Diff for /imach/src/imach.c between versions 1.50 and 1.144

version 1.50, 2002/06/26 23:25:02 version 1.144, 2014/02/10 22:17:31
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.144  2014/02/10 22:17:31  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.143  2014/01/26 09:45:38  brouard
   first survey ("cross") where individuals from different ages are    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   second wave of interviews ("longitudinal") which measure each change    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.142  2014/01/26 03:57:36  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.141  2014/01/26 02:42:01  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.140  2011/09/02 10:37:54  brouard
   where the markup *Covariates have to be included here again* invites    Summary: times.h is ok with mingw32 now.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   The advantage of this computer programme, compared to a simple    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.138  2010/04/30 18:19:40  brouard
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.137  2010/04/29 18:11:38  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): Checking covariates for more complex models
   conditional to the observed state i at age x. The delay 'h' can be    than V1+V2. A lot of change to be done. Unstable.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.136  2010/04/26 20:30:53  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): merging some libgsl code. Fixing computation
   matrix is simply the matrix product of nh*stepm elementary matrices    of likelione (using inter/intrapolation if mle = 0) in order to
   and the contribution of each individual to the likelihood is simply    get same likelihood as if mle=1.
   hPijx.    Some cleaning of code and comments added.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.135  2009/10/29 15:33:14  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.134  2009/10/29 13:18:53  brouard
            Institut national d'études démographiques, Paris.    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.133  2009/07/06 10:21:25  brouard
   It is copyrighted identically to a GNU software product, ie programme and    just nforces
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.132  2009/07/06 08:22:05  brouard
   **********************************************************************/    Many tings
    
 #include <math.h>    Revision 1.131  2009/06/20 16:22:47  brouard
 #include <stdio.h>    Some dimensions resccaled
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
 #define MAXLINE 256    lot of cleaning with variables initialized to 0. Trying to make
 #define GNUPLOTPROGRAM "gnuplot"    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.129  2007/08/31 13:49:27  lievre
 /*#define DEBUG*/    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.128  2006/06/30 13:02:05  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Clarifications on computing e.j
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.127  2006/04/28 18:11:50  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 #define NINTERVMAX 8    loop. Now we define nhstepma in the age loop.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): In order to speed up (in case of numerous covariates) we
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    compute health expectancies (without variances) in a first step
 #define NCOVMAX 8 /* Maximum number of covariates */    and then all the health expectancies with variances or standard
 #define MAXN 20000    deviation (needs data from the Hessian matrices) which slows the
 #define YEARM 12. /* Number of months per year */    computation.
 #define AGESUP 130    In the future we should be able to stop the program is only health
 #define AGEBASE 40    expectancies and graph are needed without standard deviations.
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.126  2006/04/28 17:23:28  brouard
 #define ODIRSEPARATOR '/'    (Module): Yes the sum of survivors was wrong since
 #else    imach-114 because nhstepm was no more computed in the age
 #define DIRSEPARATOR '/'    loop. Now we define nhstepma in the age loop.
 #define ODIRSEPARATOR '\\'    Version 0.98h
 #endif  
     Revision 1.125  2006/04/04 15:20:31  lievre
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Errors in calculation of health expectancies. Age was not initialized.
 int erreur; /* Error number */    Forecasting file added.
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.124  2006/03/22 17:13:53  lievre
 int npar=NPARMAX;    Parameters are printed with %lf instead of %f (more numbers after the comma).
 int nlstate=2; /* Number of live states */    The log-likelihood is printed in the log file
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.123  2006/03/20 10:52:43  brouard
 int popbased=0;    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    * imach.c (Module): Weights can have a decimal point as for
 int jmin, jmax; /* min, max spacing between 2 waves */    English (a comma might work with a correct LC_NUMERIC environment,
 int mle, weightopt;    otherwise the weight is truncated).
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Modification of warning when the covariates values are not 0 or
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    1.
 double jmean; /* Mean space between 2 waves */    Version 0.98g
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.122  2006/03/20 09:45:41  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Weights can have a decimal point as for
 FILE *ficlog;    English (a comma might work with a correct LC_NUMERIC environment,
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    otherwise the weight is truncated).
 FILE *ficresprobmorprev;    Modification of warning when the covariates values are not 0 or
 FILE *fichtm; /* Html File */    1.
 FILE *ficreseij;    Version 0.98g
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.121  2006/03/16 17:45:01  lievre
 char fileresv[FILENAMELENGTH];    * imach.c (Module): Comments concerning covariates added
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    * imach.c (Module): refinements in the computation of lli if
 char title[MAXLINE];    status=-2 in order to have more reliable computation if stepm is
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    not 1 month. Version 0.98f
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.120  2006/03/16 15:10:38  lievre
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    (Module): refinements in the computation of lli if
 char filelog[FILENAMELENGTH]; /* Log file */    status=-2 in order to have more reliable computation if stepm is
 char filerest[FILENAMELENGTH];    not 1 month. Version 0.98f
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    computed as likelihood omitting the logarithm. Version O.98e
   
 #define NR_END 1    Revision 1.118  2006/03/14 18:20:07  brouard
 #define FREE_ARG char*    (Module): varevsij Comments added explaining the second
 #define FTOL 1.0e-10    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define NRANSI    (Module): Function pstamp added
 #define ITMAX 200    (Module): Version 0.98d
   
 #define TOL 2.0e-4    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
 #define CGOLD 0.3819660    table of variances if popbased=1 .
 #define ZEPS 1.0e-10    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Function pstamp added
     (Module): Version 0.98d
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.116  2006/03/06 10:29:27  brouard
 #define TINY 1.0e-20    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.115  2006/02/27 12:17:45  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): One freematrix added in mlikeli! 0.98c
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.114  2006/02/26 12:57:58  brouard
 #define rint(a) floor(a+0.5)    (Module): Some improvements in processing parameter
     filename with strsep.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.113  2006/02/24 14:20:24  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 int imx;    allocation too.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 int m,nb;    (Module): Comments can be added in data file. Missing date values
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    can be a simple dot '.'.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.110  2006/01/25 00:51:50  brouard
 double dateintmean=0;    (Module): Lots of cleaning and bugs added (Gompertz)
   
 double *weight;    Revision 1.109  2006/01/24 19:37:15  brouard
 int **s; /* Status */    (Module): Comments (lines starting with a #) are allowed in data.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    To be fixed
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.107  2006/01/19 16:20:37  brouard
 /**************** split *************************/    Test existence of gnuplot in imach path
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.106  2006/01/19 13:24:36  brouard
    char *s;                             /* pointer */    Some cleaning and links added in html output
    int  l1, l2;                         /* length counters */  
     Revision 1.105  2006/01/05 20:23:19  lievre
    l1 = strlen( path );                 /* length of path */    *** empty log message ***
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Revision 1.104  2005/09/30 16:11:43  lievre
    if ( s == NULL ) {                   /* no directory, so use current */    (Module): sump fixed, loop imx fixed, and simplifications.
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    (Module): If the status is missing at the last wave but we know
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    that the person is alive, then we can code his/her status as -2
 #if     defined(__bsd__)                /* get current working directory */    (instead of missing=-1 in earlier versions) and his/her
       extern char       *getwd( );    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
       if ( getwd( dirc ) == NULL ) {    the healthy state at last known wave). Version is 0.98
 #else  
       extern char       *getcwd( );    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.102  2004/09/15 17:31:30  brouard
          return( GLOCK_ERROR_GETCWD );    Add the possibility to read data file including tab characters.
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.101  2004/09/15 10:38:38  brouard
    } else {                             /* strip direcotry from path */    Fix on curr_time
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.100  2004/07/12 18:29:06  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Add version for Mac OS X. Just define UNIX in Makefile
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.99  2004/06/05 08:57:40  brouard
       dirc[l1-l2] = 0;                  /* add zero */    *** empty log message ***
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.98  2004/05/16 15:05:56  brouard
 #ifdef windows    New version 0.97 . First attempt to estimate force of mortality
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    directly from the data i.e. without the need of knowing the health
 #else    state at each age, but using a Gompertz model: log u =a + b*age .
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    This is the basic analysis of mortality and should be done before any
 #endif    other analysis, in order to test if the mortality estimated from the
    s = strrchr( name, '.' );            /* find last / */    cross-longitudinal survey is different from the mortality estimated
    s++;    from other sources like vital statistic data.
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    The same imach parameter file can be used but the option for mle should be -3.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Agnès, who wrote this part of the code, tried to keep most of the
    finame[l1-l2]= 0;    former routines in order to include the new code within the former code.
    return( 0 );                         /* we're done */  
 }    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   
 /******************************************/    Current limitations:
     A) Even if you enter covariates, i.e. with the
 void replace(char *s, char*t)    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 {    B) There is no computation of Life Expectancy nor Life Table.
   int i;  
   int lg=20;    Revision 1.97  2004/02/20 13:25:42  lievre
   i=0;    Version 0.96d. Population forecasting command line is (temporarily)
   lg=strlen(t);    suppressed.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.96  2003/07/15 15:38:55  brouard
     if (t[i]== '\\') s[i]='/';    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   }    rewritten within the same printf. Workaround: many printfs.
 }  
     Revision 1.95  2003/07/08 07:54:34  brouard
 int nbocc(char *s, char occ)    * imach.c (Repository):
 {    (Repository): Using imachwizard code to output a more meaningful covariance
   int i,j=0;    matrix (cov(a12,c31) instead of numbers.
   int lg=20;  
   i=0;    Revision 1.94  2003/06/27 13:00:02  brouard
   lg=strlen(s);    Just cleaning
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.93  2003/06/25 16:33:55  brouard
   }    (Module): On windows (cygwin) function asctime_r doesn't
   return j;    exist so I changed back to asctime which exists.
 }    (Module): Version 0.96b
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.92  2003/06/25 16:30:45  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   /* cuts string t into u and v where u is ended by char occ excluding it    exist so I changed back to asctime which exists.
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */    Revision 1.91  2003/06/25 15:30:29  brouard
   int i,lg,j,p=0;    * imach.c (Repository): Duplicated warning errors corrected.
   i=0;    (Repository): Elapsed time after each iteration is now output. It
   for(j=0; j<=strlen(t)-1; j++) {    helps to forecast when convergence will be reached. Elapsed time
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    is stamped in powell.  We created a new html file for the graphs
   }    concerning matrix of covariance. It has extension -cov.htm.
   
   lg=strlen(t);    Revision 1.90  2003/06/24 12:34:15  brouard
   for(j=0; j<p; j++) {    (Module): Some bugs corrected for windows. Also, when
     (u[j] = t[j]);    mle=-1 a template is output in file "or"mypar.txt with the design
   }    of the covariance matrix to be input.
      u[p]='\0';  
     Revision 1.89  2003/06/24 12:30:52  brouard
    for(j=0; j<= lg; j++) {    (Module): Some bugs corrected for windows. Also, when
     if (j>=(p+1))(v[j-p-1] = t[j]);    mle=-1 a template is output in file "or"mypar.txt with the design
   }    of the covariance matrix to be input.
 }  
     Revision 1.88  2003/06/23 17:54:56  brouard
 /********************** nrerror ********************/    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 void nrerror(char error_text[])    Revision 1.87  2003/06/18 12:26:01  brouard
 {    Version 0.96
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.86  2003/06/17 20:04:08  brouard
   exit(1);    (Module): Change position of html and gnuplot routines and added
 }    routine fileappend.
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Revision 1.85  2003/06/17 13:12:43  brouard
 {    * imach.c (Repository): Check when date of death was earlier that
   double *v;    current date of interview. It may happen when the death was just
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    prior to the death. In this case, dh was negative and likelihood
   if (!v) nrerror("allocation failure in vector");    was wrong (infinity). We still send an "Error" but patch by
   return v-nl+NR_END;    assuming that the date of death was just one stepm after the
 }    interview.
     (Repository): Because some people have very long ID (first column)
 /************************ free vector ******************/    we changed int to long in num[] and we added a new lvector for
 void free_vector(double*v, int nl, int nh)    memory allocation. But we also truncated to 8 characters (left
 {    truncation)
   free((FREE_ARG)(v+nl-NR_END));    (Repository): No more line truncation errors.
 }  
     Revision 1.84  2003/06/13 21:44:43  brouard
 /************************ivector *******************************/    * imach.c (Repository): Replace "freqsummary" at a correct
 int *ivector(long nl,long nh)    place. It differs from routine "prevalence" which may be called
 {    many times. Probs is memory consuming and must be used with
   int *v;    parcimony.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.83  2003/06/10 13:39:11  lievre
 }    *** empty log message ***
   
 /******************free ivector **************************/    Revision 1.82  2003/06/05 15:57:20  brouard
 void free_ivector(int *v, long nl, long nh)    Add log in  imach.c and  fullversion number is now printed.
 {  
   free((FREE_ARG)(v+nl-NR_END));  */
 }  /*
      Interpolated Markov Chain
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Short summary of the programme:
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    
 {    This program computes Healthy Life Expectancies from
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   int **m;    first survey ("cross") where individuals from different ages are
      interviewed on their health status or degree of disability (in the
   /* allocate pointers to rows */    case of a health survey which is our main interest) -2- at least a
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    second wave of interviews ("longitudinal") which measure each change
   if (!m) nrerror("allocation failure 1 in matrix()");    (if any) in individual health status.  Health expectancies are
   m += NR_END;    computed from the time spent in each health state according to a
   m -= nrl;    model. More health states you consider, more time is necessary to reach the
      Maximum Likelihood of the parameters involved in the model.  The
      simplest model is the multinomial logistic model where pij is the
   /* allocate rows and set pointers to them */    probability to be observed in state j at the second wave
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    conditional to be observed in state i at the first wave. Therefore
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m[nrl] += NR_END;    'age' is age and 'sex' is a covariate. If you want to have a more
   m[nrl] -= ncl;    complex model than "constant and age", you should modify the program
      where the markup *Covariates have to be included here again* invites
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    you to do it.  More covariates you add, slower the
      convergence.
   /* return pointer to array of pointers to rows */  
   return m;    The advantage of this computer programme, compared to a simple
 }    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 /****************** free_imatrix *************************/    intermediate interview, the information is lost, but taken into
 void free_imatrix(m,nrl,nrh,ncl,nch)    account using an interpolation or extrapolation.  
       int **m;  
       long nch,ncl,nrh,nrl;    hPijx is the probability to be observed in state i at age x+h
      /* free an int matrix allocated by imatrix() */    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    states. This elementary transition (by month, quarter,
   free((FREE_ARG) (m+nrl-NR_END));    semester or year) is modelled as a multinomial logistic.  The hPx
 }    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 /******************* matrix *******************************/    hPijx.
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Also this programme outputs the covariance matrix of the parameters but also
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    of the life expectancies. It also computes the period (stable) prevalence. 
   double **m;    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));             Institut national d'études démographiques, Paris.
   if (!m) nrerror("allocation failure 1 in matrix()");    This software have been partly granted by Euro-REVES, a concerted action
   m += NR_END;    from the European Union.
   m -= nrl;    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    can be accessed at http://euroreves.ined.fr/imach .
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m[nrl] -= ncl;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    **********************************************************************/
   return m;  /*
 }    main
     read parameterfile
 /*************************free matrix ************************/    read datafile
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    concatwav
 {    freqsummary
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if (mle >= 1)
   free((FREE_ARG)(m+nrl-NR_END));      mlikeli
 }    print results files
     if mle==1 
 /******************* ma3x *******************************/       computes hessian
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    read end of parameter file: agemin, agemax, bage, fage, estepm
 {        begin-prev-date,...
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    open gnuplot file
   double ***m;    open html file
     period (stable) prevalence
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));     for age prevalim()
   if (!m) nrerror("allocation failure 1 in matrix()");    h Pij x
   m += NR_END;    variance of p varprob
   m -= nrl;    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Variance-covariance of DFLE
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    prevalence()
   m[nrl] += NR_END;     movingaverage()
   m[nrl] -= ncl;    varevsij() 
     if popbased==1 varevsij(,popbased)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    total life expectancies
     Variance of period (stable) prevalence
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));   end
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  */
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;   
    #include <math.h>
   for (i=nrl+1; i<=nrh; i++) {  #include <stdio.h>
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #include <stdlib.h>
     for (j=ncl+1; j<=nch; j++)  #include <string.h>
       m[i][j]=m[i][j-1]+nlay;  #include <unistd.h>
   }  
   return m;  #include <limits.h>
 }  #include <sys/types.h>
   #include <sys/stat.h>
 /*************************free ma3x ************************/  #include <errno.h>
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  extern int errno;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #ifdef LINUX
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <time.h>
   free((FREE_ARG)(m+nrl-NR_END));  #include "timeval.h"
 }  #else
   #include <sys/time.h>
 /***************** f1dim *************************/  #endif
 extern int ncom;  
 extern double *pcom,*xicom;  #ifdef GSL
 extern double (*nrfunc)(double []);  #include <gsl/gsl_errno.h>
    #include <gsl/gsl_multimin.h>
 double f1dim(double x)  #endif
 {  
   int j;  /* #include <libintl.h> */
   double f;  /* #define _(String) gettext (String) */
   double *xt;  
    #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define GNUPLOTPROGRAM "gnuplot"
   f=(*nrfunc)(xt);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   free_vector(xt,1,ncom);  #define FILENAMELENGTH 132
   return f;  
 }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   int iter;  
   double a,b,d,etemp;  #define NINTERVMAX 8
   double fu,fv,fw,fx;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   double ftemp;  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   double e=0.0;  #define MAXN 20000
    #define YEARM 12. /**< Number of months per year */
   a=(ax < cx ? ax : cx);  #define AGESUP 130
   b=(ax > cx ? ax : cx);  #define AGEBASE 40
   x=w=v=bx;  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
   fw=fv=fx=(*f)(x);  #ifdef UNIX
   for (iter=1;iter<=ITMAX;iter++) {  #define DIRSEPARATOR '/'
     xm=0.5*(a+b);  #define CHARSEPARATOR "/"
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define ODIRSEPARATOR '\\'
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #else
     printf(".");fflush(stdout);  #define DIRSEPARATOR '\\'
     fprintf(ficlog,".");fflush(ficlog);  #define CHARSEPARATOR "\\"
 #ifdef DEBUG  #define ODIRSEPARATOR '/'
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #endif
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /* $Id$ */
 #endif  /* $State$ */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
       return fx;  char fullversion[]="$Revision$ $Date$"; 
     }  char strstart[80];
     ftemp=fu;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     if (fabs(e) > tol1) {  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       r=(x-w)*(fx-fv);  int nvar=0, nforce=0; /* Number of variables, number of forces */
       q=(x-v)*(fx-fw);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
       p=(x-v)*q-(x-w)*r;  int npar=NPARMAX;
       q=2.0*(q-r);  int nlstate=2; /* Number of live states */
       if (q > 0.0) p = -p;  int ndeath=1; /* Number of dead states */
       q=fabs(q);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       etemp=e;  int popbased=0;
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int *wav; /* Number of waves for this individuual 0 is possible */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int maxwav=0; /* Maxim number of waves */
       else {  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
         d=p/q;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
         u=x+d;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
         if (u-a < tol2 || b-u < tol2)                     to the likelihood and the sum of weights (done by funcone)*/
           d=SIGN(tol1,xm-x);  int mle=1, weightopt=0;
       }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     } else {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double jmean=1; /* Mean space between 2 waves */
     fu=(*f)(u);  double **oldm, **newm, **savm; /* Working pointers to matrices */
     if (fu <= fx) {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       if (u >= x) a=x; else b=x;  /*FILE *fic ; */ /* Used in readdata only */
       SHFT(v,w,x,u)  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         SHFT(fv,fw,fx,fu)  FILE *ficlog, *ficrespow;
         } else {  int globpr=0; /* Global variable for printing or not */
           if (u < x) a=u; else b=u;  double fretone; /* Only one call to likelihood */
           if (fu <= fw || w == x) {  long ipmx=0; /* Number of contributions */
             v=w;  double sw; /* Sum of weights */
             w=u;  char filerespow[FILENAMELENGTH];
             fv=fw;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
             fw=fu;  FILE *ficresilk;
           } else if (fu <= fv || v == x || v == w) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
             v=u;  FILE *ficresprobmorprev;
             fv=fu;  FILE *fichtm, *fichtmcov; /* Html File */
           }  FILE *ficreseij;
         }  char filerese[FILENAMELENGTH];
   }  FILE *ficresstdeij;
   nrerror("Too many iterations in brent");  char fileresstde[FILENAMELENGTH];
   *xmin=x;  FILE *ficrescveij;
   return fx;  char filerescve[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 /****************** mnbrak ***********************/  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  char title[MAXLINE];
             double (*func)(double))  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   double ulim,u,r,q, dum;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double fu;  char command[FILENAMELENGTH];
    int  outcmd=0;
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  char filelog[FILENAMELENGTH]; /* Log file */
       SHFT(dum,*fb,*fa,dum)  char filerest[FILENAMELENGTH];
       }  char fileregp[FILENAMELENGTH];
   *cx=(*bx)+GOLD*(*bx-*ax);  char popfile[FILENAMELENGTH];
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  struct timezone tzp;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  extern int gettimeofday();
     ulim=(*bx)+GLIMIT*(*cx-*bx);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     if ((*bx-u)*(u-*cx) > 0.0) {  long time_value;
       fu=(*func)(u);  extern long time();
     } else if ((*cx-u)*(u-ulim) > 0.0) {  char strcurr[80], strfor[80];
       fu=(*func)(u);  
       if (fu < *fc) {  char *endptr;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  long lval;
           SHFT(*fb,*fc,fu,(*func)(u))  double dval;
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define NR_END 1
       u=ulim;  #define FREE_ARG char*
       fu=(*func)(u);  #define FTOL 1.0e-10
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  #define NRANSI 
       fu=(*func)(u);  #define ITMAX 200 
     }  
     SHFT(*ax,*bx,*cx,u)  #define TOL 2.0e-4 
       SHFT(*fa,*fb,*fc,fu)  
       }  #define CGOLD 0.3819660 
 }  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /*************** linmin ************************/  
   #define GOLD 1.618034 
 int ncom;  #define GLIMIT 100.0 
 double *pcom,*xicom;  #define TINY 1.0e-20 
 double (*nrfunc)(double []);  
    static double maxarg1,maxarg2;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double brent(double ax, double bx, double cx,    
                double (*f)(double), double tol, double *xmin);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double f1dim(double x);  #define rint(a) floor(a+0.5)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  static double sqrarg;
   int j;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double xx,xmin,bx,ax;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double fx,fb,fa;  int agegomp= AGEGOMP;
    
