Diff for /imach/src/imach.c between versions 1.6 and 1.144

version 1.6, 2001/05/02 17:47:10 version 1.144, 2014/02/10 22:17:31
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.144  2014/02/10 22:17:31  brouard
   individuals from different ages are interviewed on their health status    *** empty log message ***
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.143  2014/01/26 09:45:38  brouard
   Health expectancies are computed from the transistions observed between    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   reach the Maximum Likelihood of the parameters involved in the model.    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.142  2014/01/26 03:57:36  brouard
   to be observed in state i at the first wave. Therefore the model is:    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   age", you should modify the program where the markup  
     *Covariates have to be included here again* invites you to do it.    Revision 1.141  2014/01/26 02:42:01  brouard
   More covariates you add, less is the speed of the convergence.    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
   The advantage that this computer programme claims, comes from that if the    Revision 1.140  2011/09/02 10:37:54  brouard
   delay between waves is not identical for each individual, or if some    Summary: times.h is ok with mingw32 now.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.139  2010/06/14 07:50:17  brouard
   hPijx is the probability to be    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   observed in state i at age x+h conditional to the observed state i at age    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.138  2010/04/30 18:19:40  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    *** empty log message ***
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
   Also this programme outputs the covariance matrix of the parameters but also    than V1+V2. A lot of change to be done. Unstable.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.136  2010/04/26 20:30:53  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): merging some libgsl code. Fixing computation
            Institut national d'études démographiques, Paris.    of likelione (using inter/intrapolation if mle = 0) in order to
   This software have been partly granted by Euro-REVES, a concerted action    get same likelihood as if mle=1.
   from the European Union.    Some cleaning of code and comments added.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.135  2009/10/29 15:33:14  brouard
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   **********************************************************************/  
      Revision 1.134  2009/10/29 13:18:53  brouard
 #include <math.h>    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.133  2009/07/06 10:21:25  brouard
 #include <unistd.h>    just nforces
   
 #define MAXLINE 256    Revision 1.132  2009/07/06 08:22:05  brouard
 #define FILENAMELENGTH 80    Many tings
 /*#define DEBUG*/  
 #define windows    Revision 1.131  2009/06/20 16:22:47  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Some dimensions resccaled
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.130  2009/05/26 06:44:34  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Max Covariate is now set to 20 instead of 8. A
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.129  2007/08/31 13:49:27  lievre
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.128  2006/06/30 13:02:05  brouard
 #define YEARM 12. /* Number of months per year */    (Module): Clarifications on computing e.j
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 int nvar;    loop. Now we define nhstepma in the age loop.
 static int cptcov;    (Module): In order to speed up (in case of numerous covariates) we
 int cptcovn, cptcovage=0;    compute health expectancies (without variances) in a first step
 int npar=NPARMAX;    and then all the health expectancies with variances or standard
 int nlstate=2; /* Number of live states */    deviation (needs data from the Hessian matrices) which slows the
 int ndeath=1; /* Number of dead states */    computation.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.126  2006/04/28 17:23:28  brouard
 int mle, weightopt;    (Module): Yes the sum of survivors was wrong since
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    imach-114 because nhstepm was no more computed in the age
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    loop. Now we define nhstepma in the age loop.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Version 0.98h
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    Revision 1.125  2006/04/04 15:20:31  lievre
 FILE *ficgp, *fichtm;    Errors in calculation of health expectancies. Age was not initialized.
 FILE *ficreseij;    Forecasting file added.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.124  2006/03/22 17:13:53  lievre
   char fileresv[FILENAMELENGTH];    Parameters are printed with %lf instead of %f (more numbers after the comma).
  FILE  *ficresvpl;    The log-likelihood is printed in the log file
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.123  2006/03/20 10:52:43  brouard
 #define NR_END 1    * imach.c (Module): <title> changed, corresponds to .htm file
 #define FREE_ARG char*    name. <head> headers where missing.
 #define FTOL 1.0e-10  
     * imach.c (Module): Weights can have a decimal point as for
 #define NRANSI    English (a comma might work with a correct LC_NUMERIC environment,
 #define ITMAX 200    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 #define TOL 2.0e-4    1.
     Version 0.98g
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.122  2006/03/20 09:45:41  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 #define GOLD 1.618034    otherwise the weight is truncated).
 #define GLIMIT 100.0    Modification of warning when the covariates values are not 0 or
 #define TINY 1.0e-20    1.
     Version 0.98g
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.121  2006/03/16 17:45:01  lievre
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Module): Comments concerning covariates added
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    * imach.c (Module): refinements in the computation of lli if
 #define rint(a) floor(a+0.5)    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.120  2006/03/16 15:10:38  lievre
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 int imx;    not 1 month. Version 0.98f
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
 int m,nb;    computed as likelihood omitting the logarithm. Version O.98e
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.118  2006/03/14 18:20:07  brouard
 double **pmmij;    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 double *weight;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int **s; /* Status */    (Module): Function pstamp added
 double *agedc, **covar, idx;    (Module): Version 0.98d
 int **nbcode, *Tcode, *Tvar, **codtab;  
     Revision 1.117  2006/03/14 17:16:22  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Module): varevsij Comments added explaining the second
 double ftolhess; /* Tolerance for computing hessian */    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 static  int split( char *path, char *dirc, char *name )    (Module): Version 0.98d
 {  
    char *s;                             /* pointer */    Revision 1.116  2006/03/06 10:29:27  brouard
    int  l1, l2;                         /* length counters */    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.115  2006/02/27 12:17:45  brouard
    s = strrchr( path, '\\' );           /* find last / */    (Module): One freematrix added in mlikeli! 0.98c
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.114  2006/02/26 12:57:58  brouard
       extern char       *getwd( );    (Module): Some improvements in processing parameter
     filename with strsep.
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.113  2006/02/24 14:20:24  brouard
       extern char       *getcwd( );    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    allocation too.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.112  2006/01/30 09:55:26  brouard
       }    (Module): Back to gnuplot.exe instead of wgnuplot.exe
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.111  2006/01/25 20:38:18  brouard
       s++;                              /* after this, the filename */    (Module): Lots of cleaning and bugs added (Gompertz)
       l2 = strlen( s );                 /* length of filename */    (Module): Comments can be added in data file. Missing date values
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    can be a simple dot '.'.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.110  2006/01/25 00:51:50  brouard
       dirc[l1-l2] = 0;                  /* add zero */    (Module): Lots of cleaning and bugs added (Gompertz)
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.109  2006/01/24 19:37:15  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Module): Comments (lines starting with a #) are allowed in data.
    return( 0 );                         /* we're done */  
 }    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
     To be fixed
 /******************************************/  
     Revision 1.107  2006/01/19 16:20:37  brouard
 void replace(char *s, char*t)    Test existence of gnuplot in imach path
 {  
   int i;    Revision 1.106  2006/01/19 13:24:36  brouard
   int lg=20;    Some cleaning and links added in html output
   i=0;  
   lg=strlen(t);    Revision 1.105  2006/01/05 20:23:19  lievre
   for(i=0; i<= lg; i++) {    *** empty log message ***
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.104  2005/09/30 16:11:43  lievre
   }    (Module): sump fixed, loop imx fixed, and simplifications.
 }    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 int nbocc(char *s, char occ)    (instead of missing=-1 in earlier versions) and his/her
 {    contributions to the likelihood is 1 - Prob of dying from last
   int i,j=0;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   int lg=20;    the healthy state at last known wave). Version is 0.98
   i=0;  
   lg=strlen(s);    Revision 1.103  2005/09/30 15:54:49  lievre
   for(i=0; i<= lg; i++) {    (Module): sump fixed, loop imx fixed, and simplifications.
   if  (s[i] == occ ) j++;  
   }    Revision 1.102  2004/09/15 17:31:30  brouard
   return j;    Add the possibility to read data file including tab characters.
 }  
     Revision 1.101  2004/09/15 10:38:38  brouard
 void cutv(char *u,char *v, char*t, char occ)    Fix on curr_time
 {  
   int i,lg,j,p=0;    Revision 1.100  2004/07/12 18:29:06  brouard
   i=0;    Add version for Mac OS X. Just define UNIX in Makefile
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.99  2004/06/05 08:57:40  brouard
   }    *** empty log message ***
   
   lg=strlen(t);    Revision 1.98  2004/05/16 15:05:56  brouard
   for(j=0; j<p; j++) {    New version 0.97 . First attempt to estimate force of mortality
     (u[j] = t[j]);    directly from the data i.e. without the need of knowing the health
   }    state at each age, but using a Gompertz model: log u =a + b*age .
      u[p]='\0';    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
    for(j=0; j<= lg; j++) {    cross-longitudinal survey is different from the mortality estimated
     if (j>=(p+1))(v[j-p-1] = t[j]);    from other sources like vital statistic data.
   }  
 }    The same imach parameter file can be used but the option for mle should be -3.
   
 /********************** nrerror ********************/    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 void nrerror(char error_text[])  
 {    The output is very simple: only an estimate of the intercept and of
   fprintf(stderr,"ERREUR ...\n");    the slope with 95% confident intervals.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Current limitations:
 }    A) Even if you enter covariates, i.e. with the
 /*********************** vector *******************/    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 double *vector(int nl, int nh)    B) There is no computation of Life Expectancy nor Life Table.
 {  
   double *v;    Revision 1.97  2004/02/20 13:25:42  lievre
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Version 0.96d. Population forecasting command line is (temporarily)
   if (!v) nrerror("allocation failure in vector");    suppressed.
   return v-nl+NR_END;  
 }    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 /************************ free vector ******************/    rewritten within the same printf. Workaround: many printfs.
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.95  2003/07/08 07:54:34  brouard
   free((FREE_ARG)(v+nl-NR_END));    * imach.c (Repository):
 }    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.94  2003/06/27 13:00:02  brouard
 {    Just cleaning
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.93  2003/06/25 16:33:55  brouard
   if (!v) nrerror("allocation failure in ivector");    (Module): On windows (cygwin) function asctime_r doesn't
   return v-nl+NR_END;    exist so I changed back to asctime which exists.
 }    (Module): Version 0.96b
   
