,1,n);      /* end ppptj */
     free_vector(annais,1,n);      /*  x centered again */
     /* free_matrix(mint,1,maxwav,1,n);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        free_matrix(anint,1,maxwav,1,n);*/      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     free_vector(moisdc,1,n);   
     free_vector(andc,1,n);      if (popbased==1) {
         if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
     wav=ivector(1,imx);            prlim[i][i]=probs[(int)age][i][ij];
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        }else{ /* mobilav */ 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
     /* Concatenates waves */        }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      }
                
       /* This for computing probability of death (h=1 means
       Tcode=ivector(1,100);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);         as a weighted average of prlim.
       ncodemax[1]=1;      */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
              for(i=1,gmp[j]=0.;i<= nlstate; i++) 
    codtab=imatrix(1,100,1,10);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
    h=0;      }    
    m=pow(2,cptcoveff);      /* end probability of death */
    
    for(k=1;k<=cptcoveff; k++){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
      for(i=1; i <=(m/pow(2,k));i++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        for(j=1; j <= ncodemax[k]; j++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        for(i=1; i<=nlstate;i++){
            h++;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        }
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      } 
          }      fprintf(ficresprobmorprev,"\n");
        }  
      }      fprintf(ficresvij,"%.0f ",age );
    }      for(i=1; i<=nlstate;i++)
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        for(j=1; j<=nlstate;j++){
       codtab[1][2]=1;codtab[2][2]=2; */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
    /* for(i=1; i <=m ;i++){        }
       for(k=1; k <=cptcovn; k++){      fprintf(ficresvij,"\n");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      free_matrix(gp,0,nhstepm,1,nlstate);
       }      free_matrix(gm,0,nhstepm,1,nlstate);
       printf("\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       scanf("%d",i);*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        } /* End age */
    /* Calculates basic frequencies. Computes observed prevalence at single age    free_vector(gpp,nlstate+1,nlstate+ndeath);
        and prints on file fileres'p'. */    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
        free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
          fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 2 ",subdirf(fileresprobmorprev));
     /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 3 ",subdirf(fileresprobmorprev));
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 3 ",subdirf(fileresprobmorprev));
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     if(mle==1){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  */
     }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
        fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
    jk=1;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    for(i=1,jk=1; i <=nlstate; i++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      for(k=1; k <=(nlstate+ndeath); k++){    fclose(ficresprobmorprev);
        if (k != i)    fflush(ficgp);
          {    fflush(fichtm); 
            printf("%d%d ",i,k);  }  /* end varevsij */
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){  /************ Variance of prevlim ******************/
              printf("%f ",p[jk]);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
              fprintf(ficres,"%f ",p[jk]);  {
              jk++;    /* Variance of prevalence limit */
            }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
            printf("\n");    double **newm;
            fprintf(ficres,"\n");    double **dnewm,**doldm;
          }    int i, j, nhstepm, hstepm;
      }    int k, cptcode;
    }    double *xp;
  if(mle==1){    double *gp, *gm;
     /* Computing hessian and covariance matrix */    double **gradg, **trgradg;
     ftolhess=ftol; /* Usually correct */    double age,agelim;
     hesscov(matcov, p, npar, delti, ftolhess, func);    int theta;
  }    
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    pstamp(ficresvpl);
     printf("# Scales (for hessian or gradient estimation)\n");    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
      for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficresvpl,"# Age");
       for(j=1; j <=nlstate+ndeath; j++){    for(i=1; i<=nlstate;i++)
         if (j!=i) {        fprintf(ficresvpl," %1d-%1d",i,i);
           fprintf(ficres,"%1d%1d",i,j);    fprintf(ficresvpl,"\n");
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){    xp=vector(1,npar);
             printf(" %.5e",delti[jk]);    dnewm=matrix(1,nlstate,1,npar);
             fprintf(ficres," %.5e",delti[jk]);    doldm=matrix(1,nlstate,1,nlstate);
             jk++;    
           }    hstepm=1*YEARM; /* Every year of age */
           printf("\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           fprintf(ficres,"\n");    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
      }      if (stepm >= YEARM) hstepm=1;
          nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     k=1;      gradg=matrix(1,npar,1,nlstate);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      gp=vector(1,nlstate);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      gm=vector(1,nlstate);
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;      for(theta=1; theta <=npar; theta++){
       i1=(i-1)/(ncovmodel*nlstate)+1;        for(i=1; i<=npar; i++){ /* Computes gradient */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       printf("%s%d%d",alph[k],i1,tab[i]);*/        }
       fprintf(ficres,"%3d",i);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("%3d",i);        for(i=1;i<=nlstate;i++)
       for(j=1; j<=i;j++){          gp[i] = prlim[i][i];
         fprintf(ficres," %.5e",matcov[i][j]);      
         printf(" %.5e",matcov[i][j]);        for(i=1; i<=npar; i++) /* Computes gradient */
       }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficres,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("\n");        for(i=1;i<=nlstate;i++)
       k++;          gm[i] = prlim[i][i];
     }  
            for(i=1;i<=nlstate;i++)
     while((c=getc(ficpar))=='#' && c!= EOF){          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       ungetc(c,ficpar);      } /* End theta */
       fgets(line, MAXLINE, ficpar);  
       puts(line);      trgradg =matrix(1,nlstate,1,npar);