   ncom=n;  int imx; 
   pcom=vector(1,n);  int stepm=1;
   xicom=vector(1,n);  /* Stepm, step in month: minimum step interpolation*/
   nrfunc=func;  
   for (j=1;j<=n;j++) {  int estepm;
     pcom[j]=p[j];  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     xicom[j]=xi[j];  
   }  int m,nb;
   ax=0.0;  long *num;
   xx=1.0;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double **pmmij, ***probs;
 #ifdef DEBUG  double *ageexmed,*agecens;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  double dateintmean=0;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  double *weight;
   for (j=1;j<=n;j++) {  int **s; /* Status */
     xi[j] *= xmin;  double *agedc;
     p[j] += xi[j];  double  **covar; /**< covar[i,j], value of jth covariate for individual i,
   }                    * covar=matrix(0,NCOVMAX,1,n); 
   free_vector(xicom,1,n);                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   free_vector(pcom,1,n);  double  idx; 
 }  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   int **codtab; /**< codtab=imatrix(1,100,1,10); */
 /*************** powell ************************/  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  double *lsurv, *lpop, *tpop;
             double (*func)(double []))  
 {  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   void linmin(double p[], double xi[], int n, double *fret,  double ftolhess; /**< Tolerance for computing hessian */
               double (*func)(double []));  
   int i,ibig,j;  /**************** split *************************/
   double del,t,*pt,*ptt,*xit;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double fp,fptt;  {
   double *xits;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   pt=vector(1,n);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   ptt=vector(1,n);    */ 
   xit=vector(1,n);    char  *ss;                            /* pointer */
   xits=vector(1,n);    int   l1, l2;                         /* length counters */
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];    l1 = strlen(path );                   /* length of path */
   for (*iter=1;;++(*iter)) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     fp=(*fret);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     ibig=0;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     del=0.0;      strcpy( name, path );               /* we got the fullname name because no directory */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     for (i=1;i<=n;i++)      /* get current working directory */
       printf(" %d %.12f",i, p[i]);      /*    extern  char* getcwd ( char *buf , int len);*/
     fprintf(ficlog," %d %.12f",i, p[i]);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     printf("\n");        return( GLOCK_ERROR_GETCWD );
     fprintf(ficlog,"\n");      }
     for (i=1;i<=n;i++) {      /* got dirc from getcwd*/
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      printf(" DIRC = %s \n",dirc);
       fptt=(*fret);    } else {                              /* strip direcotry from path */
 #ifdef DEBUG      ss++;                               /* after this, the filename */
       printf("fret=%lf \n",*fret);      l2 = strlen( ss );                  /* length of filename */
       fprintf(ficlog,"fret=%lf \n",*fret);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 #endif      strcpy( name, ss );         /* save file name */
       printf("%d",i);fflush(stdout);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       fprintf(ficlog,"%d",i);fflush(ficlog);      dirc[l1-l2] = 0;                    /* add zero */
       linmin(p,xit,n,fret,func);      printf(" DIRC2 = %s \n",dirc);
       if (fabs(fptt-(*fret)) > del) {    }
         del=fabs(fptt-(*fret));    /* We add a separator at the end of dirc if not exists */
         ibig=i;    l1 = strlen( dirc );                  /* length of directory */
       }    if( dirc[l1-1] != DIRSEPARATOR ){
 #ifdef DEBUG      dirc[l1] =  DIRSEPARATOR;
       printf("%d %.12e",i,(*fret));      dirc[l1+1] = 0; 
       fprintf(ficlog,"%d %.12e",i,(*fret));      printf(" DIRC3 = %s \n",dirc);
       for (j=1;j<=n;j++) {    }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    ss = strrchr( name, '.' );            /* find last / */
         printf(" x(%d)=%.12e",j,xit[j]);    if (ss >0){
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);      ss++;
       }      strcpy(ext,ss);                     /* save extension */
       for(j=1;j<=n;j++) {      l1= strlen( name);
         printf(" p=%.12e",p[j]);      l2= strlen(ss)+1;
         fprintf(ficlog," p=%.12e",p[j]);      strncpy( finame, name, l1-l2);
       }      finame[l1-l2]= 0;
       printf("\n");    }
       fprintf(ficlog,"\n");  
 #endif    return( 0 );                          /* we're done */
     }  }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  
       int k[2],l;  /******************************************/
       k[0]=1;  
       k[1]=-1;  void replace_back_to_slash(char *s, char*t)
       printf("Max: %.12e",(*func)(p));  {
       fprintf(ficlog,"Max: %.12e",(*func)(p));    int i;
       for (j=1;j<=n;j++) {    int lg=0;
         printf(" %.12e",p[j]);    i=0;
         fprintf(ficlog," %.12e",p[j]);    lg=strlen(t);
       }    for(i=0; i<= lg; i++) {
       printf("\n");      (s[i] = t[i]);
       fprintf(ficlog,"\n");      if (t[i]== '\\') s[i]='/';
       for(l=0;l<=1;l++) {    }
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  char *trimbb(char *out, char *in)
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
         }    char *s;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    s=out;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    while (*in != '\0'){
       }      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
 #endif        in++;
       }
       *out++ = *in++;
       free_vector(xit,1,n);    }
       free_vector(xits,1,n);    *out='\0';
       free_vector(ptt,1,n);    return s;
       free_vector(pt,1,n);  }
       return;  
     }  char *cutv(char *blocc, char *alocc, char *in, char occ)
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  {
     for (j=1;j<=n;j++) {    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       ptt[j]=2.0*p[j]-pt[j];       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       xit[j]=p[j]-pt[j];       gives blocc="abcdef2ghi" and alocc="j".
       pt[j]=p[j];       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     }    */
     fptt=(*func)(ptt);    char *s, *t;
     if (fptt < fp) {    t=in;s=in;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    while (*in != '\0'){
       if (t < 0.0) {      while( *in == occ){
         linmin(p,xit,n,fret,func);        *blocc++ = *in++;
         for (j=1;j<=n;j++) {        s=in;
           xi[j][ibig]=xi[j][n];      }
           xi[j][n]=xit[j];      *blocc++ = *in++;
         }    }
 #ifdef DEBUG    if (s == t) /* occ not found */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      *(blocc-(in-s))='\0';
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    else
         for(j=1;j<=n;j++){      *(blocc-(in-s)-1)='\0';
           printf(" %.12e",xit[j]);    in=s;
           fprintf(ficlog," %.12e",xit[j]);    while ( *in != '\0'){
         }      *alocc++ = *in++;
         printf("\n");    }
         fprintf(ficlog,"\n");  
 #endif    *alocc='\0';
       }    return s;
     }  }
   }  
 }  int nbocc(char *s, char occ)
   {
 /**** Prevalence limit ****************/    int i,j=0;
     int lg=20;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    i=0;
 {    lg=strlen(s);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    for(i=0; i<= lg; i++) {
      matrix by transitions matrix until convergence is reached */    if  (s[i] == occ ) j++;
     }
   int i, ii,j,k;    return j;
   double min, max, maxmin, maxmax,sumnew=0.;  }
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  /* void cutv(char *u,char *v, char*t, char occ) */
   double **newm;  /* { */
   double agefin, delaymax=50 ; /* Max number of years to converge */  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   for (ii=1;ii<=nlstate+ndeath;ii++)  /*      gives u="abcdef2ghi" and v="j" *\/ */
     for (j=1;j<=nlstate+ndeath;j++){  /*   int i,lg,j,p=0; */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*   i=0; */
     }  /*   lg=strlen(t); */
   /*   for(j=0; j<=lg-1; j++) { */
    cov[1]=1.;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
    /*   } */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /*   for(j=0; j<p; j++) { */
     newm=savm;  /*     (u[j] = t[j]); */
     /* Covariates have to be included here again */  /*   } */
      cov[2]=agefin;  /*      u[p]='\0'; */
    
       for (k=1; k<=cptcovn;k++) {  /*    for(j=0; j<= lg; j++) { */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  /*   } */
       }  /* } */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /********************** nrerror ********************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   void nrerror(char error_text[])
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    fprintf(stderr,"ERREUR ...\n");
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    fprintf(stderr,"%s\n",error_text);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    exit(EXIT_FAILURE);
   }
     savm=oldm;  /*********************** vector *******************/
     oldm=newm;  double *vector(int nl, int nh)
     maxmax=0.;  {
     for(j=1;j<=nlstate;j++){    double *v;
       min=1.;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       max=0.;    if (!v) nrerror("allocation failure in vector");
       for(i=1; i<=nlstate; i++) {    return v-nl+NR_END;
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  /************************ free vector ******************/
         max=FMAX(max,prlim[i][j]);  void free_vector(double*v, int nl, int nh)
         min=FMIN(min,prlim[i][j]);  {
       }    free((FREE_ARG)(v+nl-NR_END));
       maxmin=max-min;  }
       maxmax=FMAX(maxmax,maxmin);  
     }  /************************ivector *******************************/
     if(maxmax < ftolpl){  int *ivector(long nl,long nh)
       return prlim;  {
     }    int *v;
   }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /*************** transition probabilities ***************/  }
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /******************free ivector **************************/
 {  void free_ivector(int *v, long nl, long nh)
   double s1, s2;  {
   /*double t34;*/    free((FREE_ARG)(v+nl-NR_END));
   int i,j,j1, nc, ii, jj;  }
   
     for(i=1; i<= nlstate; i++){  /************************lvector *******************************/
     for(j=1; j<i;j++){  long *lvector(long nl,long nh)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         /*s2 += param[i][j][nc]*cov[nc];*/    long *v;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
       ps[i][j]=s2;  }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  /******************free lvector **************************/
     for(j=i+1; j<=nlstate+ndeath;j++){  void free_lvector(long *v, long nl, long nh)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free((FREE_ARG)(v+nl-NR_END));
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  }
       }  
       ps[i][j]=s2;  /******************* imatrix *******************************/
     }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     /*ps[3][2]=1;*/  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   for(i=1; i<= nlstate; i++){    int **m; 
      s1=0;    
     for(j=1; j<i; j++)    /* allocate pointers to rows */ 
       s1+=exp(ps[i][j]);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     for(j=i+1; j<=nlstate+ndeath; j++)    if (!m) nrerror("allocation failure 1 in matrix()"); 
       s1+=exp(ps[i][j]);    m += NR_END; 
     ps[i][i]=1./(s1+1.);    m -= nrl; 
     for(j=1; j<i; j++)    
       ps[i][j]= exp(ps[i][j])*ps[i][i];    
     for(j=i+1; j<=nlstate+ndeath; j++)    /* allocate rows and set pointers to them */ 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   } /* end i */    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    
     for(jj=1; jj<= nlstate+ndeath; jj++){    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       ps[ii][jj]=0;    
       ps[ii][ii]=1;    /* return pointer to array of pointers to rows */ 
     }    return m; 
   }  } 
   
   /****************** free_imatrix *************************/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  void free_imatrix(m,nrl,nrh,ncl,nch)
     for(jj=1; jj<= nlstate+ndeath; jj++){        int **m;
      printf("%lf ",ps[ii][jj]);        long nch,ncl,nrh,nrl; 
    }       /* free an int matrix allocated by imatrix() */ 
     printf("\n ");  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     printf("\n ");printf("%lf ",cov[2]);*/    free((FREE_ARG) (m+nrl-NR_END)); 
 /*  } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  /******************* matrix *******************************/
     return ps;  double **matrix(long nrl, long nrh, long ncl, long nch)
 }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /**************** Product of 2 matrices ******************/    double **m;
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 {    if (!m) nrerror("allocation failure 1 in matrix()");
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    m += NR_END;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    m -= nrl;
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      a pointer to pointers identical to out */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   long i, j, k;    m[nrl] += NR_END;
   for(i=nrl; i<= nrh; i++)    m[nrl] -= ncl;
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         out[i][k] +=in[i][j]*b[j][k];    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   return out;     */
 }  }
   
   /*************************free matrix ************************/
 /************* Higher Matrix Product ***************/  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  }
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /******************* ma3x *******************************/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
      (typically every 2 years instead of every month which is too big).  {
      Model is determined by parameters x and covariates have to be    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
      included manually here.    double ***m;
   
      */    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   int i, j, d, h, k;    m += NR_END;
   double **out, cov[NCOVMAX];    m -= nrl;
   double **newm;  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   /* Hstepm could be zero and should return the unit matrix */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for (i=1;i<=nlstate+ndeath;i++)    m[nrl] += NR_END;
     for (j=1;j<=nlstate+ndeath;j++){    m[nrl] -= ncl;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   for(h=1; h <=nhstepm; h++){    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     for(d=1; d <=hstepm; d++){    m[nrl][ncl] += NR_END;
       newm=savm;    m[nrl][ncl] -= nll;
       /* Covariates have to be included here again */    for (j=ncl+1; j<=nch; j++) 
       cov[1]=1.;      m[nrl][j]=m[nrl][j-1]+nlay;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    for (i=nrl+1; i<=nrh; i++) {
       for (k=1; k<=cptcovage;k++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      for (j=ncl+1; j<=nch; j++) 
       for (k=1; k<=cptcovprod;k++)        m[i][j]=m[i][j-1]+nlay;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    }
     return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /*************************free ma3x ************************/
       oldm=newm;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     }  {
     for(i=1; i<=nlstate+ndeath; i++)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       for(j=1;j<=nlstate+ndeath;j++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         po[i][j][h]=newm[i][j];    free((FREE_ARG)(m+nrl-NR_END));
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  }
          */  
       }  /*************** function subdirf ***********/
   } /* end h */  char *subdirf(char fileres[])
   return po;  {
 }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
 /*************** log-likelihood *************/    strcat(tmpout,fileres);
 double func( double *x)    return tmpout;
 {  }
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  /*************** function subdirf2 ***********/
   double **out;  char *subdirf2(char fileres[], char *preop)
   double sw; /* Sum of weights */  {
   double lli; /* Individual log likelihood */    
   long ipmx;    /* Caution optionfilefiname is hidden */
   /*extern weight */    strcpy(tmpout,optionfilefiname);
   /* We are differentiating ll according to initial status */    strcat(tmpout,"/");
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    strcat(tmpout,preop);
   /*for(i=1;i<imx;i++)    strcat(tmpout,fileres);
     printf(" %d\n",s[4][i]);    return tmpout;
   */  }
   cov[1]=1.;  
   /*************** function subdirf3 ***********/
   for(k=1; k<=nlstate; k++) ll[k]=0.;  char *subdirf3(char fileres[], char *preop, char *preop2)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  {
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    
     for(mi=1; mi<= wav[i]-1; mi++){    /* Caution optionfilefiname is hidden */
       for (ii=1;ii<=nlstate+ndeath;ii++)    strcpy(tmpout,optionfilefiname);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    strcat(tmpout,"/");
       for(d=0; d<dh[mi][i]; d++){    strcat(tmpout,preop);
         newm=savm;    strcat(tmpout,preop2);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    strcat(tmpout,fileres);
         for (kk=1; kk<=cptcovage;kk++) {    return tmpout;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  }
         }  
          /***************** f1dim *************************/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  extern int ncom; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  extern double *pcom,*xicom;
         savm=oldm;  extern double (*nrfunc)(double []); 
         oldm=newm;   
          double f1dim(double x) 
          { 
       } /* end mult */    int j; 
          double f;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    double *xt; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/   
       ipmx +=1;    xt=vector(1,ncom); 
       sw += weight[i];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    f=(*nrfunc)(xt); 
     } /* end of wave */    free_vector(xt,1,ncom); 
   } /* end of individual */    return f; 
   } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /*****************brent *************************/
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   return -l;  { 
 }    int iter; 
     double a,b,d,etemp;
     double fu,fv,fw,fx;
 /*********** Maximum Likelihood Estimation ***************/    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    double e=0.0; 
 {   
   int i,j, iter;    a=(ax < cx ? ax : cx); 
   double **xi,*delti;    b=(ax > cx ? ax : cx); 
   double fret;    x=w=v=bx; 
   xi=matrix(1,npar,1,npar);    fw=fv=fx=(*f)(x); 
   for (i=1;i<=npar;i++)    for (iter=1;iter<=ITMAX;iter++) { 
     for (j=1;j<=npar;j++)      xm=0.5*(a+b); 
       xi[i][j]=(i==j ? 1.0 : 0.0);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   powell(p,xi,npar,ftol,&iter,&fret,func);      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  #ifdef DEBUG
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 }  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 /**** Computes Hessian and covariance matrix ***/        *xmin=x; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        return fx; 
 {      } 
   double  **a,**y,*x,pd;      ftemp=fu;
   double **hess;      if (fabs(e) > tol1) { 
   int i, j,jk;        r=(x-w)*(fx-fv); 
   int *indx;        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
   double hessii(double p[], double delta, int theta, double delti[]);        q=2.0*(q-r); 
   double hessij(double p[], double delti[], int i, int j);        if (q > 0.0) p = -p; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        q=fabs(q); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        etemp=e; 
         e=d; 
   hess=matrix(1,npar,1,npar);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   printf("\nCalculation of the hessian matrix. Wait...\n");        else { 
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          d=p/q; 
   for (i=1;i<=npar;i++){          u=x+d; 
     printf("%d",i);fflush(stdout);          if (u-a < tol2 || b-u < tol2) 
     fprintf(ficlog,"%d",i);fflush(ficlog);            d=SIGN(tol1,xm-x); 
     hess[i][i]=hessii(p,ftolhess,i,delti);        } 
     /*printf(" %f ",p[i]);*/      } else { 
     /*printf(" %lf ",hess[i][i]);*/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   }      } 
        u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   for (i=1;i<=npar;i++) {      fu=(*f)(u); 
     for (j=1;j<=npar;j++)  {      if (fu <= fx) { 
       if (j>i) {        if (u >= x) a=x; else b=x; 
         printf(".%d%d",i,j);fflush(stdout);        SHFT(v,w,x,u) 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          SHFT(fv,fw,fx,fu) 
         hess[i][j]=hessij(p,delti,i,j);          } else { 
         hess[j][i]=hess[i][j];                if (u < x) a=u; else b=u; 
         /*printf(" %lf ",hess[i][j]);*/            if (fu <= fw || w == x) { 
       }              v=w; 
     }              w=u; 
   }              fv=fw; 
   printf("\n");              fw=fu; 
   fprintf(ficlog,"\n");            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");              fv=fu; 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");            } 
            } 
   a=matrix(1,npar,1,npar);    } 
   y=matrix(1,npar,1,npar);    nrerror("Too many iterations in brent"); 
   x=vector(1,npar);    *xmin=x; 
   indx=ivector(1,npar);    return fx; 
   for (i=1;i<=npar;i++)  } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  /****************** mnbrak ***********************/
   