 /******************free ivector **************************/    Revision 1.92  2003/06/25 16:30:45  brouard
 void free_ivector(int *v, long nl, long nh)    (Module): On windows (cygwin) function asctime_r doesn't
 {    exist so I changed back to asctime which exists.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 /******************* imatrix *******************************/    (Repository): Elapsed time after each iteration is now output. It
 int **imatrix(long nrl, long nrh, long ncl, long nch)    helps to forecast when convergence will be reached. Elapsed time
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    is stamped in powell.  We created a new html file for the graphs
 {    concerning matrix of covariance. It has extension -cov.htm.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.90  2003/06/24 12:34:15  brouard
      (Module): Some bugs corrected for windows. Also, when
   /* allocate pointers to rows */    mle=-1 a template is output in file "or"mypar.txt with the design
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    of the covariance matrix to be input.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.89  2003/06/24 12:30:52  brouard
   m -= nrl;    (Module): Some bugs corrected for windows. Also, when
      mle=-1 a template is output in file "or"mypar.txt with the design
      of the covariance matrix to be input.
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Revision 1.88  2003/06/23 17:54:56  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.87  2003/06/18 12:26:01  brouard
      Version 0.96
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.86  2003/06/17 20:04:08  brouard
   /* return pointer to array of pointers to rows */    (Module): Change position of html and gnuplot routines and added
   return m;    routine fileappend.
 }  
     Revision 1.85  2003/06/17 13:12:43  brouard
 /****************** free_imatrix *************************/    * imach.c (Repository): Check when date of death was earlier that
 void free_imatrix(m,nrl,nrh,ncl,nch)    current date of interview. It may happen when the death was just
       int **m;    prior to the death. In this case, dh was negative and likelihood
       long nch,ncl,nrh,nrl;    was wrong (infinity). We still send an "Error" but patch by
      /* free an int matrix allocated by imatrix() */    assuming that the date of death was just one stepm after the
 {    interview.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    (Repository): Because some people have very long ID (first column)
   free((FREE_ARG) (m+nrl-NR_END));    we changed int to long in num[] and we added a new lvector for
 }    memory allocation. But we also truncated to 8 characters (left
     truncation)
 /******************* matrix *******************************/    (Repository): No more line truncation errors.
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.84  2003/06/13 21:44:43  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    * imach.c (Repository): Replace "freqsummary" at a correct
   double **m;    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    parcimony.
   if (!m) nrerror("allocation failure 1 in matrix()");    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   m += NR_END;  
   m -= nrl;    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.82  2003/06/05 15:57:20  brouard
   m[nrl] += NR_END;    Add log in  imach.c and  fullversion number is now printed.
   m[nrl] -= ncl;  
   */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /*
   return m;     Interpolated Markov Chain
 }  
     Short summary of the programme:
 /*************************free matrix ************************/    
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    This program computes Healthy Life Expectancies from
 {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    first survey ("cross") where individuals from different ages are
   free((FREE_ARG)(m+nrl-NR_END));    interviewed on their health status or degree of disability (in the
 }    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 /******************* ma3x *******************************/    (if any) in individual health status.  Health expectancies are
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    computed from the time spent in each health state according to a
 {    model. More health states you consider, more time is necessary to reach the
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Maximum Likelihood of the parameters involved in the model.  The
   double ***m;    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    conditional to be observed in state i at the first wave. Therefore
   if (!m) nrerror("allocation failure 1 in matrix()");    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m += NR_END;    'age' is age and 'sex' is a covariate. If you want to have a more
   m -= nrl;    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    you to do it.  More covariates you add, slower the
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    convergence.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    account using an interpolation or extrapolation.  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    hPijx is the probability to be observed in state i at age x+h
   m[nrl][ncl] -= nll;    conditional to the observed state i at age x. The delay 'h' can be
   for (j=ncl+1; j<=nch; j++)    split into an exact number (nh*stepm) of unobserved intermediate
     m[nrl][j]=m[nrl][j-1]+nlay;    states. This elementary transition (by month, quarter,
      semester or year) is modelled as a multinomial logistic.  The hPx
   for (i=nrl+1; i<=nrh; i++) {    matrix is simply the matrix product of nh*stepm elementary matrices
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    and the contribution of each individual to the likelihood is simply
     for (j=ncl+1; j<=nch; j++)    hPijx.
       m[i][j]=m[i][j-1]+nlay;  
   }    Also this programme outputs the covariance matrix of the parameters but also
   return m;    of the life expectancies. It also computes the period (stable) prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /*************************free ma3x ************************/             Institut national d'études démographiques, Paris.
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    It is copyrighted identically to a GNU software product, ie programme and
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    software can be distributed freely for non commercial use. Latest version
   free((FREE_ARG)(m+nrl-NR_END));    can be accessed at http://euroreves.ined.fr/imach .
 }  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /***************** f1dim *************************/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 extern int ncom;    
 extern double *pcom,*xicom;    **********************************************************************/
 extern double (*nrfunc)(double []);  /*
      main
 double f1dim(double x)    read parameterfile
 {    read datafile
   int j;    concatwav
   double f;    freqsummary
   double *xt;    if (mle >= 1)
        mlikeli
   xt=vector(1,ncom);    print results files
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    if mle==1 
   f=(*nrfunc)(xt);       computes hessian
   free_vector(xt,1,ncom);    read end of parameter file: agemin, agemax, bage, fage, estepm
   return f;        begin-prev-date,...
 }    open gnuplot file
     open html file
 /*****************brent *************************/    period (stable) prevalence
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)     for age prevalim()
 {    h Pij x
   int iter;    variance of p varprob
   double a,b,d,etemp;    forecasting if prevfcast==1 prevforecast call prevalence()
   double fu,fv,fw,fx;    health expectancies
   double ftemp;    Variance-covariance of DFLE
   double p,q,r,tol1,tol2,u,v,w,x,xm;    prevalence()
   double e=0.0;     movingaverage()
      varevsij() 
   a=(ax < cx ? ax : cx);    if popbased==1 varevsij(,popbased)
   b=(ax > cx ? ax : cx);    total life expectancies
   x=w=v=bx;    Variance of period (stable) prevalence
   fw=fv=fx=(*f)(x);   end
   for (iter=1;iter<=ITMAX;iter++) {  */
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);   
 #ifdef DEBUG  #include <math.h>
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #include <stdio.h>
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #include <stdlib.h>
 #endif  #include <string.h>
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #include <unistd.h>
       *xmin=x;  
       return fx;  #include <limits.h>
     }  #include <sys/types.h>
     ftemp=fu;  #include <sys/stat.h>
     if (fabs(e) > tol1) {  #include <errno.h>
       r=(x-w)*(fx-fv);  extern int errno;
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  #ifdef LINUX
       q=2.0*(q-r);  #include <time.h>
       if (q > 0.0) p = -p;  #include "timeval.h"
       q=fabs(q);  #else
       etemp=e;  #include <sys/time.h>
       e=d;  #endif
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #ifdef GSL
       else {  #include <gsl/gsl_errno.h>
         d=p/q;  #include <gsl/gsl_multimin.h>
         u=x+d;  #endif
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  /* #include <libintl.h> */
       }  /* #define _(String) gettext (String) */
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define GNUPLOTPROGRAM "gnuplot"
     fu=(*f)(u);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     if (fu <= fx) {  #define FILENAMELENGTH 132
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
         SHFT(fv,fw,fx,fu)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
         } else {  
           if (u < x) a=u; else b=u;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
           if (fu <= fw || w == x) {  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
             v=w;  
             w=u;  #define NINTERVMAX 8
             fv=fw;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
             fw=fu;  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
           } else if (fu <= fv || v == x || v == w) {  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
             v=u;  #define MAXN 20000
             fv=fu;  #define YEARM 12. /**< Number of months per year */
           }  #define AGESUP 130
         }  #define AGEBASE 40
   }  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
   nrerror("Too many iterations in brent");  #ifdef UNIX
   *xmin=x;  #define DIRSEPARATOR '/'
   return fx;  #define CHARSEPARATOR "/"
 }  #define ODIRSEPARATOR '\\'
   #else
 /****************** mnbrak ***********************/  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define ODIRSEPARATOR '/'
             double (*func)(double))  #endif
 {  
   double ulim,u,r,q, dum;  /* $Id$ */
   double fu;  /* $State$ */
    
   *fa=(*func)(*ax);  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
   *fb=(*func)(*bx);  char fullversion[]="$Revision$ $Date$"; 
   if (*fb > *fa) {  char strstart[80];
     SHFT(dum,*ax,*bx,dum)  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       SHFT(dum,*fb,*fa,dum)  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       }  int nvar=0, nforce=0; /* Number of variables, number of forces */
   *cx=(*bx)+GOLD*(*bx-*ax);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
   *fc=(*func)(*cx);  int npar=NPARMAX;
   while (*fb > *fc) {  int nlstate=2; /* Number of live states */
     r=(*bx-*ax)*(*fb-*fc);  int ndeath=1; /* Number of dead states */
     q=(*bx-*cx)*(*fb-*fa);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int popbased=0;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int *wav; /* Number of waves for this individuual 0 is possible */
     if ((*bx-u)*(u-*cx) > 0.0) {  int maxwav=0; /* Maxim number of waves */
       fu=(*func)(u);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       fu=(*func)(u);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       if (fu < *fc) {                     to the likelihood and the sum of weights (done by funcone)*/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  int mle=1, weightopt=0;
           SHFT(*fb,*fc,fu,(*func)(u))  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
           }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       u=ulim;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       fu=(*func)(u);  double jmean=1; /* Mean space between 2 waves */
     } else {  double **oldm, **newm, **savm; /* Working pointers to matrices */
       u=(*cx)+GOLD*(*cx-*bx);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       fu=(*func)(u);  /*FILE *fic ; */ /* Used in readdata only */
     }  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     SHFT(*ax,*bx,*cx,u)  FILE *ficlog, *ficrespow;
       SHFT(*fa,*fb,*fc,fu)  int globpr=0; /* Global variable for printing or not */
       }  double fretone; /* Only one call to likelihood */
 }  long ipmx=0; /* Number of contributions */
   double sw; /* Sum of weights */
 /*************** linmin ************************/  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 int ncom;  FILE *ficresilk;
 double *pcom,*xicom;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 double (*nrfunc)(double []);  FILE *ficresprobmorprev;
    FILE *fichtm, *fichtmcov; /* Html File */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   double brent(double ax, double bx, double cx,  FILE *ficresstdeij;
                double (*f)(double), double tol, double *xmin);  char fileresstde[FILENAMELENGTH];
   double f1dim(double x);  FILE *ficrescveij;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  char filerescve[FILENAMELENGTH];
               double *fc, double (*func)(double));  FILE  *ficresvij;
   int j;  char fileresv[FILENAMELENGTH];
   double xx,xmin,bx,ax;  FILE  *ficresvpl;
   double fx,fb,fa;  char fileresvpl[FILENAMELENGTH];
    char title[MAXLINE];
   ncom=n;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   pcom=vector(1,n);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   xicom=vector(1,n);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   nrfunc=func;  char command[FILENAMELENGTH];
   for (j=1;j<=n;j++) {  int  outcmd=0;
     pcom[j]=p[j];  
     xicom[j]=xi[j];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   }  
   ax=0.0;  char filelog[FILENAMELENGTH]; /* Log file */
   xx=1.0;  char filerest[FILENAMELENGTH];
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  char fileregp[FILENAMELENGTH];
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  char popfile[FILENAMELENGTH];
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 #endif  
   for (j=1;j<=n;j++) {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     xi[j] *= xmin;  struct timezone tzp;
     p[j] += xi[j];  extern int gettimeofday();
   }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   free_vector(xicom,1,n);  long time_value;
   free_vector(pcom,1,n);  extern long time();
 }  char strcurr[80], strfor[80];
   
 /*************** powell ************************/  char *endptr;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  long lval;
             double (*func)(double []))  double dval;
 {  
   void linmin(double p[], double xi[], int n, double *fret,  #define NR_END 1
               double (*func)(double []));  #define FREE_ARG char*
   int i,ibig,j;  #define FTOL 1.0e-10
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  #define NRANSI 
   double *xits;  #define ITMAX 200 
   pt=vector(1,n);  
   ptt=vector(1,n);  #define TOL 2.0e-4 
   xit=vector(1,n);  
   xits=vector(1,n);  #define CGOLD 0.3819660 
   *fret=(*func)(p);  #define ZEPS 1.0e-10 
   for (j=1;j<=n;j++) pt[j]=p[j];  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  #define GOLD 1.618034 
     ibig=0;  #define GLIMIT 100.0 
     del=0.0;  #define TINY 1.0e-20 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  static double maxarg1,maxarg2;
       printf(" %d %.12f",i, p[i]);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     printf("\n");  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     for (i=1;i<=n;i++) {    
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       fptt=(*fret);  #define rint(a) floor(a+0.5)
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  static double sqrarg;
 #endif  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       printf("%d",i);fflush(stdout);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       linmin(p,xit,n,fret,func);  int agegomp= AGEGOMP;
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  int imx; 
         ibig=i;  int stepm=1;
       }  /* Stepm, step in month: minimum step interpolation*/
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  int estepm;
       for (j=1;j<=n;j++) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  int m,nb;
       }  long *num;
       for(j=1;j<=n;j++)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
         printf(" p=%.12e",p[j]);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       printf("\n");  double **pmmij, ***probs;
 #endif  double *ageexmed,*agecens;
     }  double dateintmean=0;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  double *weight;
       int k[2],l;  int **s; /* Status */
       k[0]=1;  double *agedc;
       k[1]=-1;  double  **covar; /**< covar[i,j], value of jth covariate for individual i,
       printf("Max: %.12e",(*func)(p));                    * covar=matrix(0,NCOVMAX,1,n); 
       for (j=1;j<=n;j++)                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
         printf(" %.12e",p[j]);  double  idx; 
       printf("\n");  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       for(l=0;l<=1;l++) {  int **codtab; /**< codtab=imatrix(1,100,1,10); */
         for (j=1;j<=n;j++) {  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  double *lsurv, *lpop, *tpop;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  double ftolhess; /**< Tolerance for computing hessian */
       }  
 #endif  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
       free_vector(xit,1,n);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       free_vector(xits,1,n);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       free_vector(ptt,1,n);    */ 
       free_vector(pt,1,n);    char  *ss;                            /* pointer */
       return;    int   l1, l2;                         /* length counters */
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    l1 = strlen(path );                   /* length of path */
     for (j=1;j<=n;j++) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       ptt[j]=2.0*p[j]-pt[j];    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       xit[j]=p[j]-pt[j];    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       pt[j]=p[j];      strcpy( name, path );               /* we got the fullname name because no directory */
     }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     fptt=(*func)(ptt);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     if (fptt < fp) {      /* get current working directory */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      /*    extern  char* getcwd ( char *buf , int len);*/
       if (t < 0.0) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         linmin(p,xit,n,fret,func);        return( GLOCK_ERROR_GETCWD );
         for (j=1;j<=n;j++) {      }
           xi[j][ibig]=xi[j][n];      /* got dirc from getcwd*/
           xi[j][n]=xit[j];      printf(" DIRC = %s \n",dirc);
         }    } else {                              /* strip direcotry from path */
 #ifdef DEBUG      ss++;                               /* after this, the filename */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      l2 = strlen( ss );                  /* length of filename */
         for(j=1;j<=n;j++)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
           printf(" %.12e",xit[j]);      strcpy( name, ss );         /* save file name */
         printf("\n");      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 #endif      dirc[l1-l2] = 0;                    /* add zero */
       }      printf(" DIRC2 = %s \n",dirc);
     }    }
   }    /* We add a separator at the end of dirc if not exists */
 }    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
 /**** Prevalence limit ****************/      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      printf(" DIRC3 = %s \n",dirc);
 {    }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    ss = strrchr( name, '.' );            /* find last / */
      matrix by transitions matrix until convergence is reached */    if (ss >0){
       ss++;
   int i, ii,j,k;      strcpy(ext,ss);                     /* save extension */
   double min, max, maxmin, maxmax,sumnew=0.;      l1= strlen( name);
   double **matprod2();      l2= strlen(ss)+1;
   double **out, cov[NCOVMAX], **pmij();      strncpy( finame, name, l1-l2);
   double **newm;      finame[l1-l2]= 0;
   double agefin, delaymax=50 ; /* Max number of years to converge */    }
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    return( 0 );                          /* we're done */
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  
   /******************************************/
    cov[1]=1.;  
    void replace_back_to_slash(char *s, char*t)
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  {
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    int i;
     newm=savm;    int lg=0;
     /* Covariates have to be included here again */    i=0;
      cov[2]=agefin;    lg=strlen(t);
      for(i=0; i<= lg; i++) {
       for (k=1; k<=cptcovn;k++) {      (s[i] = t[i]);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];      if (t[i]== '\\') s[i]='/';
     }
 /*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/  }
       }  
       for (k=1; k<=cptcovage;k++)  char *trimbb(char *out, char *in)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
        char *s;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    s=out;
     while (*in != '\0'){
     savm=oldm;      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     oldm=newm;        in++;
     maxmax=0.;      }
     for(j=1;j<=nlstate;j++){      *out++ = *in++;
       min=1.;    }
       max=0.;    *out='\0';
       for(i=1; i<=nlstate; i++) {    return s;
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  char *cutv(char *blocc, char *alocc, char *in, char occ)
         max=FMAX(max,prlim[i][j]);  {
         min=FMIN(min,prlim[i][j]);    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       }       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       maxmin=max-min;       gives blocc="abcdef2ghi" and alocc="j".
       maxmax=FMAX(maxmax,maxmin);       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     }    */
     if(maxmax < ftolpl){    char *s, *t;
       return prlim;    t=in;s=in;
     }    while (*in != '\0'){
   }      while( *in == occ){
 }        *blocc++ = *in++;
         s=in;
 /*************** transition probabilities **********/      }
       *blocc++ = *in++;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    }
 {    if (s == t) /* occ not found */
   double s1, s2;      *(blocc-(in-s))='\0';
   /*double t34;*/    else
   int i,j,j1, nc, ii, jj;      *(blocc-(in-s)-1)='\0';
     in=s;
     for(i=1; i<= nlstate; i++){    while ( *in != '\0'){
     for(j=1; j<i;j++){      *alocc++ = *in++;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    }
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    *alocc='\0';
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    return s;
       }  }
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  int nbocc(char *s, char occ)
     }  {
     for(j=i+1; j<=nlstate+ndeath;j++){    int i,j=0;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    int lg=20;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    i=0;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    lg=strlen(s);
       }    for(i=0; i<= lg; i++) {
       ps[i][j]=s2;    if  (s[i] == occ ) j++;
     }    }
   }    return j;
   for(i=1; i<= nlstate; i++){  }
      s1=0;  
     for(j=1; j<i; j++)  /* void cutv(char *u,char *v, char*t, char occ) */
       s1+=exp(ps[i][j]);  /* { */
     for(j=i+1; j<=nlstate+ndeath; j++)  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
       s1+=exp(ps[i][j]);  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
     ps[i][i]=1./(s1+1.);  /*      gives u="abcdef2ghi" and v="j" *\/ */
     for(j=1; j<i; j++)  /*   int i,lg,j,p=0; */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*   i=0; */
     for(j=i+1; j<=nlstate+ndeath; j++)  /*   lg=strlen(t); */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*   for(j=0; j<=lg-1; j++) { */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   } /* end i */  /*   } */
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /*   for(j=0; j<p; j++) { */
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*     (u[j] = t[j]); */
       ps[ii][jj]=0;  /*   } */
       ps[ii][ii]=1;  /*      u[p]='\0'; */
     }  
   }  /*    for(j=0; j<= lg; j++) { */
   /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /*   } */
     for(jj=1; jj<= nlstate+ndeath; jj++){  /* } */
      printf("%lf ",ps[ii][jj]);  
    }  /********************** nrerror ********************/
     printf("\n ");  
     }  void nrerror(char error_text[])
     printf("\n ");printf("%lf ",cov[2]);*/  {
 /*    fprintf(stderr,"ERREUR ...\n");
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    fprintf(stderr,"%s\n",error_text);
   goto end;*/    exit(EXIT_FAILURE);
     return ps;  }
 }  /*********************** vector *******************/
   double *vector(int nl, int nh)
 /**************** Product of 2 matrices ******************/  {
     double *v;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 {    if (!v) nrerror("allocation failure in vector");
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    return v-nl+NR_END;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  }
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /************************ free vector ******************/
      a pointer to pointers identical to out */  void free_vector(double*v, int nl, int nh)
   long i, j, k;  {
   for(i=nrl; i<= nrh; i++)    free((FREE_ARG)(v+nl-NR_END));
     for(k=ncolol; k<=ncoloh; k++)  }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   return out;  {
 }    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
 /************* Higher Matrix Product ***************/    return v-nl+NR_END;
   }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  /******************free ivector **************************/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  void free_ivector(int *v, long nl, long nh)
      duration (i.e. until  {
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    free((FREE_ARG)(v+nl-NR_END));
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  }
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  /************************lvector *******************************/
      included manually here.  long *lvector(long nl,long nh)
   {
      */    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   int i, j, d, h, k;    if (!v) nrerror("allocation failure in ivector");
   double **out, cov[NCOVMAX];    return v-nl+NR_END;
   double **newm;  }
   