       fputs(line,ficparo);  
     }      for(j=1; j<=nlstate;j++)
     ungetc(c,ficpar);        for(theta=1; theta <=npar; theta++)
     estepm=0;          trgradg[j][theta]=gradg[theta][j];
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
     if (estepm==0 || estepm < stepm) estepm=stepm;      for(i=1;i<=nlstate;i++)
     if (fage <= 2) {        varpl[i][(int)age] =0.;
       bage = ageminpar;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       fage = agemaxpar;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     }      for(i=1;i<=nlstate;i++)
            varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      fprintf(ficresvpl,"%.0f ",age );
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresvpl,"\n");
     ungetc(c,ficpar);      free_vector(gp,1,nlstate);
     fgets(line, MAXLINE, ficpar);      free_vector(gm,1,nlstate);
     puts(line);      free_matrix(gradg,1,npar,1,nlstate);
     fputs(line,ficparo);      free_matrix(trgradg,1,nlstate,1,npar);
   }    } /* End age */
   ungetc(c,ficpar);  
      free_vector(xp,1,npar);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    free_matrix(doldm,1,nlstate,1,npar);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    free_matrix(dnewm,1,nlstate,1,nlstate);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
        }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************ Variance of one-step probabilities  ******************/
     fgets(line, MAXLINE, ficpar);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     puts(line);  {
     fputs(line,ficparo);    int i, j=0,  i1, k1, l1, t, tj;
   }    int k2, l2, j1,  z1;
   ungetc(c,ficpar);    int k=0,l, cptcode;
      int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    double **dnewm,**doldm;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    double *xp;
     double *gp, *gm;
   fscanf(ficpar,"pop_based=%d\n",&popbased);    double **gradg, **trgradg;
   fprintf(ficparo,"pop_based=%d\n",popbased);      double **mu;
   fprintf(ficres,"pop_based=%d\n",popbased);      double age,agelim, cov[NCOVMAX];
      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   while((c=getc(ficpar))=='#' && c!= EOF){    int theta;
     ungetc(c,ficpar);    char fileresprob[FILENAMELENGTH];
     fgets(line, MAXLINE, ficpar);    char fileresprobcov[FILENAMELENGTH];
     puts(line);    char fileresprobcor[FILENAMELENGTH];
     fputs(line,ficparo);  
   }    double ***varpij;
   ungetc(c,ficpar);  
     strcpy(fileresprob,"prob"); 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    strcat(fileresprob,fileres);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
 while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(fileresprobcov,"probcov"); 
     ungetc(c,ficpar);    strcat(fileresprobcov,fileres);
     fgets(line, MAXLINE, ficpar);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     puts(line);      printf("Problem with resultfile: %s\n", fileresprobcov);
     fputs(line,ficparo);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   }    }
   ungetc(c,ficpar);    strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      printf("Problem with resultfile: %s\n", fileresprobcor);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 /*------------ gnuplot -------------*/    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   strcpy(optionfilegnuplot,optionfilefiname);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   strcat(optionfilegnuplot,".gp");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     printf("Problem with file %s",optionfilegnuplot);    pstamp(ficresprob);
   }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   fclose(ficgp);    fprintf(ficresprob,"# Age");
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    pstamp(ficresprobcov);
 /*--------- index.htm --------*/    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
   strcpy(optionfilehtm,optionfile);    pstamp(ficresprobcor);
   strcat(optionfilehtm,".htm");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    fprintf(ficresprobcor,"# Age");
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }  
     for(i=1; i<=nlstate;i++)
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      for(j=1; j<=(nlstate+ndeath);j++){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 \n        fprintf(ficresprobcov," p%1d-%1d ",i,j);
 Total number of observations=%d <br>\n        fprintf(ficresprobcor," p%1d-%1d ",i,j);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      }  
 <hr  size=\"2\" color=\"#EC5E5E\">   /* fprintf(ficresprob,"\n");
  <ul><li><h4>Parameter files</h4>\n    fprintf(ficresprobcov,"\n");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    fprintf(ficresprobcor,"\n");
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);   */
   fclose(fichtm);    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 /*------------ free_vector  -------------*/    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
  chdir(path);    first=1;
      fprintf(ficgp,"\n# Routine varprob");
  free_ivector(wav,1,imx);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    fprintf(fichtm,"\n");
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
  free_ivector(num,1,n);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
  free_vector(agedc,1,n);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    file %s<br>\n",optionfilehtmcov);
  fclose(ficparo);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
  fclose(ficres);  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   /*--------------- Prevalence limit --------------*/  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   strcpy(filerespl,"pl");  standard deviations wide on each axis. <br>\
   strcat(filerespl,fileres);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    cov[1]=1;
   fprintf(ficrespl,"#Prevalence limit\n");    tj=cptcoveff;
   fprintf(ficrespl,"#Age ");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    j1=0;
   fprintf(ficrespl,"\n");    for(t=1; t<=tj;t++){
        for(i1=1; i1<=ncodemax[t];i1++){ 
   prlim=matrix(1,nlstate,1,nlstate);        j1++;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if  (cptcovn>0) {
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprob, "\n#********** Variable "); 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprob, "**********\n#\n");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficresprobcov, "\n#********** Variable "); 
   k=0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   agebase=ageminpar;          fprintf(ficresprobcov, "**********\n#\n");
   agelim=agemaxpar;          
   ftolpl=1.e-10;          fprintf(ficgp, "\n#********** Variable "); 
   i1=cptcoveff;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if (cptcovn < 1){i1=1;}          fprintf(ficgp, "**********\n#\n");
           