   for (j=1;j<=npar;j++) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for (i=1;i<=npar;i++) x[i]=0;              double (*func)(double)) 
     x[j]=1;  { 
     lubksb(a,npar,indx,x);    double ulim,u,r,q, dum;
     for (i=1;i<=npar;i++){    double fu; 
       matcov[i][j]=x[i];   
     }    *fa=(*func)(*ax); 
   }    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   printf("\n#Hessian matrix#\n");      SHFT(dum,*ax,*bx,dum) 
   fprintf(ficlog,"\n#Hessian matrix#\n");        SHFT(dum,*fb,*fa,dum) 
   for (i=1;i<=npar;i++) {        } 
     for (j=1;j<=npar;j++) {    *cx=(*bx)+GOLD*(*bx-*ax); 
       printf("%.3e ",hess[i][j]);    *fc=(*func)(*cx); 
       fprintf(ficlog,"%.3e ",hess[i][j]);    while (*fb > *fc) { 
     }      r=(*bx-*ax)*(*fb-*fc); 
     printf("\n");      q=(*bx-*cx)*(*fb-*fa); 
     fprintf(ficlog,"\n");      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   /* Recompute Inverse */      if ((*bx-u)*(u-*cx) > 0.0) { 
   for (i=1;i<=npar;i++)        fu=(*func)(u); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   ludcmp(a,npar,indx,&pd);        fu=(*func)(u); 
         if (fu < *fc) { 
   /*  printf("\n#Hessian matrix recomputed#\n");          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
   for (j=1;j<=npar;j++) {            } 
     for (i=1;i<=npar;i++) x[i]=0;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     x[j]=1;        u=ulim; 
     lubksb(a,npar,indx,x);        fu=(*func)(u); 
     for (i=1;i<=npar;i++){      } else { 
       y[i][j]=x[i];        u=(*cx)+GOLD*(*cx-*bx); 
       printf("%.3e ",y[i][j]);        fu=(*func)(u); 
       fprintf(ficlog,"%.3e ",y[i][j]);      } 
     }      SHFT(*ax,*bx,*cx,u) 
     printf("\n");        SHFT(*fa,*fb,*fc,fu) 
     fprintf(ficlog,"\n");        } 
   }  } 
   */  
   /*************** linmin ************************/
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  int ncom; 
   free_vector(x,1,npar);  double *pcom,*xicom;
   free_ivector(indx,1,npar);  double (*nrfunc)(double []); 
   free_matrix(hess,1,npar,1,npar);   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 }    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 /*************** hessian matrix ****************/    double f1dim(double x); 
 double hessii( double x[], double delta, int theta, double delti[])    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 {                double *fc, double (*func)(double)); 
   int i;    int j; 
   int l=1, lmax=20;    double xx,xmin,bx,ax; 
   double k1,k2;    double fx,fb,fa;
   double p2[NPARMAX+1];   
   double res;    ncom=n; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    pcom=vector(1,n); 
   double fx;    xicom=vector(1,n); 
   int k=0,kmax=10;    nrfunc=func; 
   double l1;    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   fx=func(x);      xicom[j]=xi[j]; 
   for (i=1;i<=npar;i++) p2[i]=x[i];    } 
   for(l=0 ; l <=lmax; l++){    ax=0.0; 
     l1=pow(10,l);    xx=1.0; 
     delts=delt;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for(k=1 ; k <kmax; k=k+1){    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       delt = delta*(l1*k);  #ifdef DEBUG
       p2[theta]=x[theta] +delt;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       k1=func(p2)-fx;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       p2[theta]=x[theta]-delt;  #endif
       k2=func(p2)-fx;    for (j=1;j<=n;j++) { 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      xi[j] *= xmin; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      p[j] += xi[j]; 
          } 
 #ifdef DEBUG    free_vector(xicom,1,n); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    free_vector(pcom,1,n); 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  } 
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  char *asc_diff_time(long time_sec, char ascdiff[])
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  {
         k=kmax;    long sec_left, days, hours, minutes;
       }    days = (time_sec) / (60*60*24);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    sec_left = (time_sec) % (60*60*24);
         k=kmax; l=lmax*10.;    hours = (sec_left) / (60*60) ;
       }    sec_left = (sec_left) %(60*60);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    minutes = (sec_left) /60;
         delts=delt;    sec_left = (sec_left) % (60);
       }    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     }    return ascdiff;
   }  }
   delti[theta]=delts;  
   return res;  /*************** powell ************************/
    void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 }              double (*func)(double [])) 
   { 
 double hessij( double x[], double delti[], int thetai,int thetaj)    void linmin(double p[], double xi[], int n, double *fret, 
 {                double (*func)(double [])); 
   int i;    int i,ibig,j; 
   int l=1, l1, lmax=20;    double del,t,*pt,*ptt,*xit;
   double k1,k2,k3,k4,res,fx;    double fp,fptt;
   double p2[NPARMAX+1];    double *xits;
   int k;    int niterf, itmp;
   
   fx=func(x);    pt=vector(1,n); 
   for (k=1; k<=2; k++) {    ptt=vector(1,n); 
     for (i=1;i<=npar;i++) p2[i]=x[i];    xit=vector(1,n); 
     p2[thetai]=x[thetai]+delti[thetai]/k;    xits=vector(1,n); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    *fret=(*func)(p); 
     k1=func(p2)-fx;    for (j=1;j<=n;j++) pt[j]=p[j]; 
      for (*iter=1;;++(*iter)) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;      fp=(*fret); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      ibig=0; 
     k2=func(p2)-fx;      del=0.0; 
        last_time=curr_time;
     p2[thetai]=x[thetai]-delti[thetai]/k;      (void) gettimeofday(&curr_time,&tzp);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     k3=func(p2)-fx;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
    /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     p2[thetai]=x[thetai]-delti[thetai]/k;     for (i=1;i<=n;i++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        printf(" %d %.12f",i, p[i]);
     k4=func(p2)-fx;        fprintf(ficlog," %d %.12lf",i, p[i]);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        fprintf(ficrespow," %.12lf", p[i]);
 #ifdef DEBUG      }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      printf("\n");
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      fprintf(ficlog,"\n");
 #endif      fprintf(ficrespow,"\n");fflush(ficrespow);
   }      if(*iter <=3){
   return res;        tm = *localtime(&curr_time.tv_sec);
 }        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
 /************** Inverse of matrix **************/        forecast_time=curr_time; 
 void ludcmp(double **a, int n, int *indx, double *d)        itmp = strlen(strcurr);
 {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   int i,imax,j,k;          strcurr[itmp-1]='\0';
   double big,dum,sum,temp;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double *vv;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          for(niterf=10;niterf<=30;niterf+=10){
   vv=vector(1,n);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   *d=1.0;          tmf = *localtime(&forecast_time.tv_sec);
   for (i=1;i<=n;i++) {  /*      asctime_r(&tmf,strfor); */
     big=0.0;          strcpy(strfor,asctime(&tmf));
     for (j=1;j<=n;j++)          itmp = strlen(strfor);
       if ((temp=fabs(a[i][j])) > big) big=temp;          if(strfor[itmp-1]=='\n')
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          strfor[itmp-1]='\0';
     vv[i]=1.0/big;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (j=1;j<=n;j++) {        }
     for (i=1;i<j;i++) {      }
       sum=a[i][j];      for (i=1;i<=n;i++) { 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       a[i][j]=sum;        fptt=(*fret); 
     }  #ifdef DEBUG
     big=0.0;        printf("fret=%lf \n",*fret);
     for (i=j;i<=n;i++) {        fprintf(ficlog,"fret=%lf \n",*fret);
       sum=a[i][j];  #endif
       for (k=1;k<j;k++)        printf("%d",i);fflush(stdout);
         sum -= a[i][k]*a[k][j];        fprintf(ficlog,"%d",i);fflush(ficlog);
       a[i][j]=sum;        linmin(p,xit,n,fret,func); 
       if ( (dum=vv[i]*fabs(sum)) >= big) {        if (fabs(fptt-(*fret)) > del) { 
         big=dum;          del=fabs(fptt-(*fret)); 
         imax=i;          ibig=i; 
       }        } 
     }  #ifdef DEBUG
     if (j != imax) {        printf("%d %.12e",i,(*fret));
       for (k=1;k<=n;k++) {        fprintf(ficlog,"%d %.12e",i,(*fret));
         dum=a[imax][k];        for (j=1;j<=n;j++) {
         a[imax][k]=a[j][k];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         a[j][k]=dum;          printf(" x(%d)=%.12e",j,xit[j]);
       }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       *d = -(*d);        }
       vv[imax]=vv[j];        for(j=1;j<=n;j++) {
     }          printf(" p=%.12e",p[j]);
     indx[j]=imax;          fprintf(ficlog," p=%.12e",p[j]);
     if (a[j][j] == 0.0) a[j][j]=TINY;        }
     if (j != n) {        printf("\n");
       dum=1.0/(a[j][j]);        fprintf(ficlog,"\n");
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  #endif
     }      } 
   }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   free_vector(vv,1,n);  /* Doesn't work */  #ifdef DEBUG
 ;        int k[2],l;
 }        k[0]=1;
         k[1]=-1;
 void lubksb(double **a, int n, int *indx, double b[])        printf("Max: %.12e",(*func)(p));
 {        fprintf(ficlog,"Max: %.12e",(*func)(p));
   int i,ii=0,ip,j;        for (j=1;j<=n;j++) {
   double sum;          printf(" %.12e",p[j]);
            fprintf(ficlog," %.12e",p[j]);
   for (i=1;i<=n;i++) {        }
     ip=indx[i];        printf("\n");
     sum=b[ip];        fprintf(ficlog,"\n");
     b[ip]=b[i];        for(l=0;l<=1;l++) {
     if (ii)          for (j=1;j<=n;j++) {
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     else if (sum) ii=i;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     b[i]=sum;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }          }
   for (i=n;i>=1;i--) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     sum=b[i];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        }
     b[i]=sum/a[i][i];  #endif
   }  
 }  
         free_vector(xit,1,n); 
 /************ Frequencies ********************/        free_vector(xits,1,n); 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        free_vector(ptt,1,n); 
 {  /* Some frequencies */        free_vector(pt,1,n); 
          return; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      } 
   int first;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double ***freq; /* Frequencies */      for (j=1;j<=n;j++) { 
   double *pp;        ptt[j]=2.0*p[j]-pt[j]; 
   double pos, k2, dateintsum=0,k2cpt=0;        xit[j]=p[j]-pt[j]; 
   FILE *ficresp;        pt[j]=p[j]; 
   char fileresp[FILENAMELENGTH];      } 
        fptt=(*func)(ptt); 
   pp=vector(1,nlstate);      if (fptt < fp) { 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   strcpy(fileresp,"p");        if (t < 0.0) { 
   strcat(fileresp,fileres);          linmin(p,xit,n,fret,func); 
   if((ficresp=fopen(fileresp,"w"))==NULL) {          for (j=1;j<=n;j++) { 
     printf("Problem with prevalence resultfile: %s\n", fileresp);            xi[j][ibig]=xi[j][n]; 
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);            xi[j][n]=xit[j]; 
     exit(0);          }
   }  #ifdef DEBUG
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   j1=0;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            for(j=1;j<=n;j++){
   j=cptcoveff;            printf(" %.12e",xit[j]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            fprintf(ficlog," %.12e",xit[j]);
           }
   first=1;          printf("\n");
           fprintf(ficlog,"\n");
   for(k1=1; k1<=j;k1++){  #endif
     for(i1=1; i1<=ncodemax[k1];i1++){        }
       j1++;      } 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    } 
         scanf("%d", i);*/  } 
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)    /**** Prevalence limit (stable or period prevalence)  ****************/
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
        {
       dateintsum=0;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       k2cpt=0;       matrix by transitions matrix until convergence is reached */
       for (i=1; i<=imx; i++) {  
         bool=1;    int i, ii,j,k;
         if  (cptcovn>0) {    double min, max, maxmin, maxmax,sumnew=0.;
           for (z1=1; z1<=cptcoveff; z1++)    double **matprod2();
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double **out, cov[NCOVMAX+1], **pmij();
               bool=0;    double **newm;
         }    double agefin, delaymax=50 ; /* Max number of years to converge */
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){    for (ii=1;ii<=nlstate+ndeath;ii++)
             k2=anint[m][i]+(mint[m][i]/12.);      for (j=1;j<=nlstate+ndeath;j++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;      }
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {     cov[1]=1.;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];   
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
               }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
                    newm=savm;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      /* Covariates have to be included here again */
                 dateintsum=dateintsum+k2;      cov[2]=agefin;
                 k2cpt++;      
               }      for (k=1; k<=cptcovn;k++) {
             }        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           }        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }      }
       }      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              for (k=1; k<=cptcovprod;k++)
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       
       if  (cptcovn>0) {      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         fprintf(ficresp, "\n#********** Variable ");      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         fprintf(ficresp, "**********\n#");      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       }      
       for(i=1; i<=nlstate;i++)      savm=oldm;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      oldm=newm;
       fprintf(ficresp, "\n");      maxmax=0.;
            for(j=1;j<=nlstate;j++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){        min=1.;
         if(i==(int)agemax+3){        max=0.;
           fprintf(ficlog,"Total");        for(i=1; i<=nlstate; i++) {
         }else{          sumnew=0;
           if(first==1){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
             first=0;          prlim[i][j]= newm[i][j]/(1-sumnew);
             printf("See log file for details...\n");          max=FMAX(max,prlim[i][j]);
           }          min=FMIN(min,prlim[i][j]);
           fprintf(ficlog,"Age %d", i);        }
         }        maxmin=max-min;
         for(jk=1; jk <=nlstate ; jk++){        maxmax=FMAX(maxmax,maxmin);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      }
             pp[jk] += freq[jk][m][i];      if(maxmax < ftolpl){
         }        return prlim;
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=-1, pos=0; m <=0 ; m++)    }
             pos += freq[jk][m][i];  }
           if(pp[jk]>=1.e-10){  
             if(first==1){  /*************** transition probabilities ***************/ 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
             }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  {
           }else{    /* According to parameters values stored in x and the covariate's values stored in cov,
             if(first==1)       computes the probability to be observed in state j being in state i by appying the
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);       model to the ncovmodel covariates (including constant and age).
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
           }       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         }       ncth covariate in the global vector x is given by the formula:
        j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         for(jk=1; jk <=nlstate ; jk++){       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
             pp[jk] += freq[jk][m][i];       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         }       Outputs ps[i][j] the probability to be observed in j being in j according to
        the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         for(jk=1,pos=0; jk <=nlstate ; jk++)    */
           pos += pp[jk];    double s1, lnpijopii;
         for(jk=1; jk <=nlstate ; jk++){    /*double t34;*/
           if(pos>=1.e-5){    int i,j,j1, nc, ii, jj;
             if(first==1)  
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      for(i=1; i<= nlstate; i++){
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for(j=1; j<i;j++){
           }else{          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             if(first==1)            /*lnpijopii += param[i][j][nc]*cov[nc];*/
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           }          }
           if( i <= (int) agemax){          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             if(pos>=1.e-5){  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        }
               probs[i][jk][j1]= pp[jk]/pos;        for(j=i+1; j<=nlstate+ndeath;j++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             }            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
             else            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }          }
         }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                }
         for(jk=-1; jk <=nlstate+ndeath; jk++)      }
           for(m=-1; m <=nlstate+ndeath; m++)      
             if(freq[jk][m][i] !=0 ) {      for(i=1; i<= nlstate; i++){
             if(first==1)        s1=0;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for(j=1; j<i; j++){
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         if(i <= (int) agemax)        }
           fprintf(ficresp,"\n");        for(j=i+1; j<=nlstate+ndeath; j++){
         if(first==1)          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           printf("Others in log...\n");          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         fprintf(ficlog,"\n");        }
       }        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     }        ps[i][i]=1./(s1+1.);
   }        /* Computing other pijs */
   dateintmean=dateintsum/k2cpt;        for(j=1; j<i; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
   fclose(ficresp);        for(j=i+1; j<=nlstate+ndeath; j++)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   free_vector(pp,1,nlstate);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
        } /* end i */
   /* End of Freq */      
 }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
 /************ Prevalence ********************/          ps[ii][jj]=0;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          ps[ii][ii]=1;
 {  /* Some frequencies */        }
        }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      
   double ***freq; /* Frequencies */  
   double *pp;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double pos, k2;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
   pp=vector(1,nlstate);  /*       } */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*       printf("\n "); */
    /*        } */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*        printf("\n ");printf("%lf ",cov[2]); */
   j1=0;         /*
          for(i=1; i<= npar; i++) printf("%f ",x[i]);
   j=cptcoveff;        goto end;*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      return ps;
    }
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  /**************** Product of 2 matrices ******************/
       j1++;  
        double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       for (i=-1; i<=nlstate+ndeath; i++)    {
         for (jk=-1; jk<=nlstate+ndeath; jk++)      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           for(m=agemin; m <= agemax+3; m++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
             freq[i][jk][m]=0;    /* in, b, out are matrice of pointers which should have been initialized 
             before: only the contents of out is modified. The function returns
       for (i=1; i<=imx; i++) {       a pointer to pointers identical to out */
         bool=1;    long i, j, k;
         if  (cptcovn>0) {    for(i=nrl; i<= nrh; i++)
           for (z1=1; z1<=cptcoveff; z1++)      for(k=ncolol; k<=ncoloh; k++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for(j=ncl,out[i][k]=0.; j<=nch; j++)
               bool=0;          out[i][k] +=in[i][j]*b[j][k];
         }  
         if (bool==1) {    return out;
           for(m=firstpass; m<=lastpass; m++){  }
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;  /************* Higher Matrix Product ***************/
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
                 if (calagedate>0)  {
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    /* Computes the transition matrix starting at age 'age' over 
                 else       'nhstepm*hstepm*stepm' months (i.e. until
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];       nhstepm*hstepm matrices. 
               }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
             }       (typically every 2 years instead of every month which is too big 
           }       for the memory).
         }       Model is determined by parameters x and covariates have to be 
       }       included manually here. 
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         for(jk=1; jk <=nlstate ; jk++){       */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];    int i, j, d, h, k;
         }    double **out, cov[NCOVMAX+1];
         for(jk=1; jk <=nlstate ; jk++){    double **newm;
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];    /* Hstepm could be zero and should return the unit matrix */
         }    for (i=1;i<=nlstate+ndeath;i++)
              for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];      }
         }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
            for(h=1; h <=nhstepm; h++){
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      for(d=1; d <=hstepm; d++){
                newm=savm;
         for(jk=1; jk <=nlstate ; jk++){            /* Covariates have to be included here again */
           if( i <= (int) agemax){        cov[1]=1.;
             if(pos>=1.e-5){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
               probs[i][jk][j1]= pp[jk]/pos;        for (k=1; k<=cptcovn;k++) 
             }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           }        for (k=1; k<=cptcovage;k++)
         }/* end jk */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }/* end i */        for (k=1; k<=cptcovprod;k++)
     } /* end i1 */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   } /* end k1 */  
   