   /* Hstepm could be zero and should return the unit matrix */  /******************free lvector **************************/
   for (i=1;i<=nlstate+ndeath;i++)  void free_lvector(long *v, long nl, long nh)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[i][j]=(i==j ? 1.0 : 0.0);    free((FREE_ARG)(v+nl-NR_END));
       po[i][j][0]=(i==j ? 1.0 : 0.0);  }
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /******************* imatrix *******************************/
   for(h=1; h <=nhstepm; h++){  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     for(d=1; d <=hstepm; d++){       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       newm=savm;  { 
       /* Covariates have to be included here again */    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       cov[1]=1.;    int **m; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    
       if (cptcovn>0){    /* allocate pointers to rows */ 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    m += NR_END; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    m -= nrl; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    
       savm=oldm;    /* allocate rows and set pointers to them */ 
       oldm=newm;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     for(i=1; i<=nlstate+ndeath; i++)    m[nrl] += NR_END; 
       for(j=1;j<=nlstate+ndeath;j++) {    m[nrl] -= ncl; 
         po[i][j][h]=newm[i][j];    
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
          */    
       }    /* return pointer to array of pointers to rows */ 
   } /* end h */    return m; 
   return po;  } 
 }  
   /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 /*************** log-likelihood *************/        int **m;
 double func( double *x)        long nch,ncl,nrh,nrl; 
 {       /* free an int matrix allocated by imatrix() */ 
   int i, ii, j, k, mi, d, kk;  { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double **out;    free((FREE_ARG) (m+nrl-NR_END)); 
   double sw; /* Sum of weights */  } 
   double lli; /* Individual log likelihood */  
   long ipmx;  /******************* matrix *******************************/
   /*extern weight */  double **matrix(long nrl, long nrh, long ncl, long nch)
   /* We are differentiating ll according to initial status */  {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   /*for(i=1;i<imx;i++)    double **m;
 printf(" %d\n",s[4][i]);  
   */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   cov[1]=1.;    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    m -= nrl;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
        for(mi=1; mi<= wav[i]-1; mi++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       for (ii=1;ii<=nlstate+ndeath;ii++)    m[nrl] += NR_END;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m[nrl] -= ncl;
             for(d=0; d<dh[mi][i]; d++){  
               newm=savm;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    return m;
               for (kk=1; kk<=cptcovage;kk++) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];     */
                  /*printf("%d %d",kk,Tage[kk]);*/  }
               }  
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/  /*************************free matrix ************************/
               /*cov[3]=pow(cov[2],2)/1000.;*/  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    free((FREE_ARG)(m[nrl]+ncl-NR_END));
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    free((FREE_ARG)(m+nrl-NR_END));
           savm=oldm;  }
           oldm=newm;  
   /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       } /* end mult */  {
        long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    double ***m;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       sw += weight[i];    if (!m) nrerror("allocation failure 1 in matrix()");
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    m += NR_END;
     } /* end of wave */    m -= nrl;
   } /* end of individual */  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    m[nrl] += NR_END;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    m[nrl] -= ncl;
   return -l;  
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 /*********** Maximum Likelihood Estimation ***************/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    m[nrl][ncl] -= nll;
 {    for (j=ncl+1; j<=nch; j++) 
   int i,j, iter;      m[nrl][j]=m[nrl][j-1]+nlay;
   double **xi,*delti;    
   double fret;    for (i=nrl+1; i<=nrh; i++) {
   xi=matrix(1,npar,1,npar);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   for (i=1;i<=npar;i++)      for (j=ncl+1; j<=nch; j++) 
     for (j=1;j<=npar;j++)        m[i][j]=m[i][j-1]+nlay;
       xi[i][j]=(i==j ? 1.0 : 0.0);    }
   printf("Powell\n");    return m; 
   powell(p,xi,npar,ftol,&iter,&fret,func);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  }
   
 }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 /**** Computes Hessian and covariance matrix ***/  {
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double  **a,**y,*x,pd;    free((FREE_ARG)(m+nrl-NR_END));
   double **hess;  }
   int i, j,jk;  
   int *indx;  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
   double hessii(double p[], double delta, int theta, double delti[]);  {
   double hessij(double p[], double delti[], int i, int j);    /* Caution optionfilefiname is hidden */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    strcpy(tmpout,optionfilefiname);
   void ludcmp(double **a, int npar, int *indx, double *d) ;    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
     return tmpout;
   hess=matrix(1,npar,1,npar);  }
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*************** function subdirf2 ***********/
   for (i=1;i<=npar;i++){  char *subdirf2(char fileres[], char *preop)
     printf("%d",i);fflush(stdout);  {
     hess[i][i]=hessii(p,ftolhess,i,delti);    
     /*printf(" %f ",p[i]);*/    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   for (i=1;i<=npar;i++) {    strcat(tmpout,preop);
     for (j=1;j<=npar;j++)  {    strcat(tmpout,fileres);
       if (j>i) {    return tmpout;
         printf(".%d%d",i,j);fflush(stdout);  }
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];  /*************** function subdirf3 ***********/
       }  char *subdirf3(char fileres[], char *preop, char *preop2)
     }  {
   }    
   printf("\n");    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    strcat(tmpout,"/");
      strcat(tmpout,preop);
   a=matrix(1,npar,1,npar);    strcat(tmpout,preop2);
   y=matrix(1,npar,1,npar);    strcat(tmpout,fileres);
   x=vector(1,npar);    return tmpout;
   indx=ivector(1,npar);  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  /***************** f1dim *************************/
   ludcmp(a,npar,indx,&pd);  extern int ncom; 
   extern double *pcom,*xicom;
   for (j=1;j<=npar;j++) {  extern double (*nrfunc)(double []); 
     for (i=1;i<=npar;i++) x[i]=0;   
     x[j]=1;  double f1dim(double x) 
     lubksb(a,npar,indx,x);  { 
     for (i=1;i<=npar;i++){    int j; 
       matcov[i][j]=x[i];    double f;
     }    double *xt; 
   }   
     xt=vector(1,ncom); 
   printf("\n#Hessian matrix#\n");    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   for (i=1;i<=npar;i++) {    f=(*nrfunc)(xt); 
     for (j=1;j<=npar;j++) {    free_vector(xt,1,ncom); 
       printf("%.3e ",hess[i][j]);    return f; 
     }  } 
     printf("\n");  
   }  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   /* Recompute Inverse */  { 
   for (i=1;i<=npar;i++)    int iter; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double a,b,d,etemp;
   ludcmp(a,npar,indx,&pd);    double fu,fv,fw,fx;
     double ftemp;
   /*  printf("\n#Hessian matrix recomputed#\n");    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
   for (j=1;j<=npar;j++) {   
     for (i=1;i<=npar;i++) x[i]=0;    a=(ax < cx ? ax : cx); 
     x[j]=1;    b=(ax > cx ? ax : cx); 
     lubksb(a,npar,indx,x);    x=w=v=bx; 
     for (i=1;i<=npar;i++){    fw=fv=fx=(*f)(x); 
       y[i][j]=x[i];    for (iter=1;iter<=ITMAX;iter++) { 
       printf("%.3e ",y[i][j]);      xm=0.5*(a+b); 
     }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     printf("\n");      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   }      printf(".");fflush(stdout);
   */      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
   free_matrix(a,1,npar,1,npar);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   free_matrix(y,1,npar,1,npar);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   free_vector(x,1,npar);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   free_ivector(indx,1,npar);  #endif
   free_matrix(hess,1,npar,1,npar);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
         return fx; 
 }      } 
       ftemp=fu;
 /*************** hessian matrix ****************/      if (fabs(e) > tol1) { 
 double hessii( double x[], double delta, int theta, double delti[])        r=(x-w)*(fx-fv); 
 {        q=(x-v)*(fx-fw); 
   int i;        p=(x-v)*q-(x-w)*r; 
   int l=1, lmax=20;        q=2.0*(q-r); 
   double k1,k2;        if (q > 0.0) p = -p; 
   double p2[NPARMAX+1];        q=fabs(q); 
   double res;        etemp=e; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        e=d; 
   double fx;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   int k=0,kmax=10;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double l1;        else { 
           d=p/q; 
   fx=func(x);          u=x+d; 
   for (i=1;i<=npar;i++) p2[i]=x[i];          if (u-a < tol2 || b-u < tol2) 
   for(l=0 ; l <=lmax; l++){            d=SIGN(tol1,xm-x); 
     l1=pow(10,l);        } 
     delts=delt;      } else { 
     for(k=1 ; k <kmax; k=k+1){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       delt = delta*(l1*k);      } 
       p2[theta]=x[theta] +delt;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       k1=func(p2)-fx;      fu=(*f)(u); 
       p2[theta]=x[theta]-delt;      if (fu <= fx) { 
       k2=func(p2)-fx;        if (u >= x) a=x; else b=x; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        SHFT(v,w,x,u) 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          SHFT(fv,fw,fx,fu) 
                } else { 
 #ifdef DEBUG            if (u < x) a=u; else b=u; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            if (fu <= fw || w == x) { 
 #endif              v=w; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */              w=u; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){              fv=fw; 
         k=kmax;              fw=fu; 
       }            } else if (fu <= fv || v == x || v == w) { 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */              v=u; 
         k=kmax; l=lmax*10.;              fv=fu; 
       }            } 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          } 
         delts=delt;    } 
       }    nrerror("Too many iterations in brent"); 
     }    *xmin=x; 
   }    return fx; 
   delti[theta]=delts;  } 
   return res;  
    /****************** mnbrak ***********************/
 }  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 double hessij( double x[], double delti[], int thetai,int thetaj)              double (*func)(double)) 
 {  { 
   int i;    double ulim,u,r,q, dum;
   int l=1, l1, lmax=20;    double fu; 
   double k1,k2,k3,k4,res,fx;   
   double p2[NPARMAX+1];    *fa=(*func)(*ax); 
   int k;    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   fx=func(x);      SHFT(dum,*ax,*bx,dum) 
   for (k=1; k<=2; k++) {        SHFT(dum,*fb,*fa,dum) 
     for (i=1;i<=npar;i++) p2[i]=x[i];        } 
     p2[thetai]=x[thetai]+delti[thetai]/k;    *cx=(*bx)+GOLD*(*bx-*ax); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    *fc=(*func)(*cx); 
     k1=func(p2)-fx;    while (*fb > *fc) { 
        r=(*bx-*ax)*(*fb-*fc); 
     p2[thetai]=x[thetai]+delti[thetai]/k;      q=(*bx-*cx)*(*fb-*fa); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     k2=func(p2)-fx;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
        ulim=(*bx)+GLIMIT*(*cx-*bx); 
     p2[thetai]=x[thetai]-delti[thetai]/k;      if ((*bx-u)*(u-*cx) > 0.0) { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fu=(*func)(u); 
     k3=func(p2)-fx;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
          fu=(*func)(u); 
     p2[thetai]=x[thetai]-delti[thetai]/k;        if (fu < *fc) { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     k4=func(p2)-fx;            SHFT(*fb,*fc,fu,(*func)(u)) 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            } 
 #ifdef DEBUG      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        u=ulim; 
 #endif        fu=(*func)(u); 
   }      } else { 
   return res;        u=(*cx)+GOLD*(*cx-*bx); 
 }        fu=(*func)(u); 
       } 
 /************** Inverse of matrix **************/      SHFT(*ax,*bx,*cx,u) 
 void ludcmp(double **a, int n, int *indx, double *d)        SHFT(*fa,*fb,*fc,fu) 
 {        } 
   int i,imax,j,k;  } 
   double big,dum,sum,temp;  
   double *vv;  /*************** linmin ************************/
    