   for(cptcov=1;cptcov<=i1;cptcov++){          
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         k=k+1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         fprintf(ficrespl,"\n#******");          
         for(j=1;j<=cptcoveff;j++)          fprintf(ficresprobcor, "\n#********** Variable ");    
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrespl,"******\n");          fprintf(ficresprobcor, "**********\n#");    
                }
         for (age=agebase; age<=agelim; age++){        
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for (age=bage; age<=fage; age ++){ 
           fprintf(ficrespl,"%.0f",age );          cov[2]=age;
           for(i=1; i<=nlstate;i++)          for (k=1; k<=cptcovn;k++) {
           fprintf(ficrespl," %.5f", prlim[i][i]);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           fprintf(ficrespl,"\n");          }
         }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }          for (k=1; k<=cptcovprod;k++)
     }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   fclose(ficrespl);          
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   /*------------- h Pij x at various ages ------------*/          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            gp=vector(1,(nlstate)*(nlstate+ndeath));
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          gm=vector(1,(nlstate)*(nlstate+ndeath));
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          for(theta=1; theta <=npar; theta++){
   }            for(i=1; i<=npar; i++)
   printf("Computing pij: result on file '%s' \n", filerespij);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
              
   stepsize=(int) (stepm+YEARM-1)/YEARM;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   /*if (stepm<=24) stepsize=2;*/            
             k=0;
   agelim=AGESUP;            for(i=1; i<= (nlstate); i++){
   hstepm=stepsize*YEARM; /* Every year of age */              for(j=1; j<=(nlstate+ndeath);j++){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                k=k+1;
                 gp[k]=pmmij[i][j];
   /* hstepm=1;   aff par mois*/              }
             }
   k=0;            
   for(cptcov=1;cptcov<=i1;cptcov++){            for(i=1; i<=npar; i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       k=k+1;      
         fprintf(ficrespij,"\n#****** ");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         for(j=1;j<=cptcoveff;j++)            k=0;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1; i<=(nlstate); i++){
         fprintf(ficrespij,"******\n");              for(j=1; j<=(nlstate+ndeath);j++){
                        k=k+1;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                gm[k]=pmmij[i][j];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
        