          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   free_vector(pp,1,nlstate);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                       pmij(pmmij,cov,ncovmodel,x,nlstate));
 }  /* End of Freq */        savm=oldm;
         oldm=newm;
 /************* Waves Concatenation ***************/      }
       for(i=1; i<=nlstate+ndeath; i++)
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for(j=1;j<=nlstate+ndeath;j++) {
 {          po[i][j][h]=newm[i][j];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
      Death is a valid wave (if date is known).        }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      /*printf("h=%d ",h);*/
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    } /* end h */
      and mw[mi+1][i]. dh depends on stepm.  /*     printf("\n H=%d \n",h); */
      */    return po;
   }
   int i, mi, m;  
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/  /*************** log-likelihood *************/
   int first;  double func( double *x)
   int j, k=0,jk, ju, jl;  {
   double sum=0.;    int i, ii, j, k, mi, d, kk;
   first=0;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   jmin=1e+5;    double **out;
   jmax=-1;    double sw; /* Sum of weights */
   jmean=0.;    double lli; /* Individual log likelihood */
   for(i=1; i<=imx; i++){    int s1, s2;
     mi=0;    double bbh, survp;
     m=firstpass;    long ipmx;
     while(s[m][i] <= nlstate){    /*extern weight */
       if(s[m][i]>=1)    /* We are differentiating ll according to initial status */
         mw[++mi][i]=m;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if(m >=lastpass)    /*for(i=1;i<imx;i++) 
         break;      printf(" %d\n",s[4][i]);
       else    */
         m++;    cov[1]=1.;
     }/* end while */  
     if (s[m][i] > nlstate){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    if(mle==1){
          /* Only death is a correct wave */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       mw[mi][i]=m;        /* Computes the values of the ncovmodel covariates of the model
     }           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
            Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
     wav[i]=mi;           to be observed in j being in i according to the model.
     if(mi==0){         */
       if(first==0){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
         first=1;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       }           has been calculated etc */
       if(first==1){        for(mi=1; mi<= wav[i]-1; mi++){
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     } /* end mi==0 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   for(i=1; i<=imx; i++){          for(d=0; d<dh[mi][i]; d++){
     for(mi=1; mi<wav[i];mi++){            newm=savm;
       if (stepm <=0)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         dh[mi][i]=1;            for (kk=1; kk<=cptcovage;kk++) {
       else{              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
         if (s[mw[mi+1][i]][i] > nlstate) {            }
           if (agedc[i] < 2*AGESUP) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if(j==0) j=1;  /* Survives at least one month after exam */            savm=oldm;
           k=k+1;            oldm=newm;
           if (j >= jmax) jmax=j;          } /* end mult */
           if (j <= jmin) jmin=j;        
           sum=sum+j;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          /* But now since version 0.9 we anticipate for bias at large stepm.
           }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         }           * (in months) between two waves is not a multiple of stepm, we rounded to 
         else{           * the nearest (and in case of equal distance, to the lowest) interval but now
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           k=k+1;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           if (j >= jmax) jmax=j;           * probability in order to take into account the bias as a fraction of the way
           else if (j <= jmin)jmin=j;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */           * -stepm/2 to stepm/2 .
           sum=sum+j;           * For stepm=1 the results are the same as for previous versions of Imach.
         }           * For stepm > 1 the results are less biased than in previous versions. 
         jk= j/stepm;           */
         jl= j -jk*stepm;          s1=s[mw[mi][i]][i];
         ju= j -(jk+1)*stepm;          s2=s[mw[mi+1][i]][i];
         if(jl <= -ju)          bbh=(double)bh[mi][i]/(double)stepm; 
           dh[mi][i]=jk;          /* bias bh is positive if real duration
         else           * is higher than the multiple of stepm and negative otherwise.
           dh[mi][i]=jk+1;           */
         if(dh[mi][i]==0)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           dh[mi][i]=1; /* At least one step */          if( s2 > nlstate){ 
       }            /* i.e. if s2 is a death state and if the date of death is known 
     }               then the contribution to the likelihood is the probability to 
   }               die between last step unit time and current  step unit time, 
   jmean=sum/k;               which is also equal to probability to die before dh 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);               minus probability to die before dh-stepm . 
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);               In version up to 0.92 likelihood was computed
  }          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
 /*********** Tricode ****************************/          and not the date of a change in health state. The former idea was
 void tricode(int *Tvar, int **nbcode, int imx)          to consider that at each interview the state was recorded
 {          (healthy, disable or death) and IMaCh was corrected; but when we
   int Ndum[20],ij=1, k, j, i;          introduced the exact date of death then we should have modified
   int cptcode=0;          the contribution of an exact death to the likelihood. This new
   cptcoveff=0;          contribution is smaller and very dependent of the step unit
            stepm. It is no more the probability to die between last interview
   for (k=0; k<19; k++) Ndum[k]=0;          and month of death but the probability to survive from last
   for (k=1; k<=7; k++) ncodemax[k]=0;          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          Jackson for correcting this bug.  Former versions increased
     for (i=1; i<=imx; i++) {          mortality artificially. The bad side is that we add another loop
       ij=(int)(covar[Tvar[j]][i]);          which slows down the processing. The difference can be up to 10%
       Ndum[ij]++;          lower mortality.
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            */
       if (ij > cptcode) cptcode=ij;            lli=log(out[s1][s2] - savm[s1][s2]);
     }  
   
     for (i=0; i<=cptcode; i++) {          } else if  (s2==-2) {
       if(Ndum[i]!=0) ncodemax[j]++;            for (j=1,survp=0. ; j<=nlstate; j++) 
     }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     ij=1;            /*survp += out[s1][j]; */
             lli= log(survp);
           }
     for (i=1; i<=ncodemax[j]; i++) {          
       for (k=0; k<=19; k++) {          else if  (s2==-4) { 
         if (Ndum[k] != 0) {            for (j=3,survp=0. ; j<=nlstate; j++)  
           nbcode[Tvar[j]][ij]=k;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                      lli= log(survp); 
           ij++;          } 
         }  
         if (ij > ncodemax[j]) break;          else if  (s2==-5) { 
       }              for (j=1,survp=0. ; j<=2; j++)  
     }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   }              lli= log(survp); 
           } 
  for (k=0; k<19; k++) Ndum[k]=0;          
           else{
  for (i=1; i<=ncovmodel-2; i++) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
    ij=Tvar[i];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
    Ndum[ij]++;          } 
  }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
  ij=1;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
  for (i=1; i<=10; i++) {          ipmx +=1;
    if((Ndum[i]!=0) && (i<=ncovcol)){          sw += weight[i];
      Tvaraff[ij]=i;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      ij++;        } /* end of wave */
    }      } /* end of individual */
  }    }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  cptcoveff=ij-1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /*********** Health Expectancies ****************/            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 {          for(d=0; d<=dh[mi][i]; d++){
   /* Health expectancies */            newm=savm;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double age, agelim, hf;            for (kk=1; kk<=cptcovage;kk++) {
   double ***p3mat,***varhe;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **dnewm,**doldm;            }
   double *xp;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **gp, **gm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***gradg, ***trgradg;            savm=oldm;
   int theta;            oldm=newm;
           } /* end mult */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        
   xp=vector(1,npar);          s1=s[mw[mi][i]][i];
   dnewm=matrix(1,nlstate*2,1,npar);          s2=s[mw[mi+1][i]][i];
   doldm=matrix(1,nlstate*2,1,nlstate*2);          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   fprintf(ficreseij,"# Health expectancies\n");          ipmx +=1;
   fprintf(ficreseij,"# Age");          sw += weight[i];
   for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(j=1; j<=nlstate;j++)        } /* end of wave */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      } /* end of individual */
   fprintf(ficreseij,"\n");    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if(estepm < stepm){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     printf ("Problem %d lower than %d\n",estepm, stepm);        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   else  hstepm=estepm;              for (j=1;j<=nlstate+ndeath;j++){
   /* We compute the life expectancy from trapezoids spaced every estepm months              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    * This is mainly to measure the difference between two models: for example              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    * if stepm=24 months pijx are given only every 2 years and by summing them            }
    * we are calculating an estimate of the Life Expectancy assuming a linear          for(d=0; d<dh[mi][i]; d++){
    * progression inbetween and thus overestimating or underestimating according            newm=savm;
    * to the curvature of the survival function. If, for the same date, we            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            for (kk=1; kk<=cptcovage;kk++) {
    * to compare the new estimate of Life expectancy with the same linear              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    * hypothesis. A more precise result, taking into account a more precise            }
    * curvature will be obtained if estepm is as small as stepm. */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* For example we decided to compute the life expectancy with the smallest unit */            savm=oldm;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            oldm=newm;
      nhstepm is the number of hstepm from age to agelim          } /* end mult */
      nstepm is the number of stepm from age to agelin.        
      Look at hpijx to understand the reason of that which relies in memory size          s1=s[mw[mi][i]][i];
      and note for a fixed period like estepm months */          s2=s[mw[mi+1][i]][i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          bbh=(double)bh[mi][i]/(double)stepm; 
      survival function given by stepm (the optimization length). Unfortunately it          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      means that if the survival funtion is printed only each two years of age and if          ipmx +=1;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          sw += weight[i];
      results. So we changed our mind and took the option of the best precision.          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   */        } /* end of wave */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
   agelim=AGESUP;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     /* nhstepm age range expressed in number of stepm */        for(mi=1; mi<= wav[i]-1; mi++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          for (ii=1;ii<=nlstate+ndeath;ii++)
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            for (j=1;j<=nlstate+ndeath;j++){
     /* if (stepm >= YEARM) hstepm=1;*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          for(d=0; d<dh[mi][i]; d++){
     gp=matrix(0,nhstepm,1,nlstate*2);            newm=savm;
     gm=matrix(0,nhstepm,1,nlstate*2);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            savm=oldm;
             oldm=newm;
     /* Computing Variances of health expectancies */          } /* end mult */
         
      for(theta=1; theta <=npar; theta++){          s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++){          s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          if( s2 > nlstate){ 
       }            lli=log(out[s1][s2] - savm[s1][s2]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }else{
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       cptj=0;          }
       for(j=1; j<= nlstate; j++){          ipmx +=1;
         for(i=1; i<=nlstate; i++){          sw += weight[i];
           cptj=cptj+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        } /* end of wave */
           }      } /* end of individual */
         }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
       for(i=1; i<=npar; i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for (j=1;j<=nlstate+ndeath;j++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    savm[ii][j]=(ii==j ? 1.0 : 0.0);
       cptj=0;            }
       for(j=1; j<= nlstate; j++){          for(d=0; d<dh[mi][i]; d++){
         for(i=1;i<=nlstate;i++){            newm=savm;
           cptj=cptj+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){            for (kk=1; kk<=cptcovage;kk++) {
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
         }          
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<= nlstate*2; j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(h=0; h<=nhstepm-1; h++){            savm=oldm;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            oldm=newm;
         }          } /* end mult */
      }        
              s1=s[mw[mi][i]][i];
 /* End theta */          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          ipmx +=1;
           sw += weight[i];
      for(h=0; h<=nhstepm-1; h++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<=nlstate*2;j++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         for(theta=1; theta <=npar; theta++)        } /* end of wave */
           trgradg[h][j][theta]=gradg[h][theta][j];      } /* end of individual */
          } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      for(i=1;i<=nlstate*2;i++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(j=1;j<=nlstate*2;j++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         varhe[i][j][(int)age] =0.;    return -l;
   }
      printf("%d|",(int)age);fflush(stdout);  
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);  /*************** log-likelihood *************/
      for(h=0;h<=nhstepm-1;h++){  double funcone( double *x)
       for(k=0;k<=nhstepm-1;k++){  {
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    /* Same as likeli but slower because of a lot of printf and if */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    int i, ii, j, k, mi, d, kk;
         for(i=1;i<=nlstate*2;i++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           for(j=1;j<=nlstate*2;j++)    double **out;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    double lli; /* Individual log likelihood */
       }    double llt;
     }    int s1, s2;
     /* Computing expectancies */    double bbh, survp;
     for(i=1; i<=nlstate;i++)    /*extern weight */
       for(j=1; j<=nlstate;j++)    /* We are differentiating ll according to initial status */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    /*for(i=1;i<imx;i++) 
                printf(" %d\n",s[4][i]);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    */
     cov[1]=1.;
         }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i=1; i<=nlstate;i++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(j=1; j<=nlstate;j++){      for(mi=1; mi<= wav[i]-1; mi++){
         cptj++;        for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          for (j=1;j<=nlstate+ndeath;j++){
       }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficreseij,"\n");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
     free_matrix(gm,0,nhstepm,1,nlstate*2);        for(d=0; d<dh[mi][i]; d++){
     free_matrix(gp,0,nhstepm,1,nlstate*2);          newm=savm;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          for (kk=1; kk<=cptcovage;kk++) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }          }
   printf("\n");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficlog,"\n");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
   free_vector(xp,1,npar);          oldm=newm;
   free_matrix(dnewm,1,nlstate*2,1,npar);        } /* end mult */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        s1=s[mw[mi][i]][i];
 }        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
 /************ Variance ******************/        /* bias is positive if real duration
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)         * is higher than the multiple of stepm and negative otherwise.
 {         */
   /* Variance of health expectancies */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          lli=log(out[s1][s2] - savm[s1][s2]);
   /* double **newm;*/        } else if  (s2==-2) {
   double **dnewm,**doldm;          for (j=1,survp=0. ; j<=nlstate; j++) 
   double **dnewmp,**doldmp;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int i, j, nhstepm, hstepm, h, nstepm ;          lli= log(survp);
   int k, cptcode;        }else if (mle==1){
   double *xp;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double **gp, **gm;  /* for var eij */        } else if(mle==2){
   double ***gradg, ***trgradg; /*for var eij */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double **gradgp, **trgradgp; /* for var p point j */        } else if(mle==3){  /* exponential inter-extrapolation */
   double *gpp, *gmp; /* for var p point j */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double ***p3mat;          lli=log(out[s1][s2]); /* Original formula */
   double age,agelim, hf;        } else{  /* mle=0 back to 1 */
   int theta;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   char digit[4];          /*lli=log(out[s1][s2]); */ /* Original formula */
   char digitp[16];        } /* End of if */
         ipmx +=1;
   char fileresprobmorprev[FILENAMELENGTH];        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if(popbased==1)        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     strcpy(digitp,"-populbased-");        if(globpr){
   else          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     strcpy(digitp,"-stablbased-");   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   strcpy(fileresprobmorprev,"prmorprev");                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   sprintf(digit,"%-d",ij);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/            llt +=ll[k]*gipmx/gsw;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   strcat(fileresprobmorprev,digitp); /* Popbased or not */          }
   strcat(fileresprobmorprev,fileres);          fprintf(ficresilk," %10.6f\n", -llt);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        }
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      } /* end of wave */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    } /* end of individual */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    if(globpr==0){ /* First time we count the contributions and weights */
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      gipmx=ipmx;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      gsw=sw;
     fprintf(ficresprobmorprev," p.%-d SE",j);    }
     for(i=1; i<=nlstate;i++)    return -l;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  }
   }    
   fprintf(ficresprobmorprev,"\n");  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  /*************** function likelione ***********/
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  {
     exit(0);    /* This routine should help understanding what is done with 
   }       the selection of individuals/waves and
   else{       to check the exact contribution to the likelihood.
     fprintf(ficgp,"\n# Routine varevsij");       Plotting could be done.
   }     */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    int k;
     printf("Problem with html file: %s\n", optionfilehtm);  
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    if(*globpri !=0){ /* Just counts and sums, no printings */
     exit(0);      strcpy(fileresilk,"ilk"); 
   }      strcat(fileresilk,fileres);
   else{      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");        printf("Problem with resultfile: %s\n", fileresilk);
   }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   fprintf(ficresvij,"# Age");      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   for(i=1; i<=nlstate;i++)      for(k=1; k<=nlstate; k++) 
     for(j=1; j<=nlstate;j++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   fprintf(ficresvij,"\n");    }
   
   xp=vector(1,npar);    *fretone=(*funcone)(p);
   dnewm=matrix(1,nlstate,1,npar);    if(*globpri !=0){
   doldm=matrix(1,nlstate,1,nlstate);      fclose(ficresilk);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      fflush(fichtm); 
     } 
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    return;
   gpp=vector(nlstate+1,nlstate+ndeath);  }
   gmp=vector(nlstate+1,nlstate+ndeath);  
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  
    /*********** Maximum Likelihood Estimation ***************/
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   }  {
   else  hstepm=estepm;      int i,j, iter;
   /* For example we decided to compute the life expectancy with the smallest unit */    double **xi;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double fret;
      nhstepm is the number of hstepm from age to agelim    double fretone; /* Only one call to likelihood */
      nstepm is the number of stepm from age to agelin.    /*  char filerespow[FILENAMELENGTH];*/
      Look at hpijx to understand the reason of that which relies in memory size    xi=matrix(1,npar,1,npar);
      and note for a fixed period like k years */    for (i=1;i<=npar;i++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (j=1;j<=npar;j++)
      survival function given by stepm (the optimization length). Unfortunately it        xi[i][j]=(i==j ? 1.0 : 0.0);
      means that if the survival funtion is printed only each two years of age and if    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    strcpy(filerespow,"pow"); 
      results. So we changed our mind and took the option of the best precision.    strcat(filerespow,fileres);
   */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      printf("Problem with resultfile: %s\n", filerespow);
   agelim = AGESUP;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for (i=1;i<=nlstate;i++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=1;j<=nlstate+ndeath;j++)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     gp=matrix(0,nhstepm,1,nlstate);    fprintf(ficrespow,"\n");
     gm=matrix(0,nhstepm,1,nlstate);  
     powell(p,xi,npar,ftol,&iter,&fret,func);
   
     for(theta=1; theta <=npar; theta++){    free_matrix(xi,1,npar,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    fclose(ficrespow);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   }
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  /**** Computes Hessian and covariance matrix ***/
           prlim[i][i]=probs[(int)age][i][ij];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
      double  **a,**y,*x,pd;
       for(j=1; j<= nlstate; j++){    double **hess;
         for(h=0; h<=nhstepm; h++){    int i, j,jk;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    int *indx;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       /* This for computing forces of mortality (h=1)as a weighted average */    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
         for(i=1; i<= nlstate; i++)    double gompertz(double p[]);
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    hess=matrix(1,npar,1,npar);
       }      
       /* end force of mortality */    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for(i=1; i<=npar; i++) /* Computes gradient */    for (i=1;i<=npar;i++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      printf("%d",i);fflush(stdout);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        fprintf(ficlog,"%d",i);fflush(ficlog);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     
         hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       if (popbased==1) {      
         for(i=1; i<=nlstate;i++)      /*  printf(" %f ",p[i]);
           prlim[i][i]=probs[(int)age][i][ij];          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       }    }
     