   vv=vector(1,n);  int ncom; 
   *d=1.0;  double *pcom,*xicom;
   for (i=1;i<=n;i++) {  double (*nrfunc)(double []); 
     big=0.0;   
     for (j=1;j<=n;j++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       if ((temp=fabs(a[i][j])) > big) big=temp;  { 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double brent(double ax, double bx, double cx, 
     vv[i]=1.0/big;                 double (*f)(double), double tol, double *xmin); 
   }    double f1dim(double x); 
   for (j=1;j<=n;j++) {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     for (i=1;i<j;i++) {                double *fc, double (*func)(double)); 
       sum=a[i][j];    int j; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    double xx,xmin,bx,ax; 
       a[i][j]=sum;    double fx,fb,fa;
     }   
     big=0.0;    ncom=n; 
     for (i=j;i<=n;i++) {    pcom=vector(1,n); 
       sum=a[i][j];    xicom=vector(1,n); 
       for (k=1;k<j;k++)    nrfunc=func; 
         sum -= a[i][k]*a[k][j];    for (j=1;j<=n;j++) { 
       a[i][j]=sum;      pcom[j]=p[j]; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {      xicom[j]=xi[j]; 
         big=dum;    } 
         imax=i;    ax=0.0; 
       }    xx=1.0; 
     }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     if (j != imax) {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       for (k=1;k<=n;k++) {  #ifdef DEBUG
         dum=a[imax][k];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         a[imax][k]=a[j][k];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         a[j][k]=dum;  #endif
       }    for (j=1;j<=n;j++) { 
       *d = -(*d);      xi[j] *= xmin; 
       vv[imax]=vv[j];      p[j] += xi[j]; 
     }    } 
     indx[j]=imax;    free_vector(xicom,1,n); 
     if (a[j][j] == 0.0) a[j][j]=TINY;    free_vector(pcom,1,n); 
     if (j != n) {  } 
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  char *asc_diff_time(long time_sec, char ascdiff[])
     }  {
   }    long sec_left, days, hours, minutes;
   free_vector(vv,1,n);  /* Doesn't work */    days = (time_sec) / (60*60*24);
 ;    sec_left = (time_sec) % (60*60*24);
 }    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
 void lubksb(double **a, int n, int *indx, double b[])    minutes = (sec_left) /60;
 {    sec_left = (sec_left) % (60);
   int i,ii=0,ip,j;    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   double sum;    return ascdiff;
    }
   for (i=1;i<=n;i++) {  
     ip=indx[i];  /*************** powell ************************/
     sum=b[ip];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     b[ip]=b[i];              double (*func)(double [])) 
     if (ii)  { 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    void linmin(double p[], double xi[], int n, double *fret, 
     else if (sum) ii=i;                double (*func)(double [])); 
     b[i]=sum;    int i,ibig,j; 
   }    double del,t,*pt,*ptt,*xit;
   for (i=n;i>=1;i--) {    double fp,fptt;
     sum=b[i];    double *xits;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    int niterf, itmp;
     b[i]=sum/a[i][i];  
   }    pt=vector(1,n); 
 }    ptt=vector(1,n); 
     xit=vector(1,n); 
 /************ Frequencies ********************/    xits=vector(1,n); 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)    *fret=(*func)(p); 
 {  /* Some frequencies */    for (j=1;j<=n;j++) pt[j]=p[j]; 
      for (*iter=1;;++(*iter)) { 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      fp=(*fret); 
   double ***freq; /* Frequencies */      ibig=0; 
   double *pp;      del=0.0; 
   double pos;      last_time=curr_time;
   FILE *ficresp;      (void) gettimeofday(&curr_time,&tzp);
   char fileresp[FILENAMELENGTH];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   pp=vector(1,nlstate);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
      for (i=1;i<=n;i++) {
   strcpy(fileresp,"p");        printf(" %d %.12f",i, p[i]);
   strcat(fileresp,fileres);        fprintf(ficlog," %d %.12lf",i, p[i]);
   if((ficresp=fopen(fileresp,"w"))==NULL) {        fprintf(ficrespow," %.12lf", p[i]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);      }
     exit(0);      printf("\n");
   }      fprintf(ficlog,"\n");
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      fprintf(ficrespow,"\n");fflush(ficrespow);
   j1=0;      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   j=cptcovn;        strcpy(strcurr,asctime(&tm));
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
   for(k1=1; k1<=j;k1++){        itmp = strlen(strcurr);
    for(i1=1; i1<=ncodemax[k1];i1++){        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
        j1++;          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for (i=-1; i<=nlstate+ndeath; i++)          fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          for (jk=-1; jk<=nlstate+ndeath; jk++)          for(niterf=10;niterf<=30;niterf+=10){
            for(m=agemin; m <= agemax+3; m++)          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
              freq[i][jk][m]=0;          tmf = *localtime(&forecast_time.tv_sec);
          /*      asctime_r(&tmf,strfor); */
        for (i=1; i<=imx; i++) {          strcpy(strfor,asctime(&tmf));
          bool=1;          itmp = strlen(strfor);
          if  (cptcovn>0) {          if(strfor[itmp-1]=='\n')
            for (z1=1; z1<=cptcovn; z1++)          strfor[itmp-1]='\0';
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
          }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           if (bool==1) {        }
            for(m=firstpass; m<=lastpass-1; m++){      }
              if(agev[m][i]==0) agev[m][i]=agemax+1;      for (i=1;i<=n;i++) { 
              if(agev[m][i]==1) agev[m][i]=agemax+2;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        fptt=(*fret); 
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  #ifdef DEBUG
            }        printf("fret=%lf \n",*fret);
          }        fprintf(ficlog,"fret=%lf \n",*fret);
        }  #endif
         if  (cptcovn>0) {        printf("%d",i);fflush(stdout);
          fprintf(ficresp, "\n#Variable");        fprintf(ficlog,"%d",i);fflush(ficlog);
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);        linmin(p,xit,n,fret,func); 
        }        if (fabs(fptt-(*fret)) > del) { 
        fprintf(ficresp, "\n#");          del=fabs(fptt-(*fret)); 
        for(i=1; i<=nlstate;i++)          ibig=i; 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        } 
        fprintf(ficresp, "\n");  #ifdef DEBUG
                printf("%d %.12e",i,(*fret));
   for(i=(int)agemin; i <= (int)agemax+3; i++){        fprintf(ficlog,"%d %.12e",i,(*fret));
     if(i==(int)agemax+3)        for (j=1;j<=n;j++) {
       printf("Total");          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     else          printf(" x(%d)=%.12e",j,xit[j]);
       printf("Age %d", i);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for(jk=1; jk <=nlstate ; jk++){        }
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for(j=1;j<=n;j++) {
         pp[jk] += freq[jk][m][i];          printf(" p=%.12e",p[j]);
     }          fprintf(ficlog," p=%.12e",p[j]);
     for(jk=1; jk <=nlstate ; jk++){        }
       for(m=-1, pos=0; m <=0 ; m++)        printf("\n");
         pos += freq[jk][m][i];        fprintf(ficlog,"\n");
       if(pp[jk]>=1.e-10)  #endif
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      } 
       else      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  #ifdef DEBUG
     }        int k[2],l;
     for(jk=1; jk <=nlstate ; jk++){        k[0]=1;
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)        k[1]=-1;
         pp[jk] += freq[jk][m][i];        printf("Max: %.12e",(*func)(p));
     }        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for(jk=1,pos=0; jk <=nlstate ; jk++)        for (j=1;j<=n;j++) {
       pos += pp[jk];          printf(" %.12e",p[j]);
     for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog," %.12e",p[j]);
       if(pos>=1.e-5)        }
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        printf("\n");
       else        fprintf(ficlog,"\n");
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for(l=0;l<=1;l++) {
       if( i <= (int) agemax){          for (j=1;j<=n;j++) {
         if(pos>=1.e-5)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       else            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          }
       }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for(jk=-1; jk <=nlstate+ndeath; jk++)        }
       for(m=-1; m <=nlstate+ndeath; m++)  #endif
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
     if(i <= (int) agemax)  
       fprintf(ficresp,"\n");        free_vector(xit,1,n); 
     printf("\n");        free_vector(xits,1,n); 
     }        free_vector(ptt,1,n); 
     }        free_vector(pt,1,n); 
  }        return; 
        } 
   fclose(ficresp);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      for (j=1;j<=n;j++) { 
   free_vector(pp,1,nlstate);        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
 }  /* End of Freq */        pt[j]=p[j]; 
       } 
 /************* Waves Concatenation ***************/      fptt=(*func)(ptt); 
       if (fptt < fp) { 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 {        if (t < 0.0) { 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          linmin(p,xit,n,fret,func); 
      Death is a valid wave (if date is known).          for (j=1;j<=n;j++) { 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            xi[j][ibig]=xi[j][n]; 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            xi[j][n]=xit[j]; 
      and mw[mi+1][i]. dh depends on stepm.          }
      */  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int i, mi, m;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          for(j=1;j<=n;j++){
 float sum=0.;            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   for(i=1; i<=imx; i++){          }
     mi=0;          printf("\n");
     m=firstpass;          fprintf(ficlog,"\n");
     while(s[m][i] <= nlstate){  #endif
       if(s[m][i]>=1)        }
         mw[++mi][i]=m;      } 
       if(m >=lastpass)    } 
         break;  } 
       else  
         m++;  /**** Prevalence limit (stable or period prevalence)  ****************/
     }/* end while */  
     if (s[m][i] > nlstate){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       mi++;     /* Death is another wave */  {
       /* if(mi==0)  never been interviewed correctly before death */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
          /* Only death is a correct wave */       matrix by transitions matrix until convergence is reached */
       mw[mi][i]=m;  
     }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
     wav[i]=mi;    double **matprod2();
     if(mi==0)    double **out, cov[NCOVMAX+1], **pmij();
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    double **newm;
   }    double agefin, delaymax=50 ; /* Max number of years to converge */
   