           /*      nhstepm=nhstepm*YEARM; aff par mois*/            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           fprintf(ficrespij,"# Age");            for(theta=1; theta <=npar; theta++)
           for(i=1; i<=nlstate;i++)              trgradg[j][theta]=gradg[theta][j];
             for(j=1; j<=nlstate+ndeath;j++)          
               fprintf(ficrespij," %1d-%1d",i,j);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           fprintf(ficrespij,"\n");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
            for (h=0; h<=nhstepm; h++){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
             for(i=1; i<=nlstate;i++)          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
               for(j=1; j<=nlstate+ndeath;j++)          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");          pmij(pmmij,cov,ncovmodel,x,nlstate);
              }          
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          k=0;
           fprintf(ficrespij,"\n");          for(i=1; i<=(nlstate); i++){
         }            for(j=1; j<=(nlstate+ndeath);j++){
     }              k=k+1;
   }              mu[k][(int) age]=pmmij[i][j];
             }
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   fclose(ficrespij);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
   /*---------- Forecasting ------------------*/          /*printf("\n%d ",(int)age);
   if((stepm == 1) && (strcmp(model,".")==0)){            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   }            }*/
   else{  
     erreur=108;          fprintf(ficresprob,"\n%d ",(int)age);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          fprintf(ficresprobcov,"\n%d ",(int)age);
   }          fprintf(ficresprobcor,"\n%d ",(int)age);
    
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   /*---------- Health expectancies and variances ------------*/            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   strcpy(filerest,"t");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   strcat(filerest,fileres);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   if((ficrest=fopen(filerest,"w"))==NULL) {          }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          i=0;
   }          for (k=1; k<=(nlstate);k++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   strcpy(filerese,"e");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   strcat(filerese,fileres);              for (j=1; j<=i;j++){
   if((ficreseij=fopen(filerese,"w"))==NULL) {                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   }              }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            }
           }/* end of loop for state */
  strcpy(fileresv,"v");        } /* end of loop for age */
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        /* Confidence intervalle of pij  */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        /*
   }          fprintf(ficgp,"\nunset parametric;unset label");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   calagedate=-1;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   k=0;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        */
       k=k+1;  
       fprintf(ficrest,"\n#****** ");        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       for(j=1;j<=cptcoveff;j++)        first1=1;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (k2=1; k2<=(nlstate);k2++){
       fprintf(ficrest,"******\n");          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
       fprintf(ficreseij,"\n#****** ");            j=(k2-1)*(nlstate+ndeath)+l2;
       for(j=1;j<=cptcoveff;j++)            for (k1=1; k1<=(nlstate);k1++){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       fprintf(ficreseij,"******\n");                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
       fprintf(ficresvij,"\n#****** ");                if(i<=j) continue;
       for(j=1;j<=cptcoveff;j++)                for (age=bage; age<=fage; age ++){ 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  if ((int)age %5==0){
       fprintf(ficresvij,"******\n");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       oldm=oldms;savm=savms;                    mu1=mu[i][(int) age]/stepm*YEARM ;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                      mu2=mu[j][(int) age]/stepm*YEARM;
                      c12=cv12/sqrt(v1*v2);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                    /* Computing eigen value of matrix of covariance */
       oldm=oldms;savm=savms;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                        if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                        fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                      lc1=fabs(lc1);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                      lc2=fabs(lc2);
       fprintf(ficrest,"\n");                    }
   