       for(j=1; j<= nlstate; j++){    for (i=1;i<=npar;i++) {
         for(h=0; h<=nhstepm; h++){      for (j=1;j<=npar;j++)  {
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        if (j>i) { 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          printf(".%d%d",i,j);fflush(stdout);
         }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       }          hess[i][j]=hessij(p,delti,i,j,func,npar);
       /* This for computing force of mortality (h=1)as a weighted average */          
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          hess[j][i]=hess[i][j];    
         for(i=1; i<= nlstate; i++)          /*printf(" %lf ",hess[i][j]);*/
           gmp[j] += prlim[i][i]*p3mat[i][j][1];        }
       }          }
       /* end force of mortality */    }
     printf("\n");
       for(j=1; j<= nlstate; j++) /* vareij */    fprintf(ficlog,"\n");
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    a=matrix(1,npar,1,npar);
       }    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
     } /* End theta */    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
     for(h=0; h<=nhstepm; h++) /* veij */  
       for(j=1; j<=nlstate;j++)    for (j=1;j<=npar;j++) {
         for(theta=1; theta <=npar; theta++)      for (i=1;i<=npar;i++) x[i]=0;
           trgradg[h][j][theta]=gradg[h][theta][j];      x[j]=1;
       lubksb(a,npar,indx,x);
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */      for (i=1;i<=npar;i++){ 
       for(theta=1; theta <=npar; theta++)        matcov[i][j]=x[i];
         trgradgp[j][theta]=gradgp[theta][j];      }
     }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)    printf("\n#Hessian matrix#\n");
       for(j=1;j<=nlstate;j++)    fprintf(ficlog,"\n#Hessian matrix#\n");
         vareij[i][j][(int)age] =0.;    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
     for(h=0;h<=nhstepm;h++){        printf("%.3e ",hess[i][j]);
       for(k=0;k<=nhstepm;k++){        fprintf(ficlog,"%.3e ",hess[i][j]);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      printf("\n");
         for(i=1;i<=nlstate;i++)      fprintf(ficlog,"\n");
           for(j=1;j<=nlstate;j++)    }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }    /* Recompute Inverse */
     }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     /* pptj */    ludcmp(a,npar,indx,&pd);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    /*  printf("\n#Hessian matrix recomputed#\n");
     for(j=nlstate+1;j<=nlstate+ndeath;j++)  
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    for (j=1;j<=npar;j++) {
         varppt[j][i]=doldmp[j][i];      for (i=1;i<=npar;i++) x[i]=0;
     /* end ppptj */      x[j]=1;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        lubksb(a,npar,indx,x);
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);      for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
     if (popbased==1) {        printf("%.3e ",y[i][j]);
       for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%.3e ",y[i][j]);
         prlim[i][i]=probs[(int)age][i][ij];      }
     }      printf("\n");
          fprintf(ficlog,"\n");
     /* This for computing force of mortality (h=1)as a weighted average */    }
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    */
       for(i=1; i<= nlstate; i++)  
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    free_matrix(a,1,npar,1,npar);
     }        free_matrix(y,1,npar,1,npar);
     /* end force of mortality */    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    free_matrix(hess,1,npar,1,npar);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));  
       for(i=1; i<=nlstate;i++){  }
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }  /*************** hessian matrix ****************/
     }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     fprintf(ficresprobmorprev,"\n");  {
     int i;
     fprintf(ficresvij,"%.0f ",age );    int l=1, lmax=20;
     for(i=1; i<=nlstate;i++)    double k1,k2;
       for(j=1; j<=nlstate;j++){    double p2[MAXPARM+1]; /* identical to x */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    double res;
       }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     fprintf(ficresvij,"\n");    double fx;
     free_matrix(gp,0,nhstepm,1,nlstate);    int k=0,kmax=10;
     free_matrix(gm,0,nhstepm,1,nlstate);    double l1;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    fx=func(x);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++) p2[i]=x[i];
   } /* End age */    for(l=0 ; l <=lmax; l++){
   free_vector(gpp,nlstate+1,nlstate+ndeath);      l1=pow(10,l);
   free_vector(gmp,nlstate+1,nlstate+ndeath);      delts=delt;
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      for(k=1 ; k <kmax; k=k+1){
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        delt = delta*(l1*k);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        p2[theta]=x[theta] +delt;
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */        k1=func(p2)-fx;
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");        p2[theta]=x[theta]-delt;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);        k2=func(p2)-fx;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);        
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  #ifdef DEBUGHESS
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   free_vector(xp,1,npar);  #endif
   free_matrix(doldm,1,nlstate,1,nlstate);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   free_matrix(dnewm,1,nlstate,1,npar);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          k=kmax;
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);        }
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   fclose(ficresprobmorprev);          k=kmax; l=lmax*10.;
   fclose(ficgp);        }
   fclose(fichtm);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
 }        }
       }
 /************ Variance of prevlim ******************/    }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    delti[theta]=delts;
 {    return res; 
   /* Variance of prevalence limit */    
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  }
   double **newm;  
   double **dnewm,**doldm;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   int i, j, nhstepm, hstepm;  {
   int k, cptcode;    int i;
   double *xp;    int l=1, l1, lmax=20;
   double *gp, *gm;    double k1,k2,k3,k4,res,fx;
   double **gradg, **trgradg;    double p2[MAXPARM+1];
   double age,agelim;    int k;
   int theta;  
        fx=func(x);
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    for (k=1; k<=2; k++) {
   fprintf(ficresvpl,"# Age");      for (i=1;i<=npar;i++) p2[i]=x[i];
   for(i=1; i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       fprintf(ficresvpl," %1d-%1d",i,i);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fprintf(ficresvpl,"\n");      k1=func(p2)-fx;
     
   xp=vector(1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   dnewm=matrix(1,nlstate,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   doldm=matrix(1,nlstate,1,nlstate);      k2=func(p2)-fx;
      
   hstepm=1*YEARM; /* Every year of age */      p2[thetai]=x[thetai]-delti[thetai]/k;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   agelim = AGESUP;      k3=func(p2)-fx;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      p2[thetai]=x[thetai]-delti[thetai]/k;
     if (stepm >= YEARM) hstepm=1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      k4=func(p2)-fx;
     gradg=matrix(1,npar,1,nlstate);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     gp=vector(1,nlstate);  #ifdef DEBUG
     gm=vector(1,nlstate);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(theta=1; theta <=npar; theta++){  #endif
       for(i=1; i<=npar; i++){ /* Computes gradient */    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    return res;
       }  }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  /************** Inverse of matrix **************/
         gp[i] = prlim[i][i];  void ludcmp(double **a, int n, int *indx, double *d) 
      { 
       for(i=1; i<=npar; i++) /* Computes gradient */    int i,imax,j,k; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double big,dum,sum,temp; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double *vv; 
       for(i=1;i<=nlstate;i++)   
         gm[i] = prlim[i][i];    vv=vector(1,n); 
     *d=1.0; 
       for(i=1;i<=nlstate;i++)    for (i=1;i<=n;i++) { 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      big=0.0; 
     } /* End theta */      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
     trgradg =matrix(1,nlstate,1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
     for(j=1; j<=nlstate;j++)    } 
       for(theta=1; theta <=npar; theta++)    for (j=1;j<=n;j++) { 
         trgradg[j][theta]=gradg[theta][j];      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
     for(i=1;i<=nlstate;i++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       varpl[i][(int)age] =0.;        a[i][j]=sum; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      } 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      big=0.0; 
     for(i=1;i<=nlstate;i++)      for (i=j;i<=n;i++) { 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        sum=a[i][j]; 
         for (k=1;k<j;k++) 
     fprintf(ficresvpl,"%.0f ",age );          sum -= a[i][k]*a[k][j]; 
     for(i=1; i<=nlstate;i++)        a[i][j]=sum; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     fprintf(ficresvpl,"\n");          big=dum; 
     free_vector(gp,1,nlstate);          imax=i; 
     free_vector(gm,1,nlstate);        } 
     free_matrix(gradg,1,npar,1,nlstate);      } 
     free_matrix(trgradg,1,nlstate,1,npar);      if (j != imax) { 
   } /* End age */        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   free_vector(xp,1,npar);          a[imax][k]=a[j][k]; 
   free_matrix(doldm,1,nlstate,1,npar);          a[j][k]=dum; 
   free_matrix(dnewm,1,nlstate,1,nlstate);        } 
         *d = -(*d); 
 }        vv[imax]=vv[j]; 
       } 
 /************ Variance of one-step probabilities  ******************/      indx[j]=imax; 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      if (a[j][j] == 0.0) a[j][j]=TINY; 
 {      if (j != n) { 
   int i, j=0,  i1, k1, l1, t, tj;        dum=1.0/(a[j][j]); 
   int k2, l2, j1,  z1;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   int k=0,l, cptcode;      } 
   int first=1, first1;    } 
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    free_vector(vv,1,n);  /* Doesn't work */
   double **dnewm,**doldm;  ;
   double *xp;  } 
   double *gp, *gm;  
   double **gradg, **trgradg;  void lubksb(double **a, int n, int *indx, double b[]) 
   double **mu;  { 
   double age,agelim, cov[NCOVMAX];    int i,ii=0,ip,j; 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    double sum; 
   int theta;   
   char fileresprob[FILENAMELENGTH];    for (i=1;i<=n;i++) { 
   char fileresprobcov[FILENAMELENGTH];      ip=indx[i]; 
   char fileresprobcor[FILENAMELENGTH];      sum=b[ip]; 
       b[ip]=b[i]; 
   double ***varpij;      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   strcpy(fileresprob,"prob");      else if (sum) ii=i; 
   strcat(fileresprob,fileres);      b[i]=sum; 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    } 
     printf("Problem with resultfile: %s\n", fileresprob);    for (i=n;i>=1;i--) { 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      sum=b[i]; 
   }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   strcpy(fileresprobcov,"probcov");      b[i]=sum/a[i][i]; 
   strcat(fileresprobcov,fileres);    } 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  } 
     printf("Problem with resultfile: %s\n", fileresprobcov);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  void pstamp(FILE *fichier)
   }  {
   strcpy(fileresprobcor,"probcor");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   strcat(fileresprobcor,fileres);  }
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcor);  /************ Frequencies ********************/
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   }  {  /* Some frequencies */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    int i, m, jk, k1,i1, j1, bool, z1,j;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    int first;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double ***freq; /* Frequencies */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    double *pp, **prop;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      char fileresp[FILENAMELENGTH];
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    
   fprintf(ficresprob,"# Age");    pp=vector(1,nlstate);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    prop=matrix(1,nlstate,iagemin,iagemax+3);
   fprintf(ficresprobcov,"# Age");    strcpy(fileresp,"p");
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    strcat(fileresp,fileres);
   fprintf(ficresprobcov,"# Age");    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   for(i=1; i<=nlstate;i++)      exit(0);
     for(j=1; j<=(nlstate+ndeath);j++){    }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    j1=0;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    
     }      j=cptcoveff;
   fprintf(ficresprob,"\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficresprobcov,"\n");  
   fprintf(ficresprobcor,"\n");    first=1;
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        j1++;
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   first=1;          scanf("%d", i);*/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for (i=-5; i<=nlstate+ndeath; i++)  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            for(m=iagemin; m <= iagemax+3; m++)
     exit(0);              freq[i][jk][m]=0;
   }        
   else{        for (i=1; i<=nlstate; i++)  
     fprintf(ficgp,"\n# Routine varprob");          for(m=iagemin; m <= iagemax+3; m++)
   }            prop[i][m]=0;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        
     printf("Problem with html file: %s\n", optionfilehtm);        dateintsum=0;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);        k2cpt=0;
     exit(0);        for (i=1; i<=imx; i++) {
   }          bool=1;
   else{          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");            for (z1=1; z1<=cptcoveff; z1++)       
     fprintf(fichtm,"\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
                 bool=0;
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");                printf("bool=%d i=%d, z1=%d, i1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");                  bool,i,z1, i1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);
                 /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
   }              } 
           }
     
   cov[1]=1;          if (bool==1){
   tj=cptcoveff;            for(m=firstpass; m<=lastpass; m++){
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}              k2=anint[m][i]+(mint[m][i]/12.);
   j1=0;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   for(t=1; t<=tj;t++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for(i1=1; i1<=ncodemax[t];i1++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       j1++;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                      if (m<lastpass) {
       if  (cptcovn>0) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         fprintf(ficresprob, "\n#********** Variable ");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                }
         fprintf(ficresprob, "**********\n#");                
         fprintf(ficresprobcov, "\n#********** Variable ");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                  dateintsum=dateintsum+k2;
         fprintf(ficresprobcov, "**********\n#");                  k2cpt++;
                        }
         fprintf(ficgp, "\n#********** Variable ");                /*}*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
         fprintf(ficgp, "**********\n#");          }
                }
                 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        pstamp(ficresp);
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        if  (cptcovn>0) {
                  fprintf(ficresp, "\n#********** Variable "); 
         fprintf(ficresprobcor, "\n#********** Variable ");              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficresp, "**********\n#");
         fprintf(ficgp, "**********\n#");              fprintf(ficlog, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                fprintf(ficlog, "**********\n#");
       for (age=bage; age<=fage; age ++){        }
         cov[2]=age;        for(i=1; i<=nlstate;i++) 
         for (k=1; k<=cptcovn;k++) {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        fprintf(ficresp, "\n");
         }        
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for(i=iagemin; i <= iagemax+3; i++){
         for (k=1; k<=cptcovprod;k++)          if(i==iagemax+3){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            fprintf(ficlog,"Total");
                  }else{
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));            if(first==1){
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              first=0;
         gp=vector(1,(nlstate)*(nlstate+ndeath));              printf("See log file for details...\n");
         gm=vector(1,(nlstate)*(nlstate+ndeath));            }
                fprintf(ficlog,"Age %d", i);
         for(theta=1; theta <=npar; theta++){          }
           for(i=1; i<=npar; i++)          for(jk=1; jk <=nlstate ; jk++){
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                        pp[jk] += freq[jk][m][i]; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          }
                    for(jk=1; jk <=nlstate ; jk++){
           k=0;            for(m=-1, pos=0; m <=0 ; m++)
           for(i=1; i<= (nlstate); i++){              pos += freq[jk][m][i];
             for(j=1; j<=(nlstate+ndeath);j++){            if(pp[jk]>=1.e-10){
               k=k+1;              if(first==1){
               gp[k]=pmmij[i][j];                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }              }
           }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                      }else{
           for(i=1; i<=npar; i++)              if(first==1)
             xp[i] = x[i] - (i==theta ?delti[theta]:0);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                  fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            }
           k=0;          }
           for(i=1; i<=(nlstate); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){          for(jk=1; jk <=nlstate ; jk++){
               k=k+1;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               gm[k]=pmmij[i][j];              pp[jk] += freq[jk][m][i];
             }          }       
           }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                  pos += pp[jk];
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)            posprop += prop[jk][i];
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            }
         }          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)              if(first==1)
           for(theta=1; theta <=npar; theta++)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             trgradg[j][theta]=gradg[theta][j];              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                    }else{
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);              if(first==1)
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                      fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         pmij(pmmij,cov,ncovmodel,x,nlstate);            }
                    if( i <= iagemax){
         k=0;              if(pos>=1.e-5){
         for(i=1; i<=(nlstate); i++){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           for(j=1; j<=(nlstate+ndeath);j++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
             k=k+1;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             mu[k][(int) age]=pmmij[i][j];              }
           }              else
         }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          }
             varpij[i][j][(int)age] = doldm[i][j];          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
         /*printf("\n%d ",(int)age);            for(m=-1; m <=nlstate+ndeath; m++)
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              if(freq[jk][m][i] !=0 ) {
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              if(first==1)
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
      }*/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
         fprintf(ficresprob,"\n%d ",(int)age);          if(i <= iagemax)
         fprintf(ficresprobcov,"\n%d ",(int)age);            fprintf(ficresp,"\n");
         fprintf(ficresprobcor,"\n%d ",(int)age);          if(first==1)
             printf("Others in log...\n");
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          fprintf(ficlog,"\n");
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    dateintmean=dateintsum/k2cpt; 
         }   
         i=0;    fclose(ficresp);
         for (k=1; k<=(nlstate);k++){    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           for (l=1; l<=(nlstate+ndeath);l++){    free_vector(pp,1,nlstate);
             i=i++;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    /* End of Freq */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  }
             for (j=1; j<=i;j++){  
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  /************ Prevalence ********************/
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
             }  {  
           }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         }/* end of loop for state */       in each health status at the date of interview (if between dateprev1 and dateprev2).
       } /* end of loop for age */       We still use firstpass and lastpass as another selection.
     */
       /* Confidence intervalle of pij  */   
       /*    int i, m, jk, k1, i1, j1, bool, z1,j;
       fprintf(ficgp,"\nset noparametric;unset label");    double ***freq; /* Frequencies */
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    double *pp, **prop;
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    double pos,posprop; 
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    double  y2; /* in fractional years */
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    int iagemin, iagemax;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    iagemin= (int) agemin;
       */    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       first1=1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       for (k1=1; k1<=(nlstate);k1++){    j1=0;
         for (l1=1; l1<=(nlstate+ndeath);l1++){    
           if(l1==k1) continue;    j=cptcoveff;
           i=(k1-1)*(nlstate+ndeath)+l1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           for (k2=1; k2<=(nlstate);k2++){    
             for (l2=1; l2<=(nlstate+ndeath);l2++){    for(k1=1; k1<=j;k1++){
               if(l2==k2) continue;      for(i1=1; i1<=ncodemax[k1];i1++){
               j=(k2-1)*(nlstate+ndeath)+l2;        j1++;
               if(j<=i) continue;        
               for (age=bage; age<=fage; age ++){        for (i=1; i<=nlstate; i++)  
                 if ((int)age %5==0){          for(m=iagemin; m <= iagemax+3; m++)
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            prop[i][m]=0.0;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;       
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        for (i=1; i<=imx; i++) { /* Each individual */
                   mu1=mu[i][(int) age]/stepm*YEARM ;          bool=1;
                   mu2=mu[j][(int) age]/stepm*YEARM;          if  (cptcovn>0) {
                   /* Computing eigen value of matrix of covariance */            for (z1=1; z1<=cptcoveff; z1++) 
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));                bool=0;
                   if(first1==1){          } 
                     first1=0;          if (bool==1) { 
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                   }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                   /* Eigen vectors */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                   v21=sqrt(1.-v11*v11);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                   v12=-v21;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   v22=v11;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   /*printf(fignu*/                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */                  prop[s[m][i]][iagemax+3] += weight[i]; 
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */                } 
                   if(first==1){              }
                     first=0;            } /* end selection of waves */
                     fprintf(ficgp,"\nset parametric;set nolabel");          }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);        }
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for(i=iagemin; i <= iagemax+3; i++){  
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);          
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);            posprop += prop[jk][i]; 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          } 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          for(jk=1; jk <=nlstate ; jk++){     
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            if( i <=  iagemax){ 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              if(posprop>=1.e-5){ 
                     */                probs[i][jk][j1]= prop[jk][i]/posprop;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\              } else
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));            } 
                   }else{          }/* end jk */ 
                     first=0;        }/* end i */ 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      } /* end i1 */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    } /* end k1 */
                     /*    
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    /*free_vector(pp,1,nlstate);*/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                     */  }  /* End of prevalence */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  /************* Waves Concatenation ***************/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));  
                   }/* if first */  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                 } /* age mod 5 */  {
               } /* end loop age */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);       Death is a valid wave (if date is known).
               first=1;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             } /*l12 */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           } /* k12 */       and mw[mi+1][i]. dh depends on stepm.
         } /*l1 */       */
       }/* k1 */  
     } /* loop covariates */    int i, mi, m;
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));       double sum=0., jmean=0.;*/
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    int first;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    int j, k=0,jk, ju, jl;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double sum=0.;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    first=0;
   }    jmin=1e+5;
   free_vector(xp,1,npar);    jmax=-1;
   fclose(ficresprob);    jmean=0.;
   fclose(ficresprobcov);    for(i=1; i<=imx; i++){
   fclose(ficresprobcor);      mi=0;
   fclose(ficgp);      m=firstpass;
   fclose(fichtm);      while(s[m][i] <= nlstate){
 }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
         if(m >=lastpass)
 /******************* Printing html file ***********/          break;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        else
                   int lastpass, int stepm, int weightopt, char model[],\          m++;
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      }/* end while */
                   int popforecast, int estepm ,\      if (s[m][i] > nlstate){
                   double jprev1, double mprev1,double anprev1, \        mi++;     /* Death is another wave */
                   double jprev2, double mprev2,double anprev2){        /* if(mi==0)  never been interviewed correctly before death */
   int jj1, k1, i1, cpt;           /* Only death is a correct wave */
   /*char optionfilehtm[FILENAMELENGTH];*/        mw[mi][i]=m;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {      }
     printf("Problem with %s \n",optionfilehtm), exit(0);  
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);      wav[i]=mi;
   }      if(mi==0){
         nbwarn++;
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n        if(first==0){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n          first=1;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        }
  - Life expectancies by age and initial health status (estepm=%2d months):        if(first==1){
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        }
       } /* end mi==0 */
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    } /* End individuals */
   