   for(i=1; i<=imx; i++){    for (ii=1;ii<=nlstate+ndeath;ii++)
     for(mi=1; mi<wav[i];mi++){      for (j=1;j<=nlstate+ndeath;j++){
       if (stepm <=0)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         dh[mi][i]=1;      }
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {     cov[1]=1.;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);   
           if(j=0) j=1;  /* Survives at least one month after exam */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         else{      newm=savm;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      /* Covariates have to be included here again */
           k=k+1;      cov[2]=agefin;
           if (j >= jmax) jmax=j;      
           else if (j <= jmin)jmin=j;      for (k=1; k<=cptcovn;k++) {
           sum=sum+j;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         }        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         jk= j/stepm;      }
         jl= j -jk*stepm;      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         ju= j -(jk+1)*stepm;      for (k=1; k<=cptcovprod;k++)
         if(jl <= -ju)        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           dh[mi][i]=jk;      
         else      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           dh[mi][i]=jk+1;      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         if(dh[mi][i]==0)      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           dh[mi][i]=1; /* At least one step */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       }      
     }      savm=oldm;
   }      oldm=newm;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);      maxmax=0.;
 }      for(j=1;j<=nlstate;j++){
 /*********** Tricode ****************************/        min=1.;
 void tricode(int *Tvar, int **nbcode, int imx)        max=0.;
 {        for(i=1; i<=nlstate; i++) {
   int Ndum[80],ij=1, k, j, i, Ntvar[20];          sumnew=0;
   int cptcode=0;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for (k=0; k<79; k++) Ndum[k]=0;          prlim[i][j]= newm[i][j]/(1-sumnew);
   for (k=1; k<=7; k++) ncodemax[k]=0;          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
   for (j=1; j<=cptcovn; j++) {        }
     for (i=1; i<=imx; i++) {        maxmin=max-min;
       ij=(int)(covar[Tvar[j]][i]);        maxmax=FMAX(maxmax,maxmin);
       Ndum[ij]++;      }
       if (ij > cptcode) cptcode=ij;      if(maxmax < ftolpl){
     }        return prlim;
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/      }
     for (i=0; i<=cptcode; i++) {    }
       if(Ndum[i]!=0) ncodemax[j]++;  }
     }  
    /*************** transition probabilities ***************/ 
     ij=1;  
     for (i=1; i<=ncodemax[j]; i++) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for (k=0; k<=79; k++) {  {
         if (Ndum[k] != 0) {    /* According to parameters values stored in x and the covariate's values stored in cov,
           nbcode[Tvar[j]][ij]=k;       computes the probability to be observed in state j being in state i by appying the
           ij++;       model to the ncovmodel covariates (including constant and age).
         }       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         if (ij > ncodemax[j]) break;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
       }         ncth covariate in the global vector x is given by the formula:
     }       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   }         j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 }       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
        Outputs ps[i][j] the probability to be observed in j being in j according to
 /*********** Health Expectancies ****************/       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    double s1, lnpijopii;
 {    /*double t34;*/
   /* Health expectancies */    int i,j,j1, nc, ii, jj;
   int i, j, nhstepm, hstepm, h;  
   double age, agelim,hf;      for(i=1; i<= nlstate; i++){
   double ***p3mat;        for(j=1; j<i;j++){
            for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   fprintf(ficreseij,"# Health expectancies\n");            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   fprintf(ficreseij,"# Age");            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   for(i=1; i<=nlstate;i++)  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     for(j=1; j<=nlstate;j++)          }
       fprintf(ficreseij," %1d-%1d",i,j);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   fprintf(ficreseij,"\n");  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }
   hstepm=1*YEARM; /*  Every j years of age (in month) */        for(j=i+1; j<=nlstate+ndeath;j++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   agelim=AGESUP;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
     /* nhstepm age range expressed in number of stepm */          }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     /* Typically if 20 years = 20*12/6=40 stepm */        }
     if (stepm >= YEARM) hstepm=1;      }
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */      
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<= nlstate; i++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        s1=0;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        for(j=1; j<i; j++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
     for(i=1; i<=nlstate;i++)        for(j=i+1; j<=nlstate+ndeath; j++){
       for(j=1; j<=nlstate;j++)          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           eij[i][j][(int)age] +=p3mat[i][j][h];        }
         }        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
            ps[i][i]=1./(s1+1.);
     hf=1;        /* Computing other pijs */
     if (stepm >= YEARM) hf=stepm/YEARM;        for(j=1; j<i; j++)
     fprintf(ficreseij,"%.0f",age );          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(i=1; i<=nlstate;i++)        for(j=i+1; j<=nlstate+ndeath; j++)
       for(j=1; j<=nlstate;j++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       }      } /* end i */
     fprintf(ficreseij,"\n");      
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   }        for(jj=1; jj<= nlstate+ndeath; jj++){
 }          ps[ii][jj]=0;
           ps[ii][ii]=1;
 /************ Variance ******************/        }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      }
 {      
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double **newm;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   double **dnewm,**doldm;  /*         printf("ddd %lf ",ps[ii][jj]); */
   int i, j, nhstepm, hstepm, h;  /*       } */
   int k, cptcode;  /*       printf("\n "); */
    double *xp;  /*        } */
   double **gp, **gm;  /*        printf("\n ");printf("%lf ",cov[2]); */
   double ***gradg, ***trgradg;         /*
   double ***p3mat;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   double age,agelim;        goto end;*/
   int theta;      return ps;
   }
    fprintf(ficresvij,"# Covariances of life expectancies\n");  
   fprintf(ficresvij,"# Age");  /**************** Product of 2 matrices ******************/
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  {
   fprintf(ficresvij,"\n");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   xp=vector(1,npar);    /* in, b, out are matrice of pointers which should have been initialized 
   dnewm=matrix(1,nlstate,1,npar);       before: only the contents of out is modified. The function returns
   doldm=matrix(1,nlstate,1,nlstate);       a pointer to pointers identical to out */
      long i, j, k;
   hstepm=1*YEARM; /* Every year of age */    for(i=nrl; i<= nrh; i++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for(k=ncolol; k<=ncoloh; k++)
   agelim = AGESUP;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          out[i][k] +=in[i][j]*b[j][k];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;    return out;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);  /************* Higher Matrix Product ***************/
     gm=matrix(0,nhstepm,1,nlstate);  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for(theta=1; theta <=npar; theta++){  {
       for(i=1; i<=npar; i++){ /* Computes gradient */    /* Computes the transition matrix starting at age 'age' over 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       'nhstepm*hstepm*stepm' months (i.e. until
       }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         nhstepm*hstepm matrices. 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       for(j=1; j<= nlstate; j++){       (typically every 2 years instead of every month which is too big 
         for(h=0; h<=nhstepm; h++){       for the memory).
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)       Model is determined by parameters x and covariates have to be 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];       included manually here. 
         }  
       }       */
      
       for(i=1; i<=npar; i++) /* Computes gradient */    int i, j, d, h, k;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double **out, cov[NCOVMAX+1];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double **newm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(j=1; j<= nlstate; j++){    /* Hstepm could be zero and should return the unit matrix */
         for(h=0; h<=nhstepm; h++){    for (i=1;i<=nlstate+ndeath;i++)
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      for (j=1;j<=nlstate+ndeath;j++){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        oldm[i][j]=(i==j ? 1.0 : 0.0);
         }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }      }
       for(j=1; j<= nlstate; j++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for(h=0; h<=nhstepm; h++){    for(h=1; h <=nhstepm; h++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for(d=1; d <=hstepm; d++){
         }        newm=savm;
     } /* End theta */        /* Covariates have to be included here again */
         cov[1]=1.;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) 
     for(h=0; h<=nhstepm; h++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for(j=1; j<=nlstate;j++)        for (k=1; k<=cptcovage;k++)
         for(theta=1; theta <=npar; theta++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           trgradg[h][j][theta]=gradg[h][theta][j];        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     for(h=0;h<=nhstepm;h++){        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       for(k=0;k<=nhstepm;k++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        savm=oldm;
         for(i=1;i<=nlstate;i++)        oldm=newm;
           for(j=1;j<=nlstate;j++)      }
             vareij[i][j][(int)age] += doldm[i][j];      for(i=1; i<=nlstate+ndeath; i++)
       }        for(j=1;j<=nlstate+ndeath;j++) {
     }          po[i][j][h]=newm[i][j];
     h=1;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     if (stepm >= YEARM) h=stepm/YEARM;        }
     fprintf(ficresvij,"%.0f ",age );      /*printf("h=%d ",h);*/
     for(i=1; i<=nlstate;i++)    } /* end h */
       for(j=1; j<=nlstate;j++){  /*     printf("\n H=%d \n",h); */
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    return po;
       }  }
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);  /*************** log-likelihood *************/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  double func( double *x)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, ii, j, k, mi, d, kk;
   } /* End age */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      double **out;
   free_vector(xp,1,npar);    double sw; /* Sum of weights */
   free_matrix(doldm,1,nlstate,1,npar);    double lli; /* Individual log likelihood */
   free_matrix(dnewm,1,nlstate,1,nlstate);    int s1, s2;
     double bbh, survp;
 }    long ipmx;
     /*extern weight */
 /************ Variance of prevlim ******************/    /* We are differentiating ll according to initial status */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 {    /*for(i=1;i<imx;i++) 
   /* Variance of prevalence limit */      printf(" %d\n",s[4][i]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    */
   double **newm;    cov[1]=1.;
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int k, cptcode;  
   double *xp;    if(mle==1){
   double *gp, *gm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double **gradg, **trgradg;        /* Computes the values of the ncovmodel covariates of the model
   double age,agelim;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   int theta;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
               to be observed in j being in i according to the model.
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");         */
   fprintf(ficresvpl,"# Age");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(i=1; i<=nlstate;i++)        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       fprintf(ficresvpl," %1d-%1d",i,i);           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   fprintf(ficresvpl,"\n");           has been calculated etc */
         for(mi=1; mi<= wav[i]-1; mi++){
   xp=vector(1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
   dnewm=matrix(1,nlstate,1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   doldm=matrix(1,nlstate,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=1*YEARM; /* Every year of age */            }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for(d=0; d<dh[mi][i]; d++){
   agelim = AGESUP;            newm=savm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            for (kk=1; kk<=cptcovage;kk++) {
     if (stepm >= YEARM) hstepm=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
     gradg=matrix(1,npar,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     gp=vector(1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gm=vector(1,nlstate);            savm=oldm;
             oldm=newm;
     for(theta=1; theta <=npar; theta++){          } /* end mult */
       for(i=1; i<=npar; i++){ /* Computes gradient */        
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       }          /* But now since version 0.9 we anticipate for bias at large stepm.
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for(i=1;i<=nlstate;i++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
         gp[i] = prlim[i][i];           * the nearest (and in case of equal distance, to the lowest) interval but now
               * we keep into memory the bias bh[mi][i] and also the previous matrix product
       for(i=1; i<=npar; i++) /* Computes gradient */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         xp[i] = x[i] - (i==theta ?delti[theta]:0);           * probability in order to take into account the bias as a fraction of the way
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       for(i=1;i<=nlstate;i++)           * -stepm/2 to stepm/2 .
         gm[i] = prlim[i][i];           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
       for(i=1;i<=nlstate;i++)           */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          s1=s[mw[mi][i]][i];
     } /* End theta */          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
     trgradg =matrix(1,nlstate,1,npar);          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
     for(j=1; j<=nlstate;j++)           */
       for(theta=1; theta <=npar; theta++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         trgradg[j][theta]=gradg[theta][j];          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
     for(i=1;i<=nlstate;i++)               then the contribution to the likelihood is the probability to 
       varpl[i][(int)age] =0.;               die between last step unit time and current  step unit time, 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);               which is also equal to probability to die before dh 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);               minus probability to die before dh-stepm . 
     for(i=1;i<=nlstate;i++)               In version up to 0.92 likelihood was computed
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
     fprintf(ficresvpl,"%.0f ",age );          and not the date of a change in health state. The former idea was
     for(i=1; i<=nlstate;i++)          to consider that at each interview the state was recorded
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          (healthy, disable or death) and IMaCh was corrected; but when we
     fprintf(ficresvpl,"\n");          introduced the exact date of death then we should have modified
     free_vector(gp,1,nlstate);          the contribution of an exact death to the likelihood. This new
     free_vector(gm,1,nlstate);          contribution is smaller and very dependent of the step unit
     free_matrix(gradg,1,npar,1,nlstate);          stepm. It is no more the probability to die between last interview
     free_matrix(trgradg,1,nlstate,1,npar);          and month of death but the probability to survive from last
   } /* End age */          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
   free_vector(xp,1,npar);          Jackson for correcting this bug.  Former versions increased
   free_matrix(doldm,1,nlstate,1,npar);          mortality artificially. The bad side is that we add another loop
   free_matrix(dnewm,1,nlstate,1,nlstate);          which slows down the processing. The difference can be up to 10%
           lower mortality.
 }            */
             lli=log(out[s1][s2] - savm[s1][s2]);
   
   
 /***********************************************/          } else if  (s2==-2) {
 /**************** Main Program *****************/            for (j=1,survp=0. ; j<=nlstate; j++) 
 /***********************************************/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             /*survp += out[s1][j]; */
 /*int main(int argc, char *argv[])*/            lli= log(survp);
 int main()          }
 {          
           else if  (s2==-4) { 
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;            for (j=3,survp=0. ; j<=nlstate; j++)  
   double agedeb, agefin,hf;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double agemin=1.e20, agemax=-1.e20;            lli= log(survp); 
           } 
   double fret;  
   double **xi,tmp,delta;          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
   double dum; /* Dummy variable */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double ***p3mat;            lli= log(survp); 
   int *indx;          } 
   char line[MAXLINE], linepar[MAXLINE];          
   char title[MAXLINE];          else{
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   char filerest[FILENAMELENGTH];          } 
   char fileregp[FILENAMELENGTH];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          /*if(lli ==000.0)*/
   int firstobs=1, lastobs=10;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int sdeb, sfin; /* Status at beginning and end */          ipmx +=1;
   int c,  h , cpt,l;          sw += weight[i];
   int ju,jl, mi;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;        } /* end of wave */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      } /* end of individual */
      }  else if(mle==2){
   int hstepm, nhstepm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double bage, fage, age, agelim, agebase;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double ftolpl=FTOL;        for(mi=1; mi<= wav[i]-1; mi++){
   double **prlim;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double *severity;            for (j=1;j<=nlstate+ndeath;j++){
   double ***param; /* Matrix of parameters */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double  *p;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **matcov; /* Matrix of covariance */            }
   double ***delti3; /* Scale */          for(d=0; d<=dh[mi][i]; d++){
   double *delti; /* Scale */            newm=savm;
   double ***eij, ***vareij;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **varpl; /* Variances of prevalence limits by age */            for (kk=1; kk<=cptcovage;kk++) {
   double *epj, vepp;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";            }
   char *alph[]={"a","a","b","c","d","e"}, str[4];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   char z[1]="c", occ;            savm=oldm;
 #include <sys/time.h>            oldm=newm;
 #include <time.h>          } /* end mult */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        
   /* long total_usecs;          s1=s[mw[mi][i]][i];
   struct timeval start_time, end_time;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
           sw += weight[i];
   printf("\nIMACH, Version 0.64a");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   printf("\nEnter the parameter file name: ");        } /* end of wave */
       } /* end of individual */
 #ifdef windows    }  else if(mle==3){  /* exponential inter-extrapolation */
   scanf("%s",pathtot);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   getcwd(pathcd, size);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /*cygwin_split_path(pathtot,path,optionfile);        for(mi=1; mi<= wav[i]-1; mi++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* cutv(path,optionfile,pathtot,'\\');*/            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 split(pathtot, path,optionfile);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   chdir(path);            }
   replace(pathc,path);          for(d=0; d<dh[mi][i]; d++){
 #endif            newm=savm;
 #ifdef unix            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   scanf("%s",optionfile);            for (kk=1; kk<=cptcovage;kk++) {
 #endif              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /*-------- arguments in the command line --------*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcpy(fileres,"r");            savm=oldm;
   strcat(fileres, optionfile);            oldm=newm;
           } /* end mult */
   /*---------arguments file --------*/        
           s1=s[mw[mi][i]][i];
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          s2=s[mw[mi+1][i]][i];
     printf("Problem with optionfile %s\n",optionfile);          bbh=(double)bh[mi][i]/(double)stepm; 
     goto end;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }          ipmx +=1;
           sw += weight[i];
   strcpy(filereso,"o");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcat(filereso,fileres);        } /* end of wave */
   if((ficparo=fopen(filereso,"w"))==NULL) {      } /* end of individual */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Reads comments: lines beginning with '#' */        for(mi=1; mi<= wav[i]-1; mi++){
   while((c=getc(ficpar))=='#' && c!= EOF){          for (ii=1;ii<=nlstate+ndeath;ii++)
     ungetc(c,ficpar);            for (j=1;j<=nlstate+ndeath;j++){
     fgets(line, MAXLINE, ficpar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     puts(line);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fputs(line,ficparo);            }
   }          for(d=0; d<dh[mi][i]; d++){
   ungetc(c,ficpar);            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            for (kk=1; kk<=cptcovage;kk++) {
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);            }
           