       epj=vector(1,nlstate+1);                    /* Eigen vectors */
       for(age=bage; age <=fage ;age++){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    /*v21=sqrt(1.-v11*v11); *//* error */
         if (popbased==1) {                    v21=(lc1-v1)/cv12*v11;
           for(i=1; i<=nlstate;i++)                    v12=-v21;
             prlim[i][i]=probs[(int)age][i][k];                    v22=v11;
         }                    tnalp=v21/v11;
                            if(first1==1){
         fprintf(ficrest," %4.0f",age);                      first1=0;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                    }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                    /*printf(fignu*/
           }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           epj[nlstate+1] +=epj[j];                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         }                    if(first==1){
                       first=0;
         for(i=1, vepp=0.;i <=nlstate;i++)                      fprintf(ficgp,"\nset parametric;unset label");
           for(j=1;j <=nlstate;j++)                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
             vepp += vareij[i][j][(int)age];                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         for(j=1;j <=nlstate;j++){   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
         }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         fprintf(ficrest,"\n");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 free_matrix(mint,1,maxwav,1,n);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     free_vector(weight,1,n);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   fclose(ficreseij);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   fclose(ficresvij);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   fclose(ficrest);                    }else{
   fclose(ficpar);                      first=0;
   free_vector(epj,1,nlstate+1);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   /*------- Variance limit prevalence------*/                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   strcpy(fileresvpl,"vpl");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   strcat(fileresvpl,fileres);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                    }/* if first */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                  } /* age mod 5 */
     exit(0);                } /* end loop age */
   }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                first=1;
               } /*l12 */
   k=0;            } /* k12 */
   for(cptcov=1;cptcov<=i1;cptcov++){          } /*l1 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }/* k1 */
       k=k+1;      } /* loop covariates */
       fprintf(ficresvpl,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       fprintf(ficresvpl,"******\n");    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
          free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    free_vector(xp,1,npar);
       oldm=oldms;savm=savms;    fclose(ficresprob);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fclose(ficresprobcov);
     }    fclose(ficresprobcor);
  }    fflush(ficgp);
     fflush(fichtmcov);
   fclose(ficresvpl);  }
   
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  /******************* Printing html file ***********/
    void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    int lastpass, int stepm, int weightopt, char model[],\
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                      int popforecast, int estepm ,\
                      double jprev1, double mprev1,double anprev1, \
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                    double jprev2, double mprev2,double anprev2){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    int jj1, k1, i1, cpt;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   free_matrix(matcov,1,npar,1,npar);  </ul>");
   free_vector(delti,1,npar);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   free_matrix(agev,1,maxwav,1,imx);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
   fprintf(fichtm,"\n</body>");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   fclose(fichtm);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   fclose(ficgp);     fprintf(fichtm,"\
     - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   if(erreur >0)     fprintf(fichtm,"\
     printf("End of Imach with error or warning %d\n",erreur);   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   else   printf("End of Imach\n");     <a href=\"%s\">%s</a> <br>\n",
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       fprintf(fichtm,"\
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   - Population projections by age and states: \
   /*printf("Total time was %d uSec.\n", total_usecs);*/     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   /*------ End -----------*/  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
  end:   m=cptcoveff;
 #ifdef windows   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   /* chdir(pathcd);*/  
 #endif   jj1=0;
  /*system("wgnuplot graph.plt");*/   for(k1=1; k1<=m;k1++){
  /*system("../gp37mgw/wgnuplot graph.plt");*/     for(i1=1; i1<=ncodemax[k1];i1++){
  /*system("cd ../gp37mgw");*/       jj1++;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/       if (cptcovn > 0) {
  strcpy(plotcmd,GNUPLOTPROGRAM);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  strcat(plotcmd," ");         for (cpt=1; cpt<=cptcoveff;cpt++) 
  strcat(plotcmd,optionfilegnuplot);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
  system(plotcmd);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
 #ifdef windows       /* Pij */
   while (z[0] != 'q') {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
     /* chdir(path); */  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");       /* Quasi-incidences */
     scanf("%s",z);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     if (z[0] == 'c') system("./imach");   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
     else if (z[0] == 'e') system(optionfilehtm);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     else if (z[0] == 'g') system(plotcmd);         /* Period (stable) prevalence in each health state */
     else if (z[0] == 'q') exit(0);         for(cpt=1; cpt<nlstate;cpt++){
   }           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
 #endif  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 }         }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 1,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 2,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 2,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 3",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 1,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 1");
         else fprintf(ficgp,"\" t\"\" w l lt 1,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /**< codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) 
                                  */
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.49  
changed lines
  Added in v.1.144


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>