  m=cptcoveff;    for(i=1; i<=imx; i++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
  jj1=0;          dh[mi][i]=1;
  for(k1=1; k1<=m;k1++){        else{
    for(i1=1; i1<=ncodemax[k1];i1++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
      jj1++;            if (agedc[i] < 2*AGESUP) {
      if (cptcovn > 0) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              if(j==0) j=1;  /* Survives at least one month after exam */
        for (cpt=1; cpt<=cptcoveff;cpt++)              else if(j<0){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                nberr++;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      }                j=1; /* Temporary Dangerous patch */
      /* Pij */                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                    fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
      /* Quasi-incidences */              }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>              k=k+1;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              if (j >= jmax){
        /* Stable prevalence in each health state */                jmax=j;
        for(cpt=1; cpt<nlstate;cpt++){                ijmax=i;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>              }
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              if (j <= jmin){
        }                jmin=j;
      for(cpt=1; cpt<=nlstate;cpt++) {                ijmin=i;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              }
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              sum=sum+j;
      }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 health expectancies in states (1) and (2): e%s%d.png<br>            }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }
    } /* end i1 */          else{
  }/* End k1 */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
  fprintf(fichtm,"</ul>");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
             k=k+1;
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n            if (j >= jmax) {
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n              jmax=j;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n              ijmax=i;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n            }
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n            else if (j <= jmin){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              jmin=j;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n              ijmin=i;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
  if(popforecast==1) fprintf(fichtm,"\n            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            if(j<0){
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              nberr++;
         <br>",fileres,fileres,fileres,fileres);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  else              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            }
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");            sum=sum+j;
           }
  m=cptcoveff;          jk= j/stepm;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
  jj1=0;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
  for(k1=1; k1<=m;k1++){            if(jl==0){
    for(i1=1; i1<=ncodemax[k1];i1++){              dh[mi][i]=jk;
      jj1++;              bh[mi][i]=0;
      if (cptcovn > 0) {            }else{ /* We want a negative bias in order to only have interpolation ie
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                    * to avoid the price of an extra matrix product in likelihood */
        for (cpt=1; cpt<=cptcoveff;cpt++)              dh[mi][i]=jk+1;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              bh[mi][i]=ju;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            }
      }          }else{
      for(cpt=1; cpt<=nlstate;cpt++) {            if(jl <= -ju){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              dh[mi][i]=jk;
 interval) in state (%d): v%s%d%d.png <br>              bh[mi][i]=jl;       /* bias is positive if real duration
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                                     * is higher than the multiple of stepm and negative otherwise.
      }                                   */
    } /* end i1 */            }
  }/* End k1 */            else{
  fprintf(fichtm,"</ul>");              dh[mi][i]=jk+1;
 fclose(fichtm);              bh[mi][i]=ju;
 }            }
             if(dh[mi][i]==0){
 /******************* Gnuplot file **************/              dh[mi][i]=1; /* At least one step */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            }
   int ng;          } /* end if mle */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        }
     printf("Problem with file %s",optionfilegnuplot);      } /* end wave */
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    }
   }    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 #ifdef windows    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     fprintf(ficgp,"cd \"%s\" \n",pathc);   }
 #endif  
 m=pow(2,cptcoveff);  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx)
  /* 1eme*/  {
   for (cpt=1; cpt<= nlstate ; cpt ++) {    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
    for (k1=1; k1<= m ; k1 ++) {    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     /* Boring subroutine which should only output nbcode[Tvar[j]][k]
 #ifdef windows    /* nbcode[Tvar[j][1]= 
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 #ifdef unix    int modmaxcovj=0; /* Modality max of covariates j */
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    cptcoveff=0; 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);   
 #endif    for (k=0; k < maxncov; k++) Ndum[k]=0;
     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
 }                                 modality of this covariate Vj*/ 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
     for (i=1; i<= nlstate ; i ++) {                                        modality of the nth covariate of individual i. */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 }        if (ij > modmaxcovj) modmaxcovj=ij; 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        /* getting the maximum value of the modality of the covariate
      for (i=1; i<= nlstate ; i ++) {           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");           female is 1, then modmaxcovj=1.*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }        /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
 #ifdef unix        if( Ndum[i] != 0 )
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          ncodemax[j]++; 
 #endif        /* Number of modalities of the j th covariate. In fact
    }           ncodemax[j]=2 (dichotom. variables only) but it could be more for
   }           historical reasons */
   /*2 eme*/      } /* Ndum[-1] number of undefined modalities */
   
   for (k1=1; k1<= m ; k1 ++) {      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      ij=1; 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
            for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
     for (i=1; i<= nlstate+1 ; i ++) {          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
       k=2*i;            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                                       k is a modality. If we have model=V1+V1*sex 
       for (j=1; j<= nlstate+1 ; j ++) {                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            ij++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            if (ij > ncodemax[j]) break; 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        }  /* end of loop on */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      } /* end of loop on modality */ 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
       for (j=1; j<= nlstate+1 ; j ++) {    
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for (k=0; k< maxncov; k++) Ndum[k]=0;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
       fprintf(ficgp,"\" t\"\" w l 0,");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
       for (j=1; j<= nlstate+1 ; j ++) {     Ndum[ij]++;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }     ij=1;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       else fprintf(ficgp,"\" t\"\" w l 0,");     if((Ndum[i]!=0) && (i<=ncovcol)){
     }       Tvaraff[ij]=i; /*For printing */
   }       ij++;
       }
   /*3eme*/   }
    ij--;
   for (k1=1; k1<= m ; k1 ++) {   cptcoveff=ij; /*Number of total covariates*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {  }
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  /*********** Health Expectancies ****************/
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  {
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /* Health expectancies, no variances */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
 */    double ***p3mat;
       for (i=1; i< nlstate ; i ++) {    double eip;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  
     pstamp(ficreseij);
       }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     }    fprintf(ficreseij,"# Age");
   }    for(i=1; i<=nlstate;i++){
        for(j=1; j<=nlstate;j++){
   /* CV preval stat */        fprintf(ficreseij," e%1d%1d ",i,j);
     for (k1=1; k1<= m ; k1 ++) {      }
     for (cpt=1; cpt<nlstate ; cpt ++) {      fprintf(ficreseij," e%1d. ",i);
       k=3;    }
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    fprintf(ficreseij,"\n");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
     
       for (i=1; i< nlstate ; i ++)    if(estepm < stepm){
         fprintf(ficgp,"+$%d",k+i+1);      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    }
          else  hstepm=estepm;   
       l=3+(nlstate+ndeath)*cpt;    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);     * This is mainly to measure the difference between two models: for example
       for (i=1; i< nlstate ; i ++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
         l=3+(nlstate+ndeath)*cpt;     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficgp,"+$%d",l+i+1);     * progression in between and thus overestimating or underestimating according
       }     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       * estimate the model with stepm=1 month, we can keep estepm to 24 months
     }     * to compare the new estimate of Life expectancy with the same linear 
   }       * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){    /* For example we decided to compute the life expectancy with the smallest unit */
     for(k=1; k <=(nlstate+ndeath); k++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       if (k != i) {       nhstepm is the number of hstepm from age to agelim 
         for(j=1; j <=ncovmodel; j++){       nstepm is the number of stepm from age to agelin. 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);       Look at hpijx to understand the reason of that which relies in memory size
           jk++;       and note for a fixed period like estepm months */
           fprintf(ficgp,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed only each two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    }       results. So we changed our mind and took the option of the best precision.
     */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    agelim=AGESUP;
        if (ng==2)    /* If stepm=6 months */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
        else         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          fprintf(ficgp,"\nset title \"Probability\"\n");      
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  /* nhstepm age range expressed in number of stepm */
        i=1;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        for(k2=1; k2<=nlstate; k2++) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          k3=i;    /* if (stepm >= YEARM) hstepm=1;*/
          for(k=1; k<=(nlstate+ndeath); k++) {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
            if (k != k2){    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              if(ng==2)  
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    for (age=bage; age<=fage; age ++){ 
              else      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
              ij=1;      /* if (stepm >= YEARM) hstepm=1;*/
              for(j=3; j <=ncovmodel; j++) {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      /* If stepm=6 months */
                  ij++;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
                }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                else      
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
              }      
              fprintf(ficgp,")/(1");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                    
              for(k1=1; k1 <=nlstate; k1++){        printf("%d|",(int)age);fflush(stdout);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                ij=1;      
                for(j=3; j <=ncovmodel; j++){      /* Computing expectancies */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      for(i=1; i<=nlstate;i++)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(j=1; j<=nlstate;j++)
                    ij++;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                  }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                  else            
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                }  
                fprintf(ficgp,")");          }
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);      fprintf(ficreseij,"%3.0f",age );
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      for(i=1; i<=nlstate;i++){
              i=i+ncovmodel;        eip=0;
            }        for(j=1; j<=nlstate;j++){
          } /* end k */          eip +=eij[i][j][(int)age];
        } /* end k2 */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
      } /* end jk */        }
    } /* end ng */        fprintf(ficreseij,"%9.4f", eip );
    fclose(ficgp);      }
 }  /* end gnuplot */      fprintf(ficreseij,"\n");
       
     }
 /*************** Moving average **************/    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    printf("\n");
     fprintf(ficlog,"\n");
   int i, cpt, cptcod;    
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  }
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           mobaverage[(int)agedeb][i][cptcod]=0.;  
      {
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    /* Covariances of health expectancies eij and of total life expectancies according
       for (i=1; i<=nlstate;i++){     to initial status i, ei. .
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    */
           for (cpt=0;cpt<=4;cpt++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    int nhstepma, nstepma; /* Decreasing with age */
           }    double age, agelim, hf;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    double ***p3matp, ***p3matm, ***varhe;
         }    double **dnewm,**doldm;
       }    double *xp, *xm;
     }    double **gp, **gm;
        double ***gradg, ***trgradg;
 }    int theta;
   
     double eip, vip;
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      xp=vector(1,npar);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    xm=vector(1,npar);
   int *popage;    dnewm=matrix(1,nlstate*nlstate,1,npar);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   double *popeffectif,*popcount;    
   double ***p3mat;    pstamp(ficresstdeij);
   char fileresf[FILENAMELENGTH];    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
  agelim=AGESUP;    for(i=1; i<=nlstate;i++){
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      fprintf(ficresstdeij," e%1d. ",i);
      }
      fprintf(ficresstdeij,"\n");
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);    pstamp(ficrescveij);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     printf("Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficrescveij,"# Age");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++){
   printf("Computing forecasting: result on file '%s' \n", fileresf);        cptj= (j-1)*nlstate+i;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
   if (mobilav==1) {              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
     movingaverage(agedeb, fage, ageminpar, mobaverage);      }
   }    fprintf(ficrescveij,"\n");
     
   stepsize=(int) (stepm+YEARM-1)/YEARM;    if(estepm < stepm){
   if (stepm<=12) stepsize=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   agelim=AGESUP;    else  hstepm=estepm;   
      /* We compute the life expectancy from trapezoids spaced every estepm months
   hstepm=1;     * This is mainly to measure the difference between two models: for example
   hstepm=hstepm/stepm;     * if stepm=24 months pijx are given only every 2 years and by summing them
   yp1=modf(dateintmean,&yp);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   anprojmean=yp;     * progression in between and thus overestimating or underestimating according
   yp2=modf((yp1*12),&yp);     * to the curvature of the survival function. If, for the same date, we 
   mprojmean=yp;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   yp1=modf((yp2*30.5),&yp);     * to compare the new estimate of Life expectancy with the same linear 
   jprojmean=yp;     * hypothesis. A more precise result, taking into account a more precise
   if(jprojmean==0) jprojmean=1;     * curvature will be obtained if estepm is as small as stepm. */
   if(mprojmean==0) jprojmean=1;  
      /* For example we decided to compute the life expectancy with the smallest unit */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   for(cptcov=1;cptcov<=i2;cptcov++){       nstepm is the number of stepm from age to agelin. 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       Look at hpijx to understand the reason of that which relies in memory size
       k=k+1;       and note for a fixed period like estepm months */
       fprintf(ficresf,"\n#******");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(j=1;j<=cptcoveff;j++) {       survival function given by stepm (the optimization length). Unfortunately it
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       means that if the survival funtion is printed only each two years of age and if
       }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficresf,"******\n");       results. So we changed our mind and took the option of the best precision.
       fprintf(ficresf,"# StartingAge FinalAge");    */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        
          /* If stepm=6 months */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    /* nhstepm age range expressed in number of stepm */
         fprintf(ficresf,"\n");    agelim=AGESUP;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* if (stepm >= YEARM) hstepm=1;*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           nhstepm = nhstepm/hstepm;    
              p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
            gp=matrix(0,nhstepm,1,nlstate*nlstate);
           for (h=0; h<=nhstepm; h++){    gm=matrix(0,nhstepm,1,nlstate*nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    for (age=bage; age<=fage; age ++){ 
             }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
             for(j=1; j<=nlstate+ndeath;j++) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               kk1=0.;kk2=0;      /* if (stepm >= YEARM) hstepm=1;*/
               for(i=1; i<=nlstate;i++) {                    nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      /* If stepm=6 months */
                 else {      /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                 }      
                      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               }  
               if (h==(int)(calagedate+12*cpt)){      /* Computing  Variances of health expectancies */
                 fprintf(ficresf," %.3f", kk1);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
                                 decrease memory allocation */
               }      for(theta=1; theta <=npar; theta++){
             }        for(i=1; i<=npar; i++){ 
           }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }        }
       }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   }    
                for(j=1; j<= nlstate; j++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
   fclose(ficresf);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 /************** Forecasting ******************/            }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          }
          }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       
   int *popage;        for(ij=1; ij<= nlstate*nlstate; ij++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          for(h=0; h<=nhstepm-1; h++){
   double *popeffectif,*popcount;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   double ***p3mat,***tabpop,***tabpopprev;          }
   char filerespop[FILENAMELENGTH];      }/* End theta */
       
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(h=0; h<=nhstepm-1; h++)
   agelim=AGESUP;        for(j=1; j<=nlstate*nlstate;j++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      
    
         for(ij=1;ij<=nlstate*nlstate;ij++)
   strcpy(filerespop,"pop");        for(ji=1;ji<=nlstate*nlstate;ji++)
   strcat(filerespop,fileres);          varhe[ij][ji][(int)age] =0.;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);       printf("%d|",(int)age);fflush(stdout);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   }       for(h=0;h<=nhstepm-1;h++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for(k=0;k<=nhstepm-1;k++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
   if (mobilav==1) {              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
     movingaverage(agedeb, fage, ageminpar, mobaverage);      }
   }  
       /* Computing expectancies */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   if (stepm<=12) stepsize=1;      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
   agelim=AGESUP;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   hstepm=1;            
   hstepm=hstepm/stepm;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
   if (popforecast==1) {          }
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);      fprintf(ficresstdeij,"%3.0f",age );
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);      for(i=1; i<=nlstate;i++){
     }        eip=0.;
     popage=ivector(0,AGESUP);        vip=0.;
     popeffectif=vector(0,AGESUP);        for(j=1; j<=nlstate;j++){
     popcount=vector(0,AGESUP);          eip += eij[i][j][(int)age];
              for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     i=1;              vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
            }
     imx=i;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      }
   }      fprintf(ficresstdeij,"\n");
   
   for(cptcov=1;cptcov<=i2;cptcov++){      fprintf(ficrescveij,"%3.0f",age );
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(i=1; i<=nlstate;i++)
       k=k+1;        for(j=1; j<=nlstate;j++){
       fprintf(ficrespop,"\n#******");          cptj= (j-1)*nlstate+i;
       for(j=1;j<=cptcoveff;j++) {          for(i2=1; i2<=nlstate;i2++)
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(j2=1; j2<=nlstate;j2++){
       }              cptj2= (j2-1)*nlstate+i2;
       fprintf(ficrespop,"******\n");              if(cptj2 <= cptj)
       fprintf(ficrespop,"# Age");                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            }
       if (popforecast==1)  fprintf(ficrespop," [Population]");        }
            fprintf(ficrescveij,"\n");
       for (cpt=0; cpt<=0;cpt++) {     
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      }
            free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           nhstepm = nhstepm/hstepm;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
              free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;    printf("\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficlog,"\n");
          