   covar=matrix(0,NCOVMAX,1,n);                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if (strlen(model)<=1) cptcovn=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   else {            savm=oldm;
     j=0;            oldm=newm;
     j=nbocc(model,'+');          } /* end mult */
     cptcovn=j+1;        
   }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   ncovmodel=2+cptcovn;          if( s2 > nlstate){ 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            lli=log(out[s1][s2] - savm[s1][s2]);
            }else{
   /* Read guess parameters */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   /* Reads comments: lines beginning with '#' */          }
   while((c=getc(ficpar))=='#' && c!= EOF){          ipmx +=1;
     ungetc(c,ficpar);          sw += weight[i];
     fgets(line, MAXLINE, ficpar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     puts(line);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     fputs(line,ficparo);        } /* end of wave */
   }      } /* end of individual */
   ungetc(c,ficpar);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i <=nlstate; i++)        for(mi=1; mi<= wav[i]-1; mi++){
     for(j=1; j <=nlstate+ndeath-1; j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);            for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficparo,"%1d%1d",i1,j1);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("%1d%1d",i,j);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(k=1; k<=ncovmodel;k++){            }
         fscanf(ficpar," %lf",&param[i][j][k]);          for(d=0; d<dh[mi][i]; d++){
         printf(" %lf",param[i][j][k]);            newm=savm;
         fprintf(ficparo," %lf",param[i][j][k]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
       fscanf(ficpar,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       printf("\n");            }
       fprintf(ficparo,"\n");          
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            savm=oldm;
   p=param[1][1];            oldm=newm;
            } /* end mult */
   /* Reads comments: lines beginning with '#' */        
   while((c=getc(ficpar))=='#' && c!= EOF){          s1=s[mw[mi][i]][i];
     ungetc(c,ficpar);          s2=s[mw[mi+1][i]][i];
     fgets(line, MAXLINE, ficpar);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     puts(line);          ipmx +=1;
     fputs(line,ficparo);          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   ungetc(c,ficpar);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      } /* end of individual */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    } /* End of if */
   for(i=1; i <=nlstate; i++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for(j=1; j <=nlstate+ndeath-1; j++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       printf("%1d%1d",i,j);    return -l;
       fprintf(ficparo,"%1d%1d",i1,j1);  }
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);  /*************** log-likelihood *************/
         printf(" %le",delti3[i][j][k]);  double funcone( double *x)
         fprintf(ficparo," %le",delti3[i][j][k]);  {
       }    /* Same as likeli but slower because of a lot of printf and if */
       fscanf(ficpar,"\n");    int i, ii, j, k, mi, d, kk;
       printf("\n");    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       fprintf(ficparo,"\n");    double **out;
     }    double lli; /* Individual log likelihood */
   }    double llt;
   delti=delti3[1][1];    int s1, s2;
      double bbh, survp;
   /* Reads comments: lines beginning with '#' */    /*extern weight */
   while((c=getc(ficpar))=='#' && c!= EOF){    /* We are differentiating ll according to initial status */
     ungetc(c,ficpar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     fgets(line, MAXLINE, ficpar);    /*for(i=1;i<imx;i++) 
     puts(line);      printf(" %d\n",s[4][i]);
     fputs(line,ficparo);    */
   }    cov[1]=1.;
   ungetc(c,ficpar);  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fscanf(ficpar,"%s",&str);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     printf("%s",str);      for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficparo,"%s",str);        for (ii=1;ii<=nlstate+ndeath;ii++)
     for(j=1; j <=i; j++){          for (j=1;j<=nlstate+ndeath;j++){
       fscanf(ficpar," %le",&matcov[i][j]);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf(" %.5le",matcov[i][j]);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficparo," %.5le",matcov[i][j]);          }
     }        for(d=0; d<dh[mi][i]; d++){
     fscanf(ficpar,"\n");          newm=savm;
     printf("\n");          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficparo,"\n");          for (kk=1; kk<=cptcovage;kk++) {
   }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=1; i <=npar; i++)          }
     for(j=i+1;j<=npar;j++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       matcov[i][j]=matcov[j][i];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   printf("\n");          oldm=newm;
         } /* end mult */
         
     /*-------- data file ----------*/        s1=s[mw[mi][i]][i];
     if((ficres =fopen(fileres,"w"))==NULL) {        s2=s[mw[mi+1][i]][i];
       printf("Problem with resultfile: %s\n", fileres);goto end;        bbh=(double)bh[mi][i]/(double)stepm; 
     }        /* bias is positive if real duration
     fprintf(ficres,"#%s\n",version);         * is higher than the multiple of stepm and negative otherwise.
             */
     if((fic=fopen(datafile,"r"))==NULL)    {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       printf("Problem with datafile: %s\n", datafile);goto end;          lli=log(out[s1][s2] - savm[s1][s2]);
     }        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
     n= lastobs;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     severity = vector(1,maxwav);          lli= log(survp);
     outcome=imatrix(1,maxwav+1,1,n);        }else if (mle==1){
     num=ivector(1,n);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     moisnais=vector(1,n);        } else if(mle==2){
     annais=vector(1,n);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     moisdc=vector(1,n);        } else if(mle==3){  /* exponential inter-extrapolation */
     andc=vector(1,n);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     agedc=vector(1,n);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     cod=ivector(1,n);          lli=log(out[s1][s2]); /* Original formula */
     weight=vector(1,n);        } else{  /* mle=0 back to 1 */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     mint=matrix(1,maxwav,1,n);          /*lli=log(out[s1][s2]); */ /* Original formula */
     anint=matrix(1,maxwav,1,n);        } /* End of if */
     s=imatrix(1,maxwav+1,1,n);        ipmx +=1;
     adl=imatrix(1,maxwav+1,1,n);            sw += weight[i];
     tab=ivector(1,NCOVMAX);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     ncodemax=ivector(1,8);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
     i=1;          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     while (fgets(line, MAXLINE, fic) != NULL)    {   %11.6f %11.6f %11.6f ", \
       if ((i >= firstobs) && (i <=lastobs)) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                          2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         for (j=maxwav;j>=1;j--){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            llt +=ll[k]*gipmx/gsw;
           strcpy(line,stra);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresilk," %10.6f\n", -llt);
         }        }
              } /* end of wave */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    } /* end of individual */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      gsw=sw;
         for (j=ncov;j>=1;j--){    }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    return -l;
         }  }
         num[i]=atol(stra);  
   
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         i=i+1;  {
       }    /* This routine should help understanding what is done with 
     }       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
     /*scanf("%d",i);*/       Plotting could be done.
   imx=i-1; /* Number of individuals */     */
     int k;
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);        if(*globpri !=0){ /* Just counts and sums, no printings */
   Tage=ivector(1,15);            strcpy(fileresilk,"ilk"); 
          strcat(fileresilk,fileres);
   if (strlen(model) >1){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     j=0, j1=0;        printf("Problem with resultfile: %s\n", fileresilk);
     j=nbocc(model,'+');        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     j1=nbocc(model,'*');      }
     cptcovn=j+1;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
          fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     strcpy(modelsav,model);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     if (j==0) {      for(k=1; k<=nlstate; k++) 
       if (j1==0){        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
        cutv(stra,strb,modelsav,'V');      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
        Tvar[1]=atoi(strb);    }
       }  
       else if (j1==1) {    *fretone=(*funcone)(p);
        cutv(stra,strb,modelsav,'*');    if(*globpri !=0){
        /*      printf("stra=%s strb=%s modelsav=%s ",stra,strb,modelsav);*/      fclose(ficresilk);
        Tage[1]=1; cptcovage++;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
        if (strcmp(stra,"age")==0) {      fflush(fichtm); 
          cutv(strd,strc,strb,'V');    } 
          Tvar[1]=atoi(strc);    return;
        }  }
        else if (strcmp(strb,"age")==0) {  
          cutv(strd,strc,stra,'V');  
          Tvar[1]=atoi(strc);  /*********** Maximum Likelihood Estimation ***************/
        }  
        else {printf("Error"); exit(0);}  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       }  {
     }    int i,j, iter;
     else {    double **xi;
       for(i=j; i>=1;i--){    double fret;
         cutv(stra,strb,modelsav,'+');    double fretone; /* Only one call to likelihood */
         /*printf("%s %s %s\n", stra,strb,modelsav);*/    /*  char filerespow[FILENAMELENGTH];*/
         if (strchr(strb,'*')) {    xi=matrix(1,npar,1,npar);
           cutv(strd,strc,strb,'*');    for (i=1;i<=npar;i++)
           if (strcmp(strc,"age")==0) {      for (j=1;j<=npar;j++)
             cutv(strb,stre,strd,'V');        xi[i][j]=(i==j ? 1.0 : 0.0);
             Tvar[i+1]=atoi(stre);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             cptcovage++;    strcpy(filerespow,"pow"); 
             Tage[cptcovage]=i+1;    strcat(filerespow,fileres);
             printf("stre=%s ", stre);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", filerespow);
           else if (strcmp(strd,"age")==0) {      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
             cutv(strb,stre,strc,'V');    }
             Tvar[i+1]=atoi(stre);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
             cptcovage++;    for (i=1;i<=nlstate;i++)
             Tage[cptcovage]=i+1;      for(j=1;j<=nlstate+ndeath;j++)
           }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           else {    fprintf(ficrespow,"\n");
             cutv(strb,stre,strc,'V');  
             Tvar[i+1]=ncov+1;    powell(p,xi,npar,ftol,&iter,&fret,func);
             cutv(strb,strc,strd,'V');  
             for (k=1; k<=lastobs;k++)    free_matrix(xi,1,npar,1,npar);
               covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    fclose(ficrespow);
           }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         else {    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           cutv(strd,strc,strb,'V');  
           /* printf("%s %s %s", strd,strc,strb);*/  }
   
         Tvar[i+1]=atoi(strc);  /**** Computes Hessian and covariance matrix ***/
         }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         strcpy(modelsav,stra);    {
       }    double  **a,**y,*x,pd;
       cutv(strd,strc,stra,'V');    double **hess;
       Tvar[1]=atoi(strc);    int i, j,jk;
     }    int *indx;
   }  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      scanf("%d ",i);*/    void lubksb(double **a, int npar, int *indx, double b[]) ;
     fclose(fic);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
    if(mle==1){    hess=matrix(1,npar,1,npar);
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;    printf("\nCalculation of the hessian matrix. Wait...\n");
     }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     /*-calculation of age at interview from date of interview and age at death -*/    for (i=1;i<=npar;i++){
     agev=matrix(1,maxwav,1,imx);      printf("%d",i);fflush(stdout);
          fprintf(ficlog,"%d",i);fflush(ficlog);
     for (i=1; i<=imx; i++)  {     
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       for(m=1; (m<= maxwav); m++){      
         if(s[m][i] >0){      /*  printf(" %f ",p[i]);
           if (s[m][i] == nlstate+1) {          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
             if(agedc[i]>0)    }
               if(moisdc[i]!=99 && andc[i]!=9999)    
               agev[m][i]=agedc[i];    for (i=1;i<=npar;i++) {
             else{      for (j=1;j<=npar;j++)  {
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        if (j>i) { 
               agev[m][i]=-1;          printf(".%d%d",i,j);fflush(stdout);
             }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           }          hess[i][j]=hessij(p,delti,i,j,func,npar);
           else if(s[m][i] !=9){ /* Should no more exist */          
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          hess[j][i]=hess[i][j];    
             if(mint[m][i]==99 || anint[m][i]==9999)          /*printf(" %lf ",hess[i][j]);*/
               agev[m][i]=1;        }
             else if(agev[m][i] <agemin){      }
               agemin=agev[m][i];    }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    printf("\n");
             }    fprintf(ficlog,"\n");
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
             }    
             /*agev[m][i]=anint[m][i]-annais[i];*/    a=matrix(1,npar,1,npar);
             /*   agev[m][i] = age[i]+2*m;*/    y=matrix(1,npar,1,npar);
           }    x=vector(1,npar);
           else { /* =9 */    indx=ivector(1,npar);
             agev[m][i]=1;    for (i=1;i<=npar;i++)
             s[m][i]=-1;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           }    ludcmp(a,npar,indx,&pd);
         }  
         else /*= 0 Unknown */    for (j=1;j<=npar;j++) {
           agev[m][i]=1;      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
          lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){ 
     for (i=1; i<=imx; i++)  {        matcov[i][j]=x[i];
       for(m=1; (m<= maxwav); m++){      }
         if (s[m][i] > (nlstate+ndeath)) {    }
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;    printf("\n#Hessian matrix#\n");
         }    fprintf(ficlog,"\n#Hessian matrix#\n");
       }    for (i=1;i<=npar;i++) { 
     }      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
     free_vector(severity,1,maxwav);      printf("\n");
     free_imatrix(outcome,1,maxwav+1,1,n);      fprintf(ficlog,"\n");
     free_vector(moisnais,1,n);    }
     free_vector(annais,1,n);  
     free_matrix(mint,1,maxwav,1,n);    /* Recompute Inverse */
     free_matrix(anint,1,maxwav,1,n);    for (i=1;i<=npar;i++)
     free_vector(moisdc,1,n);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     free_vector(andc,1,n);    ludcmp(a,npar,indx,&pd);
   
        /*  printf("\n#Hessian matrix recomputed#\n");
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    for (j=1;j<=npar;j++) {
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      for (i=1;i<=npar;i++) x[i]=0;
          x[j]=1;
     /* Concatenates waves */      lubksb(a,npar,indx,x);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
       Tcode=ivector(1,100);        fprintf(ficlog,"%.3e ",y[i][j]);
    nbcode=imatrix(1,nvar,1,8);        }
    ncodemax[1]=1;      printf("\n");
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);      fprintf(ficlog,"\n");
      }
    codtab=imatrix(1,100,1,10);    */
    h=0;  
    m=pow(2,cptcovn);    free_matrix(a,1,npar,1,npar);
      free_matrix(y,1,npar,1,npar);
    for(k=1;k<=cptcovn; k++){    free_vector(x,1,npar);
      for(i=1; i <=(m/pow(2,k));i++){    free_ivector(indx,1,npar);
        for(j=1; j <= ncodemax[k]; j++){    free_matrix(hess,1,npar,1,npar);
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){  
            h++;  
            if (h>m) h=1;codtab[h][k]=j;  }
          }  
        }  /*************** hessian matrix ****************/
      }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
    }  {
     int i;
    /* for(i=1; i <=m ;i++){    int l=1, lmax=20;
      for(k=1; k <=cptcovn; k++){    double k1,k2;
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);    double p2[MAXPARM+1]; /* identical to x */
      }    double res;
      printf("\n");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
    }    double fx;
    scanf("%d",i);*/    int k=0,kmax=10;
        double l1;
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */    fx=func(x);
    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      l1=pow(10,l);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      delts=delt;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(k=1 ; k <kmax; k=k+1){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        delt = delta*(l1*k);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        p2[theta]=x[theta] +delt;
            k1=func(p2)-fx;
     /* For Powell, parameters are in a vector p[] starting at p[1]        p2[theta]=x[theta]-delt;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        k2=func(p2)-fx;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        /*res= (k1-2.0*fx+k2)/delt/delt; */
            res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        
   #ifdef DEBUGHESS
            printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     /*--------- results files --------------*/        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);  #endif
            /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
    jk=1;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
    fprintf(ficres,"# Parameters\n");          k=kmax;
    printf("# Parameters\n");        }
    for(i=1,jk=1; i <=nlstate; i++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
      for(k=1; k <=(nlstate+ndeath); k++){          k=kmax; l=lmax*10.;
        if (k != i)        }
          {        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            printf("%d%d ",i,k);          delts=delt;
            fprintf(ficres,"%1d%1d ",i,k);        }
            for(j=1; j <=ncovmodel; j++){      }
              printf("%f ",p[jk]);    }
              fprintf(ficres,"%f ",p[jk]);    delti[theta]=delts;
              jk++;    return res; 
            }    
            printf("\n");  }
            fprintf(ficres,"\n");  
          }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
      }  {
    }    int i;
     int l=1, l1, lmax=20;
     /* Computing hessian and covariance matrix */    double k1,k2,k3,k4,res,fx;
     ftolhess=ftol; /* Usually correct */    double p2[MAXPARM+1];
     hesscov(matcov, p, npar, delti, ftolhess, func);    int k;
     fprintf(ficres,"# Scales\n");  
     printf("# Scales\n");    fx=func(x);
      for(i=1,jk=1; i <=nlstate; i++){    for (k=1; k<=2; k++) {
       for(j=1; j <=nlstate+ndeath; j++){      for (i=1;i<=npar;i++) p2[i]=x[i];
         if (j!=i) {      p2[thetai]=x[thetai]+delti[thetai]/k;
           fprintf(ficres,"%1d%1d",i,j);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           printf("%1d%1d",i,j);      k1=func(p2)-fx;
           for(k=1; k<=ncovmodel;k++){    
             printf(" %.5e",delti[jk]);      p2[thetai]=x[thetai]+delti[thetai]/k;
             fprintf(ficres," %.5e",delti[jk]);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             jk++;      k2=func(p2)-fx;
           }    
           printf("\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
           fprintf(ficres,"\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         }      k3=func(p2)-fx;
       }    
       }      p2[thetai]=x[thetai]-delti[thetai]/k;
          p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     k=1;      k4=func(p2)-fx;
     fprintf(ficres,"# Covariance\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     printf("# Covariance\n");  #ifdef DEBUG
     for(i=1;i<=npar;i++){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       /*  if (k>nlstate) k=1;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       i1=(i-1)/(ncovmodel*nlstate)+1;  #endif
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    }
       printf("%s%d%d",alph[k],i1,tab[i]);*/    return res;
       fprintf(ficres,"%3d",i);  }
       printf("%3d",i);  
       for(j=1; j<=i;j++){  /************** Inverse of matrix **************/
         fprintf(ficres," %.5e",matcov[i][j]);  void ludcmp(double **a, int n, int *indx, double *d) 
         printf(" %.5e",matcov[i][j]);  { 
       }    int i,imax,j,k; 
       fprintf(ficres,"\n");    double big,dum,sum,temp; 
       printf("\n");    double *vv; 
       k++;   
     }    vv=vector(1,n); 
        *d=1.0; 
     while((c=getc(ficpar))=='#' && c!= EOF){    for (i=1;i<=n;i++) { 
       ungetc(c,ficpar);      big=0.0; 
       fgets(line, MAXLINE, ficpar);      for (j=1;j<=n;j++) 
       puts(line);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       fputs(line,ficparo);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     }      vv[i]=1.0/big; 
     ungetc(c,ficpar);    } 
      for (j=1;j<=n;j++) { 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      for (i=1;i<j;i++) { 
            sum=a[i][j]; 
     if (fage <= 2) {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       bage = agemin;        a[i][j]=sum; 
       fage = agemax;      } 
     }      big=0.0; 
       for (i=j;i<=n;i++) { 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        sum=a[i][j]; 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        for (k=1;k<j;k++) 
 /*------------ gnuplot -------------*/          sum -= a[i][k]*a[k][j]; 
 chdir(pathcd);        a[i][j]=sum; 
   if((ficgp=fopen("graph.plt","w"))==NULL) {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     printf("Problem with file graph.gp");goto end;          big=dum; 
   }          imax=i; 
 #ifdef windows        } 
   fprintf(ficgp,"cd \"%s\" \n",pathc);      } 
 #endif      if (j != imax) { 
 m=pow(2,cptcovn);        for (k=1;k<=n;k++) { 
            dum=a[imax][k]; 
  /* 1eme*/          a[imax][k]=a[j][k]; 
   for (cpt=1; cpt<= nlstate ; cpt ++) {          a[j][k]=dum; 
    for (k1=1; k1<= m ; k1 ++) {        } 
         *d = -(*d); 
 #ifdef windows        vv[imax]=vv[j]; 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      } 
 #endif      indx[j]=imax; 
 #ifdef unix      if (a[j][j] == 0.0) a[j][j]=TINY; 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      if (j != n) { 
 #endif        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 for (i=1; i<= nlstate ; i ++) {      } 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    free_vector(vv,1,n);  /* Doesn't work */
 }  ;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  } 
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  void lubksb(double **a, int n, int *indx, double b[]) 
   else fprintf(ficgp," \%%*lf (\%%*lf)");  { 
 }    int i,ii=0,ip,j; 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    double sum; 
      for (i=1; i<= nlstate ; i ++) {   
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (i=1;i<=n;i++) { 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      ip=indx[i]; 
 }        sum=b[ip]; 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      b[ip]=b[i]; 
 #ifdef unix      if (ii) 
 fprintf(ficgp,"\nset ter gif small size 400,300");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 #endif      else if (sum) ii=i; 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      b[i]=sum; 
    }    } 
   }    for (i=n;i>=1;i--) { 
   /*2 eme*/      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   for (k1=1; k1<= m ; k1 ++) {      b[i]=sum/a[i][i]; 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    } 
      } 
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;  void pstamp(FILE *fichier)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  {
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    /************ Frequencies ********************/
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  {  /* Some frequencies */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    
       for (j=1; j<= nlstate+1 ; j ++) {    int i, m, jk, k1,i1, j1, bool, z1,j;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int first;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double ***freq; /* Frequencies */
 }      double *pp, **prop;
       fprintf(ficgp,"\" t\"\" w l 0,");    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    char fileresp[FILENAMELENGTH];
       for (j=1; j<= nlstate+1 ; j ++) {    
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    pp=vector(1,nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    prop=matrix(1,nlstate,iagemin,iagemax+3);
 }      strcpy(fileresp,"p");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    strcat(fileresp,fileres);
       else fprintf(ficgp,"\" t\"\" w l 0,");    if((ficresp=fopen(fileresp,"w"))==NULL) {
     }      printf("Problem with prevalence resultfile: %s\n", fileresp);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   }      exit(0);
      }
   /*3eme*/    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {    j=cptcoveff;
       k=2+nlstate*(cpt-1);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);  
       for (i=1; i< nlstate ; i ++) {    first=1;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  
       }    for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
     }        j1++;
   }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
            scanf("%d", i);*/
   /* CV preval stat */        for (i=-5; i<=nlstate+ndeath; i++)  
   for (k1=1; k1<= m ; k1 ++) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     for (cpt=1; cpt<nlstate ; cpt ++) {            for(m=iagemin; m <= iagemax+3; m++)
       k=3;              freq[i][jk][m]=0;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);        
       for (i=1; i< nlstate ; i ++)        for (i=1; i<=nlstate; i++)  
         fprintf(ficgp,"+$%d",k+i+1);          for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            prop[i][m]=0;
              