           for (h=0; h<=nhstepm; h++){    free_vector(xm,1,npar);
             if (h==(int) (calagedate+YEARM*cpt)) {    free_vector(xp,1,npar);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
             }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
             for(j=1; j<=nlstate+ndeath;j++) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
               kk1=0.;kk2=0;  }
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)  /************ Variance ******************/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
                 else {  {
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* Variance of health expectancies */
                 }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
               }    /* double **newm;*/
               if (h==(int)(calagedate+12*cpt)){    double **dnewm,**doldm;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    double **dnewmp,**doldmp;
                   /*fprintf(ficrespop," %.3f", kk1);    int i, j, nhstepm, hstepm, h, nstepm ;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    int k, cptcode;
               }    double *xp;
             }    double **gp, **gm;  /* for var eij */
             for(i=1; i<=nlstate;i++){    double ***gradg, ***trgradg; /*for var eij */
               kk1=0.;    double **gradgp, **trgradgp; /* for var p point j */
                 for(j=1; j<=nlstate;j++){    double *gpp, *gmp; /* for var p point j */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                 }    double ***p3mat;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    double age,agelim, hf;
             }    double ***mobaverage;
     int theta;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    char digit[4];
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    char digitp[25];
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    char fileresprobmorprev[FILENAMELENGTH];
         }  
       }    if(popbased==1){
        if(mobilav!=0)
   /******/        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      else 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      strcpy(digitp,"-stablbased-");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    if (mobilav!=0) {
                mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           oldm=oldms;savm=savms;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          printf(" Error in movingaverage mobilav=%d\n",mobilav);
           for (h=0; h<=nhstepm; h++){      }
             if (h==(int) (calagedate+YEARM*cpt)) {    }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    strcpy(fileresprobmorprev,"prmorprev"); 
             for(j=1; j<=nlstate+ndeath;j++) {    sprintf(digit,"%-d",ij);
               kk1=0.;kk2=0;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
               for(i=1; i<=nlstate;i++) {                  strcat(fileresprobmorprev,digit); /* Tvar to be done */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
               }    strcat(fileresprobmorprev,fileres);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
         }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       }   
    }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    pstamp(ficresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   if (popforecast==1) {      fprintf(ficresprobmorprev," p.%-d SE",j);
     free_ivector(popage,0,AGESUP);      for(i=1; i<=nlstate;i++)
     free_vector(popeffectif,0,AGESUP);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     free_vector(popcount,0,AGESUP);    }  
   }    fprintf(ficresprobmorprev,"\n");
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficgp,"\n# Routine varevsij");
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   fclose(ficrespop);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
 /***********************************************/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 /**************** Main Program *****************/    pstamp(ficresvij);
 /***********************************************/    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
 int main(int argc, char *argv[])      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 {    else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    fprintf(ficresvij,"# Age");
   double agedeb, agefin,hf;    for(i=1; i<=nlstate;i++)
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   double fret;    fprintf(ficresvij,"\n");
   double **xi,tmp,delta;  
     xp=vector(1,npar);
   double dum; /* Dummy variable */    dnewm=matrix(1,nlstate,1,npar);
   double ***p3mat;    doldm=matrix(1,nlstate,1,nlstate);
   int *indx;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   char line[MAXLINE], linepar[MAXLINE];    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];  
   int firstobs=1, lastobs=10;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   int sdeb, sfin; /* Status at beginning and end */    gpp=vector(nlstate+1,nlstate+ndeath);
   int c,  h , cpt,l;    gmp=vector(nlstate+1,nlstate+ndeath);
   int ju,jl, mi;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    if(estepm < stepm){
   int mobilav=0,popforecast=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
   int hstepm, nhstepm;    }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
   double bage, fage, age, agelim, agebase;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double ftolpl=FTOL;       nhstepm is the number of hstepm from age to agelim 
   double **prlim;       nstepm is the number of stepm from age to agelin. 
   double *severity;       Look at function hpijx to understand why (it is linked to memory size questions) */
   double ***param; /* Matrix of parameters */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double  *p;       survival function given by stepm (the optimization length). Unfortunately it
   double **matcov; /* Matrix of covariance */       means that if the survival funtion is printed every two years of age and if
   double ***delti3; /* Scale */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   double *delti; /* Scale */       results. So we changed our mind and took the option of the best precision.
   double ***eij, ***vareij;    */
   double **varpl; /* Variances of prevalence limits by age */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   double *epj, vepp;    agelim = AGESUP;
   double kk1, kk2;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char *alph[]={"a","a","b","c","d","e"}, str[4];      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   char z[1]="c", occ;  
 #include <sys/time.h>  
 #include <time.h>      for(theta=1; theta <=npar; theta++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /* long total_usecs;        }
   struct timeval start_time, end_time;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);        if (popbased==1) {
           if(mobilav ==0){
   printf("\n%s",version);            for(i=1; i<=nlstate;i++)
   if(argc <=1){              prlim[i][i]=probs[(int)age][i][ij];
     printf("\nEnter the parameter file name: ");          }else{ /* mobilav */ 
     scanf("%s",pathtot);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=mobaverage[(int)age][i][ij];
   else{          }
     strcpy(pathtot,argv[1]);        }
   }    
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        for(j=1; j<= nlstate; j++){
   /*cygwin_split_path(pathtot,path,optionfile);          for(h=0; h<=nhstepm; h++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   /* cutv(path,optionfile,pathtot,'\\');*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        /* This for computing probability of death (h=1 means
   chdir(path);           computed over hstepm matrices product = hstepm*stepm months) 
   replace(pathc,path);           as a weighted average of prlim.
         */
 /*-------- arguments in the command line --------*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   /* Log file */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   strcat(filelog, optionfilefiname);        }    
   strcat(filelog,".log");    /* */        /* end probability of death */
   if((ficlog=fopen(filelog,"w"))==NULL)    {  
     printf("Problem with logfile %s\n",filelog);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     goto end;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficlog,"Log filename:%s\n",filelog);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(ficlog,"\n%s",version);   
   fprintf(ficlog,"\nEnter the parameter file name: ");        if (popbased==1) {
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          if(mobilav ==0){
   fflush(ficlog);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   /* */          }else{ /* mobilav */ 
   strcpy(fileres,"r");            for(i=1; i<=nlstate;i++)
   strcat(fileres, optionfilefiname);              prlim[i][i]=mobaverage[(int)age][i][ij];
   strcat(fileres,".txt");    /* Other files have txt extension */          }
         }
   /*---------arguments file --------*/  
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          for(h=0; h<=nhstepm; h++){
     printf("Problem with optionfile %s\n",optionfile);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     goto end;          }
   }        }
         /* This for computing probability of death (h=1 means
   strcpy(filereso,"o");           computed over hstepm matrices product = hstepm*stepm months) 
   strcat(filereso,fileres);           as a weighted average of prlim.
   if((ficparo=fopen(filereso,"w"))==NULL) {        */
     printf("Problem with Output resultfile: %s\n", filereso);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     goto end;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
         /* end probability of death */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<= nlstate; j++) /* vareij */
     ungetc(c,ficpar);          for(h=0; h<=nhstepm; h++){
     fgets(line, MAXLINE, ficpar);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     puts(line);          }
     fputs(line,ficparo);  
   }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   ungetc(c,ficpar);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      } /* End theta */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      for(h=0; h<=nhstepm; h++) /* veij */
     puts(line);        for(j=1; j<=nlstate;j++)
     fputs(line,ficparo);          for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
   ungetc(c,ficpar);  
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
            for(theta=1; theta <=npar; theta++)
   covar=matrix(0,NCOVMAX,1,n);          trgradgp[j][theta]=gradgp[theta][j];
   cptcovn=0;    
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   ncovmodel=2+cptcovn;      for(i=1;i<=nlstate;i++)
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        for(j=1;j<=nlstate;j++)
            vareij[i][j][(int)age] =0.;
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */      for(h=0;h<=nhstepm;h++){
   while((c=getc(ficpar))=='#' && c!= EOF){        for(k=0;k<=nhstepm;k++){
     ungetc(c,ficpar);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     fgets(line, MAXLINE, ficpar);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     puts(line);          for(i=1;i<=nlstate;i++)
     fputs(line,ficparo);            for(j=1;j<=nlstate;j++)
   }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   ungetc(c,ficpar);        }
        }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    
     for(i=1; i <=nlstate; i++)      /* pptj */
     for(j=1; j <=nlstate+ndeath-1; j++){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       fscanf(ficpar,"%1d%1d",&i1,&j1);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       fprintf(ficparo,"%1d%1d",i1,j1);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       if(mle==1)        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         printf("%1d%1d",i,j);          varppt[j][i]=doldmp[j][i];
       fprintf(ficlog,"%1d%1d",i,j);      /* end ppptj */
       for(k=1; k<=ncovmodel;k++){      /*  x centered again */
         fscanf(ficpar," %lf",&param[i][j][k]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         if(mle==1){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           printf(" %lf",param[i][j][k]);   
           fprintf(ficlog," %lf",param[i][j][k]);      if (popbased==1) {
         }        if(mobilav ==0){
         else          for(i=1; i<=nlstate;i++)
           fprintf(ficlog," %lf",param[i][j][k]);            prlim[i][i]=probs[(int)age][i][ij];
         fprintf(ficparo," %lf",param[i][j][k]);        }else{ /* mobilav */ 
       }          for(i=1; i<=nlstate;i++)
       fscanf(ficpar,"\n");            prlim[i][i]=mobaverage[(int)age][i][ij];
       if(mle==1)        }
         printf("\n");      }
       fprintf(ficlog,"\n");               
       fprintf(ficparo,"\n");      /* This for computing probability of death (h=1 means
     }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
   p=param[1][1];        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   /* Reads comments: lines beginning with '#' */      }    
   while((c=getc(ficpar))=='#' && c!= EOF){      /* end probability of death */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     puts(line);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fputs(line,ficparo);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   }        for(i=1; i<=nlstate;i++){
   ungetc(c,ficpar);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      } 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      fprintf(ficresprobmorprev,"\n");
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){      fprintf(ficresvij,"%.0f ",age );
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(i=1; i<=nlstate;i++)
       printf("%1d%1d",i,j);        for(j=1; j<=nlstate;j++){
       fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar,"%le",&delti3[i][j][k]);      fprintf(ficresvij,"\n");
         printf(" %le",delti3[i][j][k]);      free_matrix(gp,0,nhstepm,1,nlstate);
         fprintf(ficparo," %le",delti3[i][j][k]);      free_matrix(gm,0,nhstepm,1,nlstate);
       }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       fscanf(ficpar,"\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       printf("\n");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficparo,"\n");    } /* End age */
     }    free_vector(gpp,nlstate+1,nlstate+ndeath);
   }    free_vector(gmp,nlstate+1,nlstate+ndeath);
   delti=delti3[1][1];    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   /* Reads comments: lines beginning with '#' */    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
   while((c=getc(ficpar))=='#' && c!= EOF){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     ungetc(c,ficpar);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fgets(line, MAXLINE, ficpar);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     puts(line);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fputs(line,ficparo);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 2 ",subdirf(fileresprobmorprev));
   ungetc(c,ficpar);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 3 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 3 ",subdirf(fileresprobmorprev));
   matcov=matrix(1,npar,1,npar);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   for(i=1; i <=npar; i++){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fscanf(ficpar,"%s",&str);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     if(mle==1)  */
       printf("%s",str);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficlog,"%s",str);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){    free_vector(xp,1,npar);
       fscanf(ficpar," %le",&matcov[i][j]);    free_matrix(doldm,1,nlstate,1,nlstate);
       if(mle==1){    free_matrix(dnewm,1,nlstate,1,npar);
         printf(" %.5le",matcov[i][j]);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficlog," %.5le",matcov[i][j]);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       else    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficlog," %.5le",matcov[i][j]);    fclose(ficresprobmorprev);
       fprintf(ficparo," %.5le",matcov[i][j]);    fflush(ficgp);
     }    fflush(fichtm); 
     fscanf(ficpar,"\n");  }  /* end varevsij */
     if(mle==1)  
       printf("\n");  /************ Variance of prevlim ******************/
     fprintf(ficlog,"\n");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     fprintf(ficparo,"\n");  {
   }    /* Variance of prevalence limit */
   for(i=1; i <=npar; i++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     for(j=i+1;j<=npar;j++)    double **newm;
       matcov[i][j]=matcov[j][i];    double **dnewm,**doldm;
        int i, j, nhstepm, hstepm;
   if(mle==1)    int k, cptcode;
     printf("\n");    double *xp;
   fprintf(ficlog,"\n");    double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     /*-------- Rewriting paramater file ----------*/    int theta;
      strcpy(rfileres,"r");    /* "Rparameterfile */    
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    pstamp(ficresvpl);
      strcat(rfileres,".");    /* */    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    fprintf(ficresvpl,"# Age");
     if((ficres =fopen(rfileres,"w"))==NULL) {    for(i=1; i<=nlstate;i++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        fprintf(ficresvpl," %1d-%1d",i,i);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(ficresvpl,"\n");
     }  
     fprintf(ficres,"#%s\n",version);    xp=vector(1,npar);
        dnewm=matrix(1,nlstate,1,npar);
     /*-------- data file ----------*/    doldm=matrix(1,nlstate,1,nlstate);
     if((fic=fopen(datafile,"r"))==NULL)    {    
       printf("Problem with datafile: %s\n", datafile);goto end;    hstepm=1*YEARM; /* Every year of age */
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     }    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     n= lastobs;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     severity = vector(1,maxwav);      if (stepm >= YEARM) hstepm=1;
     outcome=imatrix(1,maxwav+1,1,n);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     num=ivector(1,n);      gradg=matrix(1,npar,1,nlstate);
     moisnais=vector(1,n);      gp=vector(1,nlstate);
     annais=vector(1,n);      gm=vector(1,nlstate);
     moisdc=vector(1,n);  
     andc=vector(1,n);      for(theta=1; theta <=npar; theta++){
     agedc=vector(1,n);        for(i=1; i<=npar; i++){ /* Computes gradient */
     cod=ivector(1,n);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     weight=vector(1,n);        }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     mint=matrix(1,maxwav,1,n);        for(i=1;i<=nlstate;i++)
     anint=matrix(1,maxwav,1,n);          gp[i] = prlim[i][i];
     s=imatrix(1,maxwav+1,1,n);      
     adl=imatrix(1,maxwav+1,1,n);            for(i=1; i<=npar; i++) /* Computes gradient */
     tab=ivector(1,NCOVMAX);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     ncodemax=ivector(1,8);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
     i=1;          gm[i] = prlim[i][i];
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {        for(i=1;i<=nlstate;i++)
                  gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         for (j=maxwav;j>=1;j--){      } /* End theta */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);      trgradg =matrix(1,nlstate,1,npar);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=1; j<=nlstate;j++)
         }        for(theta=1; theta <=npar; theta++)
                  trgradg[j][theta]=gradg[theta][j];
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
         for (j=ncovcol;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresvpl,"%.0f ",age );
         }      for(i=1; i<=nlstate;i++)
         num[i]=atol(stra);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
              fprintf(ficresvpl,"\n");
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      free_vector(gp,1,nlstate);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
         i=i+1;      free_matrix(trgradg,1,nlstate,1,npar);
       }    } /* End age */
     }  
     /* printf("ii=%d", ij);    free_vector(xp,1,npar);
        scanf("%d",i);*/    free_matrix(doldm,1,nlstate,1,npar);
   imx=i-1; /* Number of individuals */    free_matrix(dnewm,1,nlstate,1,nlstate);
   
   /* for (i=1; i<=imx; i++){  }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  /************ Variance of one-step probabilities  ******************/
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     }*/  {
    /*  for (i=1; i<=imx; i++){    int i, j=0,  i1, k1, l1, t, tj;
      if (s[4][i]==9)  s[4][i]=-1;    int k2, l2, j1,  z1;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    int k=0,l, cptcode;
      int first=1, first1;
      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   /* Calculation of the number of parameter from char model*/    double **dnewm,**doldm;
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    double *xp;
   Tprod=ivector(1,15);    double *gp, *gm;
   Tvaraff=ivector(1,15);    double **gradg, **trgradg;
   Tvard=imatrix(1,15,1,2);    double **mu;
   Tage=ivector(1,15);          double age,agelim, cov[NCOVMAX];
        double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   if (strlen(model) >1){    int theta;
     j=0, j1=0, k1=1, k2=1;    char fileresprob[FILENAMELENGTH];
     j=nbocc(model,'+');    char fileresprobcov[FILENAMELENGTH];
     j1=nbocc(model,'*');    char fileresprobcor[FILENAMELENGTH];
     cptcovn=j+1;  
     cptcovprod=j1;    double ***varpij;
      
     strcpy(modelsav,model);    strcpy(fileresprob,"prob"); 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    strcat(fileresprob,fileres);
       printf("Error. Non available option model=%s ",model);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       fprintf(ficlog,"Error. Non available option model=%s ",model);      printf("Problem with resultfile: %s\n", fileresprob);
       goto end;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }    }
        strcpy(fileresprobcov,"probcov"); 
     for(i=(j+1); i>=1;i--){    strcat(fileresprobcov,fileres);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */      printf("Problem with resultfile: %s\n", fileresprobcov);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       /*scanf("%d",i);*/    }
       if (strchr(strb,'*')) {  /* Model includes a product */    strcpy(fileresprobcor,"probcor"); 
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    strcat(fileresprobcor,fileres);
         if (strcmp(strc,"age")==0) { /* Vn*age */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           cptcovprod--;      printf("Problem with resultfile: %s\n", fileresprobcor);
           cutv(strb,stre,strd,'V');      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    }
           cptcovage++;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             Tage[cptcovage]=i;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             /*printf("stre=%s ", stre);*/    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           cptcovprod--;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           cutv(strb,stre,strc,'V');    pstamp(ficresprob);
           Tvar[i]=atoi(stre);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           cptcovage++;    fprintf(ficresprob,"# Age");
           Tage[cptcovage]=i;    pstamp(ficresprobcov);
         }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         else {  /* Age is not in the model */    fprintf(ficresprobcov,"# Age");
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    pstamp(ficresprobcor);
           Tvar[i]=ncovcol+k1;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    fprintf(ficresprobcor,"# Age");
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc); /* m*/  
           Tvard[k1][2]=atoi(stre); /* n */    for(i=1; i<=nlstate;i++)
           Tvar[cptcovn+k2]=Tvard[k1][1];      for(j=1; j<=(nlstate+ndeath);j++){
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           for (k=1; k<=lastobs;k++)        fprintf(ficresprobcov," p%1d-%1d ",i,j);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           k1++;      }  
           k2=k2+2;   /* fprintf(ficresprob,"\n");
         }    fprintf(ficresprobcov,"\n");
       }    fprintf(ficresprobcor,"\n");
       else { /* no more sum */   */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    xp=vector(1,npar);
        /*  scanf("%d",i);*/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       cutv(strd,strc,strb,'V');    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       Tvar[i]=atoi(strc);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       strcpy(modelsav,stra);      first=1;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fprintf(ficgp,"\n# Routine varprob");
         scanf("%d",i);*/    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     } /* end of loop + */    fprintf(fichtm,"\n");
   } /* end model */  
      fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   printf("cptcovprod=%d ", cptcovprod);    file %s<br>\n",optionfilehtmcov);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   scanf("%d ",i);*/  and drawn. It helps understanding how is the covariance between two incidences.\
     fclose(fic);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     /*  if(mle==1){*/  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     if (weightopt != 1) { /* Maximisation without weights*/  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       for(i=1;i<=n;i++) weight[i]=1.0;  standard deviations wide on each axis. <br>\
     }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     /*-calculation of age at interview from date of interview and age at death -*/   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     agev=matrix(1,maxwav,1,imx);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     for (i=1; i<=imx; i++) {    cov[1]=1;
       for(m=2; (m<= maxwav); m++) {    tj=cptcoveff;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
          anint[m][i]=9999;    j1=0;
          s[m][i]=-1;    for(t=1; t<=tj;t++){
        }      for(i1=1; i1<=ncodemax[t];i1++){ 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        j1++;
       }        if  (cptcovn>0) {
     }          fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for (i=1; i<=imx; i++)  {          fprintf(ficresprob, "**********\n#\n");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          fprintf(ficresprobcov, "\n#********** Variable "); 
       for(m=1; (m<= maxwav); m++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         if(s[m][i] >0){          fprintf(ficresprobcov, "**********\n#\n");
           if (s[m][i] >= nlstate+1) {          
             if(agedc[i]>0)          fprintf(ficgp, "\n#********** Variable "); 
               if(moisdc[i]!=99 && andc[i]!=9999)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                 agev[m][i]=agedc[i];          fprintf(ficgp, "**********\n#\n");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          
            else {          
               if (andc[i]!=9999){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
               agev[m][i]=-1;          
               }          fprintf(ficresprobcor, "\n#********** Variable ");    
             }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           }          fprintf(ficresprobcor, "**********\n#");    
           else if(s[m][i] !=9){ /* Should no more exist */        }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        
             if(mint[m][i]==99 || anint[m][i]==9999)        for (age=bage; age<=fage; age ++){ 
               agev[m][i]=1;          cov[2]=age;
             else if(agev[m][i] <agemin){          for (k=1; k<=cptcovn;k++) {
               agemin=agev[m][i];            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          }
             }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             else if(agev[m][i] >agemax){          for (k=1; k<=cptcovprod;k++)
               agemax=agev[m][i];            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          
             }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
             /*agev[m][i]=anint[m][i]-annais[i];*/          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             /*   agev[m][i] = age[i]+2*m;*/          gp=vector(1,(nlstate)*(nlstate+ndeath));
           }          gm=vector(1,(nlstate)*(nlstate+ndeath));
           else { /* =9 */      
             agev[m][i]=1;          for(theta=1; theta <=npar; theta++){
             s[m][i]=-1;            for(i=1; i<=npar; i++)
           }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         }            
         else /*= 0 Unknown */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           agev[m][i]=1;            
       }            k=0;
                for(i=1; i<= (nlstate); i++){
     }              for(j=1; j<=(nlstate+ndeath);j++){
     for (i=1; i<=imx; i++)  {                k=k+1;
       for(m=1; (m<= maxwav); m++){                gp[k]=pmmij[i][j];
         if (s[m][i] > (nlstate+ndeath)) {              }
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              }
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              
           goto end;            for(i=1; i<=npar; i++)
         }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       }      
     }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            for(i=1; i<=(nlstate); i++){
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
     free_vector(severity,1,maxwav);                gm[k]=pmmij[i][j];
     free_imatrix(outcome,1,maxwav+1,1,n);              }
     free_vector(moisnais,1,n);            }
     free_vector(annais,1,n);       
     /* free_matrix(mint,1,maxwav,1,n);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
        free_matrix(anint,1,maxwav,1,n);*/              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     free_vector(moisdc,1,n);          }
     free_vector(andc,1,n);  
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                for(theta=1; theta <=npar; theta++)
     wav=ivector(1,imx);              trgradg[j][theta]=gradg[theta][j];
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
              matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     /* Concatenates waves */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          pmij(pmmij,cov,ncovmodel,x,nlstate);
       ncodemax[1]=1;          
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          k=0;
                for(i=1; i<=(nlstate); i++){
    codtab=imatrix(1,100,1,10);            for(j=1; j<=(nlstate+ndeath);j++){
    h=0;              k=k+1;
    m=pow(2,cptcoveff);              mu[k][(int) age]=pmmij[i][j];
              }
    for(k=1;k<=cptcoveff; k++){          }
      for(i=1; i <=(m/pow(2,k));i++){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
        for(j=1; j <= ncodemax[k]; j++){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              varpij[i][j][(int)age] = doldm[i][j];
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          /*printf("\n%d ",(int)age);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
          }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      }            }*/
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          fprintf(ficresprob,"\n%d ",(int)age);
       codtab[1][2]=1;codtab[2][2]=2; */          fprintf(ficresprobcov,"\n%d ",(int)age);
    /* for(i=1; i <=m ;i++){          fprintf(ficresprobcor,"\n%d ",(int)age);
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       printf("\n");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       scanf("%d",i);*/            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
              }
    /* Calculates basic frequencies. Computes observed prevalence at single age          i=0;
        and prints on file fileres'p'. */          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
                  i=i++;
                  fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              for (j=1; j<=i;j++){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              }
                  }
     /* For Powell, parameters are in a vector p[] starting at p[1]          }/* end of loop for state */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        } /* end of loop for age */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
         /* Confidence intervalle of pij  */
     if(mle==1){        /*
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          fprintf(ficgp,"\nunset parametric;unset label");
     }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
              fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     /*--------- results files --------------*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
            fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
    jk=1;        */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        first1=1;
    for(i=1,jk=1; i <=nlstate; i++){        for (k2=1; k2<=(nlstate);k2++){
      for(k=1; k <=(nlstate+ndeath); k++){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
        if (k != i)            if(l2==k2) continue;
          {            j=(k2-1)*(nlstate+ndeath)+l2;
            printf("%d%d ",i,k);            for (k1=1; k1<=(nlstate);k1++){
            fprintf(ficlog,"%d%d ",i,k);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
            fprintf(ficres,"%1d%1d ",i,k);                if(l1==k1) continue;
            for(j=1; j <=ncovmodel; j++){                i=(k1-1)*(nlstate+ndeath)+l1;
              printf("%f ",p[jk]);                if(i<=j) continue;
              fprintf(ficlog,"%f ",p[jk]);                for (age=bage; age<=fage; age ++){ 
              fprintf(ficres,"%f ",p[jk]);                  if ((int)age %5==0){
              jk++;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
            }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
            printf("\n");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
            fprintf(ficlog,"\n");                    mu1=mu[i][(int) age]/stepm*YEARM ;
            fprintf(ficres,"\n");                    mu2=mu[j][(int) age]/stepm*YEARM;
          }                    c12=cv12/sqrt(v1*v2);
      }                    /* Computing eigen value of matrix of covariance */
    }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    if(mle==1){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      /* Computing hessian and covariance matrix */                    if ((lc2 <0) || (lc1 <0) ){
      ftolhess=ftol; /* Usually correct */                      printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
      hesscov(matcov, p, npar, delti, ftolhess, func);                      fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
    }                      lc1=fabs(lc1);
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                      lc2=fabs(lc2);
    printf("# Scales (for hessian or gradient estimation)\n");                    }
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");  
    for(i=1,jk=1; i <=nlstate; i++){                    /* Eigen vectors */
      for(j=1; j <=nlstate+ndeath; j++){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
        if (j!=i) {                    /*v21=sqrt(1.-v11*v11); *//* error */
          fprintf(ficres,"%1d%1d",i,j);                    v21=(lc1-v1)/cv12*v11;
          printf("%1d%1d",i,j);                    v12=-v21;
          fprintf(ficlog,"%1d%1d",i,j);                    v22=v11;
          for(k=1; k<=ncovmodel;k++){                    tnalp=v21/v11;
            printf(" %.5e",delti[jk]);                    if(first1==1){
            fprintf(ficlog," %.5e",delti[jk]);                      first1=0;
            fprintf(ficres," %.5e",delti[jk]);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
            jk++;                    }
          }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
          printf("\n");                    /*printf(fignu*/
          fprintf(ficlog,"\n");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
          fprintf(ficres,"\n");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
        }                    if(first==1){
      }                      first=0;
    }                      fprintf(ficgp,"\nset parametric;unset label");
                          fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
    k=1;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    if(mle==1)   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
    for(i=1;i<=npar;i++){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
      /*  if (k>nlstate) k=1;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
          i1=(i-1)/(ncovmodel*nlstate)+1;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
          printf("%s%d%d",alph[k],i1,tab[i]);*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
      fprintf(ficres,"%3d",i);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
      if(mle==1)                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
        printf("%3d",i);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
      fprintf(ficlog,"%3d",i);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
      for(j=1; j<=i;j++){                    }else{
        fprintf(ficres," %.5e",matcov[i][j]);                      first=0;
        if(mle==1)                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
          printf(" %.5e",matcov[i][j]);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
        fprintf(ficlog," %.5e",matcov[i][j]);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
      }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
      fprintf(ficres,"\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
      if(mle==1)                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
        printf("\n");                    }/* if first */
      fprintf(ficlog,"\n");                  } /* age mod 5 */
      k++;                } /* end loop age */
    }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                    first=1;
    while((c=getc(ficpar))=='#' && c!= EOF){              } /*l12 */
      ungetc(c,ficpar);            } /* k12 */
      fgets(line, MAXLINE, ficpar);          } /*l1 */
      puts(line);        }/* k1 */
      fputs(line,ficparo);      } /* loop covariates */
    }    }
    ungetc(c,ficpar);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
    estepm=0;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
    if (estepm==0 || estepm < stepm) estepm=stepm;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
    if (fage <= 2) {    free_vector(xp,1,npar);
      bage = ageminpar;    fclose(ficresprob);
      fage = agemaxpar;    fclose(ficresprobcov);
    }    fclose(ficresprobcor);
        fflush(ficgp);
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    fflush(fichtmcov);
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  }
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
      