       l=3+(nlstate+ndeath)*cpt;        dateintsum=0;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        k2cpt=0;
       for (i=1; i< nlstate ; i ++) {        for (i=1; i<=imx; i++) {
         l=3+(nlstate+ndeath)*cpt;          bool=1;
         fprintf(ficgp,"+$%d",l+i+1);          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
       }            for (z1=1; z1<=cptcoveff; z1++)       
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                bool=0;
     }                printf("bool=%d i=%d, z1=%d, i1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
   }                  bool,i,z1, i1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                   j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);
   /* proba elementaires */                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
    for(i=1,jk=1; i <=nlstate; i++){              } 
     for(k=1; k <=(nlstate+ndeath); k++){          }
       if (k != i) {   
         for(j=1; j <=ncovmodel; j++){          if (bool==1){
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/            for(m=firstpass; m<=lastpass; m++){
           /*fprintf(ficgp,"%s",alph[1]);*/              k2=anint[m][i]+(mint[m][i]/12.);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           jk++;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           fprintf(ficgp,"\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       }                if (m<lastpass) {
     }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
   for(jk=1; jk <=m; jk++) {                
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
    i=1;                  dateintsum=dateintsum+k2;
    for(k2=1; k2<=nlstate; k2++) {                  k2cpt++;
      k3=i;                }
      for(k=1; k<=(nlstate+ndeath); k++) {                /*}*/
        if (k != k2){            }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          }
         }
         for(j=3; j <=ncovmodel; j++)         
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         fprintf(ficgp,")/(1");        pstamp(ficresp);
                if  (cptcovn>0) {
         for(k1=1; k1 <=nlstate; k1++){            fprintf(ficresp, "\n#********** Variable "); 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(j=3; j <=ncovmodel; j++)          fprintf(ficresp, "**********\n#");
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          fprintf(ficlog, "\n#********** Variable "); 
           fprintf(ficgp,")");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficlog, "**********\n#");
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        for(i=1; i<=nlstate;i++) 
         i=i+ncovmodel;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
        }        fprintf(ficresp, "\n");
      }        
    }        for(i=iagemin; i <= iagemax+3; i++){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          if(i==iagemax+3){
   }            fprintf(ficlog,"Total");
              }else{
   fclose(ficgp);            if(first==1){
                  first=0;
 chdir(path);              printf("See log file for details...\n");
     free_matrix(agev,1,maxwav,1,imx);            }
     free_ivector(wav,1,imx);            fprintf(ficlog,"Age %d", i);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          }
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          for(jk=1; jk <=nlstate ; jk++){
                for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     free_imatrix(s,1,maxwav+1,1,n);              pp[jk] += freq[jk][m][i]; 
              }
              for(jk=1; jk <=nlstate ; jk++){
     free_ivector(num,1,n);            for(m=-1, pos=0; m <=0 ; m++)
     free_vector(agedc,1,n);              pos += freq[jk][m][i];
     free_vector(weight,1,n);            if(pp[jk]>=1.e-10){
     /*free_matrix(covar,1,NCOVMAX,1,n);*/              if(first==1){
     fclose(ficparo);                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fclose(ficres);              }
    }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }else{
    /*________fin mle=1_________*/              if(first==1)
                    printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
              }
     /* No more information from the sample is required now */          }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){          for(jk=1; jk <=nlstate ; jk++){
     ungetc(c,ficpar);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     fgets(line, MAXLINE, ficpar);              pp[jk] += freq[jk][m][i];
     puts(line);          }       
     fputs(line,ficparo);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   }            pos += pp[jk];
   ungetc(c,ficpar);            posprop += prop[jk][i];
            }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          for(jk=1; jk <=nlstate ; jk++){
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);            if(pos>=1.e-5){
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);              if(first==1)
 /*--------- index.htm --------*/                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   if((fichtm=fopen("index.htm","w"))==NULL)    {            }else{
     printf("Problem with index.htm \n");goto end;              if(first==1)
   }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n            }
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            if( i <= iagemax){
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>              if(pos>=1.e-5){
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>                /*probs[i][jk][j1]= pp[jk]/pos;*/
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>              }
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>              else
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);            }
           }
  fprintf(fichtm," <li>Graphs</li>\n<p>");          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
  m=cptcovn;            for(m=-1; m <=nlstate+ndeath; m++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              if(freq[jk][m][i] !=0 ) {
               if(first==1)
  j1=0;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
  for(k1=1; k1<=m;k1++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
    for(i1=1; i1<=ncodemax[k1];i1++){              }
        j1++;          if(i <= iagemax)
        if (cptcovn > 0) {            fprintf(ficresp,"\n");
          fprintf(fichtm,"<hr>************ Results for covariates");          if(first==1)
          for (cpt=1; cpt<=cptcovn;cpt++)            printf("Others in log...\n");
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);          fprintf(ficlog,"\n");
          fprintf(fichtm," ************\n<hr>");        }
        }      }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        dateintmean=dateintsum/k2cpt; 
        for(cpt=1; cpt<nlstate;cpt++){   
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    fclose(ficresp);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
        }    free_vector(pp,1,nlstate);
     for(cpt=1; cpt<=nlstate;cpt++) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    /* End of Freq */
 interval) in state (%d): v%s%d%d.gif <br>  }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    
      }  /************ Prevalence ********************/
      for(cpt=1; cpt<=nlstate;cpt++) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  {  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
      }       in each health status at the date of interview (if between dateprev1 and dateprev2).
      fprintf(fichtm,"\n<br>- Total life expectancy by age and       We still use firstpass and lastpass as another selection.
 health expectancies in states (1) and (2): e%s%d.gif<br>    */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);   
 fprintf(fichtm,"\n</body>");    int i, m, jk, k1, i1, j1, bool, z1,j;
    }    double ***freq; /* Frequencies */
  }    double *pp, **prop;
 fclose(fichtm);    double pos,posprop; 
     double  y2; /* in fractional years */
   /*--------------- Prevalence limit --------------*/    int iagemin, iagemax;
    
   strcpy(filerespl,"pl");    iagemin= (int) agemin;
   strcat(filerespl,fileres);    iagemax= (int) agemax;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    /*pp=vector(1,nlstate);*/
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    j1=0;
   fprintf(ficrespl,"#Prevalence limit\n");    
   fprintf(ficrespl,"#Age ");    j=cptcoveff;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficrespl,"\n");    
      for(k1=1; k1<=j;k1++){
   prlim=matrix(1,nlstate,1,nlstate);      for(i1=1; i1<=ncodemax[k1];i1++){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        j1++;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (i=1; i<=nlstate; i++)  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(m=iagemin; m <= iagemax+3; m++)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            prop[i][m]=0.0;
   k=0;       
   agebase=agemin;        for (i=1; i<=imx; i++) { /* Each individual */
   agelim=agemax;          bool=1;
   ftolpl=1.e-10;          if  (cptcovn>0) {
   i1=cptcovn;            for (z1=1; z1<=cptcoveff; z1++) 
   if (cptcovn < 1){i1=1;}              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
   for(cptcov=1;cptcov<=i1;cptcov++){          } 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          if (bool==1) { 
         k=k+1;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         fprintf(ficrespl,"\n#******");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         for(j=1;j<=cptcovn;j++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           fprintf(ficrespl," V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(ficrespl,"******\n");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                        if (s[m][i]>0 && s[m][i]<=nlstate) { 
         for (age=agebase; age<=agelim; age++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           fprintf(ficrespl,"%.0f",age );                  prop[s[m][i]][iagemax+3] += weight[i]; 
           for(i=1; i<=nlstate;i++)                } 
           fprintf(ficrespl," %.5f", prlim[i][i]);              }
           fprintf(ficrespl,"\n");            } /* end selection of waves */
         }          }
       }        }
     }        for(i=iagemin; i <= iagemax+3; i++){  
   fclose(ficrespl);          
   /*------------- h Pij x at various ages ------------*/          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
              posprop += prop[jk][i]; 
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          } 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          for(jk=1; jk <=nlstate ; jk++){     
   }            if( i <=  iagemax){ 
   printf("Computing pij: result on file '%s' \n", filerespij);              if(posprop>=1.e-5){ 
                  probs[i][jk][j1]= prop[jk][i]/posprop;
   stepsize=(int) (stepm+YEARM-1)/YEARM;              } else
   if (stepm<=24) stepsize=2;                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
             } 
   agelim=AGESUP;          }/* end jk */ 
   hstepm=stepsize*YEARM; /* Every year of age */        }/* end i */ 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      } /* end i1 */
      } /* end k1 */
   k=0;    
   for(cptcov=1;cptcov<=i1;cptcov++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /*free_vector(pp,1,nlstate);*/
       k=k+1;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         fprintf(ficrespij,"\n#****** ");  }  /* End of prevalence */
         for(j=1;j<=cptcovn;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  /************* Waves Concatenation ***************/
         fprintf(ficrespij,"******\n");  
          void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       Death is a valid wave (if date is known).
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           oldm=oldms;savm=savms;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         and mw[mi+1][i]. dh depends on stepm.
           fprintf(ficrespij,"# Age");       */
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)    int i, mi, m;
               fprintf(ficrespij," %1d-%1d",i,j);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           fprintf(ficrespij,"\n");       double sum=0., jmean=0.;*/
           for (h=0; h<=nhstepm; h++){    int first;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    int j, k=0,jk, ju, jl;
             for(i=1; i<=nlstate;i++)    double sum=0.;
               for(j=1; j<=nlstate+ndeath;j++)    first=0;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    jmin=1e+5;
             fprintf(ficrespij,"\n");    jmax=-1;
           }    jmean=0.;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=imx; i++){
           fprintf(ficrespij,"\n");      mi=0;
         }      m=firstpass;
     }      while(s[m][i] <= nlstate){
   }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
   fclose(ficrespij);        if(m >=lastpass)
           break;
   /*---------- Health expectancies and variances ------------*/        else
           m++;
   strcpy(filerest,"t");      }/* end while */
   strcat(filerest,fileres);      if (s[m][i] > nlstate){
   if((ficrest=fopen(filerest,"w"))==NULL) {        mi++;     /* Death is another wave */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        /* if(mi==0)  never been interviewed correctly before death */
   }           /* Only death is a correct wave */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        mw[mi][i]=m;
       }
   
   strcpy(filerese,"e");      wav[i]=mi;
   strcat(filerese,fileres);      if(mi==0){
   if((ficreseij=fopen(filerese,"w"))==NULL) {        nbwarn++;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        if(first==0){
   }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          first=1;
         }
  strcpy(fileresv,"v");        if(first==1){
   strcat(fileresv,fileres);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      } /* end mi==0 */
   }    } /* End individuals */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
     for(i=1; i<=imx; i++){
   k=0;      for(mi=1; mi<wav[i];mi++){
   for(cptcov=1;cptcov<=i1;cptcov++){        if (stepm <=0)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          dh[mi][i]=1;
       k=k+1;        else{
       fprintf(ficrest,"\n#****** ");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for(j=1;j<=cptcovn;j++)            if (agedc[i] < 2*AGESUP) {
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       fprintf(ficrest,"******\n");              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
       fprintf(ficreseij,"\n#****** ");                nberr++;
       for(j=1;j<=cptcovn;j++)                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                j=1; /* Temporary Dangerous patch */
       fprintf(ficreseij,"******\n");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficresvij,"\n#****** ");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for(j=1;j<=cptcovn;j++)              }
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);              k=k+1;
       fprintf(ficresvij,"******\n");              if (j >= jmax){
                 jmax=j;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                ijmax=i;
       oldm=oldms;savm=savms;              }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                if (j <= jmin){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                jmin=j;
       oldm=oldms;savm=savms;                ijmin=i;
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              }
                    sum=sum+j;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficrest,"\n");            }
                  }
       hf=1;          else{
       if (stepm >= YEARM) hf=stepm/YEARM;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       epj=vector(1,nlstate+1);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            k=k+1;
         fprintf(ficrest," %.0f",age);            if (j >= jmax) {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){              jmax=j;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {              ijmax=i;
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];            }
           }            else if (j <= jmin){
           epj[nlstate+1] +=epj[j];              jmin=j;
         }              ijmin=i;
         for(i=1, vepp=0.;i <=nlstate;i++)            }
           for(j=1;j <=nlstate;j++)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             vepp += vareij[i][j][(int)age];            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));            if(j<0){
         for(j=1;j <=nlstate;j++){              nberr++;
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficrest,"\n");            }
       }            sum=sum+j;
     }          }
   }          jk= j/stepm;
                  jl= j -jk*stepm;
  fclose(ficreseij);          ju= j -(jk+1)*stepm;
  fclose(ficresvij);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   fclose(ficrest);            if(jl==0){
   fclose(ficpar);              dh[mi][i]=jk;
   free_vector(epj,1,nlstate+1);              bh[mi][i]=0;
   /*  scanf("%d ",i); */            }else{ /* We want a negative bias in order to only have interpolation ie
                     * to avoid the price of an extra matrix product in likelihood */
   /*------- Variance limit prevalence------*/                dh[mi][i]=jk+1;
               bh[mi][i]=ju;
 strcpy(fileresvpl,"vpl");            }
   strcat(fileresvpl,fileres);          }else{
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            if(jl <= -ju){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              dh[mi][i]=jk;
     exit(0);              bh[mi][i]=jl;       /* bias is positive if real duration
   }                                   * is higher than the multiple of stepm and negative otherwise.
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                                   */
             }
  k=0;            else{
  for(cptcov=1;cptcov<=i1;cptcov++){              dh[mi][i]=jk+1;
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              bh[mi][i]=ju;
      k=k+1;            }
      fprintf(ficresvpl,"\n#****** ");            if(dh[mi][i]==0){
      for(j=1;j<=cptcovn;j++)              dh[mi][i]=1; /* At least one step */
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);              bh[mi][i]=ju; /* At least one step */
      fprintf(ficresvpl,"******\n");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                  }
      varpl=matrix(1,nlstate,(int) bage, (int) fage);          } /* end if mle */
      oldm=oldms;savm=savms;        }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      } /* end wave */
    }    }
  }    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   fclose(ficresvpl);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx)
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
      /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
      /* Boring subroutine which should only output nbcode[Tvar[j]][k]
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    /* nbcode[Tvar[j][1]= 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
      int modmaxcovj=0; /* Modality max of covariates j */
   free_matrix(matcov,1,npar,1,npar);    cptcoveff=0; 
   free_vector(delti,1,npar);   
      for (k=0; k < maxncov; k++) Ndum[k]=0;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   
   printf("End of Imach\n");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
                                   modality of this covariate Vj*/ 
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
   /*printf("Total time was %d uSec.\n", total_usecs);*/                                        modality of the nth covariate of individual i. */
   /*------ End -----------*/        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
  end:        if (ij > modmaxcovj) modmaxcovj=ij; 
 #ifdef windows        /* getting the maximum value of the modality of the covariate
  chdir(pathcd);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 #endif           female is 1, then modmaxcovj=1.*/
  system("wgnuplot graph.plt");      }
       /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 #ifdef windows      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
   while (z[0] != 'q') {        if( Ndum[i] != 0 )
     chdir(pathcd);          ncodemax[j]++; 
     printf("\nType e to edit output files, c to start again, and q for exiting: ");        /* Number of modalities of the j th covariate. In fact
     scanf("%s",z);           ncodemax[j]=2 (dichotom. variables only) but it could be more for
     if (z[0] == 'c') system("./imach");           historical reasons */
     else if (z[0] == 'e') {      } /* Ndum[-1] number of undefined modalities */
       chdir(path);  
       system("index.htm");      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     }      ij=1; 
     else if (z[0] == 'q') exit(0);      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
   }        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
 #endif          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
                                        then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             ij++;
           }
           if (ij > ncodemax[j]) break; 
         }  /* end of loop on */
       } /* end of loop on modality */ 
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
     for (k=0; k< maxncov; k++) Ndum[k]=0;
     
     for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
      Ndum[ij]++;
    }
   
    ij=1;
    for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
        ij++;
      }
    }
    ij--;
    cptcoveff=ij; /*Number of total covariates*/
   }
   
   /*********** Health Expectancies ****************/
   
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   {
     /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3mat;
     double eip;
   
     pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 3 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 3 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
                       lc2=fabs(lc2);
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 1,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 2,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 2,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 3",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 1,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 1");
         else fprintf(ficgp,"\" t\"\" w l lt 1,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /**< codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) 
                                  */
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.6  
changed lines
  Added in v.1.144


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>