    while((c=getc(ficpar))=='#' && c!= EOF){  /******************* Printing html file ***********/
      ungetc(c,ficpar);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
      fgets(line, MAXLINE, ficpar);                    int lastpass, int stepm, int weightopt, char model[],\
      puts(line);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
      fputs(line,ficparo);                    int popforecast, int estepm ,\
    }                    double jprev1, double mprev1,double anprev1, \
    ungetc(c,ficpar);                    double jprev2, double mprev2,double anprev2){
      int jj1, k1, i1, cpt;
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
      </ul>");
    while((c=getc(ficpar))=='#' && c!= EOF){     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
      ungetc(c,ficpar);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
      fgets(line, MAXLINE, ficpar);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      puts(line);     fprintf(fichtm,"\
      fputs(line,ficparo);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
    }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
    ungetc(c,ficpar);     fprintf(fichtm,"\
     - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
    dateprev1=anprev1+mprev1/12.+jprev1/365.;     fprintf(fichtm,"\
    dateprev2=anprev2+mprev2/12.+jprev2/365.;   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
   fscanf(ficpar,"pop_based=%d\n",&popbased);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   fprintf(ficparo,"pop_based=%d\n",popbased);       fprintf(fichtm,"\
   fprintf(ficres,"pop_based=%d\n",popbased);     - Population projections by age and states: \
       <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     fgets(line, MAXLINE, ficpar);  
     puts(line);   m=cptcoveff;
     fputs(line,ficparo);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   }  
   ungetc(c,ficpar);   jj1=0;
    for(k1=1; k1<=m;k1++){
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);     for(i1=1; i1<=ncodemax[k1];i1++){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       jj1++;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
 while((c=getc(ficpar))=='#' && c!= EOF){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     ungetc(c,ficpar);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     fgets(line, MAXLINE, ficpar);       }
     puts(line);       /* Pij */
     fputs(line,ficparo);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   ungetc(c,ficpar);       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);         /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 /*------------ gnuplot -------------*/         }
   strcpy(optionfilegnuplot,optionfilefiname);       for(cpt=1; cpt<=nlstate;cpt++) {
   strcat(optionfilegnuplot,".gp");          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     printf("Problem with file %s",optionfilegnuplot);       }
   }     } /* end i1 */
   fclose(ficgp);   }/* End k1 */
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);   fprintf(fichtm,"</ul>");
 /*--------- index.htm --------*/  
   
   strcpy(optionfilehtm,optionfile);   fprintf(fichtm,"\
   strcat(optionfilehtm,".htm");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n   fprintf(fichtm,"\
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 \n           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 Total number of observations=%d <br>\n  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n   fprintf(fichtm,"\
 <hr  size=\"2\" color=\"#EC5E5E\">   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  <ul><li><h4>Parameter files</h4>\n           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n   fprintf(fichtm,"\
  - Log file of the run: <a href=\"%s\">%s</a><br>\n   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);     <a href=\"%s\">%s</a> <br>\n</li>",
   fclose(fichtm);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
       <a href=\"%s\">%s</a> <br>\n</li>",
 /*------------ free_vector  -------------*/             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
  chdir(path);   fprintf(fichtm,"\
     - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
  free_ivector(wav,1,imx);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);   fprintf(fichtm,"\
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
  free_ivector(num,1,n);           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
  free_vector(agedc,1,n);   fprintf(fichtm,"\
  /*free_matrix(covar,1,NCOVMAX,1,n);*/   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
  fclose(ficparo);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
  fclose(ficres);  
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*--------------- Prevalence limit --------------*/  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
    /*      <br>",fileres,fileres,fileres,fileres); */
   strcpy(filerespl,"pl");  /*  else  */
   strcat(filerespl,fileres);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   fflush(fichtm);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }   m=cptcoveff;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");   jj1=0;
   fprintf(ficrespl,"#Age ");   for(k1=1; k1<=m;k1++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);     for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficrespl,"\n");       jj1++;
         if (cptcovn > 0) {
   prlim=matrix(1,nlstate,1,nlstate);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         for (cpt=1; cpt<=cptcoveff;cpt++) 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       for(cpt=1; cpt<=nlstate;cpt++) {
   k=0;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   agebase=ageminpar;  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   agelim=agemaxpar;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   ftolpl=1.e-10;       }
   i1=cptcoveff;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   if (cptcovn < 1){i1=1;}  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
   for(cptcov=1;cptcov<=i1;cptcov++){   drawn in addition to the population based expectancies computed using\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   observed and cahotic prevalences: %s%d.png<br>\
         k=k+1;  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/     } /* end i1 */
         fprintf(ficrespl,"\n#******");   }/* End k1 */
         printf("\n#******");   fprintf(fichtm,"</ul>");
         fprintf(ficlog,"\n#******");   fflush(fichtm);
         for(j=1;j<=cptcoveff;j++) {  }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /******************* Gnuplot file **************/
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         }  
         fprintf(ficrespl,"******\n");    char dirfileres[132],optfileres[132];
         printf("******\n");    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
         fprintf(ficlog,"******\n");    int ng=0;
          /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
         for (age=agebase; age<=agelim; age++){  /*     printf("Problem with file %s",optionfilegnuplot); */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
           fprintf(ficrespl,"%.0f",age );  /*   } */
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);    /*#ifdef windows */
           fprintf(ficrespl,"\n");    fprintf(ficgp,"cd \"%s\" \n",pathc);
         }      /*#endif */
       }    m=pow(2,cptcoveff);
     }  
   fclose(ficrespl);    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
   /*------------- h Pij x at various ages ------------*/   /* 1eme*/
      for (cpt=1; cpt<= nlstate ; cpt ++) {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);     for (k1=1; k1<= m ; k1 ++) {
   if((ficrespij=fopen(filerespij,"w"))==NULL) {       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;       fprintf(ficgp,"set xlabel \"Age\" \n\
   }  set ylabel \"Probability\" \n\
   printf("Computing pij: result on file '%s' \n", filerespij);  set ter png small\n\
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);  set size 0.65,0.65\n\
    plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   agelim=AGESUP;         else        fprintf(ficgp," \%%*lf (\%%*lf)");
   hstepm=stepsize*YEARM; /* Every year of age */       }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 1,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
   /* hstepm=1;   aff par mois*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   k=0;       } 
   for(cptcov=1;cptcov<=i1;cptcov++){       fprintf(ficgp,"\" t\"95\%% CI\" w l lt 2,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       for (i=1; i<= nlstate ; i ++) {
       k=k+1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficrespij,"\n#****** ");         else fprintf(ficgp," \%%*lf (\%%*lf)");
         for(j=1;j<=cptcoveff;j++)       }  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(ficgp,"\" t\"\" w l lt 2,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 3",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
         fprintf(ficrespij,"******\n");     }
            }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    /*2 eme*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1; i<= nlstate+1 ; i ++) {
           oldm=oldms;savm=savms;        k=2*i;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           fprintf(ficrespij,"# Age");        for (j=1; j<= nlstate+1 ; j ++) {
           for(i=1; i<=nlstate;i++)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             for(j=1; j<=nlstate+ndeath;j++)          else fprintf(ficgp," \%%*lf (\%%*lf)");
               fprintf(ficrespij," %1d-%1d",i,j);        }   
           fprintf(ficrespij,"\n");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
            for (h=0; h<=nhstepm; h++){        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
             for(i=1; i<=nlstate;i++)        for (j=1; j<= nlstate+1 ; j ++) {
               for(j=1; j<=nlstate+ndeath;j++)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
             fprintf(ficrespij,"\n");        }   
              }        fprintf(ficgp,"\" t\"\" w l lt 1,");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           fprintf(ficrespij,"\n");        for (j=1; j<= nlstate+1 ; j ++) {
         }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }        }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 1");
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        else fprintf(ficgp,"\" t\"\" w l lt 1,");
       }
   fclose(ficrespij);    }
     
     /*3eme*/
   /*---------- Forecasting ------------------*/    
   if((stepm == 1) && (strcmp(model,".")==0)){    for (k1=1; k1<= m ; k1 ++) { 
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      for (cpt=1; cpt<= nlstate ; cpt ++) {
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        /*       k=2+nlstate*(2*cpt-2); */
   }        k=2+(nlstate+1)*(cpt-1);
   else{        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     erreur=108;        fprintf(ficgp,"set ter png small\n\
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  set size 0.65,0.65\n\
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
            for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   /*---------- Health expectancies and variances ------------*/          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   strcpy(filerest,"t");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   strcat(filerest,fileres);          
   if((ficrest=fopen(filerest,"w"))==NULL) {        */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        for (i=1; i< nlstate ; i ++) {
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   }          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);        } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
   strcpy(filerese,"e");    }
   strcat(filerese,fileres);    
   if((ficreseij=fopen(filerese,"w"))==NULL) {    /* CV preval stable (period) */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    for (k1=1; k1<= m ; k1 ++) { 
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for (cpt=1; cpt<=nlstate ; cpt ++) {
   }        k=3;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   strcpy(fileresv,"v");  unset log y\n\
   strcat(fileresv,fileres);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        for (i=1; i< nlstate ; i ++)
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);          fprintf(ficgp,"+$%d",k+i+1);
   }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        l=3+(nlstate+ndeath)*cpt;
   calagedate=-1;        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
   k=0;          fprintf(ficgp,"+$%d",l+i+1);
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       k=k+1;      } 
       fprintf(ficrest,"\n#****** ");    }  
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* proba elementaires */
       fprintf(ficrest,"******\n");    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
       fprintf(ficreseij,"\n#****** ");        if (k != i) {
       for(j=1;j<=cptcoveff;j++)          for(j=1; j <=ncovmodel; j++){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       fprintf(ficreseij,"******\n");            jk++; 
             fprintf(ficgp,"\n");
       fprintf(ficresvij,"\n#****** ");          }
       for(j=1;j<=cptcoveff;j++)        }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       fprintf(ficresvij,"******\n");     }
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       oldm=oldms;savm=savms;       for(jk=1; jk <=m; jk++) {
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);           fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           if (ng==2)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       oldm=oldms;savm=savms;         else
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);           fprintf(ficgp,"\nset title \"Probability\"\n");
       if(popbased==1){         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);         i=1;
        }         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
             for(k=1; k<=(nlstate+ndeath); k++) {
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");             if (k != k2){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);               if(ng==2)
       fprintf(ficrest,"\n");                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
       epj=vector(1,nlstate+1);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       for(age=bage; age <=fage ;age++){               ij=1;/* To be checked else nbcode[0][0] wrong */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);               for(j=3; j <=ncovmodel; j++) {
         if (popbased==1) {                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
           for(i=1; i<=nlstate;i++)                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
             prlim[i][i]=probs[(int)age][i][k];                   ij++;
         }                 }
                         else
         fprintf(ficrest," %4.0f",age);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){               }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {               fprintf(ficgp,")/(1");
             epj[j] += prlim[i][i]*eij[i][j][(int)age];               
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/               for(k1=1; k1 <=nlstate; k1++){   
           }                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           epj[nlstate+1] +=epj[j];                 ij=1;
         }                 for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         for(i=1, vepp=0.;i <=nlstate;i++)                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           for(j=1;j <=nlstate;j++)                     ij++;
             vepp += vareij[i][j][(int)age];                   }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                   else
         for(j=1;j <=nlstate;j++){                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                 }
         }                 fprintf(ficgp,")");
         fprintf(ficrest,"\n");               }
       }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     }               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   }               i=i+ncovmodel;
 free_matrix(mint,1,maxwav,1,n);             }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);           } /* end k */
     free_vector(weight,1,n);         } /* end k2 */
   fclose(ficreseij);       } /* end jk */
   fclose(ficresvij);     } /* end ng */
   fclose(ficrest);     fflush(ficgp); 
   fclose(ficpar);  }  /* end gnuplot */
   free_vector(epj,1,nlstate+1);  
    
   /*------- Variance limit prevalence------*/    /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    int i, cpt, cptcod;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    int modcovmax =1;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    int mobilavrange, mob;
     exit(0);    double age;
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
   k=0;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       k=k+1;      if(mobilav==1) mobilavrange=5; /* default */
       fprintf(ficresvpl,"\n#****** ");      else mobilavrange=mobilav;
       for(j=1;j<=cptcoveff;j++)      for (age=bage; age<=fage; age++)
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (i=1; i<=nlstate;i++)
       fprintf(ficresvpl,"******\n");          for (cptcod=1;cptcod<=modcovmax;cptcod++)
                  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      /* We keep the original values on the extreme ages bage, fage and for 
       oldm=oldms;savm=savms;         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);         we use a 5 terms etc. until the borders are no more concerned. 
     }      */ 
  }      for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   fclose(ficresvpl);          for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
   /*---------- End : free ----------------*/              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                    mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                }
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
              }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        }/* end age */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      }/* end mob */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    }else return -1;
      return 0;
   free_matrix(matcov,1,npar,1,npar);  }/* End movingaverage */
   free_vector(delti,1,npar);  
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   fprintf(fichtm,"\n</body>");    /* proj1, year, month, day of starting projection 
   fclose(fichtm);       agemin, agemax range of age
   fclose(ficgp);       dateprev1 dateprev2 range of dates during which prevalence is computed
         anproj2 year of en of projection (same day and month as proj1).
     */
   if(erreur >0){    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     printf("End of Imach with error or warning %d\n",erreur);    int *popage;
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    double agec; /* generic age */
   }else{    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
    printf("End of Imach\n");    double *popeffectif,*popcount;
    fprintf(ficlog,"End of Imach\n");    double ***p3mat;
   }    double ***mobaverage;
   printf("See log file on %s\n",filelog);    char fileresf[FILENAMELENGTH];
   fclose(ficlog);  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    agelim=AGESUP;
      prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   
   /*printf("Total time was %d uSec.\n", total_usecs);*/    strcpy(fileresf,"f"); 
   /*------ End -----------*/    strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
  end:      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 #ifdef windows    }
   /* chdir(pathcd);*/    printf("Computing forecasting: result on file '%s' \n", fileresf);
 #endif    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/    if (cptcoveff==0) ncodemax[cptcoveff]=1;
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    if (mobilav!=0) {
  strcpy(plotcmd,GNUPLOTPROGRAM);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  strcat(plotcmd," ");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
  strcat(plotcmd,optionfilegnuplot);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  system(plotcmd);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
 #ifdef windows    }
   while (z[0] != 'q') {  
     /* chdir(path); */    stepsize=(int) (stepm+YEARM-1)/YEARM;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    if (stepm<=12) stepsize=1;
     scanf("%s",z);    if(estepm < stepm){
     if (z[0] == 'c') system("./imach");      printf ("Problem %d lower than %d\n",estepm, stepm);
     else if (z[0] == 'e') system(optionfilehtm);    }
     else if (z[0] == 'g') system(plotcmd);    else  hstepm=estepm;   
     else if (z[0] == 'q') exit(0);  
   }    hstepm=hstepm/stepm; 
 #endif    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 }                                 fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /**< codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) 
                                  */
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.144


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>